National Library of Energy BETA

Sample records for reactors 1994-2012 million

  1. Patents - Alan G. MacDiarmid (1994 - 2012)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmall Reactor for DeepK.alpha.stirlingPatents - Alan G.

  2. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Environmental Management (EM)

    million to develop a reactor for hydrogen production from bio-derived liquids. National Renewable Energy Laboratory of Golden, Colorado will receive 3 million to develop...

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Structural and Geographic Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)"...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Computers and Other Electronics in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Household Demographics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Air Conditioning in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Fuels Used and End Uses in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

  9. Thermonuclear Reflect AB-Reactor

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-03-26

    The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  11. Preventing 3 Million Premature Deaths Helping 5 Million Smokers Quit

    E-Print Network [OSTI]

    Scharer, John E.

    and populations. Invest in training and education by FY 2005 to ensure that all clinicians in the United StatesPreventing 3 Million Premature Deaths Helping 5 Million Smokers Quit: A National Action Plan three million premature deaths Help five million Americans cease tobacco use within one year

  12. Compact Reactor

    SciTech Connect (OSTI)

    Williams, Pharis E. [Williams Research, P.O. Box 554, Los Alamos, NM87544 (United States)

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  13. Reactor Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Technology Advanced Reactor Concepts Advanced Instrumentation & Controls Light Water Reactor Sustainability Safety and Regulatory Technology Small Modular Reactors Nuclear...

  14. Reactor apparatus

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA)

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  15. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  16. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

  18. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

  19. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950...

  20. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

  1. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to 1949","1950...

  2. President Obama Announces $400 Million Conditional Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Obama Announces 400 Million Conditional Commitment Offer to Support Solar Panel Manufacturing President Obama Announces 400 Million Conditional Commitment Offer to...

  3. Output from microturbulence simulation of a fusion plasma showing 22 of the 400 million plasma

    E-Print Network [OSTI]

    Utah, University of

    instabilities is critical in the design of fusion reactors such as the International Thermonuclear ExperimentalOutput from microturbulence simulation of a fusion plasma showing 22 of the 400 million plasma particles simulated. Petascale-class machines help fusion scientists model their simulations with higher

  4. Generating unstructured nuclear reactor core meshes in parallel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore »examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  5. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect (OSTI)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  6. Structure of processes in flow reactor and closed reactor: Flow reactor

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Structure of processes in flow reactor and closed reactor: Flow reactor Closed reactor Active Zone -- chemical quasi- equilibria, similarity principles and macroscopic kinetics", in: Lectures on Plasma Physics

  7. A Million Cancer Genome Warehouse David Haussler

    E-Print Network [OSTI]

    McAuliffe, Jon

    Warehouse Regional Warehouses Design and Cost to Build and Operate a Million Cancer Genome Warehouse CAPEX

  8. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  9. A SPRAY REACTOR CONCEPT FOR CATALYTIC OXIDATION OF P-XYLENE TO PRODUCE HIGH-PURITY TEREPHTHALIC ACID

    E-Print Network [OSTI]

    Li, Meng

    2013-08-31

    Terephthalic acid (TPA), with current annual world capacity of exceeding 50 million metric tons, is a commercially important chemical used primarily in the manufacture of polyesters. A spray reactor in which the liquid phase, containing dissolved p...

  10. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  11. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  12. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  13. Earth: 15 Million Years Ago

    E-Print Network [OSTI]

    Masataka Mizushima

    2008-10-13

    In Einstein's general relativity theory the metric component gxx in the direction of motion (x-direction) of the sun deviates from unity due to a tensor potential caused by the black hole existing around the center of the galaxy. Because the solar system is orbiting around the galactic center at 200 km/s, the theory shows that the Newtonian gravitational potential due to the sun is not quite radial. At the present time, the ecliptic plane is almost perpendicular to the galactic plane, consistent with this modification of the Newtonian gravitational force. The ecliptic plane is assumed to maintain this orientation in the galactic space as it orbits around the galactic center, but the rotational angular momentum of the earth around its own axis can be assumed to be conserved. The earth is between the sun and the galactic center at the summer solstice all the time. As a consequence, the rotational axis of the earth would be parallel to the axis of the orbital rotation of the earth 15 million years ago, if the solar system has been orbiting around the galactic center at 200 km/s. The present theory concludes that the earth did not have seasons 15 million years ago. Therefore, the water on the earth was accumulated near the poles as ice and the sea level was very low. Geological evidence exists that confirms this effect. The resulting global ice-melting started 15 million years ago and is ending now.

  14. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  15. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  16. Arizona - Natural Gas 2014 Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu. Feet Percent

  17. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  18. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  19. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  20. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  1. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  2. The Neutrino Mass Hierarchy from Nuclear Reactor Experiments

    E-Print Network [OSTI]

    Emilio Ciuffoli; Jarah Evslin; Xinmin Zhang

    2013-08-14

    10 years from now reactor neutrino experiments will attempt to determine which neutrino mass eigenstate is the most massive. In this letter we present the results of more than seven million detailed simulations of such experiments, studying the dependence of the probability of successfully determining the mass hierarchy upon the analysis method, the neutrino mass matrix parameters, reactor flux models, geoneutrinos and, in particular, combinations of baselines. We show that a recently reported spurious dependence of the data analysis upon the high energy tail of the reactor spectrum can be removed by using a weighted Fourier transform. We determine the optimal baselines and corresponding detector locations. For most values of the CP-violating, leptonic Dirac phase delta, a degeneracy prevents NOvA and T2K from determining either delta or the hierarchy. We determine the confidence with which a reactor experiment can determine the hierarchy, breaking the degeneracy.

  3. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  4. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  5. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  6. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  7. ,"Texas Natural Gas Processed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Processed (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","930...

  8. One Million Electric Vehicles By 2015

    SciTech Connect (OSTI)

    none,

    2011-02-01

    February 2011 status report on the steps needed to achieve President Obama's goal of putting one million electric vehicles on the road by 2015.

  9. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  10. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  11. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  12. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  13. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  14. DOE Announces Over $30 Million to Help Universities Train the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Over 30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Announces Over 30 Million to Help Universities Train the...

  15. $23.5 Million Investment in Innovative Manufacturing Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative 23.5 Million Investment in Innovative Manufacturing Projects...

  16. Secretary Chu Announces Two Million Smart Grid Meters Installed...

    Energy Savers [EERE]

    Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am...

  17. Obama Administration Announces Nearly $100 Million for Smart...

    Energy Savers [EERE]

    Obama Administration Announces Nearly 100 Million for Smart Grid Workforce Training and Development Obama Administration Announces Nearly 100 Million for Smart Grid Workforce...

  18. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Savers [EERE]

    trimming, grind, painting, materials handling and inspection. 24 million for wind power research and development DOE will provide 24 million for the development of up...

  19. DOE's Office of Science Awards 95 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry DOE's Office of Science Awards 95 Million Hours of...

  20. Department Of Energy Offers $60 Million to Spur Industry Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in...

  1. Secretary Chu Announces $45 Million to Support Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs...

  2. Secretary Chu Announces Nearly $15 Million for Next Generation...

    Energy Savers [EERE]

    Secretary Chu Announces Nearly 15 Million for Next Generation Energy-Efficient Lighting Secretary Chu Announces Nearly 15 Million for Next Generation Energy-Efficient Lighting...

  3. Energy Department Announces $4 Million Solicitation for Solid...

    Energy Savers [EERE]

    Energy Department Announces 4 Million Solicitation for Solid-State Lighting Research Energy Department Announces 4 Million Solicitation for Solid-State Lighting Research August...

  4. Federal Employees Honored for Saving $14 Million Through Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employees Honored for Saving 14 Million Through Energy Efficiency Federal Employees Honored for Saving 14 Million Through Energy Efficiency October 27, 2005 - 12:33pm Addthis...

  5. Energy Department Announces $15 Million to Integrate Affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces 15 Million to Integrate Affordable Solar Energy into Nation's Electrical Grid Energy Department Announces 15 Million to Integrate Affordable Solar...

  6. Energy Department Announces $15 Million to Help Communities Boost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces 15 Million to Help Communities Boost Solar Deployment Energy Department Announces 15 Million to Help Communities Boost Solar Deployment April 17, 2014...

  7. Department of Energy and Beacon Power Finalize $43 Million Loan...

    Office of Environmental Management (EM)

    and Beacon Power Finalize 43 Million Loan Guarantee for Innovative Energy Storage Project in New York State Department of Energy and Beacon Power Finalize 43 Million Loan...

  8. Energy Department Announces $10 Million for Innovative Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces 10 Million for Innovative Commercial Building Technologies and Unveils New Commercial Buildings 101 Video Energy Department Announces 10 Million for...

  9. Energy Department Announces $2 Million to Support Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine Towers Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine...

  10. Secretary Bodman Announces Sale of 11 Million Barrels of Crude...

    Energy Savers [EERE]

    Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil...

  11. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology...

  12. Department of Energy Announces More Than $104 Million for National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces More Than 104 Million for National Laboratory Facilities Department of Energy Announces More Than 104 Million for National Laboratory Facilities...

  13. Energy Department Invests $14 Million in Innovative Building...

    Office of Environmental Management (EM)

    14 Million in Innovative Building Efficiency Technologies Energy Department Invests 14 Million in Innovative Building Efficiency Technologies July 15, 2014 - 1:28pm Addthis The...

  14. Obama Administration Launches $130 Million Building Energy Efficiency...

    Energy Savers [EERE]

    Administration Launches 130 Million Building Energy Efficiency Effort Obama Administration Launches 130 Million Building Energy Efficiency Effort February 12, 2010 - 12:00am...

  15. Energy Department Announces $5 Million for Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy Efficiency...

  16. Obama Administration Delivers More than $36 Million to Pennsylvania...

    Energy Savers [EERE]

    6 Million to Pennsylvania Communities for Energy Efficiency Projects Obama Administration Delivers More than 36 Million to Pennsylvania Communities for Energy Efficiency Projects...

  17. Energy Department to Award $6 Million to State Partnerships to...

    Energy Savers [EERE]

    to Award 6 Million to State Partnerships to Increase Energy Efficiency Energy Department to Award 6 Million to State Partnerships to Increase Energy Efficiency September 19, 2006...

  18. Obama Administration Delivers Nearly $72 Million for Energy Efficiency...

    Energy Savers [EERE]

    Nearly 72 Million for Energy Efficiency and Conservation Projects in 7 States and Territories Obama Administration Delivers Nearly 72 Million for Energy Efficiency and...

  19. Energy Department Awards More Than $1 Million to Three States...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Than 1 Million to Three States to Establish Clean Energy Manufacturing Roadmaps Energy Department Awards More Than 1 Million to Three States to Establish Clean Energy...

  20. Energy Department Awards $5 Million to Spur Local Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards 5 Million to Spur Local Clean Energy Development, Energy Savings Energy Department Awards 5 Million to Spur Local Clean Energy Development, Energy Savings October 14, 2014...

  1. Energy Department Announces $15 Million to Integrate Affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Million to Integrate Affordable Solar Energy into Nation's Electrical Grid Energy Department Announces 15 Million to Integrate Affordable Solar Energy into Nation's Electrical...

  2. Energy Department Announces $13 Million to Strengthen Local Solar...

    Office of Environmental Management (EM)

    3 Million to Strengthen Local Solar Markets and Spur Solar Deployment Across the United States Energy Department Announces 13 Million to Strengthen Local Solar Markets and Spur...

  3. Obama Administration Announces $12 Million i6 Green Investment...

    Energy Savers [EERE]

    Obama Administration Announces 12 Million i6 Green Investment to Promote Clean Energy Innovation and Job Creation Obama Administration Announces 12 Million i6 Green Investment to...

  4. Interior Department Announces $11.8 Million to Support Tribal...

    Energy Savers [EERE]

    Interior Department Announces 11.8 Million to Support Tribal Climate Change Adaptation and Planning Projects Interior Department Announces 11.8 Million to Support Tribal Climate...

  5. Energy Department Finalizes $337 Million Loan Guarantee to Mesquite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finalizes 337 Million Loan Guarantee to Mesquite Solar 1 for Innovative Solar Power Plant Energy Department Finalizes 337 Million Loan Guarantee to Mesquite Solar 1 for...

  6. Secretary Chu Announces $30 Million for Research Competition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30 Million for Research Competition to Develop Next Generation Energy Storage Technologies Secretary Chu Announces 30 Million for Research Competition to Develop Next Generation...

  7. Energy Secretary Bodman Announces $119 Million in Funding and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Announces 119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces 119 Million in Funding and Roadmap to...

  8. DOE Awards $3 Million Contract to Oak Ridge Associated Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Awards 3 Million Contract to Oak Ridge Associated Universities for Expert Review of Yucca Mountain Work DOE Awards 3 Million Contract to Oak Ridge Associated Universities for...

  9. Department of Energy Announces $67 Million Investment for Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 67 Million Investment for Carbon Capture Development Department of Energy Announces 67 Million Investment for Carbon Capture Development July 7, 2010 - 12:00am Addthis...

  10. Energy Department Announces $20 Million for New Tools and Technology...

    Energy Savers [EERE]

    0 Million for New Tools and Technology to Strengthen Energy Sector Cybersecurity Protections Energy Department Announces 20 Million for New Tools and Technology to Strengthen...

  11. Obama Administration Delivers More than $101 Million for Weatherizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More than 101 Million for Weatherization Programs in Guam and Pennsylvania Obama Administration Delivers More than 101 Million for Weatherization Programs in Guam and...

  12. Energy Department Announces $180 Million for Ambitious New Initiative...

    Energy Savers [EERE]

    Energy Department Announces 180 Million for Ambitious New Initiative to Deploy U.S. Offshore Wind Projects Energy Department Announces 180 Million for Ambitious New Initiative to...

  13. ARPA-E Announces $43 Million for Transformational Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces 43 Million for Transformational Energy Storage Projects...

  14. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for...

  15. Energy Department Announces $9 Million to Lower Costs, Increase...

    Office of Environmental Management (EM)

    9 Million to Lower Costs, Increase Performance of Solar Energy Systems Energy Department Announces 9 Million to Lower Costs, Increase Performance of Solar Energy Systems December...

  16. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

  17. Energy Department Invests More than $20 Million to Advance Fuel...

    Office of Environmental Management (EM)

    More than 20 Million to Advance Fuel Cell Technologies as New Report Shows Unprecedented Growth in Industry Energy Department Invests More than 20 Million to Advance Fuel Cell...

  18. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  19. Department of Energy Announces $15 Million to Promote Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Million to Promote Innovative Geothermal Heat Recovery Methods and Technologies Department of Energy Announces 15 Million to Promote Innovative Geothermal Heat Recovery...

  20. Department of Energy Announces $7 Million in Funding for Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces 7 Million in Funding for Climate Research Field Studies Department of Energy Announces 7 Million in Funding for Climate Research Field Studies...

  1. The Geothermal Technologies Office Invests $18 Million for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Invests 18 Million for Innovative Projects The Geothermal Technologies Office Invests 18 Million for Innovative Projects The McGuiness Hills...

  2. Department of Energy to Invest Nearly $18 Million for Advanced...

    Office of Environmental Management (EM)

    Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March...

  3. Energy Department Announces Up to $31 Million for Initial Phases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Up to 31 Million for Initial Phases of Enhanced Geothermal Systems Field Observatory Energy Department Announces Up to 31 Million for Initial Phases of Enhanced Geothermal...

  4. Energy Department Announces $6 Million to Accelerate Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Million to Accelerate Alternative Fuel Vehicle Market Growth Energy Department Announces 6 Million to Accelerate Alternative Fuel Vehicle Market Growth March 9, 2015 - 11:20am...

  5. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery...

  6. USDA, DOE Announce $18 Million Solicitation for Biomass Research...

    Energy Savers [EERE]

    USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development June 11, 2007 -...

  7. Energy Department Announces $2.5 Million to Advance Technologies...

    Office of Environmental Management (EM)

    .5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves Energy Department Announces 2.5 Million to Advance Technologies for Clean-Burning, Efficient...

  8. Secretary Moniz Announces Nearly $50 Million to Advance High...

    Office of Environmental Management (EM)

    Announces Nearly 50 Million to Advance High-Tech, Fuel Efficient American Autos Secretary Moniz Announces Nearly 50 Million to Advance High-Tech, Fuel Efficient American Autos...

  9. President Obama Announces $400 Million Conditional Commitment...

    Energy Savers [EERE]

    of 400 million to Abound Solar Manufacturing, LLC to manufacture state-of-the-art thin-film solar panels. This will be the first time this new manufacturing technology for...

  10. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Plum Borough, PA)

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  11. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  12. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  13. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  14. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  15. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  16. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  17. Reactor- Nuclear Science Center 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    A neutronic evaluation of two reactor benchmark problems was performed. The benchmark problems describe typical PWR uranium and plutonium (mixed oxide) fueled lattices. WIMSd4m, a neutron transport lattice code, was used to evaluate multigroup...

  18. P Reactor Grouting

    SciTech Connect (OSTI)

    None

    2010-01-01

    Filling the P Reactor with grout. This seals the radioactive material and reduces the environmental footprint left from the Cold War. Project sponsored by the Recovery Act at the Savannah River Site.

  19. Hypothetical Reactor Accident Study

    E-Print Network [OSTI]

    POPULATIONS; IODINE 131; MELTDOWN; METEOROLOGY; NUCLEAR POWER PLANTS; P CODES; PWR TYPE REACTORS; RADIATION in a Typical BWR and in a typical PWR. Comparison with WASH-1400 by C F . Højerup 202 APPENDIX 3. Calculation

  20. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  1. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  2. F Reactor Inspection

    SciTech Connect (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  3. Preliminary analysis of the postulated changes needed to achieve rail cask handling capabilities at selected light water reactors

    SciTech Connect (OSTI)

    Konzek, G.J.

    1986-02-01

    Reactor-specific railroad and crane information for all LWRs in the US was extracted from current sources of information. Based on this information, reactors were separated into two basic groups consisting of reactors with existing, usable rail cask capabilities and those without these capabilities. The latter group is the main focus of this study. The group of reactors without present rail cask handling capabilities was further separated into two subgroups consisting of reactors considered essentially incapable of handling a large rail cask of about 100 tons and reactors where postulated facility changes could result in rail cask handling capabilities. Based on a selected population of 127 reactors, the results of this assessment indicate that usable rail cask capabilities exist at 83 (65%) of the reactors. Twelve (27%) of the remaining 44 reactors are deemed incapable of handling a large rail cask without major changes, and 32 reactors are considered likely candidates for potentially achieving rail cask handling capabilities. In the latter group, facility changes were postulated that would conceptually enable these reactors to handle large rail casks. The estimated cost per plant of required facility changes varied widely from a high of about $35 million to a low of <$0.3 million. Only 11 of the 32 plants would require crane upgrades. Spur track and right-of-way costs would apparently vary widely among sites. These results are based on preliminary analyses using available generic cost data. They represent lower bound values that are useful for developing an initial assessment of the viability of the postulated changes on a system-wide basis, but are not intended to be absolute values for specific reactors or sites.

  4. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  5. Power Burst Facility (PBF) Reactor Reactor Decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlinesPotentialReactor Decommissioning

  6. Dynamic bed reactor

    DOE Patents [OSTI]

    Stormo, Keith E. (Moscow, ID)

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  7. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  8. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  9. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  10. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  11. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  12. Models for Millions Department of Statistics

    E-Print Network [OSTI]

    Stine, Robert A.

    Models for Millions Bob Stine Department of Statistics The Wharton School, UniversityDepartment of Statistics Introduction #12;WhartonDepartment of Statistics WhartonDepartment of Statistics Statistics in the News Hot topics Big Data Business Analytics Data Science Are the authors talking about statistics

  13. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  14. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  15. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E. (Ruffs Dale, PA)

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  16. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  17. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  18. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  19. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  20. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  1. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  2. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  3. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  5. Cermet fuel reactors

    SciTech Connect (OSTI)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  6. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  7. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  8. Stabilized Spheromak Fusion Reactors

    SciTech Connect (OSTI)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  9. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  10. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    M. Cribier

    2007-04-06

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  11. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    Cribier, Michel

    2011-01-01

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  12. Reactor component automatic grapple

    DOE Patents [OSTI]

    Greenaway, Paul R. (Bethel Park, PA)

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  13. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  14. Energy Department Announces $10 Million for Innovative, Energy...

    Office of Environmental Management (EM)

    0 Million for Innovative, Energy-Saving Lighting R&D Technologies Energy Department Announces 10 Million for Innovative, Energy-Saving Lighting R&D Technologies October 17, 2014 -...

  15. Energy Department Offers $10 Million for Energy-Saving Lighting...

    Office of Environmental Management (EM)

    Offers 10 Million for Energy-Saving Lighting Technologies Energy Department Offers 10 Million for Energy-Saving Lighting Technologies December 11, 2013 - 12:00am Addthis Light...

  16. New Mexico Crude Oil + Lease Condensate Reserves Sales (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  17. Secretary Chu Announces more than $200 Million for Solar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 200 Million for Solar and Water Power Technologies Secretary Chu Announces more than 200 Million for Solar and Water Power Technologies April 22, 2010 - 12:00am Addthis...

  18. DOE Announces $17 Million to Promote Greater Automobile Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will be offered as two separate solicitations, one for 14 million to support plug-in hybrid electric vehicle technology and another for 3 million for research to improve E-85...

  19. DOE Announces $87 Million in Funding to Support Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces 87 Million in Funding to Support Solar Energy Technologies DOE Announces 87 Million in Funding to Support Solar Energy Technologies October 8, 2009 - 12:00am...

  20. Primus Power's Flow Battery Powered by $11 Million in Private...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Primus Power's Flow Battery Powered by 11 Million in Private Investment Primus Power's Flow Battery Powered by 11 Million in Private Investment June 14, 2011 - 10:00am Addthis...

  1. Energy Department Announces $53 Million to Drive Innovation,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    53 Million to Drive Innovation, Cut Cost of Solar Power Energy Department Announces 53 Million to Drive Innovation, Cut Cost of Solar Power October 22, 2014 - 1:15am Addthis News...

  2. Energy Department Invests $60 Million to Advance Nuclear Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invests 60 Million to Advance Nuclear Technology Energy Department Invests 60 Million to Advance Nuclear Technology June 5, 2015 - 11:18am Addthis News Media Contact 202-586-4940...

  3. Energy Department Invests Over $7 Million to Deploy Tribal Clean...

    Office of Environmental Management (EM)

    Invests Over 7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects November 14, 2013 - 12:00am Addthis...

  4. Secretary Chu Announces $187 Million to Improve Vehicle Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces 187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and...

  5. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing DOE's Office of Science Awards 18 Million Hours of...

  6. Freeport, TX Liquefied Natural Gas Exports to Mexico (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Mexico (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 2,725 - No Data...

  7. Department of Energy Announces $40 Million to Develop the Next...

    Office of Environmental Management (EM)

    0 Million to Develop the Next Generation Nuclear Plant Department of Energy Announces 40 Million to Develop the Next Generation Nuclear Plant March 8, 2010 - 12:00am Addthis...

  8. Energy Department Announces $7 Million to Reduce Non-Hardware...

    Office of Environmental Management (EM)

    Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 - 4:52pm...

  9. Energy Department Announces $35 Million to Advance Fuel Cell...

    Office of Environmental Management (EM)

    35 Million to Advance Fuel Cell and Hydrogen Technologies Energy Department Announces 35 Million to Advance Fuel Cell and Hydrogen Technologies March 3, 2015 - 11:30am Addthis...

  10. Energy Department Announces $35 Million to Advance Hydrogen and...

    Office of Environmental Management (EM)

    5 Million to Advance Hydrogen and Fuel Cell Technologies Energy Department Announces 35 Million to Advance Hydrogen and Fuel Cell Technologies December 11, 2015 - 10:00am Addthis...

  11. Energy Department Announces $11 Million to Accelerate Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Million to Accelerate Alternative Fuel Use in Medium- and Heavy-Duty Vehicles Energy Department Announces 11 Million to Accelerate Alternative Fuel Use in Medium- and Heavy-Duty...

  12. DOE Completes $17 Million Loan Guarantee for New York Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    17 Million Loan Guarantee for New York Energy Storage System with Recovery Act Funds DOE Completes 17 Million Loan Guarantee for New York Energy Storage System with Recovery Act...

  13. Energy Department Offers $50 Million to Advance Fuel Efficient...

    Office of Environmental Management (EM)

    Offers 50 Million to Advance Fuel Efficient Autos Energy Department Offers 50 Million to Advance Fuel Efficient Autos January 29, 2014 - 12:00am Addthis The Energy Department on...

  14. Reactor vessel support system. [LMFBR

    DOE Patents [OSTI]

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  15. Consumers face $5. 9 million rate increase

    SciTech Connect (OSTI)

    Not Available

    1984-11-01

    Testimony at hearings before the Garrison Diversion Compromise Commission claimed that rural consumers in the Upper Midwest could face $5.9 million in electric rate increases if the commission deauthorizes the project and hydroelectric rates go up to pay the costs of the 1944 Pick-Sloan project originally assigned to irrigation. If there is no irrigation development, the revenue that irrigation must raise to repay the $67 million debt assigned to irrigation must be reassigned to hydroelectric power. The commission represents a compromise between supporters and opponents of the Garrison Diversion project. Spokesmen for regional utilities spoke in support of the project as an investment whose costs have escalated because of delays at the expense of economic development in North Dakota.

  16. Emulating a million machines to investigate botnets.

    SciTech Connect (OSTI)

    Rudish, Donald W.

    2010-06-01

    Researchers at Sandia National Laboratories in Livermore, California are creating what is in effect a vast digital petridish able to hold one million operating systems at once in an effort to study the behavior of rogue programs known as botnets. Botnets are used extensively by malicious computer hackers to steal computing power fron Internet-connected computers. The hackers harness the stolen resources into a scattered but powerful computer that can be used to send spam, execute phishing, scams or steal digital information. These remote-controlled 'distributed computers' are difficult to observe and track. Botnets may take over parts of tens of thousands or in some cases even millions of computers, making them among the world's most powerful computers for some applications.

  17. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram

    2012-11-02

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  18. Nuclear reactor construction with bottom supported reactor vessel

    DOE Patents [OSTI]

    Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  19. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  20. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M. (Oak Ridge, TN)

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  1. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  2. Advanced Reactor Concepts Technical Review Panel Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a range of reactor types and coolant selections. The concepts included five fast reactors and three thermal reactors. As to reactor coolants, there were three sodium-cooled...

  3. Florida Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved ReservesYear Jan

  4. Illinois Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion Cubic Feet)ThousandYear Jan

  5. Kansas Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (BillionYear

  6. Michigan Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProved ReservesDecadeYear(Million Cubic

  7. Colorado Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) GasBarrels) Reserves(Million

  8. Montana Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar Apr May Jun(Million Cubic

  9. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan FebFuelThousandDecade Year-0

  10. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan FebFuelThousandDecade

  11. Nebraska Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172 3,009165,360IndustrialProcessed (Million

  12. Nevada Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb (Million Cubic Feet)NA NADecade

  13. Nevada Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb (Million Cubic Feet)NA

  14. Nevada Natural Gas Wellhead (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb (Million CubicVehicleYear

  15. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0YearYearRepressuring (Million

  16. Pennsylvania Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million Cubic Feet)NA NA

  17. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million Cubic Feet)NA NAinYear

  18. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajorInput(Million Cubic Feet)NA

  19. Tennessee Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 (Million3 4.35

  20. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 (Million3

  1. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 (Million3Repressuring

  2. Texas Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 (Million Cubic

  3. Texas Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 (Million CubicDecade Year-0

  4. Texas Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 (Million CubicDecade Year-0Year

  5. Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation (Million Cubic Feet) VirginiaNAYear

  6. Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation (Million Cubic Feet) VirginiaNAYearYear

  7. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  8. Small modular reactors (SMRs) such...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ARO), using soluble boron in the coolant for reactivity control. Conversely, boiling water reactors (BWRs) typically maneuver their control blades as often as every 2 GWdmtU...

  9. Progress Update: Reactor Disassembly Grouting

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

  10. Progress Update: Reactor Disassembly Grouting

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

  11. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Petr Vogel; Liangjian Wen; Chao Zhang

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  13. Neutrino oscillation studies with reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  14. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  15. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN)

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  16. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  17. Reactor coolant pump flywheel

    DOE Patents [OSTI]

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  18. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  19. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

    1995-01-01

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  20. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  1. High flux reactor

    DOE Patents [OSTI]

    Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  2. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  3. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  4. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  5. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

  6. Solvent refined coal reactor quench system

    DOE Patents [OSTI]

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  7. Solvent refined coal reactor quench system

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA)

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  8. Antineutrino Monitoring of Thorium Reactors

    E-Print Network [OSTI]

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  9. Advanced Reactor Research and Development Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE)...

  10. THE MATERIALS OF FAST BREEDER REACTORS

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

  11. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and...

  12. MOOSE simulating nuclear reactor CRUD buildup

    SciTech Connect (OSTI)

    2014-02-06

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  13. MOOSE simulating nuclear reactor CRUD buildup

    ScienceCinema (OSTI)

    None

    2014-07-21

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  14. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

  15. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  16. Energy Department Invests $6 Million to Increase Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    effort to cut energy waste in the nation's buildings and double energy productivity by 2030, the Energy Department today announced nearly 6 million to accelerate energy efficiency...

  17. " Million U.S. Housing Units" ,,"2005 Household...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"...

  18. NNSA Provides More Than $290 Million in Small Business Contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration (NNSA) today announced that it provided more than 290 million in small business obligations for federal prime contracts in fiscal year 2012. Almost 80...

  19. Energy Department Announces $5 Million for Energy Planning and...

    Energy Savers [EERE]

    3 million to assist eight states-Alaska, Minnesota, Missouri, Nebraska, New Mexico, New Hampshire, Tennessee and Vermont-to develop, design, and implement projects that...

  20. Department of Energy's Paducah Site Reaches Million-Hour Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KY - The U.S. Department of Energy's Paducah Site has reached a million hours of safe work toward completing cleanup objectives to reduce environmental risk. The LATA...

  1. Secretary Moniz Announces $125 Million OPEN Solicitation for...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary Moniz Announces 125 Million OPEN Solicitation for Transformational Energy Projects ARPA-E Issues OPEN Funding Opportunity Announcement to Support Disruptive New Energy...

  2. Energy Department Announces More Than $59 Million Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOENews@hq.doe.gov Energy Department Announces More Than 59 Million Investment in Solar Funding to Drive Solar Technology Innovation, Help Communities Boost Deployment...

  3. DOE to Award $100 Million for Energy Frontier Research Centers...

    Office of Science (SC) Website

    to Award 100 Million for Energy Frontier Research Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

  4. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lower capital costs of wind systems, and maintain a high level of wind energy capacity growth. 14 million for technology development To strengthen its support of the wind...

  5. Energy Department Announces $10 million for Wave Energy Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    million to test prototypes designed to generate clean, renewable electricity from ocean waves and help diversify America's energy portfolio. The Energy Department-supported...

  6. LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...

  7. ,"Maine Natural Gas Exports (No Intransit Deliveries) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet)",1,"Annual",2014...

  8. Obama Administration Offers $59 Million in Conditional Loan Guarantees...

    Energy Savers [EERE]

    assembly plant in Pocatello, Idaho, to produce its one megawatt wind turbine. Beacon Power, an energy storage company, has been offered 43 million to support the construction...

  9. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Broader source: Energy.gov (indexed) [DOE]

    TX) project involves deployment of a fully integrated advanced metering system and Web portal access to over 2.2 million customers and installation of advanced monitoring and...

  10. Department of Energy Issues $14 Million in Funding Opportunity...

    Energy Savers [EERE]

    Opportunity Announcements to U.S. Universities for Nuclear Research Department of Energy Issues 14 Million in Funding Opportunity Announcements to U.S. Universities for...

  11. Secretary Chu Announces Nearly $300 Million Rebate Program to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rebate Program to Encourage Purchases of Energy Efficient Appliances Secretary Chu Announces Nearly 300 Million Rebate Program to Encourage Purchases of Energy Efficient...

  12. Energy Department Announces $180 Million for Ambitious New Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    million will be available this year as the first step in supporting up to four innovative offshore wind energy installations across the United States. These offshore wind projects...

  13. Obama Administration Awards More than $204 Million for State...

    Energy Savers [EERE]

    announced more than 204 million in Recovery Act funding to support energy efficiency and renewable energy projects in ten states. Under DOE's State Energy Program, states have...

  14. Department of Energy to Invest $50 Million to Advance Domestic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot...

  15. Department of Energy Announces $24 Million for Algal Biofuels...

    Broader source: Energy.gov (indexed) [DOE]

    industry. (DOE funding: up to 9 million) National Algal Biofuels Technology Roadmap Despite algae's potential, many technical and economic challenges must be overcome...

  16. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Office of Environmental Management (EM)

    620 Million for Smart Grid Demonstration and Energy Storage Projects: Recovery Act Funding Will Upgrade the Electrical Grid, Save Energy, and Create Jobs Secretary Chu Announces...

  17. Combined Heat and Power System Achieves Millions in Cost Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    campus, which includes 750 buildings. Photo courtesy of Texas A&M University Combined Heat and Power System Achieves Millions in Cost Savings at Large University Recovery Act...

  18. Energy Department Announces Up to $7 Million to Expand Clean...

    Office of Environmental Management (EM)

    energy resources. With more than 9 million megawatts of potential installed renewable energy capacity on tribal lands, these communities are well positioned to capitalize on...

  19. Department of Energy Awards $156 Million for Groundbreaking Energy...

    Office of Environmental Management (EM)

    million from the Fiscal Year 2011 budget, the new ARPA-E selections focus on accelerating innovations in clean technology while increasing America's competitiveness in rare earth...

  20. DOE Hydrogen Program Saved Nearly 30 Million by Investing in...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's Office of Energy Efficiency and Renewable Energy, outllines how "DOE Hydrogen Program Saved Nearly 30 Million by Investing in Annual In-Progress Peer Reviews."...

  1. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas...

  2. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska...

  3. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi...

  4. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana...

  5. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California...

  6. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas...

  7. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

  8. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  9. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  10. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan...

  11. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

  12. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  13. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon...

  14. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana...

  15. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida...

  16. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia...

  17. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada...

  18. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee...

  19. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland...

  20. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  1. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado...

  2. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri...

  3. Planar superconducting resonators with internal quality factors above one million

    E-Print Network [OSTI]

    Martinis, John M.

    Planar superconducting resonators with internal quality factors above one million A. Megrant,1,2 C criti- cal elements for superconducting electromagnetic radiation detectors,1 quantum memories,2

  4. Energy Department Invests $6 Million to Support Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support Commercial Building Efficiency Energy Department Invests 6 Million to Support Commercial Building Efficiency July 24, 2014 - 5:08pm Addthis The Energy Department today...

  5. Energy Department Invests $17 Million in Small Businesses to...

    Office of Environmental Management (EM)

    continue U.S. leadership in clean energy innovation, the Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) today awarded 17 million in Small Business...

  6. Energy Department Invests Over $7 Million to Commercialize Cost...

    Broader source: Energy.gov (indexed) [DOE]

    Yesterday the Energy Department announced more than 7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster. This...

  7. Energy Department Announces $102 Million to Tackle Solar Challenges...

    Energy Savers [EERE]

    the success of previous Energy Department investments in this technology and leading to lower cost, higher efficiency, and more reliable CSP systems 13 Million for Two Projects to...

  8. Energy Department Announces $32 Million to Boost Solar Workforce...

    Broader source: Energy.gov (indexed) [DOE]

    Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces 25 Million to Lower Cost of Concentrating Solar Power...

  9. Department of Energy Announces $60 Million for Small Business...

    Energy Savers [EERE]

    Topics Energy Department Awards 116 Million to Small Businesses for Innovative Research Energy Department Accepting Small Business Grant Applications for Large Wind Turbines...

  10. NREL's Economic Impact Tops $872 Million | Awards and Honors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The economic impact of the Energy Department's National Renewable Energy Laboratory (NREL) was 872.3 million nationwide in fiscal year 2014, according to a study by the...

  11. Energy Department Announces $3 Million to Lower Cost of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Low-temp...

  12. Energy Department Announces $7 Million to Develop Advanced Logistics...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Department announced today up to 7 million for two projects aimed at developing and demonstrating ways to reduce the cost of delivering bioenergy feedstocks to...

  13. ,"New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  14. ,"New Mexico Natural Gas Processed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Processed (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","930...

  15. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  16. Bold, Transformational Energy Research Projects Win $151 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    funded under ARPA-E, which is receiving total of 400 million under the American Recovery and Reinvestment Act. In announcing the selections, Secretary Chu said: "After World...

  17. Energy Department Project Captures and Stores more than One Million...

    Office of Environmental Management (EM)

    successfully capturing more than one million metric tons of carbon dioxide (CO2) at the hydrogen-production facility in Port Arthur, Texas. Using an innovative technology called...

  18. ,"Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  19. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  20. Department of Energy Announces $64 Million in Hydrogen Research...

    Energy Savers [EERE]

    of over 64 million in research and development projects aimed at making hydrogen fuel cell vehicles and refueling stations available, practical and affordable for American...

  1. Energy Department Invests Over $7 Million to Commercialize Cost...

    Broader source: Energy.gov (indexed) [DOE]

    than 7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster. This investment - across four projects in Georgia,...

  2. Energy Secretary Moniz Unveils More Than $55 Million to Advance...

    Office of Environmental Management (EM)

    click HERE. In addition, the Energy Department has announced up to 35 million to advance fuel cell and hydrogen technologies, including enabling the early adoption of fuel cell...

  3. Energy Department Announces $10 Million to Speed Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Speed Enhanced Geothermal Systems into the Market Energy Department Announces 10 Million to Speed Enhanced Geothermal Systems into the Market February 24, 2014 - 11:46am...

  4. DOE Offers Conditional Commitment for a $105 Million Loan Guarantee...

    Office of Environmental Management (EM)

    guarantee to support the development of the nation's first commercial-scale cellulosic ethanol plant. Project LIBERTY, sponsored by POET, LLC, will produce up to 25 million gallons...

  5. Energy Department and USCAR Invest $195 Million To Help Develop...

    Office of Environmental Management (EM)

    - Secretary of Energy Samuel W. Bodman and leaders of the United States Council for Automotive Research (USCAR) today announced an agreement that could reach 125 million over...

  6. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  7. Energy Department Announces $7 Million to Develop Advanced Logistics...

    Broader source: Energy.gov (indexed) [DOE]

    Biofuels Projects to Receive up to 21 Million in Funding FDC Enterprise's Feedstock Logistics award has developed a single pass harvester, which is shown gathering corn stover...

  8. Energy Department Announces $8 Million to Develop Advanced Components...

    Broader source: Energy.gov (indexed) [DOE]

    8 million in available funding to spur innovation in next-generation marine and hydrokinetic (MHK) control and component technologies. In the United States, waves, tides, and ocean...

  9. Energy Department Announces $12 Million to Advance Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    with each other and their surroundings can help people drive more efficiently. Polymer Plus of Valley View, Ohio will receive 1.4 million to develop multilayered film...

  10. Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373

    SciTech Connect (OSTI)

    Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

  11. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    SciTech Connect (OSTI)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab.

  12. Nuclear reactor control

    DOE Patents [OSTI]

    Cawley, William E. (Phoenix, AZ); Warnick, Robert F. (Pasco, WA)

    1982-01-01

    1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

  13. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  14. Tokamak reactor startup power

    SciTech Connect (OSTI)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor (ETR).

  15. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  16. Reactor protection system design alternatives for sodium fast reactors

    E-Print Network [OSTI]

    DeWitte, Jacob D. (Jacob Dominic)

    2011-01-01

    Historically, unprotected transients have been viewed as design basis events that can significantly challenge sodium-cooled fast reactors. The perceived potential consequences of a severe unprotected transient in a ...

  17. Reactor physics design of supercritical CO?-cooled fast reactors

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2004-01-01

    Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

  18. Nuclear reactor downcomer flow deflector

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  19. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  20. Chemical Reactor Analysis and Optimal Digestion

    E-Print Network [OSTI]

    Jumars, Pete

    derived from basic principles o f chemical reactor analysis and design Deborah L. Penry and Peter in terms of chemical reactor components and then use principles of reactor design to identify variablesJ 310 Chemical Reactor Analysis and Optimal Digestion An optimal digestion theory can be readily

  1. Interfacial effects in fast reactors

    E-Print Network [OSTI]

    Saidi, Mohammad Said

    1979-01-01

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

  2. Graphite Reactor | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphite Reactor 'In the early, desperate days of World War II, the United States launched the top-secret, top-priority Manhattan Project...' In the early, desperate days of U.S....

  3. Reactor physics project final report

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1970-01-01

    This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, ...

  4. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  5. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  6. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  7. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E. (San Jose, CA)

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  8. Automatic safety rod for reactors

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  9. Alternate-fuel reactor studies

    SciTech Connect (OSTI)

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  10. A Million Element Integral Field Unit (MEIFU)

    E-Print Network [OSTI]

    Simon Morris; Robert Content; Ray Sharples; Richard Bower; Roger Davies; Carlton Baugh

    2001-08-08

    We describe an instrument concept that will provide simultaneous spectra for a million spatial samples on the sky. With the proposed field of view and spectral resolution, it will be able to measure redshifts and line strengths for around 2-4000 z~3-7 galaxies in a 16 night campaign. The main science driver is to obtain a complete census of the star formation properties of galaxies with 2.5

  11. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Upton, Hubert A. (Morgan Hill, CA)

    1994-01-01

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.

  12. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, R.C.; Upton, H.A.

    1994-10-04

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

  13. Reactor shroud joint

    DOE Patents [OSTI]

    Ballas, G.J.; Fife, A.B.; Ganz, I.

    1998-04-07

    A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges. 4 figs.

  14. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  15. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D. (Chicago, IL)

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  16. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  17. When Do Commercial Reactors Permanently Shut Down?

    Reports and Publications (EIA)

    2011-01-01

    For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

  18. Energy Department Invests $60 Million to Train Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative sensors and instruments to more...

  19. Energy Department Awards Half a Million Dollars to 12 Fellows...

    Energy Savers [EERE]

    toward looking at ways to close the nuclear fuel cycle and recycle components of used nuclear reactor fuel. "These fellowships help further President Bush's American...

  20. Department of Energy Announces more than $18 Million to Strengthen...

    Energy Savers [EERE]

    research reactors and also purchase new equipment, such as instrumentation or new computers, which will bolster their ability to conduct cutting-edge nuclear energy research....

  1. PIA - Advanced Test Reactor National Scientific User Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

  2. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

  3. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Djurcic, Zelimir

    2009-01-01

    neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

  4. Application of the Isotope Ratio Method to a Boiling Water Reactor

    SciTech Connect (OSTI)

    Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Meriwether, George H.; Mitchell, Mark R.; Reid, Bruce D.

    2010-08-11

    The isotope ratio method is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods. All reactor materials contain trace elemental impurities at parts per million levels, and the isotopes of these elements are transmuted by neutron irradiation in a predictable manner. While measuring the change in a particular isotope’s concentration is possible, it is difficult to correlate to energy production because the initial concentration of that element may not be accurately known. However, if the ratio of two isotopes of the same element can be measured, the energy production can then be determined without knowing the absolute concentration of that impurity since the initial natural ratio is known. This is the fundamental principle underlying the isotope ratio method. Extremely sensitive mass-spectrometric methods are currently available that allow accurate measurements of the impurity isotope ratios in samples. Additionally, “indicator” elements with stable activation products have been identified so that their post-irradiation isotope ratios remain constant. This method has been successfully demonstrated on graphite-moderated reactors. Graphite reactors are particularly well-suited to such analyses since the graphite moderator is resident in the fueled region of the core for the entire period of operation. Applying this method to other reactor types is more difficult since the resident portions of the reactor available for sampling are either outside the fueled region of the core or structural components of individual fuel assemblies. The goal of this research is to show that the isotope ratio method can produce meaningful results for light water-moderated power reactors. In this work, we use the isotope ratio method to estimate the energy production in a boiling water reactor fuel bundle based on measurements taken from the corresponding fuel assembly channel. Our preliminary results are in good agreement with the actual operating history of the reactor during the cycle that the fuel bundle was resident in the core.

  5. UCLA program in reactor studies: The ARIES tokamak reactor study

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  6. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  7. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  8. Energy Department Invests $12 Million to Slash Red Tape and Speed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    these teams will receive about 12 million- matched by over 4 million in outside funding - to streamline and standardize solar permitting, zoning, metering and connection...

  9. Secretary Chu Announces More Than $20.5 million for Community...

    Energy Savers [EERE]

    Than 20.5 million for Community Renewable Energy Deployment Projects Secretary Chu Announces More Than 20.5 million for Community Renewable Energy Deployment Projects January 21,...

  10. Wind Program Announces $2 Million to Develop and Field Test Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy...

  11. DOE Awards More Than $30 Million to Help Universities Train the...

    Energy Savers [EERE]

    More Than 30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Awards More Than 30 Million to Help Universities Train the Next...

  12. Energy Department Awards $6.5 Million to Advance Low Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6.5 Million to Advance Low Environmental Impact Hydropower Technologies Energy Department Awards 6.5 Million to Advance Low Environmental Impact Hydropower Technologies September...

  13. DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...

    Energy Savers [EERE]

    Announces 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces 27 Million to Reduce Costs of Solar Energy Projects,...

  14. ARPA-E Announces $60 Million for Disruptive Technologies to Cut...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARPA-E Announces 60 Million for Disruptive Technologies to Cut Emissions, Boost Energy Efficiency ARPA-E Announces 60 Million for Disruptive Technologies to Cut Emissions, Boost...

  15. Five Million Smart Meters Installed Nationwide is Just the Beginning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to meeting the President's goals of generating 80 percent of electricity from clean energy sources by 2035 and putting one million electric vehicles on the road by 2015. We...

  16. Energy Department Awards up to $4 Million to Develop Advanced...

    Energy Savers [EERE]

    a 17.3 million investment by the Department to develop technologies that will enable the production of clean, renewable, and cost-competitive drop-in biofuels at 3 per gallon of...

  17. DOE Awards $15 Million in Technical Assistance to Support Major...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE) today announced the first phase of awards, valued at 15 million, for the Net-Zero Energy Commercial Building Initiative (CBI). Twenty-one companies, which will include...

  18. Energy Department Invests More Than $55 Million to Advance Efficient...

    Energy Savers [EERE]

    an additional 3.7 million in co-funding to support projects focused on beyond lithium ion battery technologies and reducing friction and wear in the powertrain. To read the full...

  19. Energy Department Announces $10 Million to Develop Innovative...

    Broader source: Energy.gov (indexed) [DOE]

    University, will receive up to 1.4 million to develop a process to catalytically convert biomass and methane into hydrocarbon liquid fuels and chemicals at high yields, while...

  20. Department of Energy Awards $9 Million in Grants for Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    involving two million acres at 107 sites in 35 states, dealing with some of the most dangerous materials known to man. The Department of Energy has already completed its cleanup...

  1. USDA, DOE Announce $18 Million Solicitation for Biomass Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Biomass Research and Development USDA, DOE Announce 18 Million Solicitation for Biomass Research and Development June 11, 2007 - 1:40pm Addthis WASHINGTON - The U.S....

  2. DOE Hydrogen Program Saved Nearly $30 Million by Investing in...

    Broader source: Energy.gov (indexed) [DOE]

    report discusses how the U.S. Department of Energy's Hydrogen Program saved nearly 30 million by investing in annual in-progress peer reviews. The report is from the DOE's Office...

  3. ,"New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico...

  4. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York...

  5. Lawrence Livermore charitable campaign raises $3.3 million for...

    National Nuclear Security Administration (NNSA)

    See more. Lawrence Livermore raises 3.3 million for local organizations Dec 12, 2013 at 3:00 pm Blog archive December 2015 (7) November 2015 (11) October 2015 (15) September...

  6. Energy Department Announces $13.4 Million to Develop Advanced...

    Energy Savers [EERE]

    Minnesota will receive up to 2.5 million to develop a fermentation process, using biogas and bacteria, for the production of lactic acid. This process could be used for the...

  7. Energy Department Invests More Than $55 Million to Advance Efficient...

    Office of Environmental Management (EM)

    an additional 3.7 million in co-funding to support projects focused on beyond lithium ion battery technologies and reducing friction and wear in the powertrain. The...

  8. The Geothermal Technologies Office Invests $18 Million for Innovative Projects

    Broader source: Energy.gov [DOE]

    In support of a low carbon future, the United States Department of Energy today announced up to $18 million for 32 projects that will advance geothermal energy development in the United States. The...

  9. Energy Department Announces Up to $31 Million for Initial Phases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    term, EGS may enable domestic access to a geographically diverse baseload, and carbon-free energy resource on the order of 100 gigawatts, or enough to power about 100 million...

  10. Energy Department Announces $10 Million to Advance Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Securities and Exchange Commission public filings. New Ideas Spring from the SunShot Incubator Energy Department Announces Over 12 Million to Spur Solar Energy Innovation...

  11. President Requests $760.4 Million for Fossil Energy Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    President Obama's FY 2011 budget seeks $760.4 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  12. President Requests $881.6 Million for Fossil Energy Programs

    Broader source: Energy.gov [DOE]

    President Obama's FY 2010 budget seeks $881.6 million for the Office of Fossil Energy to support improved energy security and rapid development of climate-oriented technology.

  13. EERE Celebrates Completion of 1 Million Weatherized American...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 7 million homes since the start of the Weatherization Assistance Program in 1976. Every home weatherized saves a family up to 400 a year on heating and cooling costs....

  14. Minnesota Company 3M Awarded $3 Million by Energy Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 3 million to 3M Company in St. Paul, Minnesota, to lower the cost of advanced fuel cell systems by developing cost-effective, durable, and highly efficient fuel cell...

  15. Obama Administration Announces $450 Million to Design and Commercializ...

    Broader source: Energy.gov (indexed) [DOE]

    total of 450 million will be made available to support first-of-its-kind engineering, design certification and licensing for up to two SMR designs over five years, subject to...

  16. DOE Announces Over $8 Million to Increase Use and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2006 - 9:17am Addthis Announces Over 8 Million to Increase Use and Availability of Alternative Fuels WASHINGTON, DC -Today, U.S. Department of Energy (DOE) Secretary Samuel...

  17. Energy Department Invests $10 Million to Cut Energy Waste in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced an award of 10 million for six projects to help small commercial buildings save money by saving energy. These small commercial buildings are less than 50,000 square...

  18. Energy Department Finalizes $132 Million Loan Guarantee to Support...

    Broader source: Energy.gov (indexed) [DOE]

    feed grains. Annually, the project is expected to displace over 15.5 million gallons of gasoline, which will avoid over 139,000 tons of carbon dioxide emissions. The facility...

  19. Obama Administration Announces More Than $327 Million in Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 million for new instrumentation at the DOE Joint BioEnergy Institute, one of three DOE Bioenergy Research Centers; and 875,000 for mathematical analysis related to the...

  20. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  1. Reactor control rod timing system

    DOE Patents [OSTI]

    Wu, Peter T. K. (Clifton Park, NY)

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  2. Reactor control rod timing system

    SciTech Connect (OSTI)

    Wu, P.T.

    1982-02-09

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (Above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  3. Horizontal baffle for nuclear reactors

    DOE Patents [OSTI]

    Rylatt, John A. (Monroeville, PA)

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  4. Italian is a Romance language that has more than 60 million native speakers worldwide. An additional 120 million people

    E-Print Network [OSTI]

    Saldin, Dilano

    coast, and North Africa. It is also spoken by millions of people in the United States, Canada, Argentina, architecture, and music. Studying any language requires an attention to detail in order to master

  5. Increasing fuel utilization of breed and burn reactors

    E-Print Network [OSTI]

    Di Sanzo, Christian Diego

    2014-01-01

    double cladded sodium cooled fast reactor (ADR) 4.4 Thermal-utilization to 30% in a sodium fast reactor and up to 40%reactor, the sodium-cooled fast reactor, the supercritical

  6. Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor 

    E-Print Network [OSTI]

    Gandhir, Akshay

    2012-10-19

    High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

  7. Stability analysis of supercritical water cooled reactors

    E-Print Network [OSTI]

    Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

    2005-01-01

    The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

  8. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  9. Challenges in the Development of Advanced Reactors

    SciTech Connect (OSTI)

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  10. Microfluidic reactors for the synthesis of nanocrystals

    E-Print Network [OSTI]

    Yen, Brian K. H

    2007-01-01

    Several microfluidic reactors were designed and applied to the synthesis of colloidal semiconductor nanocrystals (NCs). Initially, a simple single-phase capillary reactor was used for the synthesis of CdSe NCs. Precursors ...

  11. Auxiliary reactor for a hydrocarbon reforming system

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  12. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  13. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  14. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, Robert W. (Richland, WA)

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  15. Granular Dynamics in Pebble Bed Reactor Cores

    E-Print Network [OSTI]

    Laufer, Michael Robert

    2013-01-01

    a simulant fluid to match the dynamics of fuel pebbles andfuel pebbles through reactor cores with and without coupled fluid

  16. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  17. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    for the Second Experimental Breeder Reactor (EBR-II), infuel in the Experimental Breeder Reactor II project [32].

  18. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    re- actor (PWR) and boiling-water reactor (BWR) designsin integral boiling water super heat reactors. Technical

  19. Methanosaeta fibers in anaerobic migrating blanket reactors

    E-Print Network [OSTI]

    Angenent, Lars T.

    An anaerobic migrating blanket reactor (AMBR) was seeded with flocculent biomass from a digester and fedMethanosaeta fibers in anaerobic migrating blanket reactors L.T. Angenent,* D. Zheng,* S. Sung in these fibers. Keywords Anaerobic migrating blanket reactor; AMBR; fibers; oligonucleotide hybridization probes

  20. Pebble Flow Experiments For Pebble Bed Reactors

    E-Print Network [OSTI]

    Pebble Flow Experiments For Pebble Bed Reactors Andrew C. Kadak1 Department of Nuclear Engineering of Technology 2nd International Topical Meeting on High Temperature Reactor Technology Institute of Nuclear was that the draining of the pebbles in such a reactor would conform to granular flow theory which suggested rapid

  1. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  2. CONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV

    E-Print Network [OSTI]

    Abdou, Mohamed

    in the physics of laser-target interactions, target design and implosion experiments; 5.3. New ICF reactorCONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV Report on the Fourth IAEA Technical Committee Reactor Design and Technology at Yalta, USSR, from 26 May -- 6 June 1986. This report contains all

  3. Integrated reformer and shift reactor

    DOE Patents [OSTI]

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  4. Aerial of Nuclear Science Reactor 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Small graphite-moderated and gas-cooled reactors have been around since the beginning of the atomic age. Though their existence in the past has been associated with nuclear weapons programs, they are capable of being used in civilian power programs...

  5. Computer aided nuclear reactor modeling 

    E-Print Network [OSTI]

    Warraich, Khalid Sarwar

    1995-01-01

    Nuclear reactor modeling is an important activity that lets us analyze existing as well as proposed systems for safety, correct operation, etc. The quality of a analysis is directly proportional to the quality of the model used. In this work we look...

  6. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1996-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  7. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1998-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  8. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1998-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  9. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1996-04-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  10. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1998-06-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  11. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1998-04-14

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  12. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  13. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  14. Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina)

    E-Print Network [OSTI]

    Gratta, Giorgio

    Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Sandia of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being

  15. Development and evaluation of two reactor designs for desulfurization of Texas lignites 

    E-Print Network [OSTI]

    Merritt, Stanley Duane

    1991-01-01

    and organic oxygen. Qn a mass basis, lignites contain very little sulfur; but since the NSPS are based on a pounds of SQx per million Btu measurement, one finds that lignites are dirtier than the high medium volatile bituminous, mvb, coals of the Midwest... if it were not for a moisture content of approximately 30%. All coals were stored under nitrogen to prevent weathering and loss of moisture from the coal. Coal samples were weighed into glass vials for transport to the reactor. A blank was also prepared...

  16. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  17. Control of reactor coolant flow path during reactor decay heat removal

    DOE Patents [OSTI]

    Hunsbedt, Anstein N. (Los Gatos, CA)

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  18. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  19. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  20. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  1. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, Edward F. (Naperville, IL); Olson, Arne P. (Western Springs, IL); Wade, David C. (Naperville, IL); Robinson, Bryan W. (Oak Lawn, IL)

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  2. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  3. Saudi production capacity climbing to 10 million b/d

    SciTech Connect (OSTI)

    Not Available

    1994-07-11

    Saudi Arabia this year is completing its expansion of production capacity and developing recent discoveries to enhance export flexibility. The 3 million b/d capacity expansion to 10 million b/d, announced in 1989, is on target for completion by year end 1994. Most of the effort involves restoration of mothballed production equipment and installation of several gas-oil separation plants (GOSPs) in existing fields. But Saudi Arabian Oil Co. (Saudi Aramco) also this year will start up production of extra-light oil from a new field in the central part of the kingdom. Start-up of Hawtah area production demonstrates success of an oil search Aramco began after receiving exclusive exploration rights to nearly all of Saudi Arabia's prospective area in 1986. From new fields and traditional producing areas, therefore, Saudi Arabia has the potential to expand production capacity beyond 10 million b/d. The paper describes the development of the extra capacity.

  4. West Virginia Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million CubicYear JanProved Reserves (Million Barrels)

  5. Mississippi Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (Million (Million CubicDecade Year-0DecadeYear

  6. Missouri Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (Million (MillionFeet)117 94 90 82

  7. Federal Offshore--Texas Natural Gas Marketed Production (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (Million CubicBased Production (MillionFeet)

  8. Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabama (Million CubicTexas--

  9. Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabamaNatural(Million Barrels)

  10. Kansas Natural Gas Processed in Kansas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (BillionYearKansas (Million Cubic

  11. Kansas Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (BillionYearKansas (Million

  12. Kansas Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (BillionYearKansas (MillionTexas

  13. Kentucky Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReservesFoot)(MillionDecade

  14. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million(MillionProvedFeet) Gross

  15. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved(Million(MillionReserves (BillionCrude

  16. Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction(MillionGross Withdrawals (Million

  17. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(MillionDecadeIndustrial Deliveries (Million

  18. Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million (Million Cubic Feet)

  19. Connecticut Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million (Million49 4.58

  20. Connecticut Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million (Million49 4.58Total

  1. Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear Jan FebFuel Consumption (Million

  2. Louisiana Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear JanTotal Consumption (Million

  3. New Jersey Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year JanDecade (Million Cubic(Million

  4. New Jersey Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year JanDecade (Million Cubic(MillionDecade

  5. South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (Million Cubic Feet)Feet) (Million

  6. South Central Region Natural Gas Underground Storage Withdrawals (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (Million CubicDecade Year-0(MillionCubic

  7. South Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (MillionYearProcessed (Million Cubic Feet)

  8. South Dakota Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (MillionYearProcessed (Million

  9. South Dakota Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (MillionYearProcessed (MillionYear Jan Feb

  10. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (MillionYearProcessed (MillionYear Jan

  11. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (MillionYearProcessed (MillionYear

  12. Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 (Million CubicFuel(Million

  13. U.S. Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the NationalSalesof(MillionIndustrialProcessed (Million

  14. Utah Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYear Jan Feb (Million(Million

  15. Nuclear reactor alignment plate configuration

    DOE Patents [OSTI]

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  16. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  17. Modular Stellarator Fusion Reactor concept

    SciTech Connect (OSTI)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  18. Flow duct for nuclear reactors

    DOE Patents [OSTI]

    Straalsund, Jerry L. (Richland, WA)

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  19. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  20. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  1. Reference worldwide model for antineutrinos from reactors

    E-Print Network [OSTI]

    Marica Baldoncini; Ivan Callegari; Giovanni Fiorentini; Fabio Mantovani; Barbara Ricci; Virginia Strati; Gerti Xhixha

    2015-02-16

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

  2. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012...

  3. NOAA/NMFS Developments NOAA Awards $3 Million for

    E-Print Network [OSTI]

    NOAA/NMFS Developments NOAA Awards $3 Million for Lost or Damaged Fishing Gear acts of God. Weather the past year for lost or damaged fishing gear caused by other vessels or extreme weather conditions or destroyed by Hurricane David when it passed through the Virgin Islands and Puerto Rico last August. Another

  4. Two small businesses selected for work valued at $80 million

    E-Print Network [OSTI]

    ,Terranear PMC, LLC and Eberline Services, Inc. to compete for up to $80 million in well drilling and groundwater LANL procurement rules. #12;- 2 - "Being able to efficiently drill new wells that produce quality and Eberline compete for individual tasks in LANL's well program LANL selected two small businesses

  5. Energy for 500 million Homes: Drivers and Outlook for

    E-Print Network [OSTI]

    -up analysis of residential building energy consumption in China using data from a wide variety of sourcesLBNL-2417E Energy for 500 million Homes: Drivers and Outlook for Residential Energy Consumption and Outlook for Residential Energy Consumption in China Nan Zhou*, Michael A. McNeil, Mark Levine Keywords

  6. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  7. Experimental Breeder Reactor I Preservation Plan

    SciTech Connect (OSTI)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  8. Solid tags for identifying failed reactor components

    DOE Patents [OSTI]

    Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  9. Neutron shielding panels for reactor pressure vessels

    DOE Patents [OSTI]

    Singleton, Norman R. (Murrysville, PA)

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  10. Energy deposition in STARFIRE reactor components

    SciTech Connect (OSTI)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.

  11. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  12. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  13. Small Reactor for Deep Space Exploration

    SciTech Connect (OSTI)

    2012-11-29

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  14. Energy Department Announces Small Modular Reactor Technology...

    Energy Savers [EERE]

    today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South Carolina. As part...

  15. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  16. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, Emil L. (San Jose, CA); Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  17. Progress Update: P-Reactor Grout

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    A progress update, the Recovery Act at work at the Savannah River Site. The new phase of work on the permanent closure of two cold war nuclear reactors.

  18. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  19. Virtual Environment for Reactor Applications (VERA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment for Reactor Applications (VERA) Modern high performance computing (HPC) platforms bring an opportunity for modeling and simulation (modsim) at levels of detail...

  20. Progress Update: P-Reactor Grout

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update, the Recovery Act at work at the Savannah River Site. The new phase of work on the permanent closure of two cold war nuclear reactors.

  1. Nuclear reactor multiphysics via bond graph formalism

    E-Print Network [OSTI]

    Sosnovsky, Eugeny

    2014-01-01

    This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

  2. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  3. Reactor and Nuclear Systems Division (RNSD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation...

  4. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  5. Fast pulse nonthermal plasma reactor

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2005-06-14

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  6. CALIFORNIA ENERGY COMMISSION Administered ARRA Funded Programs (2/17/10) State Energy Program $226 million

    E-Print Network [OSTI]

    and water efficiency, renewable energy, smart grid and clean transportation fields. ARRA Funding: $20. ARRA Funding: $25 million Target Audience: City and county governments Leveraged Funding million Target Audience: Community colleges, training & employment partnerships, cities & counties

  7. DOE to Provide Nearly $20 Million to Further Development of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE to Provide Nearly 20 Million to Further Development of Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide Nearly 20 Million to Further Development of...

  8. Moab Project Logs 2 Million Work Hours Without Lost-Time Injury...

    Energy Savers [EERE]

    Logs 2 Million Work Hours Without Lost-Time Injury or Illness Moab Project Logs 2 Million Work Hours Without Lost-Time Injury or Illness March 31, 2014 - 12:00pm Addthis Empty...

  9. DOE to Invest up to $2.3 Million to Identify Renewable Energy...

    Office of Environmental Management (EM)

    to Invest up to 2.3 Million to Identify Renewable Energy Zones In Western States, May 28, 2008 DOE to Invest up to 2.3 Million to Identify Renewable Energy Zones In Western...

  10. Energy Department Makes $2.5 Million Available for Native American...

    Office of Environmental Management (EM)

    Makes 2.5 Million Available for Native American Tribes to Develop Renewable Energy Resources Energy Department Makes 2.5 Million Available for Native American Tribes to Develop...

  11. Energy Dept. Awards $22.7 Million for Basic Solar Energy Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dept. Awards 22.7 Million for Basic Solar Energy Research Energy Dept. Awards 22.7 Million for Basic Solar Energy Research May 22, 2007 - 1:24pm Addthis WASHINGTON, DC -...

  12. Up to $1.15 Million Available to Small Businesses for New Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Up to 1.15 Million Available to Small Businesses for New Products or Technologies that Expand Geothermal Markets Up to 1.15 Million Available to Small Businesses for New Products...

  13. Portland Company to Receive $1.3 Million to Improve Hydro Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

  14. DOE Makes Available $8 Million for Pre-Conceptual Design of Next...

    Energy Savers [EERE]

    Makes Available 8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants DOE Makes Available 8 Million for Pre-Conceptual Design of Next Generation Nuclear Plants...

  15. DOE Announces Investment of up to $84 Million in Geothermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles Secretary Chu Announces 37.5 Million Available for Joint U.S.-Chinese Clean Energy Research Department of Energy to Award 16 Million for GNEP Studies...

  16. DOE Awards $235 Million to Southern Company to Build Clean Coal...

    Office of Environmental Management (EM)

    DOE Awards 235 Million to Southern Company to Build Clean Coal Plant DOE Awards 235 Million to Southern Company to Build Clean Coal Plant February 22, 2006 - 12:13pm Addthis...

  17. Energy Department Awards $4.5 Million for Innovative Wind Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Awards 4.5 Million for Innovative Wind Power R&D Projects Energy Department Awards 4.5 Million for Innovative Wind Power R&D Projects September 5, 2014 -...

  18. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency...

  19. Energy Department Awards $2.2 Million to Drive Innovative Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.2 Million to Drive Innovative Solutions, Lower Costs of Solar Energy Department Awards 2.2 Million to Drive Innovative Solutions, Lower Costs of Solar March 10, 2014 - 12:22pm...

  20. Secretary Chu Announces Up to $55 Million in Funding to Develop...

    Energy Savers [EERE]

    Up to 55 Million in Funding to Develop Advanced Carbon Capture Technology at Existing Coal-Fired Power Plants Secretary Chu Announces Up to 55 Million in Funding to Develop...