National Library of Energy BETA

Sample records for reactor sustainability program

  1. Light Water Reactor Sustainability Program - Non-Destructive...

    Energy Savers [EERE]

    Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for ... important information to the Light Water Reactor Sustainability (LWRS) program ...

  2. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Office of Environmental Management (EM)

    Department of Energy Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of

  3. Light Water Reactor Sustainability (LWRS) Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure long-term reliability, productivity, safety, and security. The program is conducted in collaboration with national

  4. Light Water Reactor Sustainability Program- Integrated Program Plan

    Broader source: Energy.gov [DOE]

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. INL/EXT-11-23452 Revision 3

  5. Light Water Reactor Sustainability Program: Integrated Program Plan |

    Office of Environmental Management (EM)

    Department of Energy Program: Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to

  6. Light Water Reactor Sustainability Program: Materials Aging and Degradation

    Office of Environmental Management (EM)

    Technical Program Plan | Department of Energy Program: Materials Aging and Degradation Technical Program Plan Light Water Reactor Sustainability Program: Materials Aging and Degradation Technical Program Plan Components serving in a nuclear reactor plant must withstand a very harsh environment including extended time at temperature, neutron irradiation, stress, and/or corrosive media. The many modes of degradation are complex and vary depending on location and material. However,

  7. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  8. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  9. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  10. Light Water Reactor Sustainability Program - Non-Destructive Evaluation

    Office of Environmental Management (EM)

    R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants | Department of Energy Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is

  11. DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operations Program Joint Research and Development

    Broader source: Energy.gov [DOE]

    Description of Joint DOE and EPRI research and development programs related to reactor sustainability INL/EXT-12-24562

  12. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items fabrication, processing, splitting, and more by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  13. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term

    Office of Environmental Management (EM)

    Operations Program - Joint Research and Development Plan | Department of Energy DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low

  14. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    SciTech Connect (OSTI)

    Thomas, Kenneth; Oxstrand, Johanna

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.

  15. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Broader source: Energy.gov [DOE]

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure...

  16. Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program

    Broader source: Energy.gov [DOE]

    The FY10 activities for development of a nuclear concrete materials database to support the Light Water Reactor Sustainability Program are summarized. The database will be designed and constructed...

  17. Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for

    Office of Environmental Management (EM)

    Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping | Department of Energy (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This

  18. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  19. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A; Matlack, Katie; Ramuhalli, Pradeep; Light, Glenn

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  20. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials

    Broader source: Energy.gov [DOE]

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the...

  1. DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operation Program … Joint Research & Development Plan

    Office of Environmental Management (EM)

    2-24562 Revision 4 DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operations Program - Joint Research and Development Plan April 2015 U.S. Department of Energy Office of Nuclear Energy DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the

  2. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  3. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

  4. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect (OSTI)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energys Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (OHara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to serve as a template for other utilities projects for control room modernization.

  5. Light Water Reactor Sustainability Program Grizzly Year-End Progress Report

    SciTech Connect (OSTI)

    Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner; Marie Backman; Brian Wirth; Stephen Novascone; Jason Hales

    2013-09-01

    The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INLs MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. The reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i.e. late blooming phases) to become active later in life beyond the current operational experience. To develop a tool that can eventually serve a role in decision-making, it is clear that research and development must be perfomed at multiple scales. At the engineering scale, a multiphysics analysis code that can capture the thermomechanical response of the RPV under accident conditions, including detailed fracture mechanics evaluations of flaws with arbitrary geometry and orientation, is needed to assess whether the fracture toughness, as defined by the master curve, including the effects of embrittlement, is exceeded. At the atomistic scale, the fundamental mechanisms of degradation need to be understood, including the effects of that degradation on the relevant material properties. In addition, there is a need to better understand the mechanisms leading to the transition from ductile to brittle fracture through improved continuum mechanics modeling at the fracture coupon scale. Work is currently being conducted at all of these levels with the goal of creating a usable engineering tool informed by lower length-scale modeling. This report summarizes progress made in these efforts during FY 2013.

  6. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    SciTech Connect (OSTI)

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will have passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.

  7. Light Water Reactor Sustainability Technical Documents | Department of

    Energy Savers [EERE]

    Energy Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2015 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research

  8. RISMC advanced safety analysis working plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (why is this important?) that will make the case for stakeholders use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable use case demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  9. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  10. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges

    Broader source: Energy.gov [DOE]

    The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR...

  11. WSHFC Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    The Washington State Housing Finance Commission (WSHFC) has established a Sustainable Energy Program to offer low-cost financing for new green construction, energy efficiency upgrades, and...

  12. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  13. Light Water Reactor Sustainability Program FY13 Status Update for EPRI - RISMC Collaboration

    SciTech Connect (OSTI)

    Curtis Smith

    2013-09-01

    The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced "RISMC toolkit" that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory (INL) is collaborating with the Electric Power Research Institute (EPRI) in order to focus on applications of interest to the U.S. nuclear power industry. This report documents the collaboration activities performed between INL and EPRI during FY2013.

  14. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Oxstrand, Johanna Helene; Ahmad Al Rashdan; Le Blanc, Katya Lee; Bly, Aaron Douglas; Agarwal, Vivek

    2015-07-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  15. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna; Bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the users workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energys (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  16. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  17. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  18. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect (OSTI)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly over-design portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as safety margin. Historically, specific safety margin provisions have been formulated, primarily based on engineering judgment.

  19. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  20. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loan Performance (May 22) Program Sustainability: Business Models for Coordinating ... Low-income Housing Program Sustainability Workforce Business Partners BBRN ...

  1. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment

    Broader source: Energy.gov [DOE]

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the...

  2. Light Water Reactor Sustainability Accomplishments Report

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you have any questions about the information in the report, or about the LWRS Program, please contact me, Richard A. Reister (the Federal Program Manager), or the respective research pathway leader (noted on pages 26 and 27), or visit the LWRS Program website (www.inl.gov/lwrs). The annually updated Integrated Program Plan and Pathway Technical Program Plans are also available for those seeking more detailed technical Information.

  3. Key Opportunities and Challenges for Program Sustainability ...

    Broader source: Energy.gov (indexed) [DOE]

    Program, Peer Exchange Call: Program Sustainability, September 27, 2012. PDF icon Program Sustainability Summary More Documents & Publications Revenue From Contractor Fees How Can ...

  4. Sustainable Agriculture Loan Program

    Broader source: Energy.gov [DOE]

    Loans are available in amounts of up to $40,000 per farm family, with up to $160,000 ($40,000 per farmer) available for joint projects. The program currently offers a fixed interest rate of 3%...

  5. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2011-09-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  6. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  7. Light Water Reactor Sustainability Technical Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high...

  8. Asia Sustainable and Alternative Energy Program | Open Energy...

    Open Energy Info (EERE)

    Sustainable and Alternative Energy Program Jump to: navigation, search Logo: Asia Sustainable and Alternative Energy Program Name Asia Sustainable and Alternative Energy Program...

  9. Self-Sustaining Thorium Boiling Water Reactors

    SciTech Connect (OSTI)

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  10. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  11. Caribbean Sustainable Energy Program | Open Energy Information

    Open Energy Info (EERE)

    Caribbean Sustainable Energy Program AgencyCompany Organization Organization of American States (OAS) Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics...

  12. Sustainable Energy Utility (SEU)- Agricultural Loan Program

    Broader source: Energy.gov [DOE]

    Delaware Sustainable Energy Utility (DESEU) offers customized loans for agricultural customer as a part of DESEU’s revolving loan program. Program applications are accepted on a rolling basis, and...

  13. Sustainable Electric Utility (SEU)- SREC Purchase Program

    Broader source: Energy.gov [DOE]

    SREC purchase program is a joint incentive of Delaware Division of Energy and Climate (DNREC) and the state’s Sustainable Energy Utility (SEU). The program offers a standard onetime payment of $450...

  14. CenterPoint Energy Sustainable Schools Program

    Broader source: Energy.gov [DOE]

    The Sustainable Schools Program focuses on energy savings through behavioral and operational improvements, and may be used along with CenterPoint Energy’s SCORE and Load Management programs. It...

  15. Light Water Reactor Sustainability Nondestructive Evaluation for Concrete

    Office of Environmental Management (EM)

    Research and Development Roadmap | Department of Energy Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and

  16. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structuring Rebate and Incentive Programs for Sustainable Demand Structuring Rebate and Incentive Programs for Sustainable Demand Better Buildings Neighborhood Program Peer...

  17. Los Alamos National Lab staff benchmark Y-12 sustainability programs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Lab staff benchmark Y-12 sustainability programs Posted: June 27, 2013 ... to learn about its award-winning Sustainability and Stewardship Program. "By ...

  18. Mexico-National Program for Sustainable Use of Energy | Open...

    Open Energy Info (EERE)

    National Program for Sustainable Use of Energy Jump to: navigation, search Name Mexico-National Program for Sustainable Use of Energy AgencyCompany Organization Government of...

  19. Light Water Reactor Sustainability (LWRS) Initiative Science...

    Broader source: Energy.gov (indexed) [DOE]

    ... committee Meeting was held in Paris, France to further refine the specific work ... Integrated University Program 5,000 0 5,000 5,000 RE-ENERGYSE 0 5,000 0 0 Nuclear Power 2010 ...

  20. 2011 Biomass Program Platform Peer Review: Sustainability

    Broader source: Energy.gov [DOE]

    "This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Sustainability Platform Review meeting, held on April 5, 2011, at the Doubletree Hotel in Annapolis, Maryland."

  1. Key Opportunities and Challenges for Program Sustainability | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Program, Peer Exchange Call: Program Sustainability, September 27, 2012. PDF icon Program Sustainability Summary More Documents & Publications Revenue From Contractor Fees How Can the Network Meet Your Needs? Better Buildings Residential Network Orientation

  2. Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reported on sustainability program accomplishments. The report provides an opportunity to review progress made on sustainability initiatives, evaluate how far we have come and how...

  3. Program Sustainability Peer Exchange Call: Transitioning to a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funded Program Environment: What Do I Need to Know? Program Sustainability Peer Exchange Call: Transitioning to a Utility Funded Program Environment: What Do I Need to Know? ...

  4. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    SciTech Connect (OSTI)

    FRITZ LL

    2012-01-12

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  5. Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

    2012-09-20

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

  6. Program Sustainability Peer Exchange Call: Transitioning to a Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funded Program Environment: What Do I Need to Know? | Department of Energy Program Sustainability Peer Exchange Call: Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Program Sustainability Peer Exchange Call: Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Program Sustainability Peer Exchange Call: Transitioning to a Utility Funded Program Environment: What Do I Need to Know? (January 17, 2013) PDF icon Transitioning to a Utility

  7. Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Energy Efficiency Market Sustainable Business Planning, October 25, 2011.

  8. Structuring Rebate and Incentive Programs for Sustainable Demand

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Peer Exchange Call: Structuring Rebate and Incentive Programs for Sustainable Demand, call slides and discussion summary, August 18, 2011.

  9. Program for the Analysis of Reactor Transients

    Energy Science and Technology Software Center (OSTI)

    2002-01-29

    This program is designed for use in predicting the course of and consequence of nondestructive accidents in research and test reactor cores. It is intended primarily for the analysis of plate type research and test reactors and has been subjected to extensive comparisons with the SPERT I and SPERT II experiments. These comparisons were quite favorable for a wide range of transients up to and including melting of the clad. Favorable comparisons have also beenmore » made for TRIGA reactor pulses in pin geometry. The PARET/ANL code has been used by the RERTR (Reduced Enrichment Research and Test Reactor) Program for the safety evaluation of many of the candidate reactors for reduced enrichment.« less

  10. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect (OSTI)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  11. Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2012-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

  12. Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2013-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

  13. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  14. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  15. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  16. Sustainable Energy Utility (Electric & Gas)- Business Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The District of Columbia's Sustainable Energy Utility (DCSEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy...

  17. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives to their commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are...

  18. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect (OSTI)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 1012, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energys Light Water Reactor Sustainability Program. DOE has shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industrys needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: Develop national capabilities at the university and laboratory level Create or renew infrastructure needed for long-term research, education, and testing Support development and testing of needed I&C technologies Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  19. Miami-Dade County- Sustainable Buildings Program

    Broader source: Energy.gov [DOE]

    In 2005, the Miami-Dade Board of County Commissioners passed a resolution to incorporate sustainable building measures into county facilities. In 2007, Ordinance 07-65 created the Sustainable...

  20. Sustainable Development Fund Financing Program (PECO Territory)

    Broader source: Energy.gov [DOE]

    The SDF provides financial assistance to eligible projects in the form of commercial loans, subordinated debt, royalty financing, and equity financing. The Sustainable Development Fund provides...

  1. Better Buildings Neighborhood Program Sustainability Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for shared information technology services and coordination with contractors). 142013 13 * Marketing and outreach activities have been done by the CA Center for Sustainable ...

  2. Better Buildings Neighborhood Program, Peer Exchange Call: Program Sustainability, September 27 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | 1 Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability September 27, 2012 The Better Buildings Neighborhood Program (BBNP) Peer Exchange call on Program Sustainability was the largest BBNP Peer Exchange call to date, with 119 people registered and 74 participating. It provided a chance to highlight key program sustainability issues, opportunities, and solutions as programs near the end of their Recovery Act grant periods and are thinking about long-term

  3. 2011 Biomass Program Platform Peer Review. Sustainability

    SciTech Connect (OSTI)

    Eng, Alison Goss

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Sustainability Platform Review meeting.

  4. September 18, 2008, Visiting Speakers Program - Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    risk Sustainability as an element of the brand Moving beyond the fenceline Incremental ... Well-researched, based in current reality Integrated with brand In it for the long haul 23 ...

  5. Pilot Program Builds Sustainable Lab-Industry Partnerships for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With technology focus areas ranging from sustainable data centers to additive manufacturing (better known as 3D printing), this two-year, 2.6 million pilot program is designed to ...

  6. Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D | Department of Energy Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough Manufacturing R&D Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough Manufacturing R&D December 30, 2015 - 1:45pm Addthis Argonne National Laboratory and Capstone Turbine Corporation are exploring using microturbines in combined heat and power (CHP) systems. In the power sector, distributed energy technologies can more than double electric

  7. Sustainable Transportation Program 2011 Annual Report

    SciTech Connect (OSTI)

    Vaughan, Kathi H

    2012-06-01

    Highlights of selected research and development efforts at Oak Ridge National Laboratory funded by the Vehicle Technologies Program, Biomass Program, and Hydrogen and Fuel Cells Program of the Department of Energy, Office of Energy Efficiency and Renewable Energy; and the Department of Transportation.

  8. Management of Naval Reactors' Cyber Security Program, OIG-0884

    Broader source: Energy.gov (indexed) [DOE]

    FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Naval Reactors' Cyber Security Program" INTRODUCTION AND OBJECTIVE The Naval...

  9. Biomass Program Peer Review Sustainability Platform | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Sustainability Platform Biomass Program Peer Review Sustainability Platform Presentation on the Update to the Billion-Ton Study, including differences between the Update and the 2005 Billion-Ton Sudy, assumptions, and findings. PDF icon bt2_webinar.pdf More Documents & Publications U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry Importance of Biomass Production and Supply ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP

  10. SP-100 Program: space reactor system and subsystem investigations

    SciTech Connect (OSTI)

    Harty, R.B.

    1983-09-30

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.

  11. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of ...

  12. Reactor Safety Research Programs Quarterly Report April- June 1981

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. Reactor Safety Research Programs Quarterly Report April -June 1980

    SciTech Connect (OSTI)

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. Reactor Safety Research Programs Quarterly Report October - December 1980

    SciTech Connect (OSTI)

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  15. Reactor Safety Research Programs Quarterly Report July- September 1980

    SciTech Connect (OSTI)

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  16. Reactor Safety Research Programs Quarterly Report October - December 1981

    SciTech Connect (OSTI)

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Roadmap to a Sustainable Structured Trusted Employee Program

    SciTech Connect (OSTI)

    Coates, Cameron W; Eisele, Gerhard R

    2013-08-01

    Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trusted Employee Program (STEP).

  18. Partnering with Utilities and Other Program Administrators to Sustain and Grow Your Energy Efficiency Initiatives

    Broader source: Energy.gov [DOE]

    This presentation contains information on Partnering with Utilities and Other Program Administrators to Sustain and Grow Your Energy Efficiency Initiatives.

  19. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  20. Labs21 sustainable design programming checklist version 1.0

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve

    2005-01-07

    This checklist of sustainable design objectives and strategies can be used in the programming and conceptual design phases of a laboratory project. It includes the following: (1) Brief descriptions of each objective and strategy. (2) Metrics for each objective. This checklist is primarily to be used by owners, architects and engineers during the programming and conceptual design phase of a project. It is especially appropriate for use in design charrettes. The strategies and metrics can be included as requirements in the programming document or can be identified for further analysis or consideration during the design development phase. This checklist is hierarchically organized into design areas, objectives for each design area, and strategies and metrics for each objective. The design areas generally correspond to the design areas of the LEED(TM) rating system from the U.S. Green Building Council.

  1. City of San Diego- Sustainable Building Expedited Permit Program

    Broader source: Energy.gov [DOE]

    In 2002, the City of San Diego passed a Resolution R-298001, which amended the Sustainable Building Policy to allow for expedited permitting for sustainable buildings. Sustainable buildings are...

  2. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    SciTech Connect (OSTI)

    Bolisetti, Chandrakanth; Coleman, Justin Leigh

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area of interest. The specific nonlinear soil behavior included in the NLSSI calculation presented in this report is gapping and sliding. Other NLSSI effects are not included in the calculation. The results presented in this report document initial model runs in the linear and nonlinear analysis process. Final comparisons between traditional and advanced SPRA will be presented in the September 30th deliverable.

  3. Integral Fast Reactor Program. Annual progress report, FY 1993

    SciTech Connect (OSTI)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

  4. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300C and 900C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  5. Partnering with Utilities and Other Program Administrators to Sustain-Grow Your Energy Efficiency Initiatives

    Broader source: Energy.gov [DOE]

    This document contains the transcript for the Partnering with Utilities and Other Program Administrators to Sustain and Grow Your Energy Efficiency Initiatives webinar held on May 8, 2013.

  6. Reactor safety research programs. Quarterly report, July-September 1983

    SciTech Connect (OSTI)

    Edler, S.K.

    1984-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including the Super Sara Test Program, Ispra, Italy, and experimental programs at the Power Burst Facility.

  7. A reactor core on-line monitoring program - COMP

    SciTech Connect (OSTI)

    Wang, C.; Wu, H.; Cao, L.

    2012-07-01

    A program named COMP is developed for on-line monitoring PWRs' in-core power distribution in this paper. Harmonics expansion method is used in COMP. The Unit 1 reactor of Daya Bay Nuclear Power Plant (Daya Bay NPP) in China is considered for verification. The numerical results show that the maximum relative error between measurement and reconstruction results from COMP is less than 5%, and the computing time is short, indicating that COMP is capable for online monitoring PWRs. (authors)

  8. Better Buildings Neighborhood Program Sustainability Peer Exchange Call: Revenue from Contractor Fees, November 1, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 2012 Better Buildings Neighborhood Program Sustainability Peer Exchange Call: Revenue from Contractor Fees Agenda and Discussion * Welcome and Call Purpose  This call was the first in a new series of calls focusing on topics relating to program sustainability. * Call Logistics and Participants  The call had 25 participants representing 16 Better Buildings Neighborhood Programs (see next slide). * Call participants discussed:  How programs are beginning to devise plans for a

  9. Sustainable Energy Fund (SEF) Loan Program (PPL Territory)

    Broader source: Energy.gov [DOE]

    The Sustainable Energy Fund (SEF) promotes and invests in energy efficiency and renewable energy projects, and energy education initiatives in the state of Pennsylvania. 

  10. UNIDO-Training Program on Sustainable Energy Regulation and Policymaki...

    Open Energy Info (EERE)

    will better aid the adoption of more economically (in the long term) and environmentally sustainable methods of energy supply and utilization, both in the industrial, commercial...

  11. Former Tribal Energy Program Intern Guides Tribes Toward a More Sustainable

    Office of Environmental Management (EM)

    Path | Department of Energy Former Tribal Energy Program Intern Guides Tribes Toward a More Sustainable Path Former Tribal Energy Program Intern Guides Tribes Toward a More Sustainable Path January 30, 2015 - 1:24pm Addthis Suzanne Singer is a former intern of the U.S. Department of Energy's (DOE's) Tribal Energy Program (2008 and 2009). She has a doctorate in mechanical engineering from the University of California-Berkeley. Currently, she is working at the Lawrence Livermore National

  12. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 2021, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industrys needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  13. Los Alamos National Lab staff benchmark Y-12 sustainability programs | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Complex Los Alamos National Lab ... Los Alamos National Lab staff benchmark Y-12 sustainability programs Posted: June 27, 2013 - 3:53pm OAK RIDGE, Tenn. - Staff from Los Alamos National Laboratory recently visited the Y-12 National Security Complex to learn about its award-winning Sustainability and Stewardship Program. "By benchmarking the sustainability programs at Y-12, we'll be able to implement like ideas at LANL," Debbie Bryan-Ricketts said. "We can

  14. Reactor safety research programs. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    Edler, S.K.

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  15. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

  16. New Jersey Renewable Energy Incentive Program (Sustainable Biopower)

    Broader source: Energy.gov [DOE]

    NOTE: The program is currently open for second round of solicitations for program year 2015. Proposals are due by April 18, 2015. The program manual can be accessed here. 

  17. EIS-0085-S: Liquid-Metal Fast Breeder Reactor Program, Supplemental

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this supplemental statement to examine the reduced scope of the Liquid Metal Fast Breeder Reactor (LMFBR) program and the environmental impacts associated therewith, including a re-examination of the purpose, need and timing of the program, the present program structure, including reasonable program alternatives, and alternative electricity production technologies anticipated to be available within the same timeframe as the LMFBR technology option. This statement supplements ERDA-1535, Liquid Metal Fast Breeder Reactor Program.

  18. Better Buildings Neighborhood Program Peer Exchange Call: Structuring Rebate and Incentive Programs for Sustainable Demand Call Slides and Discussion Summary, August 18, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18, 2011 Better Buildings Neighborhood Program Peer Exchange Call: Structuring Rebate and Incentive Programs for Sustainable Demand Call Slides and Discussion Summary Agenda * Call Logistics and Attendance * Program Experience and Lessons:  Nathalie Gonzalez, County of Los Angeles, Office of Sustainability * Discussion: * What are strategies for structuring a rebate/incentive program to generate sustainable demand? 2/27/2015 2 Participating Grant Programs * Austin, TX * Chicago, IL * Los

  19. Georgia Green Loans Save & Sustain Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    technologies not identified Program Info Sector Name Non-Profit Administrator Georgia Green Loans Website http:www.georgiagreenloans.org Funding Source U.S. Small Business...

  20. Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program

    Broader source: Energy.gov [DOE]

    Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

  1. Program Sustainability Peer Exchange Call: Transitioning to a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Funded Program Environment: What Do I Need To Know? ... describes how you expect to work with utilities in the ... Revenue Recovery: - Performance Incentives - Lost Fixed ...

  2. The Path to Program Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful energy efficiencyrenewable energy finance programs combine access to finance with marketing, project development, and project delivery. Those last three services ensure ...

  3. Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance

    Broader source: Energy.gov [DOE]

    As part of the Office of Nuclear Energy's Next Generation Nuclear Plant (NGNP) Program, the Advanced Gas Reactor (AGR) Fuel Development Program has achieved a new international record for...

  4. September 18, 2008, Visiting Speakers Program - SustainAbility - Companion Book

    Energy Savers [EERE]

    8, 2008 U.S. Department of Energy Washington, DC Office of Health, Safety and Security ; shareholders and stakeholders. The HSS Focus Group HSS believes an Glenn S. Podonsky Chief Health, Safety and Security Officer The Office of Health, Safety and Security (HSS) is the Department of Energy's (DOE) corporate organization responsible for health, safety, environment, and security providing corporate leadership and strategic vision to coordinate and integrate these vital programs. HSS is

  5. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    National Nuclear Security Administration (NNSA)

    * Complete reactor control rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information...

  6. Sustain

    Energy Science and Technology Software Center (OSTI)

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactivemore » graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.« less

  7. Final report. U.S. Department of Energy University Reactor Sharing Program

    SciTech Connect (OSTI)

    Bernard, John A.

    2003-01-21

    Activities supported at the MIT Nuclear Reactor Laboratory under the U.S. DOE University Reactor Sharing Program are reported for Grant DE FG02-95NE38121 (September 16, 1995 through May 31, 2002). These activities fell under four subcategories: support for research at thesis and post-doctoral levels, support for college-level laboratory exercises, support for reactor tours/lectures on nuclear energy, and support for science fair participants.

  8. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet), Weatherization And Intergovernmental Programs (WIP)

    Energy Savers [EERE]

    Efficiency Coaches Aim for Long-Lasting Changes Through Solar and Weatherization Vermont has developed an innovative strategy for helping low-income families save energy through the U.S. Department of Energy's (DOE) Sustainable Energy Resources for Consumers (SERC) program. The DOE Weatherization Assistance Program (WAP) granted Vermont to give its weatherization clients access to solar energy systems and one-on-one assistance from energy efficiency coaches to help clients achieve meaningful and

  9. October 30, 2008, Visiting Speakers Program - Dow Chemicals Presentation - Dows Approach to Sustainability

    Energy Savers [EERE]

    Catalyst for Change Dow's Approach to Sustainability Dr. Susan Butts Sr. Director, External Science & Technology Programs The Dow Chemical Company Office of Health, Safety & Security Visiting Speaker Program US Department of Energy The Power of the Human Element At The Dow Chemical Company, we view chemistry as the work of humanity. We believe the most important element of all is not found on the periodic table, yet is part of every equation for the future. This element is the Human

  10. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plugin hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create webbased learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, fouryear colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and coordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit webbased learning resource and Google spinoff.

  11. GLOBAL THREAT REDUCTION INITIATIVE REACTOR CONVERSION PROGRAM: STATUS AND CURRENT PLANS

    SciTech Connect (OSTI)

    Staples, Parrish A.; Leach, Wayne; Lacey, Jennifer M.

    2009-10-07

    The U.S. Department of Energys National Nuclear Security Administration (NNSA) Reactor Conversion Program supports the minimization, and to the extent possible, elimination of the use of high enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors and radioisotope production processes to the use of low enriched uranium (LEU). The Reactor Conversion Program is a technical pillar of the NNSA Global Threat Reduction Initiative (GTRI) which is a key organization for implementing U.S. HEU minimization policy and works to reduce and protect vulnerable nuclear and radiological material domestically and abroad.

  12. Plutonium Consumption Program, CANDU Reactor Project final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  13. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    SciTech Connect (OSTI)

    Not Available

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  14. Benchmark Evaluation of the Medium-Power Reactor Experiment Program Critical Configurations

    SciTech Connect (OSTI)

    Margaret A. Marshall; John D. Bess

    2013-02-01

    A series of small, compact critical assembly (SCCA) experiments were performed in 1962-1965 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for the Medium-Power Reactor Experiment (MPRE) program. The MPRE was a stainless-steel clad, highly enriched uranium (HEU)-O2 fuelled, BeO reflected reactor design to provide electrical power to space vehicles. Cooling and heat transfer were to be achieved by boiling potassium in the reactor core and passing vapor directly through a turbine. Graphite- and beryllium-reflected assemblies were constructed at ORCEF to verify the critical mass, power distribution, and other reactor physics measurements needed to validate reactor calculations and reactor physics methods. The experimental series was broken into three parts, with the third portion of the experiments representing the beryllium-reflected measurements. The latter experiments are of interest for validating current reactor design efforts for a fission surface power reactor. The entire series has been evaluated as acceptable benchmark experiments and submitted for publication in the International Handbook of Evaluated Criticality Safety Benchmark Experiments and in the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  15. A computer program to determine the specific power of prismatic-core reactors

    SciTech Connect (OSTI)

    Dobranich, D.

    1987-05-01

    A computer program has been developed to determine the maximum specific power for prismatic-core reactors as a function of maximum allowable fuel temperature, core pressure drop, and coolant velocity. The prismatic-core reactors consist of hexagonally shaped fuel elements grouped together to form a cylindrically shaped core. A gas coolant flows axially through circular channels within the elements, and the fuel is dispersed within the solid element material either as a composite or in the form of coated pellets. Different coolant, fuel, coating, and element materials can be selected to represent different prismatic-core concepts. The computer program allows the user to divide the core into any arbitrary number of axial levels to account for different axial power shapes. An option in the program allows the automatic determination of the core height that results in the maximum specific power. The results of parametric specific power calculations using this program are presented for various reactor concepts.

  16. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    SciTech Connect (OSTI)

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  17. SLFP: A stochastic linear fractional programming approach for sustainable waste management

    SciTech Connect (OSTI)

    Zhu, H.; Huang, G.H.

    2011-12-15

    Highlights: > A new fractional programming (SLFP) method is developed for waste management. > SLFP can solve ratio optimization problems associated with random inputs. > A case study of waste flow allocation demonstrates its applicability. > SLFP helps compare objectives of two aspects and reflect system efficiency. > This study supports in-depth analysis of tradeoffs among multiple system criteria. - Abstract: A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk.

  18. Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session, featuring Host: Brian Driscoll, Wisconsin Energy Conservation Corporation Call Slides and Discussion Summary, November 15, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2012 Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session, featuring Host: Brian Driscoll, Wisconsin Energy Conservation Corporation Call Slides and Discussion Summary 1 Agenda * Welcome and Polls, Jonathan Cohen, DOE * Introductions (go-around), Tom Beierle, Ross Strategic * Mastermind Format and Agenda, Moderator: Dane Reese, Stark Talent Mastermind Session * Program Overview, Host: Brian Driscoll, WECC * Questions and Answers  Participants

  19. Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session, featuring Host: EnergyWorks Philadelphia, Call Slides and Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4, 2013 Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session, featuring Host: EnergyWorks Philadelphia Call Slides and Summary Agenda * Welcome * Introductions (go-around and assignment of numbers) * Mastermind Format and Agenda, Moderator: Jonathan Cohen Mastermind Session * Program Overview  Katherine Gajewski, City of Philadelphia  Jenny Crowther, Philadelphia Industrial Development Corporation  Roger Clark, The Reinvestment Fund *

  20. Program Sustainability Peer Exchange Call: Transitioning to a Utility Funded Program Environment: What Do I Need To Know? January 17, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2013 Program Sustainability Peer Exchange Call: Transitioning to a Utility Funded Program Environment: What Do I Need To Know? Call Slides and Discussion Summary Agenda * Welcome and Polls * Transitioning to a Utility Funded Program Environment: Arizona Public Service HPwES Program  Gavin Hastings, Arizona Public Service * Q&A and Discussion  What lessons have programs learned about working effectively with utilities and transitioning to new roles and responsibilities?  What are

  1. Fast reactor safety program. Progress report, January-March 1980

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The goal of the DOE LMFBR Safety Program is to provide a technology base fully responsive to safety considerations in the design, evaluation, licensing, and economic optimization of LMFBRs for electrical power generation. A strategy is presented that divides safety technology development into seven program elements, which have been used as the basis for the Work Breakdown Structure (WBS) for the Program. These elements include four lines of assurance (LOAs) involving core-related safety considerations, an element supporting non-core-related plant safety considerations, a safety R and D integration element, and an element for the development of test facilities and equipment to be used in Program experiments: LOA-1 (prevent accidents); LOA-2 (limit core damage); LOA-3 (maintain containment integrity); LOA-4 (attenuate radiological consequences); plant considerations; R and D integration; and facility development.

  2. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012

    SciTech Connect (OSTI)

    McLaughlin, Anastasia Dawn; Storey, Bradford G.; Bowidowicz, Martin; Robertson, William G.; Hobson, Beverly F.

    2012-10-22

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

  3. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect (OSTI)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties, ideally suits the objectives and constraints of the heterogeneous assemblies. However, signi

  4. Participation in the United States Department of Energy Reactor Sharing Program

    SciTech Connect (OSTI)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    1992-05-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Program since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.

  5. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    SciTech Connect (OSTI)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are needed to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nations NPPs.

  6. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  7. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    SciTech Connect (OSTI)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are needed to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.

  8. DOE/EIS-0218-SA-3: Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (November 2004)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM NOVEMBER 2004 DOE/EIS-0218-SA-3 U.S. Department of Energy National Nuclear Security Administration Washington, DC Final Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program Final i TABLE OF CONTENTS Page 1. Introduction.............................................................................................................................................. 1 2.

  9. Program Sustainability Peer Exchange Call: Assessing Revenue Streams: What is Right for Your Program? Call Slides and Summary, January 10, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0, 2013 Program Sustainability Peer Exchange Call: Assessing Revenue Streams: What is Right for Your Program? Call Slides and Summary Agenda * Welcome and Polls * Assessing Revenue Streams: LEAP Example (Virginia)  Michael Donovan, The Donovan Group * Q&A and Discussion  How are other programs assessing potential revenue streams? What lessons have you learned?  What tools, resources, or methods you have found useful?  How have program made the transition to charging new types of

  10. Better Buildings Neighborhood Program Peer Exchange Calls on Program Sustainability: Unique Fee-for-Service Revenues Call Slides and Discussion Summary, April 11, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, 2013 Better Buildings Neighborhood Program Peer Exchange Calls on Program Sustainability: Unique Fee-for-Service Revenues Call Slides and Discussion Summary Agenda * Welcome and Introductions  What are some unique fee-for-service revenues your program is implementing or considering? * Program Experience  Chris Jones, Greater Cincinnati Energy Alliance * Discussion Topics:  How can you determine the feasibility and financial potential of unique fee-for-service revenues?  How do you

  11. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Sustainability The Department of Energy (DOE) supports the understanding and implementation of sustainability programs throughout the complex The Department of Energy (DOE) supports the understanding and implementation of sustainability programs throughout the complex DOE Headquarters provides technical assistance, coordination, and integration throughout the complex in the resolution of sustainability issues as well as assistance that supports improved program and field

  12. University of Florida--US Department of Energy 1994-1995 reactor sharing program

    SciTech Connect (OSTI)

    Vernetson, W.G.

    1996-06-01

    The grant support of $24,250 (1994-95?) was well used by the University of Florida as host institution to support various educational institutions in the use of UFTR Reactor. All users and uses were screened to assure the usage was for educational institutions eligible for participation in the Reactor Sharing Program; where research activities were involved, care was taken to assure the research was not funded by grants for contract funding from outside sources. Over 12 years, the program has been a key catalyst for renewing utilization of UFTR both by external users around the State of Florida and the Southeast and by various faculty members within the University of Florida. Tables provide basic information about the 1994-95 program and utilization of UFTR.

  13. REACTORS

    DOE Patents [OSTI]

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  14. Reactor-safety research programs. Quarterly report, October-December 1982. Volume 4

    SciTech Connect (OSTI)

    Edler, S.K.

    1983-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized-water-reactor steam-generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models being developed to provide better digital codes to compute the bahavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  15. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  16. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Silver, Pam [Harvard University

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  17. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Silver, Pam [Harvard University] [Harvard University

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  18. Better Buildings Residential Network Program Sustainability Peer Exchange Call: Complementary State Policies for Energy Efficiency Programs Call Slides and Summary, July 18, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18, 2013 Better Buildings Residential Network Program Sustainability Peer Exchange Call: Complementary State Policies for Energy Efficiency Programs Call Slides and Summary Agenda * Call Logistics and Roll Call * What policies does your state have that help promote energy efficiency? What policies do you wish it had? * Poll on State Policies * Program Experience  Mary Cohen, NeighborWorks of Western Vermont  Denee Evans, Energy Fit Nevada * Discussion  What state policies are most

  19. Reactor safety research programs. Quarterly report, April-June 1983. Vol. 2

    SciTech Connect (OSTI)

    Edler, S.K.

    1983-12-01

    This document summarizes work performed by Pacific Northwest Laboratory from April 1 through June 30, 1983, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Core thermal models are being developed to provide better digital codes to compute the behavior or full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including fuel rod deformation and severe fuel damage tests for the Super Sara Test Program, Ispra, Italy; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho.

  20. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    SciTech Connect (OSTI)

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.

  1. Interagency Sustainability Working Group: Update Report; December 2009, Federal Energy Management Program (FEMP) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    December 2009 update report offered by the Interagency Sustainability Working Group (ISWG). This report is updated bi-annually.

  2. Light Water Reactor Sustainability Program: survey of models for concrete degradation

    SciTech Connect (OSTI)

    Spencer, Benjamin W; Huang, Hai

    2014-08-01

    Concrete has been used in the construction of nuclear facilities because of two primary properties: its structural strength and its ability to shield radiation. Concrete structures have been known to last for hundreds of years, but they are also known to deteriorate in very short periods of time under adverse conditions. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

  3. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Broader source: Energy.gov (indexed) [DOE]

    of understanding) to be coordinated or collaborative in nature, but yet add to the body of knowledge that may be consulted by nuclear power plant owners and operators as...

  4. Light Water Reactor Sustainability Program Power Uprate Research and Development Strategy

    SciTech Connect (OSTI)

    Hongbin Zhang

    2011-09-01

    The economic incentives for low-cost electricity generation will continue to drive more plant owners to identify safe and reliable methods to increase the electrical power output of the current nuclear power plant fleet. A power uprate enables a nuclear power plant to increase its electrical output with low cost. However, power uprates brought new challenges to plant owners and operators. These include equipment damage or degraded performance, and unanticipated responses to plant conditions, etc. These problems have arisen mainly from using dated design and safety analysis tools and insufficient understanding of the full implications of the proposed power uprate or from insufficient attention to detail during the design and implementation phase. It is essential to demonstrate that all required safety margins have been properly retained and the existing safety level has been maintained or even increased, with consideration of all the conditions and parameters that have an influence on plant safety. The impact of the power uprate on plant life management for long term operation is also an important issue. Significant capital investments are required to extend the lifetime of an aging nuclear power plant. Power uprates can help the plant owner to recover the investment costs. However, plant aging issues may be aggravated by the power uprate due to plant conditions. More rigorous analyses, inspections and monitoring systems are required.

  5. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Broader source: Energy.gov (indexed) [DOE]

    joint lead Advanced II&C Systems Technologies New Instrumentation and Control and Human System Interfaces and Capabilities (including Advanced II&C Pilot Projects)...

  6. Government commercialization of large scale technology: the United States Breeder Reactor Program 1964-1976

    SciTech Connect (OSTI)

    Stiefel, M.D.

    1981-06-01

    The US Liquid Metal Fast Breeder Reactor program was an attempt by the Atomic Energy Commission to develop, in partnership with industry, a particular nuclear technology. Not only did the AEC provide subsidies and test facilities for the private sector, but the agency attempted to direct which technological options would be developed. The national laboratories, nuclear vendors, and electric utilities were not amenable to government direction. The resulting time delays and cost overruns stalled the program until the anti-nuclear movement arose and undermined the political consensus behind the program. As a result, a breeder demonstration plant has not yet been built in the United States. The analysis of this thesis suggests two conclusions. First, future government directed commercialization programs are unlikely to succeed. Second, breeder development should be slowed down until the political problems in the nuclear industry are solved.

  7. Sustainability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability "Much of Argonne's cutting-edge research is dedicated to discovery and ... Argonne's Sustainability and Environmental Program embodies the laboratory's commitment to ...

  8. Reactor safety research programs. Quarterly report, October-December 1983. Vol. 4

    SciTech Connect (OSTI)

    Edler, S.K.

    1984-05-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include investigating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; an instrumented fuel assembly irradiation program is being performed at Halden, Norway; and fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility.

  9. Program Sustainability Peer Exchange Call: Lender-based Revenues and Cost-savings Call Slides and Summary, February 14, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Program Sustainability Peer Exchange Call: Lender-based Revenues and Cost-savings Call Slides and Summary Agenda * Welcome * Lender-based Revenues and Cost-savings in Oregon  Brian Alfano, Clean Energy Works Oregon * Q&A and Discussion  How are programs structuring (or thinking of structuring) lender-based fees?  How are programs sharing costs with lending partners?  What are strategies for transitioning to lender-based fees or cost-sharing arrangements? 2/14/2013 2

  10. OSMOSE program : statistical review of oscillation measurements in the MINERVE reactor R1-UO2 configuration.

    SciTech Connect (OSTI)

    Stoven, G.; Klann, R.; Zhong, Z.; Nuclear Engineering Division

    2007-08-28

    The OSMOSE program is a collaboration on reactor physics experiments between the United States Department of Energy and the France Commissariat Energie Atomique. At the working level, it is a collaborative effort between the Argonne National Laboratory and the CEA Cadarache Research Center. The objective of this program is to measure very accurate integral reaction rates in representative spectra for the actinides important to future nuclear system designs, and to provide the experimental data for improving the basic nuclear data files. The main outcome of the OSMOSE measurement program will be an experimental database of reactivity-worth measurements in different neutron spectra for the heavy nuclides. This database can then be used as a benchmark to verify and validate reactor analysis codes. The OSMOSE program (Oscillation in Minerve of isotopes in Eupraxic Spectra) aims at improving neutronic predictions of advanced nuclear fuels through oscillation measurements in the MINERVE facility on samples containing the following separated actinides: {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm, and {sup 245}Cm. The first part of this report provides an overview of the experimental protocol and the typical processing of a series of experimental results which is currently performed at CEA-Cadarache. In the second part of the report, improvements to this technique are presented, as well as the program that was created to process oscillation measurement results from the MINERVE facility in the future.

  11. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

  12. Office of Sustainability Support

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Sustainability Support serves as AUs organizational lead in partnering with the Departments Sustainability Performance Office to support the understanding and implementation of sustainability programs and requirements within the Department, including through supporting development and implementation of DOEs annual Strategic Sustainability Program Plan.

  13. Reactor Safety Research Programs. Quarterly report, July-September 1984. Volume 3. [PWR; BWR

    SciTech Connect (OSTI)

    Edler, S.K.

    1985-02-01

    This document summarizes work performed by Pacific Northwest Laboratory from July 1 through September 30, 1984, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Results from an instrumented fuel assembly irradiation program being performed at Halden, Norway, are reported. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Severe fuel damage accident tests are being conducted in the NRU Reactor, Chalk River, Canada.

  14. Reactor safety research programs. Quarterly report, January-March 1984. Vol. 1. [PWR; BWR

    SciTech Connect (OSTI)

    Edler, S.K.

    1984-06-01

    This document summarizes work performed by Pacific Northwest Laboratory from January 1 through March 31, 1984, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Results from an instrumented fuel assembly irradiation program being performed at Halden, Norway, are reported. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data on analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada.

  15. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program Joint Research and Development Plan

    SciTech Connect (OSTI)

    Don Williams

    2012-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's electrical generation capability.

  16. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  17. Results of flow and vibration testing of supercell target elements in support of the N Reactor Alternate Mission Program

    SciTech Connect (OSTI)

    Crowe, R.D.; Samuel, T.J.

    1989-09-01

    The purpose of the Alternate Missions Program Design Tasks is to provide an alternate fuel/target design for producing tritium in the N Reactor. The planning for the program must be consistent with the following production requirements: (1) minimize changes to the reactor for implementation, (2) minimize implementation and production costs, and (3) maximize tritium production within these constraints. To evaluate the structural performance of the fuel/target and supercell target elements to be used in tritium production at the N Reactor, flow and vibration tests on the new supercell target design were conducted as described in WHC-IP-0552, (Crowe and Samuel 1989). Because the new fuel/target and supercell target elements weigh much less than fuel previously used in the N Reactor, testing was necessary to demonstrate that the elements would not vibrate when subjected to prototypical reactor flow conditions. This testing was essential to establish the new fuel and supercell target vibration and hydraulic behavior before actual use in the N Reactor. 5 refs., 10 figs., 11 tabs.

  18. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  19. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

  20. Participation in the United States Department of Energy Reactor Sharing Program. Annual report, August 31, 1991--August 29, 1992

    SciTech Connect (OSTI)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    1992-05-01

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Program since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.

  1. sustainable development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainable development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8/183 [Flush right, 12 pt. Arial or Helvetica, bold] [Cover page margins: 1 in. all around with a gutter of 0.25 in., mirror margins, no page number] Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference? [Sink title 2.75 in. from top margin, initial caps, 24 pt. Arial or Helvetica, bold, flush left] October 2008 [18 pt. Arial or Helvetica, bold, flush left] Prepared by Dr. David L. Greene Oak Ridge National Laboratory Dr. K. G.

  3. ASTRID sodium cooled fast reactor: Program for improving in service inspection and repair

    SciTech Connect (OSTI)

    Jadot, F.; De Dinechin, G.; Augem, J. M.; Sibilo, J.

    2011-07-01

    In the frame of the CEA, EDF, AREVA coordinated research program for the development of Generation IV sodium-cooled fast reactors (SFR), the ASTRID project was launched in 2010. For the future prototype, the improvement of in-service inspection and repair (ISI and R) capabilities was identified as a major issue. Following the pluri-annual SFR research program, the ISI and R main R and D axes remain: i) improvement of the primary system conceptual design, ii) development of measurement and inspection techniques (continuous monitoring instrumentation and periodic inspection tools), iii) accessibility and associated robotics, and iv) development and validation of repair processes. Associated ISI and R needs are being defined through an iterative method between designers and instrumentation specialists: adaptation of the Design to ISI and R requirements, fission chamber development, validation of the ultrasonic and chemical transducers, of ultrasonic non destructive simulation, of acoustic surveillance, of laser repair intervention processes, of connected robotic equipment. Moreover, CEA, as leader of the ASTRID Project, is willing to find new contributors, partners or suppliers, in order to get innovative, diversified, exhaustive and efficient solutions. (authors)

  4. Nuclear Energy Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Programs Solving Nuclear Energy Technical Challenges Our science and technology are making way for new nuclear fuels and reactor materials. Get Expertise David Teter Email Generating breakthroughs in nuclear energy materials Safe and sustainable nuclear energy is a focus of the Laboratory's energy security mission, and our expertise in materials science plays an important role. With collaborators worldwide, Los Alamos is developing technologies for future nuclear reactor designs

  5. U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

  6. Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, 2010 New Program Proposal for Fiscal Year 2011 - Modified Open Cycle Carter "Buzz" Savage Nuclear Energy Advisory Committee Meeting April 29, 2010 Washington, DC April 29, 2010 Recycle of Used Fuel Option to recycle used fuel has been the subject of much debate and discussion. Nonproliferation issues and economics have limited recycle options. Recycle of used fuel enables increased utilization of uranium resource and potential waste management benefits. - Once through fuel cycle

  7. Environmental Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability community-environmentassetsimagesiconearthday.jpg Environmental Sustainability: Creating the Future Exercising our commitment to operating a sustainable site...

  8. Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Awards Sustainability Awards Significant sustainability achievements at U.S. Department of Energy (DOE) facilities are recognized in several ways. DOE recognizes exemplary performance by sites and individuals through DOE's annual Sustainability Awards. DOE's Federal and contractor staff are also eligible for recognition through several government-wide programs. For information about these awards programs, see the descriptions below. DOE Sustainability Awards The Sustainability

  9. Rating energy efficiency and sustainability in laboratories: Results and lessons from the Labs21 program

    SciTech Connect (OSTI)

    Mathew, Paul; Sartor, Dale; van Geet, Otto; Reilly, Sue

    2004-05-26

    Laboratories are very energy intensive, with significant opportunities for improved efficiency. However, their inherent complexity and variety makes benchmarking of their energy and environmental performance a unique and challenging task. Furthermore, laboratories have a myriad of health and safety requirements that significantly affect energy use, adding complexity to their benchmarking. The Labs21 program, a joint program of the US EPA and US DOE, has developed two resources specifically for assessing laboratory energy and environmental performance: (1) An energy benchmarking tool which allows users to compare laboratories using a standard set of building and system level energy use metrics. (2) The Environmental Performance Criteria (EPC) a point-based rating system that builds on the LEED(TM) green building rating system, designed to score overall environmental performance. In this paper, for each of these tools we present the underlying methodology and results from their use. For the benchmarking tool, we contrast our approach, which includes a simulation model-based component, with those used for other building types. We also present selected results from data collection and analysis of about 40 private and public sector laboratory facilities. In the case of the EPC, we describe variations from the LEED standard, focusing on the energy credits. Finally, using laboratories as a case in point, we discuss lessons learned that can be applied to the development of similar tools for other building types that have complex requirements impacting energy and environmental performance.

  10. Better Buildings Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor Call Slides and Discussion Summary, May 9, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor Call Slides and Discussion Summary Agenda - Operating as a Prime Contractor * Call Logistics and Roll Call * Introducing the Better Buildings Residential Network * Poll on Future Call Topics * Discussion  What experiences has your program had operating as a prime contractor? * Or, If you are considering adopting more of a prime contractor model, what questions or concerns do you have about it? 

  11. Better Buildings Residential Network Program Sustainability/Working with Utilities Peer Exchange Call: Working with Smaller Municipal Utilities Call Slides and Summary, June 27, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Sustainability/Working with Utilities Peer Exchange Call: Working with Smaller Municipal Utilities Call Slides and Summary Agenda * Call Logistics and Roll Call * Is your program working with smaller municipal utilities or other types of publicly owned utilities? * Discussion  How does working with publicly-owned utilities differ from working with other types of utilities?  What are key challenges and opportunities for working with smaller municipal utilities or other publicly

  12. Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session on Combining Energy Efficiency and Health Services, featuring Host: Tim Carryer, GTECH Strategies and ReEnergize Pittsburgh Call Slides and Summary, July 23, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23, 2013 Better Buildings Neighborhood Program Peer Exchange Call: Program Sustainability Mastermind Session on Combining Energy Efficiency and Health Services, featuring Host: Tim Carryer, GTECH Strategies and ReEnergize Pittsburgh Call Slides and Summary Agenda * Welcome * Introductions (go-around and assignment of numbers) * Mastermind Format and Agenda  Moderator: Jonathan Cohen Mastermind Session * Program Overview  Host: Tim Carryer, GTECH Strategies and ReEnergize Pittsburgh *

  13. Reactor-safety research programs. Quarterly report, July-September 1982

    SciTech Connect (OSTI)

    Edler, S.K.

    1983-03-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions.

  14. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  15. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    SciTech Connect (OSTI)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk as a function of different configurations in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  16. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    SciTech Connect (OSTI)

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  17. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  18. NREL: Sustainable NREL - Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Annual Sustainability Report FY2014. Printable Version Sustainable NREL Home About Sustainable NREL Environment Buildings Research Support Facility Science & Technology...

  19. Evaluation of anticipatory signal to steam generator pressure control program for 700 MWe Indian pressurized heavy water reactor

    SciTech Connect (OSTI)

    Pahari, S.; Hajela, S.; Rammohan, H. P.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG and PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)

  20. Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals Sustainability Goals We support and encourage energy conservation and environmental sustainability. Energy Conservation Efficient Water Use & Management High Performance...

  1. Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Update on Revenue Strategies Call Slides and Discussion Summary December 11, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Sustainability Peer Exchange Call Series: Update on Revenue Strategies Call Slides and Discussion Summary December 11, 2014 Agenda  Call Logistics and Introductions  Residential Network and Peer Exchange Call Overview  Featured Speakers  Lea Yancey, Boulder County, Colorado  Doug Coward, Solar and Energy Loan Fund (SELF)  Aaron Klemm, Los Angeles County, California  Discussion  What revenue strategies have worked well for your organization?  What challenges

  2. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

  3. Enthusiastic employees: sustaining the Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy sustainability is a daunting task: How do we develop top-notch innovations with ... Take Monica Witt, for example. The Lab's sustainability program manager and a key advocate ...

  4. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  5. Reactor safety research programs. Quarterly report, July 1-September 30, 1979

    SciTech Connect (OSTI)

    Hooper, J.L.

    1980-03-01

    The programs include: ultimate heat sink performance measurement; experimental verification of steady state codes: Task A - irradiation results and Task C - code development; graphite nondestructive testing; acoustic emission-flaw relationship for in-service monitoring of nuclear pressure vessels; fuel subassembly procurement and irradiation test program; report of resident engineer at Cadarache, France; core thermal model development; integration of nondestructive examination reliability and fracture mechanics; and steam generator tube integrity.

  6. Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals Sustainability Goals We support and encourage energy conservation and environmental sustainability. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» Sustainability Goals

  7. NREL Sustainability Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date: March 25, 2015 Technology Area: Sustainability PIs: Daniel Inman and Garvin Heath Organization: National Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information. NREL Sustainability Analysis WBS 4.2.1.30 2 Goal - Air Emissions from Bioenergy Systems NREL's sustainability analysis program aims to better understand air emissions from the biofuel supply chain, applicable air regulations and implications for cost,

  8. Departmental Sustainability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-12-17

    The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan.

  9. Sustainable Manufacturing

    Energy Savers [EERE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions  Numerous definitions and descriptions exist for sustainable manufacturing: * US Department of Commerce, 2009 * NACFAM, 2009 * NIST, 2010 * US-EPA, 2012 * ASME, 2011, 2013 * NSF 2013 * ISM, 2014  Sustainable manufacturing offers a new way of producing functionally superior products using innovative sustainable

  10. Sustainability Support

    Broader source: Energy.gov [DOE]

    Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

  11. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-6.

  12. Application programming interface document for the modernized Transient Reactor Analysis Code (TRAC-M)

    SciTech Connect (OSTI)

    Mahaffy, J. [Pennsylvania State Univ., University Park, PA (United States); Boyack, B.E.; Steinke, R.G. [Los Alamos National Lab., NM (United States)

    1998-05-01

    The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization.

  13. Cooperation on Sustainability Standards | Department of Energy

    Office of Environmental Management (EM)

    Cooperation on Sustainability Standards Cooperation on Sustainability Standards Keith Kline, ORNL, presentation at the December 5, 2012, Biomass Program-hosted International webinar on cooperation on sustainability standards. PDF icon kline_2012_webinar.pdf More Documents & Publications 2015 Peer Review Presentations-Sustainability and Strategic Analysis Webinar: Biofuels for the Environment and Communities Our Commitment to Bioenergy Sustainability

  14. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    SciTech Connect (OSTI)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  15. sustain.layout3.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engage employees and programs at all levels in the organization through our Environmental Management System Sustainability starts with individual choices. For example, saving...

  16. City of Jacksonville- Sustainable Public Buildings

    Broader source: Energy.gov [DOE]

    In 2009, the Jacksonville City Office of Sustainability Initiatives announced the creation of the Sustainable Building Program. As part of the program, all new city-owned buildings must meet...

  17. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    SciTech Connect (OSTI)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  18. Sustainable Acquisition | Department of Energy

    Energy Savers [EERE]

    Sustainable Acquisition Sustainable Acquisition Federal agencies are required to give preference to products that are energy efficient, water efficient, made from biobased or recycled content, are non-toxic or less-toxic than conventional alternatives, and registered with the Electronic Product Environmental Assessment Tool (EPEAT). The U.S. Department of Energy's (DOE) Sustainable Acquisition Program serves to ensure the purchase of more sustainable products by working with DOE sites to help

  19. Departmental Sustainability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-02

    The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan. Supersedes DOE O 450.1A and DOE O 430.2B. OPI changed to MA on 1/27/2016.

  20. Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity Call Slides and Summary May 8, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Voluntary Initiative: Partnering to Enhance Program Capacity Call Slides and Summary May 8, 2014 Agenda  Call Logistics and Introductions  BBRN and Peer Exchange Overview  Overview of BBRN Voluntary Initiatives (Jonathan Cohen, DOE)  Poll on Voluntary Initiative Topics  Discussion of Voluntary Initiative Candidate Topic: Partnering to Enhance Program Capacity  What are key questions for this subject? For example:  Why are partnerships important?  How should programs

  1. Federal Progress Toward Energy/Sustainability Goals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Toward Energy Sustainability Goals June 10, 2014 Chris Tremper Program Analyst, Federal Energy Management Program U.S. Department of Energy 2 Overall Federal Energy...

  2. Sustainability | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability NREL is a leader in sustainability and our goal is to minimize the use of energy, materials, and water while carrying out the lab's mission of clean energy research. ...

  3. Environmental Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability /environment/_assets/images/icon_earthday.jpg Environmental Sustainability: Creating the Future Exercising our commitment to operating a sustainable site by creating a 50-year horizon of planning and preparing for effective environmental stewardship while executing national mission. Sustainability Goals» Recycling» Green Purchasing» Pollution Prevention» Reusing Water» Feature Stories» TOP STORIES - highlights of our science, people, technologies close Novel cellulose

  4. Our Commitment to Bioenergy Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production. The Department of Energy's Biomass Program is committed to developing sustainable sources of renewable energy that displace fossil fuels, enhance energy security, promote environmental benefits, and create economic opportunities across

  5. Blueprint for Sustainability - Sustainable Solutions for Every...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blueprint for Sustainability - Sustainable Solutions for Every Consumer Blueprint for Sustainability - Sustainable Solutions for Every Consumer Highlights of Ford's near, mid, and ...

  6. A Blueprint for Urban Sustainability: Integrating Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable ...

  7. Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Behavior Change Efforts into Energy Efficiency Programs Call Slides and Discussion Summary, July 10, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating Behavior Change Efforts into Energy Efficiency Programs July 10, 2014 Call Slides and Discussion Summary Agenda  Call Logistics and Introductions  BBRN and Peer Exchange Overview  Featured Participants:  Kristin Riott, Executive Director, Bridging the Gap (Kansas City, MO)  Jessica Bergman, Vice President of Marketing and Outreach, EMPower Devices (Connecticut Neighbor-to-Neighbor Energy Challenge)  Discussion:  What are the different ways that programs are

  8. Sustainability at BPA 2013

    SciTech Connect (OSTI)

    2013-12-01

    THIS IS THE THIRD YEAR BPA has reported on sustainability program accomplishments. The report provides an opportunity to review progress made on sustainability initiatives, evaluate how far we have come and how much we can improve. The program has demonstrated maturation as the concepts of sustainability and resource conservation are communicated and understood. The sustainability program started as an employee-driven “grass roots” effort in 2010. Sustainability is becoming a consideration in how work is performed. The establishment of several policies supporting sustainability efforts proves the positive progress being made. In 2009, BPA became a founder and member of The Climate Registry, a nonprofit collaboration that sets standards to calculate, verify and report greenhouse gas emissions. This year, BPA completed and published our Greenhouse Gas inventory for the years of 2009, 2010 and 2011. The 2012 inventory is currently in the process of third-party verification and scheduled for public release in January 2014. These inventories provide a concrete measure of the progress we are making.

  9. CASE STUDY WEBINAR: SUSTAINED ENERGY SAVINGS ACHIEVED THROUGH...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CASE STUDY WEBINAR: SUSTAINED ENERGY SAVINGS ACHIEVED THROUGH SUCCESSFUL INDUSTRIAL CUSTOMER INTERACTION WITH RATEPAYER PROGRAMS, DECEMBER 10 CASE STUDY WEBINAR: SUSTAINED ENERGY ...

  10. Energy Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Features » Energy Sustainability /about/_assets/images/icon-70th2.jpg Energy Sustainability Our Science Digests embrace complex issues around our science, technologies, and mission in a series of mini-articles that provide a context for our historical approach, current problem solving and our vision for the future. LANL Top Science 2014 Faces of Science Radical Supercomputing Science Digests 70 Years of Innovations Top Ten Innovations of 2013 Energy Sustainability 50 Years of Space ENERGY:

  11. System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect (OSTI)

    Jeffrey Bryan

    2009-06-01

    This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

  12. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    SciTech Connect (OSTI)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  13. Reactor Materials Newsletter- Issue 1

    Broader source: Energy.gov [DOE]

    The Reactor Materials (RM) newsletter includes information about key nuclear materials programs, results from ongoing projects across the Office of Nuclear Energy, and other relevant information.

  14. Better Buildings and Sustained Coordination

    Broader source: Energy.gov [DOE]

    Rancho Cucamonga, a city of about 177,000 east of Los Angeles, was awarded $1.6 million to launch several energy efficiency programs focusing on building energy efficiency, job retention and sustainability education.

  15. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production. PDF icon sustainability_four_pager.pdf More Documents & Publications Our Commitment to Bioenergy Sustainability Sustainability for the Global Biofuels Industry: Minimizing Risks and

  16. N Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities N Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A...

  17. C Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area...

  18. F Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities F Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S...

  19. H Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities H Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  20. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Spencer, Charles G

    2012-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

  1. Advanced Reactor Research and Development Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate...

  2. High Performance Sustainable Building - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Adam Pugh Functional areas: Program Management, Project Management This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements...

  3. Energy Efficiency Market Sustainable Business Planning

    Broader source: Energy.gov [DOE]

    Energy Efficiency Market Sustainable Business Planning, a presentation by Danielle Sass Byrnett of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  4. Sustainable Federal Fleets Catalog of Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Federal Fleets Catalog of Services The U.S. Department of Energy Federal Energy Management Program November 2014 Renewable Energy Catalog of Services Contacts Contacts ...

  5. Piqua, Ohio, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Piqua, Ohio, Decommissioned Reactor Site This fact sheet provides information about the Piqua, Ohio, Decommissioned Reactor. This site is managed by the U.S. Department of Energy Office of Legacy Management under the DOE Defense Decontamination and Decommissioning (D&D) Program. Location of the Piqua Decommissioned Reactor Site Description and History The Piqua, Ohio, Decommissioned Reactor site is located in southwestern Ohio in the city of Piqua on the east bank of the Great Miami River,

  6. Hallam, Nebraska, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    D&D D&D Hallam, Nebraska, Decommissioned Reactor Site This fact sheet provides information about the Hallam, Nebraska, Decommissioned Reactor Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Defense Decontamination and Decommissioning (D&D) Program. Location of the Hallam Decommissioned Reactor Site Description and History The Hallam decommissioned reactor site is in southeastern Nebraska, approximately 19 miles south of Lincoln. The

  7. DOE Sustainability Awards Best Practices Virtual Workshop

    Broader source: Energy.gov [DOE]

    The Sustainability Performance Office (SPO) will host a virtual best practices workshop on April 23, 2014 (2:00-3:30 PM EDT) to recognize the winners of the 2013 DOE Sustainability Awards. Award winners will present on their accomplishments and answer brief questions on their programs and projects. Please join us in celebrating the 2013 DOE Sustainability Awards winners.

  8. Sustainability | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sustainability Operations Program Management (OPM) OPM Home About Science Laboratories Infrastructure (SLI) Program Safeguards & Security (S&S) Program Sustainability Contact Information Operations Program Management U.S. Department of Energy SC-33/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-8429 F: (301) 903-7047 More Information » Sustainability Print Text Size: A A A FeedbackShare Page Related Links SC 2014 Composite Sustainability Plan .pdf file

  9. Light Water Reactor Sustainability (LWRS) Program Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  10. Light Water Reactor Sustainability (LWRS) Program Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  11. 2011 DOE Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Sustainability Awards 2011 DOE Sustainability Awards The 2011 U.S. Department of Energy (DOE) Sustainability Awards* recognized teams and individuals for outstanding contributions to energy, water, and vehicle fleet management and associated cost savings at DOE facilities in fiscal year 2011. In addition, awards were also presented for projects that represented exemplary sustainability practices. Award categories included: Individual Exceptional Service Award Team Program Awards Team

  12. Vehicle Technologies Office: Resources for Sustainability Managers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainability Managers Vehicle Technologies Office: Resources for Sustainability Managers Transforming the transportation system requires bringing research from the laboratory out onto the road. Sustainability managers, such as those in local and state governments, private companies, and non-profit organizations, are essential to this effort. The Vehicle Technologies Office supports programs that empower sustainability managers to reduce the use of petroleum in

  13. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  14. NREL's Sustainable Campus Overview

    SciTech Connect (OSTI)

    Rukavina, Frank; Pless, Shanti

    2015-04-06

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  15. Cooperation on Sustainability Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperation on Sustainability Standards USDOE Biomass Program webinar "Global Solutions for Global Challenges: International Collaborations to Advance Bioenergy Research" Keith L. Kline Oak Ridge National Laboratory In collaboration with ORNL staff, ISO PC248 membership and others (see references) http://www.ornl.gov/sci/ees/cbes/ Summary * Bioenergy and climate change are global challenges that are best addressed in processes that include international cooperation * International

  16. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology Program Series 4 and 5)

    SciTech Connect (OSTI)

    Berggren, R.G.; McGowan, J.J.; Menke, B.H.; Nanstad, R.K.; Thoms, K.R.

    1984-01-01

    Multiple testing is done at two laboratories of typical nuclear pressure vessel materials (both irradiated and unirradiated) and statistical analyses of the test results. Multiple tests are conducted at each of several test temperatures for each material, standard deviations are determined, and results from the two laboratories are compared. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (current practice welds). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds.

  17. Idaho National Laboratory Experimental Program to Measure the Flow Phenomena in a Scaled Model of a Prismatic Gas-Cooled Reactor Lower Plenum for Validation of CFD Codes

    SciTech Connect (OSTI)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-09-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a prismatic gas-cooled reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A description of the scaling analysis, experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that will be presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics Gas-Turbine-Modular Helium Reactor (GTMHR) design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The flow in the lower plenum consists of multiple jets injected into a confined cross flow - with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. The model is fabricated from clear, fused quartz to match the refractive-index of the mineral oil working fluid. The benefit of the MIR technique is that it permits high-quality measurements to be obtained without locating intrusive transducers that disturb the flow field and without distortion of the optical paths. An advantage of the INL MIR system is its large size which allows improved spatial and temporal resolution compared to similar facilities at smaller scales. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal developing, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet velocity profiles is also presented.

  18. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    SciTech Connect (OSTI)

    Rukavina, Frank

    2015-07-01

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL's Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.

  19. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  20. Environmental Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Goals Environmental Sustainability Goals We are making sustainability a way of doing business at the Laboratory. Energy Conservation LANL continues to strive to ...

  1. Sustainable NREL

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory prides itself on not only advancing the renewable energy, but "walking the talk" when it comes to sustainable practices. "When you look at our laboratories, you will see energy efficiency in action, but you'll also see renewable energy. We walk the walk and we talk the talk. We believe in it and we want to live it also."

  2. H. R. 1001: A Bill to authorize appropriations for the Reduced Enrichment Research and Test Reactors Program of the Department of Energy. Introduced in the House of Representatives, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This Act may be cited as the [open quotes]Bomb-Grade Uranium Export Substitution Act of 1993[close quotes]. The purpose of this Bill is to authorize appropriations for the Reduced Enrichment Research and Test Reactors Program of the Department of Energy. This document presents Congressional findings and a statement of authorization of appropriations.

  3. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Sherry, T D; Kohlhorst, D P; Little, S K

    2011-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the impacts to resources, including energy/fuel, water, waste, pesticides, and pollution generation; (8) Incorporate sustainable design principles into the design and construction of facility upgrades, new facilities, and infrastructure; and (9) Comply with federal and state regulations, executive orders, and DOE requirements. Y-12 is working to communicate its sustainment vision through procedural, engineering, operational, and management practices. The site will make informed decisions based on the application of the five Guiding Principles for HPSBs to the maximum extent possible.

  4. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  5. Sustainability for the Global Biofuels Industry: Minimizing Risks and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Opportunities | Department of Energy Opportunities Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Introduction slides for the webinar describing bioenergy and sustainability. PDF icon sustainability_biofuels_webinar_intro.pdf More Documents & Publications Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript Market Drivers for Biofuels Biomass Program Perspectives on

  6. DOE Sustainability SPOtlight

    Broader source: Energy.gov [DOE]

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

  7. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  8. Naval Reactors | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Reactors Naval Reactors Y-12 processes the feedstock to power the nation's submarines and aircraft carriers. Y-12 processes highly enriched uranium for use by the Naval Reactors Program for Naval Nuclear Propulsion. Our support of the Naval Reactors program began in Fiscal Year 2002 and is currently planned through FY 2050 and beyond. We use dismantled weapons to provide feedstock, moving the material off-site and reducing Y-12's storage footprint and risk. The United States stopped

  9. Systems Sustainability: Implementation of Enhanced Maintenance Programs at the Kurchatov Institute, the All-Russian Research Institute of Experimental physics and the All-Russian Scientific Institute for Technical Physics

    SciTech Connect (OSTI)

    Coppinger, M.; Pikula, M.; Randolph, J.D.; Windham, M.

    1999-09-20

    Implementation of quality maintenance programs is essential to enhancing sustainable continuous operations of United States funded Materials Protection, Control and Accountability (MPC and A) equipment/systems upgrades at various Russian nuclear facilities. An effective maintenance program is expected to provide assurances to both parties for achieving maximum continuous systems operations with minimum down time. To be effective, the program developed must focus on minimum down time for any part of a system. Minimum down time is realized through the implementation of a quality maintenance program that includes preventative maintenance, necessary diagnostic tools, properly trained technical staff, and an in-house inventory of required spare parts for repairing the impacted component of the system. A centralized maintenance management program is logistically essential for the success of this effort because of the large volume of MPC and A equipment/systems installed at those sites. This paper will discuss current programs and conditions at the Russian Research Center-Kurchatov Institute, the All-Russian Scientific Institute for Technical Physics and the All-Russian Research Institute of Experimental Physics and will address those steps necessary to implement an upgraded program at those sites.

  10. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    SciTech Connect (OSTI)

    Pearlman, Howard; Chen, Chien-Hua

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  11. Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator,

    National Nuclear Security Administration (NNSA)

    Savannah River Nuclear Solutions | National Nuclear Security Administration Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our

  12. CONVECTION REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  13. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programming Programming Compiling and linking programs on Euclid. Compiling Codes How to compile and link MPI codes on Euclid. Read More » Using the ACML Math Library How to compile and link a code with the ACML library and include the $ACML environment variable. Read More » Process Limits The hard and soft process limits are listed. Read More » Last edited: 2016-02-01 08:07:27

  14. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This page provides examples of compilation and running scripts when mixing CC++ with Fortran codes. Read More Programming Tuning Options Tips for tuning performance on the...

  15. Sustainable Federal Fleets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Federal Fleets Sustainable Federal Fleets Plug-in hybrid electric vehicles charge at a rapid charging system powered by a solar canopy. Plug-in hybrid electric vehicles charge at a rapid charging system powered by a solar canopy. The Federal Energy Management Program's (FEMP) Sustainable Federal Fleets section provides guidance and assistance to help agencies implement federal legislative and regulatory requirements mandating reduced petroleum consumption and increased alternative

  16. GATE Center of Excellence in Sustainable Vehicle Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sustainable Vehicle Systems GATE Center of Excellence in Sustainable Vehicle Systems 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti024_haque_2012_p.pdf More Documents & Publications GATE Center of Excellence in Sustainable Vehicle Systems Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence in Sustainable Vehicle Systems Vehicle Technologies Office Merit Review 2014: DOE GATE

  17. GATE: Energy Efficient Vehicles for Sustainable Mobility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy GATE: Energy Efficient Vehicles for Sustainable Mobility GATE: Energy Efficient Vehicles for Sustainable Mobility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti022_rizzoni_2012_p.pdf More Documents & Publications GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility Vehicle Technologies

  18. Better Buildings Neighborhood Program Peer Exchange Calls on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... https:www1.eere.energy.govbuildingsbetterbuildingsneighborhoodsw ebcasts.html 5152013 17 Potential Future Program Sustainability Call Topics Program Sustainability ...

  19. Sustainable Scientists

    SciTech Connect (OSTI)

    Mills, Evan

    2008-12-31

    Scientists are front and center in quantifying and solving environmental problems. Yet, as a spate of recent news articles in scientific journals point out, much can be done to enhance sustainability within the scientific enterprise itself, particularly by trimming the energy use associated with research facilities and the equipment therein (i,ii,iii, iv). Sponsors of research unwittingly spend on the order of $10 billion each year on energy in the U.S. alone, and the underlying inefficiencies drain funds from the research enterprise while causing 80 MT CO2-equivalent greenhouse-gas emissions (see Box). These are significant sums considering the opportunity costs in terms of the amount of additional research that could be funded and emissions that could be reduced if the underlying energy was used more efficiently. By following commercially proven best practices in facility design and operation, scientists--and the sponsors of science--can cost-effectively halve these costs, while doing their part to put society on alow-carbon diet.

  20. Researching profitable and sustainable biofuels

    Broader source: Energy.gov [DOE]

    More than $4 million in Recovery Act funding from the Biomass program is being used to enhance and accelerate GLBRC sustainability research, which focuses on the design of cellulosic cropping systems and the economic, climate-stabilizing, and biodiversity benefits they can provide.

  1. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using MPI and OpenMP on NERSC systems, the same does not always exist for other supported parallel programming models such as UPC or Chapel. At the same time, we know that these...

  2. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provided on the Cray systems at NERSC. The Programming Environment is managed by a meta-module named similar to "PrgEnv-gnu4.6". The "gnu" indicates that it is providing the...

  3. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programming Programming Compiling Codes There are three compiler suites available on Carver: Portland Group (PGI), Intel, and GCC. The PGI compilers are the default, to provide compatibility with other NERSC platforms. Read More » Using MKL Intel's Math Kernel Library (MKL) is a library of highly optimized, extensively threaded math routines optimized for Intel processors. Core math functions include BLAS, LAPACK, ScaLAPACK, Sparse Solvers, Fast Fourier Transforms, Vector Math, and more. It is

  4. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the world's most powerful technology without consuming excessive energy or creating waste? January 30, 2014 Active stewardship: sustainable future What if you could power your life using pond scum? Los Alamos researchers are creating many innovations to support a sustainable future. Energy sustainability is a daunting task:

  5. The First Reactor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The First Reactor The First Reactor Chicago Pile-1 (CP-1) was the world's first nuclear reactor. CP-1 was built on a rackets court, under the abandoned west stands of the original Alonzo Stagg Field stadium, at the University of Chicago. The first self-sustaining nuclear chain reaction was initiated in CP-1 on December 2, 1942. It operated until February 1943, when it was dismantled, moved to another location and rebuilt as Chicago Pile 2. PDF icon The First Reactor.pdf More Documents &

  6. Science Serving Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Goal 8: Science Serving Sustainability LANL takes opportunities to engage the ... ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Community involvement: Andy Erickson and Duncan ...

  7. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living a Sustainable Future Living a Sustainable Future August 1, 2013 Biomass to fuel project The Laboratory's biomass team is working to solve the energy crisis through...

  8. NREL: Sustainable NREL - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    occupant vehicles trips throughout the day. Printable Version Sustainable NREL Home About Sustainable NREL Environment Greenhouse Gases Water Waste & Pollution Green Purchasing...

  9. NREL: Sustainable NREL - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email address: Your message: Send Message Printable Version Sustainable NREL Home About Sustainable NREL Environment Buildings Community Outreach Did you find what you needed?...

  10. USGBC_Roadmap_to_Sustainable_Govt_Blgd.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USGBC_Roadmap_to_Sustainable_Govt_Blgd.pdf USGBC_Roadmap_to_Sustainable_Govt_Blgd.pdf PDF icon USGBC_Roadmap_to_Sustainable_Govt_Blgd.pdf More Documents & Publications U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan Green Codes and Programs High Performance Sustainable Building Design RM

  11. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  12. Defining and Establishing the Role of a Sustainability Manager

    Broader source: Energy.gov [DOE]

    This webinar covered guidance to help EECBG and SEP recipients establish an energy resource or sustainability program by outlining a range of options for staffing and funding a program, understanding how an energy manager's role can work with other departments and partners, and long-term program sustainability.

  13. Better Buildings Residential Network Program Sustainability Mastermind Call: Targeted Workforce Recruitment, Training, and Success in the Market Call Slides and Discussion Summary, March 13, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mastermind Call: Targeted Workforce Recruitment, Training, and Success in the Market Call Slides and Discussion Summary March 13, 2014 Agenda  Welcome  Introductions (go-around and assignment of numbers)  Mastermind Format and Agenda  Moderator: Jonathan Cohen, DOE Mastermind Session  Program Overview  Host: Jim Mikel, Spirit Foundation  Questions and Answers  Participants ask clarifying questions about the program  Idea Generation  Participants offer 2-3 new

  14. Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Collaborating with Utilities on Residential Energy Efficiency, Call Slides and Discussion Summary, June 12, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborating with Utilities on Residential Energy Efficiency June 12, 2014 Call Slides and Discussion Summary Agenda  Call Logistics and Introductions  BBRN and Peer Exchange Overview  Featured Participants:  Cynthia Adams, LEAP - Virginia (Residential Network member)  Liz Robinson, Energy Coordinating Agency ofPhiladelphia  Discussion:  What are different ways that residential energy efficiency programs work with, for, or as utilities?  What can programs and utilities

  15. Societal health and urban sustainability indicators

    SciTech Connect (OSTI)

    Petrich, C.H.; Tonn, B.E.

    1996-08-27

    Without the social will, no city can successfully Undertake the planning and programs necessary for meaningful progress toward sustainability. Social will derives from wellsprings of vital societal health. This paper presents an approach to helping cities in APEC member economies initiate a program for developing indicators of sustainability. Representative indicators of social capital and other aspects of civic engagement, as proxies for societal health, are presented.

  16. Institutional Change for Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Change » Institutional Change for Sustainability Institutional Change for Sustainability Inspire Change with an Awards Program Inspire Change with an Awards Program Report shares 22 stories of FEMP Federal Energy and Water Management Award winners whose projects fostered institutional change in agencies. Read more Promote Institutional Change Promote Institutional Change This magazine article provides practical, evidence-based strategies to promote institutional change. Read more

  17. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  18. Civilian nuclear power on the drawing board: the development of Experimental Breeder Reactor-II.

    SciTech Connect (OSTI)

    Westfall, C.

    2003-02-20

    On September 28, 2001 a symposium was held at Argonne National Laboratory as part of the festivities to mark the 100th birthday of Enrico Fermi. The symposium celebrated Fermi's ''contribution to the development of nuclear power'' and focused on one particular ''line of development'' resulting from Fermi's interest in power reactors: Argonne's fast reactor program. Symposium participants made many references to the ways in which the program was linked to Fermi, who led the team which created the world's first self-sustaining nuclear chain reaction. For example, one presentation featured an April, 1944 memo that described a meeting attended by Fermi and others. The memo came from the time when research on plutonium and the nuclear chain reaction at Chicago's WWII Metallurgical Laboratory was nearing its end. Even as other parts of the Manhattan Engineering Project were building on this effort to create the bombs that would end the war, Fermi and his colleagues were taking the first steps to plan the use of nuclear energy in the postwar era. After noting that Fermi ''viewed the use of [nuclear] power for the heating of cities with sympathy,'' the group outlined several power reactor designs. In the course of discussion, Fermi and his colleagues took the first steps in conjuring the vision that would later be brought to life with Experimental Breeder Reactor I (EBR-I) and Experimental Breeder Reactor II (EBR-II), the celebrated achievements of the Argonne fast reactor program. Group members considered various schemes for a breeder reactor in which the relatively abundant U-238 would be placed near a core of fissionable material. The reactor would be a fast reactor; that is, neutrons would not be moderated, as were most wartime reactors. Thus, the large number of neutrons emitted in fast neutron fission would hit the U-238 and create ''extra'' fissionable material, that is, more than ''invested,'' and at the same time produce power. The group identified the problem of removing heat in such a reactor and presaged the eventual solution by suggesting the use of sodium coolant, which has minimal interaction with neutrons.

  19. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight...

    Energy Savers [EERE]

    And Intergovernmental Programs (WIP) Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources...

  20. Sustainable Energy Resources for Consumers (SERC) Success Story...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Sustainable Energy Resources for Consumers (SERC) Success Story: Maryland This document contains information on how the Maryland SERC program leverages diverse and bold...

  1. Federal Sustainable Print Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-07-07

    This Guide provides acceptable approaches for implementing the IT sustainability requirements and criteria required by DOE Order 436.1, Departmental Sustainability, dated 5-2-11 and related to the sustainability requirements contained in Executive Order 13693, "Planning for Federal Sustainability in the Next Decade.

  2. Federal Sustainable Print Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-11-17

    The Guide provides acceptable approaches for implementing the IT sustainability requirements and criteria required by DOE Order 436.1, Departmental Sustainability, dated 5-2-11, and related to the sustainability requirements contained in Executive Order 13693, "Planning for Federal Sustainability in the Next Decade." Does not cancel/supersede other directives.

  3. Sustainable Nanomaterials Industry Perspective

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by MeadWestvaco Corporation held on June 26, 2012

  4. Integrated Renewable Energy and Campus Sustainability Initiative

    SciTech Connect (OSTI)

    Uthoff, Jay; Jensen, Jon; Bailey, Andrew

    2013-09-25

    Renewable energy, energy conservation, and other sustainability initiatives have long been a central focus of Luther College. The DOE funded Integrated Renewable Energy and Campus Sustainability Initiative project has helped accelerate the College’s progress toward carbon neutrality. DOE funds, in conjunction with institutional matching funds, were used to fund energy conservation projects, a renewable energy project, and an energy and waste education program aimed at all campus constituents. The energy and waste education program provides Luther students with ideas about sustainability and conservation guidelines that they carry with them into their future communities.

  5. sustain.layout3.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Sustainability Management Vision ......Major Site Sustainability Planning Assumptions - Issues & Funding Strategies ...

  6. Program

    Office of Scientific and Technical Information (OSTI)

    Extremophiles 2004 5th International Conference on Extremophiles SEPTEMBER 19 -23, 2004 CAMBRIDGE, MARYLAND Extremophiles 2004 5th International Conference on Extremophiles © 2004, American Society for Microbiology 1752 N Street, N.W. Washington, DC 20036-2904 Phone: 202-737-3600 World Wide Web: www.asm.org All Rights Reserved Printed in the United States of America ISBN: 1-55581 324-0 TABLE OF CONTENTS General Information Scientific Program Abstracts for Oral Sessions Abstracts for Poster

  7. Sustainability | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability At Jefferson Lab Common sources of federal greenhouse gas emissions, according to the U.S. Department of Energy. A D D I T I O N A L L I N K S: Sustainability Home Sustainability Plan Environmental Reports DOE Sustainability Green Lifestyle Emissions Calculator top-right bottom-left-corner bottom-right-corner Sustainability Jefferson Lab is a high-energy mission-specific facility and is significantly expanding its scientific and support facilities. The expanded facilities will

  8. Sustainable Federal Fleets Catalog of Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Federal Fleets Catalog of Services Sustainable Federal Fleets Catalog of Services Document details the Federal Energy Management Program's catalog of technical assistance services it offers for federal agencies that want to implement sustainable fleet projects. PDF icon fleet_catalog_of_services.pdf More Documents & Publications Fleet Briefings Renewable Energy Catalog of Services Project Financing Catalog of Services

  9. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  10. MAPPING FLOW LOCALIZATION PROCESSES IN DEFORMATION OF IRRADIATED REACTOR STRUCTURAL ALLOYS - FINAL REPORT. Nuclear Energy Research Initiative Program No. MSF99-0072. Period: August 1999 through September 2002. (ORNL/TM-2003/63)

    SciTech Connect (OSTI)

    Farrell, K.

    2003-09-26

    Metals that can sustain plastic deformation homogeneously throughout their bulk tend to be tough and malleable. Often, however, if a metal has been hardened it will no longer deform uniformly. Instead, the deformation occurs in narrow bands on a microscopic scale wherein stresses and strains become concentrated in localized zones. This strain localization degrades the mechanical properties of the metal by causing premature plastic instability failure or by inducing the formation of cracks. Irradiation with neutrons hardens a metal and makes it more prone to deformation by strain localization. Although this has been known since the earliest days of radiation damage studies, a full measure of the connection between neutron irradiation hardening and strain localization is wanting, particularly in commercial alloys used in the construction of nuclear reactors. Therefore, the goal of this project is to systematically map the extent of involvement of strain localization processes in plastic deformation of three reactor alloys that have been neutron irradiated. The deformation processes are to be identified and related to changes in the tensile properties of the alloys as functions of neutron fluence (dose) and degree of plastic strain. The intent is to define the role of strain localization in radiation embrittlement phenomena. The three test materials are a tempered bainitic A533B steel, representing reactor pressure vessel steel, an annealed 316 stainless steel and annealed Zircaloy-4 representing reactor internal components. These three alloys cover the range of crystal structures usually encountered in structural alloys, i.e. body-centered cubic (bcc), face-centered cubic (fcc), and close-packed hexagonal (cph), respectively. The experiments were conducted in three Phases, corresponding to the three years duration of the project. Phases 1 and 2 addressed irradiations and tensile tests made at near-ambient temperatures, and covered a wide range of neutron fluences. Phase 3 was aimed at a higher irradiation and test temperature of about 288 C, pertinent to the operating temperature of commercial reactor pressure vessel steels. Phase 3 explored a narrower fluence range than Phases 1 and 2, and it included an investigation of the strain rate dependence of deformation.

  11. SPIN (Version 3. 83): A Fortran program for modeling one-dimensional rotating-disk/stagnation-flow chemical vapor deposition reactors

    SciTech Connect (OSTI)

    Coltrin, M.E. ); Kee, R.J.; Evans, G.H.; Meeks, E.; Rupley, F.M.; Grcar, J.F. )

    1991-08-01

    In rotating-disk reactor a heated substrate spins (at typical speeds of 1000 rpm or more) in an enclosure through which the reactants flow. The rotating disk geometry has the important property that in certain operating regimes{sup 1} the species and temperature gradients normal to the disk are equal everywhere on the disk. Thus, such a configuration has great potential for highly uniform chemical vapor deposition (CVD),{sup 2--5} and indeed commercial rotating-disk CVD reactors are now available. In certain operating regimes, the equations describing the complex three-dimensional spiral fluid motion can be solved by a separation-of-variables transformation{sup 5,6} that reduces the equations to a system of ordinary differential equations. Strictly speaking, the transformation is only valid for an unconfined infinite-radius disk and buoyancy-free flow. Furthermore, only some boundary conditions are consistent with the transformation (e.g., temperature, gas-phase composition, and approach velocity all specified to be independent of radius at some distances above the disk). Fortunately, however, the transformed equations will provide a very good practical approximation to the flow in a finite-radius reactor over a large fraction of the disk (up to {approximately}90% of the disk radius) when the reactor operating parameters are properly chosen, i.e, high rotation rates. In the limit of zero rotation rate, the rotating disk flow reduces to a stagnation-point flow, for which a similar separation-of-variables transformation is also available. Such flow configurations ( pedestal reactors'') also find use in CVD reactors. In this report we describe a model formulation and mathematical analysis of rotating-disk and stagnation-point CVD reactors. Then we apply the analysis to a compute code called SPIN and describe its implementation and use. 31 refs., 4 figs.

  12. Public Benefits Programs

    Broader source: Energy.gov [DOE]

    Although Pennsylvania's December 1996 electricity restructuring law did not establish a clean-energy fund, four renewable and sustainable-energy funding programs were subsequently created through...

  13. Hopi Sustainable Energy Plan

    SciTech Connect (OSTI)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  14. Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Coordinating Energy Efficiency with Disaster Resiliency and Response Call Slides and Discussion Summary, January 9, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordinating Energy Efficiency with Disaster Resiliency and Response Call Slides and Discussion Summary January 9, 2014 Agenda  Call Logistics and Introductions  Poll  Featured Participant  Jodi Slick, Ecolibrium3 (Duluth, MN)  Discussion:  What are programs doing to help communities respond to natural disasters?  What kinds of plans or protocols need to be in place so that energy efficiency can be incorporated into disaster recovery?  Who are critical partners? 

  15. Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Coordinating Energy Efficiency with Water Conservation Services Call Slides and Discussion Summary September 11, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordinating Energy Efficiency with Water Conservation Services Call Slides and Discussion Summary September 11, 2014 Better Buildings Residential Network  Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the number of American homes that are energy efficient.  Membership: Open to organizations committed to accelerating the pace of existing residential upgrades. Commit to providing DOE with annual number of

  16. Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Energy Efficiency into Disaster Recovery Efforts Call Slides and Discussion Summary, October 9, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating Energy Efficiency into Disaster Recovery Efforts Call Slides and Discussion Summary October 9, 2014 Better Buildings Residential Network  Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to increase the number of American homes that are energy efficient.  Membership: Open to organizations committed to accelerating the pace of existing residential upgrades. Commit to providing DOE with annual number of residential

  17. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  18. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  19. Reactor apparatus

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA)

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  20. Biofuels and Sustainable Development: An Executive Session on the Grand Challenges of the Sustainability Transition

    SciTech Connect (OSTI)

    Lee, Henry; Clark, William C.; Devereaux, Charan

    2008-05-20

    This report is the result of the second in a series of intense workshops and study sessions on Grand Challenges of the Sustainability Transition, organized by the Sustainability Science Program at Harvard University, hosted by Venice International University, and supported by the Italian Ministry of Environment, Land and Sea.

  1. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  2. Fusion reactor design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactor design Subscribe to RSS - Fusion reactor design The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a

  3. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  4. Guiding Principles for Sustainable Federal Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Buildings & Campuses » Guiding Principles for Sustainable Federal Buildings Guiding Principles for Sustainable Federal Buildings The Federal Energy Management Program (FEMP) provides guidance to help agencies comply with the Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Five Guiding Principles apply to existing buildings and new construction and major renovations: Employ integrated design Optimize energy performance Protect and conserve

  5. Rewarding Green: NETL Recognized for Sustainable Buildings | Department of

    Energy Savers [EERE]

    Energy Rewarding Green: NETL Recognized for Sustainable Buildings Rewarding Green: NETL Recognized for Sustainable Buildings November 14, 2013 - 8:26am Addthis DOE’s recognition program for high-performance sustainable buildings acknowledges buildings like B39 and promotes adherence to the guiding principles in all new DOE construction, renovations, and building alterations. The Sustainability Performance Office strives to ensure that, per Executive Order 13514, at least 15 percent of

  6. Our Commitment to Bioenergy Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our Commitment to Bioenergy Sustainability Our Commitment to Bioenergy Sustainability To enhance the benefits of bioenergy while mitigating concerns, the Biomass Program combines advanced analysis with applied research to understand and address the potential environmental impacts of bioenergy production. PDF icon sustainability_four_pager.pdf More Documents & Publications Our Commitment to Bioenergy Sustainability Webinar: Biofuels for the Environment and Communities Replacing the Whole

  7. Fast reactors and nuclear nonproliferation

    SciTech Connect (OSTI)

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  8. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    SciTech Connect (OSTI)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  9. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group ...

  10. 2014 DOE Sustainability Awards

    Broader source: Energy.gov [DOE]

    The 2014 U.S. Department of Energy (DOE) Sustainability Awards continues efforts to recognize teams and individuals for their outstanding contributions to the Department’s sustainability mission, including accomplishments in managing pollution, waste, energy, water, and vehicle fleets.

  11. Sustainable Nanomaterials Workshop

    Broader source: Energy.gov [DOE]

    The Sustainable Nanomaterials Workshop (held in Washington, D.C., on June 26, 2012) gathered stakeholders from industry and academia to discuss the current state of the art for sustainable nanomat...

  12. Sustainable Buildings Checklist

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document provides a checklist to evaluate sustainability in existing federal buildings. It provides points to consider during building sustainability assessments and a system for tracking progress made toward each Guiding Principle.

  13. Sustainable Energy Resources for Consumers Fact Sheet July 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fact Sheet July 2011 Sustainable Energy Resources for Consumers Fact Sheet July 2011 Provides an overview on the U.S. Department of Energys Sustainable Energy Resources for Consumers (SERC) grants, including information on the programs history, who is eligible, and how to participate. PDF icon serc_factsheet.pdf More Documents & Publications WEATHERIZATION PROGRAM NOTICE 09-1C Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet),

  14. Metrology for Sustainable Nanomaterials

    Broader source: Energy.gov [DOE]

    Presentation by Michael Postek (National Institute of Standards and Technology, NIST) for the Sustainable Nanomaterials Workshop on June 26, 2012

  15. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Goal 3: High Performance Sustainable Buildings Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its occupants. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL The Radiological Laboratory

  16. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living a Sustainable Future Living a Sustainable Future August 1, 2013 Biomass to fuel project The Laboratory's biomass team is working to solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How our Not-so-ordinary Workers Keep LANL Green How many times can LANL reuse water? Google Earth Tour: Water Reuse

  17. NREL: Sustainable NREL - About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Sustainable NREL NREL proactively pursues sustainability in all its operations to meet the lab's environmental stewardship goals. NREL is also charged with providing leadership within the U.S. Department of Energy (DOE) complex to achieve energy and environmental goals as described in Executive Order 13693. Sustainability Integrated in Mission and Operation Fully integrated in the lab's mission and operations, sustainability leadership is demonstrated by our involvement in optimizing

  18. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Sustainability Sustainability EM's commitment to sustainability is evidenced by projects at the Savannah River Operations Offices with Savannah River leading the Department in its use of renewable energy. At the Portsmouth Site, a new natural gas steam plant will reduce greenhouse emissions providing steam services to support the anticipated decontamination and decommissioning project at the former uranium enrichment facilities. The 200 West Pump and Treat system, a new

  19. Sustainability | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Subscribe to RSS - Sustainability Sustainability is a set of practices in business, government and at home aimed at minimizing humans' impact on the environment and ...

  20. Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Awards Sustainability Awards Significant sustainability achievements at U.S. Department of Energy (DOE) facilities are recognized in several ways. DOE recognizes...

  1. Resources on Institutional Change for Sustainability | Department of Energy

    Energy Savers [EERE]

    Institutional Change » Resources on Institutional Change for Sustainability Resources on Institutional Change for Sustainability The Federal Energy Management Program (FEMP) offers resources to help agencies achieve institutional change in their organizations. Case studies are also available. Publications These publications offer information about institutional change programs. Communities of Practice: A Tool for Creating Institutional Change in Support of the Mission of the Federal Energy

  2. Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet), Weatherization And Intergovernmental Programs (WIP) | Department of Energy Vermont Highlight (Fact Sheet), Weatherization And Intergovernmental Programs (WIP) Sustainable Energy Resources for Consumers (SERC) Vermont Highlight (Fact Sheet), Weatherization And Intergovernmental Programs (WIP) Case study on Vermont's innovative strategy for helping low-income families save energy through its Sustainable Energy Resources for Consumers (SERC) program. PDF icon serc_vt_highlight.pdf More

  3. Sustainability & Strategic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kristen Johnson Technology Manager Bioenergy Technologies Office Peer Review March 23, 2015 Sustainability & Strategic Analysis 2 | Bioenergy Technologies Office * The Team * Goals & Objectives * Challenges * Approach & Partnerships * Budget * Key Accomplishments * Future Directions * Upcoming Activities Introduction: Analysis & Sustainability (A&S) 3 | Bioenergy Technologies Office Introductions: Analysis & Sustainability Staff Alison Goss Eng Alicia Lindauer Zia Haq

  4. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Sustainability Opening Plenary Session: Bioenergy Sustainability-Charting the Path toward a Viable Future Jody Endres, Assistant Professor, College of Agricultural, Consumer and Environmental Sciences, University of Illinois PDF icon b13_endres_op-2.pdf More Documents & Publications Biomass 2013 Agenda 2015 Peer Review Presentations-Plenaries Biomass 2013: Breakout Speaker Biographies

  5. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  6. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  7. Sustainable NREL - Site Sustainability Plan FY 2016 (Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... RTD Regional Transportation District S&TF Science and Technology Facility SITE Sustainability, Infrastructure Transformation, Engineering SPOFOA Sustainability Performance Office ...

  8. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability

    Office of Environmental Management (EM)

    Awards | Department of Energy DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2013 Sustainability Awards. PDF icon 2013_spotlight.pdf More Documents & Publications DOE Sustainability SPOtlight 2015 Strategic Sustainability Performance Plan 2011 U.S. Department of Energy

  9. Sustainability Around the House | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Around the House Sustainability Around the House April 13, 2015 - 7:46am Addthis Rain barrels collect rain water and provide a free source of fresh water for your lawn. | Photo courtesy of iStockphoto/schulzie Rain barrels collect rain water and provide a free source of fresh water for your lawn. | Photo courtesy of iStockphoto/schulzie Christina Stowers Communications Specialist in the Weatherization and Intergovernmental Programs Office How does it work? Choosing the right

  10. Farm Opportunities Loan Program

    Broader source: Energy.gov [DOE]

    The Farm Opportunity Loan Program (formerly known as the Sustainable Agriculture Loan Program) is designed to finance the purchase of equipment to add value to crops or livestock, adopt best...

  11. Standard Offer Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: H.B. 40, enacted in June 2015, changes the name of the Sustainably Priced Energy Enterprise Development (SPEED) Program to the Standard Offer Program and replaces the associated state...

  12. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  13. The sustainable system for global nuclear energy utilization

    SciTech Connect (OSTI)

    Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Kawashima, Masatoshi; Nakayama, Yoshiyuki; Ishiguma, Kazuo; Fuji-ie, Yoichi

    2007-07-01

    The sustainable system for global nuclear energy utilization has been developed based on the concept of the Self-Consistent Nuclear Energy System. As the results, it is clarified that metallic fuel fast reactor cycle with recycling of actinides and five LLFPs is one of the most promising systems for the sustainable nuclear utilization. It is important to develop the related technologies toward its realization. (authors)

  14. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  15. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  16. Sustainability Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to some of America's greatest sustainability challenges in energy, environment, ... Examples of our sustainability research include the following, Image Magnetic ...

  17. Voluntary Initiative: Partnering to Enhance Program Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: ... Network Orientation Working with Schools Complementary Energy and Health Strategies

  18. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  19. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  20. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect (OSTI)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest status and plans are presented.

  1. Create a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Create a Sustainable Future Image of river edge with text overlay of 'How does LANL accomplish future stewardship of the natural and historical resources?' We sample to detect any release of materials to the environment. We manage environmental concerns by eco region. We evaluate our impact on the environment. We consult with experts and stakeholders. We fund projects that reduce environmental effects. Create a Sustainable Future Home Planning for Years to Come Living a Sustainable Future

  2. Environmental Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Goals Environmental Sustainability Goals We are making sustainability a way of doing business at the Laboratory. Energy Conservation LANL continues to strive to reduce greenhouse gas emissions to meet and surpass Department of Energy goals. The Lab's goal is to reduce emissions from energy use in our facilities and driving vehicles in our fleet by 28 percent. Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by

  3. Bioenergy for Sustainable Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gerard J. Ostheimer, Ph.D. Global Lead Sustainable Bioenergy High-Impact Opportunity Sustainable Energy For All BIOENERGY FOR SUSTAINABLE DEVELOPMENT Overview * Energy poverty is widespread and prevents economic development * The international development community is beginning to act * Momentum is building to grow the bioeconomy across the globe Energy Poverty: Statistics * 1.2 Billion people lack access to modern energy services - 0.5 Billion in sub-Saharan Africa * 2.7 Billion people lack

  4. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Sustainability Sustainability The Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and advances environmental, economic, and social benefits. BETO's Sustainability Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a

  5. Small Modular Reactors Presentation to Secretary of Energy Advisory Board -

    Energy Savers [EERE]

    Deputy Assistant Secretary John Kelly | Department of Energy Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly DOE Small Modular Reactor Program (SMR) Research, Development & Deployment (RD&D) to enable the deployment of a fleet of SMRs in the United States SMR Program is a new program for FY 2011 Structured

  6. REACTOR MONITORING

    DOE Patents [OSTI]

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  7. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    Generation IV R&D Program * Transmutation using Generation IV reactors. * Modeling and Simulation Hub Nuclear Energy University Program * 20% of R&D funds allocated to...

  8. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  9. Office of Energy Efficiency and Renewable Energy - Tribal Energy Program

    Energy Savers [EERE]

    Energy Efficiency and Office of Energy Efficiency and Renewable Energy Renewable Energy TRIBAL ENERGY PROGRAM TRIBAL ENERGY PROGRAM Formation of a Hopi Sustainable Formation of a Hopi Sustainable Energy Program Energy Program October 18 October 18 - - 21, 2004 21, 2004 Map of Hopi Land Map of Hopi Land Background for Formation of Background for Formation of a HOPI Sustainable Energy a HOPI Sustainable Energy Program Program Significant tribal environmental and economic Significant tribal

  10. Voluntary Initiative: Partnering to Enhance Program Capacity

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity, Call Slides and Summary, May 8, 2014.

  11. Sustainability Performance Office News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    management-spo1461771 Sustainability Performance Office News en Executive Order 13693 Training Now Available On Demand http:energy.govmanagementspoarticles...

  12. Sustainable Development Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    award at Sustainable Development Conference October 22, 2015 LANL Researchers Yongchao Yang, Alessandro Cattaneo and David Mascareas of the National Security Education...

  13. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and bioscience capabiities. Occupational Medicine will become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field...

  14. Site Sustainability Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SUSTAINABILITY PLAN Princeton Plasma Physics Laboratory PPPL is operated by Princeton ... Director, Operations Princeton Plasma Physics Laboratory December 2014 FY 2015 Site ...

  15. Portsmouth Site Sustainability Team

    Broader source: Energy.gov [DOE]

    Planning and coordination of recycling and other environmentally responsible efforts. Site Sustainability Team (SST). environmental stewardship and compliance, Executive Order Orders 13514 13423, Environmental Compliance, Acquisition, Cleanup, EMS, Energy, Greenhouse Gases, High Performance Buildings, NEPA, Electronics Stewardship, Pollution Prevention, Chemical Management, Sustainability, Transportation, Climate Change Adaption, Water Efficiency, Natural Resources and development and implementation of the PORTS Site Sustainability Plan Portsmouth Site Sustainability Plan. Fluor-B&W Portsmouth, Fluor-BWXT Portsmouth, BWCS BWXT Conversion Services, WEMS Wastren EnergX Mission Support.

  16. Sustainability: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability: Energy Efficiency (Green Consulting Unit) Overview Walks students through the process of building a model home while considering 11 parameters that influence energy ...

  17. CASE STUDY WEBINAR: SUSTAINED ENERGY SAVINGS ACHIEVED THROUGH SUCCESSFUL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL CUSTOMER INTERACTION WITH RATEPAYER PROGRAMS, DECEMBER 10 | Department of Energy CASE STUDY WEBINAR: SUSTAINED ENERGY SAVINGS ACHIEVED THROUGH SUCCESSFUL INDUSTRIAL CUSTOMER INTERACTION WITH RATEPAYER PROGRAMS, DECEMBER 10 CASE STUDY WEBINAR: SUSTAINED ENERGY SAVINGS ACHIEVED THROUGH SUCCESSFUL INDUSTRIAL CUSTOMER INTERACTION WITH RATEPAYER PROGRAMS, DECEMBER 10 December 10, 2015 12:00PM to 1:00PM EST Sandy Glatt with the U.S. Department of Energy's Advanced Manufacturing Office

  18. Transitioning to a Utility Funded Program Environment: What Do...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Program Sustainability ...

  19. Space Reactor Radiation Shield Design Summary, for Information

    SciTech Connect (OSTI)

    EC Pheil

    2006-02-17

    The purpose of this letter is to provide a summary of the Prometheus space reactor radiation shield design status at the time of program restructuring.

  20. BONUS, Puerto Rico, Decommissioned Reactor Site Fact Sheet

    Office of Legacy Management (LM)

    information about the Defense Decontamination and Decommissioning Program Boiling Nuclear Superheater (BONUS) reactor located northwest of Rincn, Puerto Rico. The site is...

  1. D and DR Reactors - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities D and DR Reactors About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S...

  2. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... trained to think clinically - Suggest social work departments or public health nurses * ... Research Partnership" Opportunity to study the impact of energy retrofits on health. ...

  3. Local Option- Municipal Sustainable Energy Programs

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment...

  4. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Evaluation Financing & Revenue Marketing & Outreach Multifamily Low-income ... off power strips at night affects digital clocks; people dislike the color of ...

  5. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (IL) * Terra Green CDC (CA) * WARM Training Center (MI) * West Michigan ... with a core mission, such as a triple bottom line mission, is essential to this model. ...

  6. Better Buildings Residential Network Program Sustainability Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Featuring Host: Rich Dooley, Arlington County, VA Call ... Moderator: Jonathan Cohen, DOE Host: Rich Dooley, Arlington County, VA ...

  7. Biomass Program Peer Review Sustainability Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Jane M. F. Johnson Robert B. Mitchell Kenneth P. Vogel Edward P. Richard John Tatarko ... William L. Rooney USDA Forest Service Kenneth E. Skog, Patricia K. Lebow Dennis P. ...

  8. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and relationships ahead of a disaster is critical - once a community has shifted into ... activities may include conducting literature reviews, engaging experts in the area ...

  9. Local Option- Residential Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money from the local government to pay for energy improvements. The amount borrowed is typically repai...

  10. Lincoln Electric System (Residential)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers several rebates to their residential customers who are interested in upgrading to energy efficient household equipment. 

  11. Assessment Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  12. Program Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Leadership - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Sustainability at BPA 2012

    SciTech Connect (OSTI)

    2012-12-01

    BPA’s Sustainability Action Plan is grounded in our commitment to environmental stewardship and Executive Order 13514 that calls on the federal agencies to “lead by example” by setting a 2020 greenhouse gas emissions target, increasing energy efficiency; reducing fleet petroleum consumption; conserving water; reducing waste; supporting sustainable communities; and leveraging federal purchasing power to promoting environmentally responsible products and technologies.

  14. Prometheus Reactor I&C Software Development Methodology, for Action

    SciTech Connect (OSTI)

    T. Hamilton

    2005-07-30

    The purpose of this letter is to submit the Reactor Instrumentation and Control (I&C) software life cycle, development methodology, and programming language selections and rationale for project Prometheus to NR for approval. This letter also provides the draft Reactor I&C Software Development Process Manual and Reactor Module Software Development Plan to NR for information.

  15. Sustainable Energy Resources for Consumers (SERC) Success Story: Montana |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Success Story: Montana Sustainable Energy Resources for Consumers (SERC) Success Story: Montana This document contains information on how Montana SERC Program Delivers Strong Changes through Targeted Low-Income Weatherization Efforts. PDF icon serc_mt_highlight.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water

  16. NNSA announces 2014 sustainability awards | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA announces 2014 ... NNSA announces 2014 sustainability awards Posted: January 7, 2015 - 3:30pm The National Nuclear Security Administration has awarded six 2014 Sustainability Awards for innovation and excellence to the Pantex Plant and the Y-12 National Security Complex, both operated and managed by Consolidated Nuclear Security, LLC. The awards recognize exemplary individual and team performance in advancing sustainability objectives through innovative and effective programs and projects

  17. Riding to Sustainability: Bike Sharing Takes Off | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Riding to Sustainability: Bike Sharing Takes Off Riding to Sustainability: Bike Sharing Takes Off December 3, 2010 - 1:21pm Addthis Riding to Sustainability: Bike Sharing Takes Off Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs What are the key facts? Denver and Washington launch large-scale bike sharing systems. San Antonio gears up for Texas' first bike sharing system. Projects receive support through DOE's EECBG program. Thousands of Americans are switching to

  18. Helping Wisconsin Small Businesses Increase Sustainability | Department of

    Energy Savers [EERE]

    Energy Helping Wisconsin Small Businesses Increase Sustainability Helping Wisconsin Small Businesses Increase Sustainability June 28, 2012 - 3:51pm Addthis The Wisconsin Profitable Sustainability Initiative (PSI), an innovative, customizable and highly-effective program of the Wisconsin Manufacturing Extension Partnership (WMEP), demonstrates the range of economic, social and environmental benefits that can be realized by the state's small and midsize manufacturers through the implementation

  19. Institutional Change for Sustainability Case Studies | Department of Energy

    Office of Environmental Management (EM)

    Institutional Change for Sustainability Case Studies Institutional Change for Sustainability Case Studies These case studies show examples of institutional change successfully implemented in agencies and organizations. ic_connecting.jpg Connecting Sustainability to the Agency's Mission: The U.S. Fish and Wildlife Service's Energy Management Program increased energy awareness and efficiency through various institutional change projects funded through the American Recovery and Reinvestment Act.

  20. Connecting Sustainability to the Agency's Mission | Department of Energy

    Office of Environmental Management (EM)

    Connecting Sustainability to the Agency's Mission Connecting Sustainability to the Agency's Mission Fact sheet describes a case study on the U.S. Fish and Wildlife Service (FWS) Energy Management Program's mission to increase energy awareness and efficiency through various projects funded through the American Recovery and Reinvestment Act (ARRA). PDF icon ic_fws.pdf More Documents & Publications Connecting Sustainability to the Agency's Mission Data, Feedback, and Awareness Lead to Big

  1. NRC Leadership Expectations and Practices for Sustaining a High Performing

    Office of Environmental Management (EM)

    Organization | Department of Energy NRC Leadership Expectations and Practices for Sustaining a High Performing Organization NRC Leadership Expectations and Practices for Sustaining a High Performing Organization May 16, 2012 Presenter: William C. Ostendorff, NRC Commissioner Topics Covered: NRC Mission Safety Culture NRC Oversight NRC Inspection Program Technical Qualification Continuous Learning PDF icon NRC Leadership Expectations and Practices for Sustaining a High Performing Organization

  2. Washington: Sustainability Training for Realtors in High Demand |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainability Training for Realtors in High Demand Washington: Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free and accredited Sustainability Training for Accredited Real Estate Professionals (S.T.A.R.) course. Offered in partnership with RePower Kitsap, EERE's Better Buildings Initiative, the Washington State University Energy Program, and Conservation Services Group, the S.T.A.R. course prepares real

  3. 2015 Peer Review Presentations-Sustainability and Strategic Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sustainability and Strategic Analysis 2015 Peer Review Presentations-Sustainability and Strategic Analysis The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from the Sustainability and Strategic Analysis sessions are available to view and download below. For detailed session descriptions and presentation titles, view the 2015 Project Peer Review Program Booklet.

  4. EERE Success Story-Washington: Sustainability Training for Realtors in

    Office of Environmental Management (EM)

    High Demand | Department of Energy Sustainability Training for Realtors in High Demand EERE Success Story-Washington: Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free and accredited Sustainability Training for Accredited Real Estate Professionals (S.T.A.R.) course. Offered in partnership with RePower Kitsap, EERE's Better Buildings Initiative, the Washington State University Energy Program, and Conservation Services Group, the

  5. Photocatalytic reactor

    DOE Patents [OSTI]

    Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

    1999-01-19

    A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

  6. Update; Sodium advanced fast reactor (SAFR) concept

    SciTech Connect (OSTI)

    Oldenkamp, R.D.; Brunings, J.E. ); Guenther, E. ); Hren, R. )

    1988-01-01

    This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

  7. Tribal Sustainability - Green Projects in Indian Country

    Energy Savers [EERE]

    Projects in Indian Country Gepetta S. Billie Tribal Energy Program Review May 4, 2015 TRIBAL SUSTAINABILITY Overview * Introduction * Green Building * Elements * Benefits * Green Building in Indian Country * Conclusion INTRODUCTION Connecting Green Building to Renewable Energy Power Generation *Distribution *Transmission R & D *Highly technical *Nerd work Energy Efficiency *Less technical *People work Where Do We Start? Current Practices * Energy Use * Population & Consumption Tribal

  8. RePower Sustainability Planning Summit Report

    Broader source: Energy.gov [DOE]

    Provides an overview of the Post‐Grant Program Sustainability Planning Summit conducted by RePower Kitsap. The utility model that was explored and recommended by participants consisted of a hybrid model: a non‐profit agency providing assistance to the regional utilities in a partnership to ensure regional utility conservation and efficiency targets are met.

  9. Keeping Sustainability on Track in Miami

    Broader source: Energy.gov [DOE]

    Ajani Stewart loves his job. As Environmental Coordinator for the Office of Sustainable Initiatives in Miami, Stewart manages projects funded by a $4.7 million Energy Efficiency and Conservation Block Grant (EECBG), as well as the city's green initiatives and recycling programs.

  10. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability...

    Broader source: Energy.gov (indexed) [DOE]

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2013 Sustainability Awards. PDF icon 2013spotlight.pdf More ...

  11. Sustainability in Existing Federal Buildings | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Sustainable Buildings & Campuses Sustainability in Existing Federal Buildings Sustainability in Existing Federal Buildings The General Services Administration ...

  12. DOE - Office of Legacy Management -- Elk River Reactor - MN 01

    Office of Legacy Management (LM)

    Elk River Reactor - MN 01 FUSRAP Considered Sites Site: Elk River Reactor (MN.01 ) Eliminated from consideration under FUSRAP - Reactor was dismantled and decommissioned by 1974 Designated Name: Not Designated Alternate Name: None Location: Elk River , Minnesota MN.01-1 Evaluation Year: 1985 MN.01-1 Site Operations: Boiling water reactor demonstration, research and development program MN.01-1 Site Disposition: Eliminated MN.01-1 Radioactive Materials Handled: None Indicated Primary Radioactive

  13. Sustainable Alternative Fuels Cost Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Sustainable Alternative Fuels Cost Workshop This is the agenda from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop, held at the National Renewable Energy Lab Offices. PDF icon caafi_workshop_agenda.pdf More Documents & Publications Biomass 2013 Agenda 2015 Project Peer Review Program Booklet Symbiosis Conference: Expanding Commercialization of Mutualistic Microbes to Increase Bioenergy Crop Production

  14. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

    2006-09-01

    Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsins 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800C.

  16. Sustainment of Spheromak Pasmas in SSPX

    SciTech Connect (OSTI)

    Stallard, B W; Hill, D N; Holcomb, C; Hooper, E B; McLean, H S; Wood, RD; Woodruff, S; Bulmer, R H; Ryutov, D D; Pearlstein, L D; Wang, Z

    2001-06-13

    SSPX (Sustained Spheromak Physics eXperiment) was constructed to investigate the key physics issues of buildup and sustainment of spheromak plasmas with elevated electron temperature. Long pulse buildup to high magnetic field and temperature, at modest gun current, may point the way to a potentially simpler and more compact fusion reactor. Reported here are T{sub e} measurements in new magnetic flux geometries, results from sustainment experiments with {approx}1ms pulses, and power balance modeling of buildup. The experiment uses coaxial gun injection. Tungsten coated walls reduce plasma impurities. The magnet coil set has been upgraded from 3 (base set) to 9 coils (bias coils) to control the vacuum magnetic flux geometry within the gun and flux conserver (a=l=0.5 m). SSPX is powered by a formation bank (0.5 MJ, {tau}{sub rise}{approx}0.15 ms) and a sustainment bank (1.5 MJ, {tau}{sub p}{approx}1 ms). Radiated power <20% of input power and the burn-out of low Z impurities (C, N, and O{sup +Z{le}5}) have been achieved using bakeout, wall conditioning, and titanium gettering. These techniques have produced long decay time plasmas and electron temperature > 100 eV.

  17. Sustainability in Real Estate Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Convention Center * Phoenix, Arizona Sustainability in Real Estate Operations Sustainability Sustainability Planning Eleni Reed GSA Public Buildings Service August 11, 2015 Sustainability in Real Estate Operations GSA incorporates sustainability practices in real estate operations Sustainability performance is an integral aspect of GSA's real estate operations 3 GSA PORTFOLIO 8,721 total assets * 376.9 million sq. ft. 1,574 owned assets * 183.4 million owned sq. ft. 7,147 leased assets * 193.4

  18. Department of Energy 2013 Sustainability Award Categories

    Broader source: Energy.gov (indexed) [DOE]

    Sustainability Performance Office sustainability@hq.doe.gov Department of Energy 2016 Sustainability Awards Information The DOE Sustainability Awards recognize exemplary ...

  19. DOE Sustainability SPOtlight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Sustainability SPOtlight DOE Sustainability SPOtlight Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards. PDF icon DOE SPOtlight - 2014 DOE Sustainability Awards More Documents & Publications Department of Energy 2014 Sustainability Awards Information DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards 2015 Strategic Sustainability Performance Plan

  20. NREL: Sustainable NREL Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Renewable Energy Laboratory (NREL) is a leader in sustainability. The lab's sustainability practices are fully integrated into the campus and operations through ...

  1. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability with regards to energy consumption, greenhouse gas emissions, and water impacts. The overall objective of this research is to reduce costs and improve sustainability ...

  2. Sustainability Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Sustainability Plan This plan describes the Laboratory's projects, tasks, and activities towards helping achieve Department of Energy sustainability goals. Recycling ...

  3. Fermilab | Sustainability | Nature/Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab at Work Search Search Go Skip over navigation to main content Sustainability Nature and Ecology Sustainability Tips Electronics Stewardship Energy and Water Conservation...

  4. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River National Laboratory (SRNL) has announced several partnerships to bring refrigerator-sized modular nuclear reactors, known as Small Modular Reactors or SMRs, to the...

  5. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  6. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide highlights the DOE O 413.3B drivers for incorporating high performance sustainable building (HPSB) principles into Critical Decisions 1 through 4 and provides guidance for implementing the Order's HPSB requirements.

  7. Developing Alaskan Sustainable Housing

    Broader source: Energy.gov [DOE]

    The Association of Alaska Housing Authorities is holding a 3-day training event for housing development professionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

  8. Create a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Create a Sustainable Future Image of river edge with text overlay of 'How does LANL accomplish future stewardship of the natural and historical resources?' We sample to detect any...

  9. Energy Efficiency and Sustainable Design in New School Construction

    Broader source: Energy.gov [DOE]

    The overall program is expected to fund 250 new or renovated school buildings, all of which will be required to abide by the sustainable building standard described above. Over 270 buildings have...

  10. SEP Success Story: Back to the Basics of Sustainability -- Houses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine SEP Success ... Florida. | Photo by Amy Kidd SEP Success Story: Florida's SunSmart Program Helps ...

  11. SUSTAINABLE MANUFACTURING WORKSHOP

    Broader source: Energy.gov (indexed) [DOE]

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key problem sets to be

  12. Sustainable Development Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    team wins best paper award at Sustainable Development Conference October 22, 2015 LANL Researchers Yongchao Yang, Alessandro Cattaneo and David Mascareñas of the National Security Education Center-Engineering Institute (NSEC-EI) recently received the Best Paper Award at the Third Annual International Conference for Sustainable Development. Their winning paper is "Potential Structural Health Monitoring Tools to Mitigate Corruption in the Construction Industry Associated with Rapid

  13. SUSTAINABLE MANUFACTURING WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR 1 | P a g e Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key

  14. Sustainability fact sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitment to Bioenergy Sustainability The U.S. Department of Energy's Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO's Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy

  15. Sustainable Subsurface Energy Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Subsurface Energy Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  16. St. Louis Launches Plan for More Sustainable Community | Department of

    Energy Savers [EERE]

    Energy St. Louis Launches Plan for More Sustainable Community St. Louis Launches Plan for More Sustainable Community March 1, 2013 - 11:15am Addthis Using money from the Energy Efficiency Block Grant Program, St. Louis installed new LED fixtures in the City Hall parking structure. The new lights deliver more useful light and use nearly 83 percent less power than the previous lights. | Photo courtesy of John Wm Nagel, Photography. Using money from the Energy Efficiency Block Grant Program,

  17. A Blueprint for Urban Sustainability: Integrating Sustainable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices into Metropolitan Planning, May 2004 | Department of Energy A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 This 2004 document is a resource designed to help cities develop sustainable energy plans that will enable communities to meet their present needs without compromising the ability of future

  18. Blueprint for Sustainability - Sustainable Solutions for Every Consumer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Blueprint for Sustainability - Sustainable Solutions for Every Consumer Blueprint for Sustainability - Sustainable Solutions for Every Consumer Highlights of Ford's near, mid, and long term plans for sustainability with a focus on efficient diesel engines and hybrid vehicles. PDF icon deer08_kapp.pdf More Documents & Publications Thermoelectric Opportunities for Light-Duty Vehicles Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development U.S. Based

  19. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect (OSTI)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  20. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES)

    Broader source: Energy.gov [DOE]

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) program develops and demonstrates integrated photovoltaic (PV) and energy storage solutions that are scalable,...

  1. Office of Strategic Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Strategic Programs STEAB Meeting JoAnn Milliken Washington, DC Acting Director June 27, 2012 Strategic Programs * Advanced Manufacturing * Sustainability Performance * Strategic Programs OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY ENERGY EFFICIENCY * Advanced Manufacturing * Building Technologies * Federal Energy Management * Weatherization & Intergovernmental RENEWABLE ENERGY * Geothermal Technologies * Solar Energy Technologies * Wind & Water Technologies TRANSPORTATION

  2. continuously jet-stirred tank reactor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    continuously jet-stirred tank reactor - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  3. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  4. Operations Security Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-30

    To establish policies, responsibilities and authorities for implementing and sustaining the Department of Energy (DOE) Operations Security (OPSEC) Program. Cancels DOE O 5632.3B. Canceled by DOE O 471.2 of 9-28-1995.

  5. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  6. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  7. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

  8. CLEAP_Programs_DRAFT_nameupdate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LANDSCAPE OF LOCAL ENERGY PROGRAMS Circular Graphic SECTOR Guide ENERGY SECTOR Residential | Commercial | Industrial | Generation The programs in green have a primary purpose to impact energy goals. SUSTAINABILITY SECTOR Generation | Transportation The programs in red have a primary purpose to impact sustainability goals. RESILIENCY SECTOR Land Use The programs in blue have a primary purpose to impact resiliency goals. Cities-LEAP PROJECT COVERAGE Cities-LEAP COVERS ALL SECTORS AT THE CITY LEVEL

  9. Sustainable Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Sustainable Acquisition Mission The team establishes a national approach to expand purchases of sustainable goods and services, including biobased products, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and DOE Order 436.1, Departmental Sustainability The team advocates implementation of a sustainable procurement process. Scope The team has established a process to

  10. Sustainable Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and DOE Order 436.1, Departmental Sustainability The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities

  11. Summary of NR Program Prometheus Efforts

    SciTech Connect (OSTI)

    Ashcroft, John; Eshelman, Curtis

    2007-01-30

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development of an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.

  12. Summary of NR Program Prometheus Efforts

    SciTech Connect (OSTI)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development of an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.

  13. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect (OSTI)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  14. Fission energy program of the US Department of Energy, FY 1981

    SciTech Connect (OSTI)

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  15. Environmental Information Document: L-reactor reactivation

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  16. Sustainable Harvest for Food and Fuel

    SciTech Connect (OSTI)

    Grosshans, Raymond R.; Kostelnik, Kevin, M.; Jacobson, Jacob J.

    2007-04-01

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30 X 30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30 X 30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics growing interest in sustainable agriculture and in the mitigation of predicted global climate change. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating sustainable harvest indicators in a computer modeling strategy.

  17. Y-12 Site-Sustainability Plan 2010

    SciTech Connect (OSTI)

    Sherry, T. D.; Kohlhorst, D. P.; Little, S. K.

    2010-12-01

    The accomplishments to date and the long-range planning of the Y-12 National Security Complex Energy Management program support the Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the guiding principles. The site is diligently working toward establishing and prioritizing projects to reach the goals that Executive Orders 13514 and 13423 set forth. Y-12 is working to communicate its sustainment vision through procedural, engineering, operational, and management practices. The site will make informed decisions that are based on the application of the fi ve guiding principles for High Performance Sustainable Buildings (HPSBs) to the maximum extent possible. Current limitations in achievement of the goals lie in the existing Future Years National Security Program funding profiles. Y-12 will continue to execute energy projects as funding becomes available or as they can be accomplished incrementally within existing funding profiles. All efforts will be made to integrate energy initiatives with ongoing site mission objectives. Figures ES.1-ES.4 show some examples of sustainability activities at the Y-12 Complex.

  18. IDAHO NATIONAL LABORATORY PROGRAM TO OBTAIN BENCHMARK DATA ON THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR THE VALIDATION OF CFD CODES

    SciTech Connect (OSTI)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-09-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a typical prismatic gas-cooled (GCR) reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A detailed description of the model, scaling, the experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that are presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic GCR design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal undeveloped, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet flow is also presented.

  19. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  20. Aerosol reactor production of uniform submicron powders

    DOE Patents [OSTI]

    Flagan, Richard C. (Pasadena, CA); Wu, Jin J. (Pasadena, CA)

    1991-02-19

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  1. Sustainable NREL - Site Sustainability Plan FY 2015 (Management Publication)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

  2. Neutronics qualification of the Jules Horowitz reactor fuel by interpretation of the VALMONT experimental program - Transposition of the uncertainties on the reactivity of JHR with JEF2.2 and JEFF3.1.1

    SciTech Connect (OSTI)

    Leray, O.; Hudelot, J. P.; Antony, M.; Doederlein, C.; Santamarina, A.; Bernard, D.; Vaglio-Gaudard, C.

    2011-07-01

    The new European material testing Jules Horowitz Reactor (JHR), currently under construction in Cadarache center (CEA France), will use LEU (20% enrichment in {sup 235}U) fuels (U{sub 3}Si{sub 2} for the start up and UMoAl in the future) which are quite different from the industrial oxide fuel, for which an extensive neutronics qualification database has been established. The HORUS3D/N neutronics calculation scheme, used for the design and safety studies of the JHR, is being developed within the framework of a rigorous verification-validation-qualification methodology. In this framework, the experimental VALMONT (Validation of Aluminium Molybdenum uranium fuel for Neutronics) program has been performed in the MINERVE facility of CEA Cadarache (France), in order to qualify the capability of HORUS3D/N to accurately calculate the reactivity of the JHR reactor. The MINERVE facility using the oscillation technique provides accurate measurements of reactivity effect of samples. The VALMONT program includes oscillations of samples of UAl{sub x}/Al and UMo/Al with enrichments ranging from 0.2% to 20% and Uranium densities from 2.2 to 8 g/cm{sup 3}. The geometry of the samples and the pitch of the experimental lattice ensure maximum representativeness with the neutron spectrum expected for JHR. By comparing the effect of the sample with the one of a known fuel specimen, the reactivity effect can be measured in absolute terms and be compared to computational results. Special attention was paid to the rigorous determination and reduction of the experimental uncertainties. The calculational analysis of the VALMONT results was performed with the French deterministic code APOLLO2. A comparison of the impact of the different calculation methods, data libraries and energy meshes that were tested is presented. The interpretation of the VALMONT experimental program allowed the qualification of JHR fuel UMoAl8 (with an enrichment of 19.75% {sup 235}U) by the Minerve-dedicated interpretation tool: PIMS. The effect of energy meshes and evaluations put forward the JEFF3.1.1/SHEM scheme that leads to a better calculation of the reactivity effect of VALMONT samples. Then, in order to quantify the impact of the uncertainties linked to the basic nuclear data, their propagation from the cross section measurement to the final computational result was analysed in a rigorous way by using a nuclear data re-estimation method based on Gauss-Newton iterations. This study concludes that the prior uncertainties due to nuclear data (uranium, aluminium, beryllium and water) on the reactivity of the Begin Of Cycle (BOC) for the JHR core reach 1217 pcm at 2{sigma}. Now, the uppermost uncertainty on the JHR reactivity is due to aluminium. (authors)

  3. PROJECT PROFILE: Institute for Sustainable Communities (Solar Market Pathways)

    Broader source: Energy.gov [DOE]

    As the National Coordinator for the SunShot Initiative’s Solar Market Pathways program, the Institute for Sustainable Communities (ISC) will create a learning network that enables communications, coordination and shared learning across the other 14 organizations in the program.

  4. New Jersey Township Champions Sustainability

    Broader source: Energy.gov [DOE]

    Woodbridge Township’s sustainability efforts in actions such as installing solar panels and using fuel-efficient vehicles that have earned it even more attention as a sustainability champion, and community leaders are not stopping there.

  5. Feasibility Study of Sustainable Distributed Generation Technologies for the Duck Valley Reservation

    Office of Environmental Management (EM)

    of Sustainable Distributed Generation Technologies for the Duck Valley Reservation Feasibility Study of Sustainable Distributed Generation Technologies for the Duck Valley Reservation Office of Energy Efficiency and Renewable Energy TRIBAL ENERGY PROGRAM FY2004 Program Review Meeting Denver West Holiday Inn Golden, Colorado Shoshone-Paiute Tribes of the Duck Valley Reservation CSHQA New West Technologies Idaho Department of Water Resources INEEL Feasibility Study of Sustainable Distributed

  6. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  7. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  8. B Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    War II, B Reactor produced plutonium used in the Trinity Test, as well as for the atomic bomb dropped on Nagasaki, Japan, to end World War II. The reactor was designed and built...

  9. Enthusiastic employees: sustaining the Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enthusiastic employees: sustaining the Earth Enthusiastic employees: taking action Green Teams make sustainable choices and identify untapped opportunities to reduce waste. January 30, 2014 Enthusiastic employees: sustaining the Earth Los Alamos National Laboratory undergraduate student, Erica Garcia,tests water around the Laboratory. Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the world's most powerful technology without consuming excessive

  10. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  11. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively ...

  12. Sustainable Agriculture Network | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Network Jump to: navigation, search Logo: Sustainable Agriculture Network Name: Sustainable Agriculture Network Website: clima.sanstandards.org References: Sustainable...

  13. Go Sustainable Energy, LLC | Open Energy Information

    Open Energy Info (EERE)

    Sustainable Energy, LLC Jump to: navigation, search Logo: Go Sustainable Energy, LLC Name: Go Sustainable Energy, LLC Address: 3857 N. High Street, Suite 208 Place: Columbus, Ohio...

  14. EERE FY 2016 Budget Overview -- Sustainable Transportation |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation EERE FY 2016 Budget Overview -- Sustainable Transportation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Sustainable...

  15. Alliance for Sustainable Colorado | Open Energy Information

    Open Energy Info (EERE)

    for Sustainable Colorado Jump to: navigation, search Logo: Alliance for Sustainable Colorado Name: Alliance for Sustainable Colorado Address: 1536 Wynkoop Street Place: Denver,...

  16. Contact the Sustainability Performance Office | Department of...

    Office of Environmental Management (EM)

    Performance Office Contact the Sustainability Performance Office The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) oversees departmental sustainability...

  17. 2016 Site Sustainability Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Site Sustainability Plan 2016 Site Sustainability Plan The purpose of this Site ... PDF icon 2016 Site Sustainability Plan, U.S. Department of Energy Office of Legacy ...

  18. High Performance and Sustainable Buildings Guidance | Department...

    Energy Savers [EERE]

    Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance PDF icon High Performance and Sustainable Buildings Guidance More Documents &...

  19. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  20. Tribal Greenbuilding 101: How Tribes Can Build Homes with Sustainability in Mind

    Energy Savers [EERE]

    Gepetta S. Billie Student Intern Tribal Greenbuilding 101: How Tribes Can Build Homes with Sustainability in Mind Tribal Energy Program Review Denver, CO * Background * Current Practices * Our Impact * Tribal Housing * Housing * Sustainability * What does it mean? * For tribes? * Green Building * Elements * Benefits * Case Study Tribal Energy Program Overview Energy Use by Sector Energy Use by Building type Tribal Energy Program Current Practices Tribal Energy Program Our Impact Climate Change

  1. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  2. Site Sustainability Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 DOE ORDER 436.1 SITE SUSTAINABILITY PLAN Princeton Plasma Physics Laboratory PPPL is operated by Princeton University for the U.S. Department of Energy under contract DE-AC02-09CH1 PLAN APPROVAL Robert S. Sheneman Deputy Head Environment, Safety, Health & Security Department Michael Viola Head, Facilities & Site Services Division Jerry D. Levine Head, Environment, Safety, Health & Security Department William B. Davis Head, Information Technology Department, CIO Michael D. Williams

  3. NREL: Sustainable NREL - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Below are news stories related to NREL's sustainability efforts. February 22, 2016 NREL analysis finds tax credit extensions can impact renewable energy deployment and electric sector CO2 emissions The Energy Department's National Renewable Energy Laboratory (NREL) today released new analysis exploring the potential impact of recently extended federal tax credits on the deployment of renewable generation technologies and related U.S. electric sector carbon dioxide (CO2) emissions. February

  4. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable Nanomaterials Workshop Washington, DC Mark Watkins Senior Vice President MeadWestvaco Corporation July 26, 2012 Transforming the forest products industry through innovation 2 The U.S. Forest Products Industry's Economic Impact  5% of U.S. manufacturing GDP  Ninth largest manufacturing sector in U.S.  On par with plastics and automotive  Top 10 manufacturing employer in 48 states  418 pulp and

  5. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  6. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  7. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  8. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  9. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  10. Programs: Operating as a Prime Contractor

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call: Operating as a Prime Contractor, Call Slides and Discussion Summary, May 9, 2013.

  11. Better Buildings Neighborhood Program | Department of Energy

    Energy Savers [EERE]

    selected state and local governments develop sustainable programs to upgrade the energy efficiency of homes and buildings. These leading communities used innovation and...

  12. NREL: Technology Deployment - Federal Energy Management Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assistance to help federal fleets maximize their use of alternative fuels and compare strategies for reducing fuel use through FEMP's Sustainable Federal Fleets program....

  13. Technological Assessment of Plasma Facing Components for DEMO Reactors |

    Office of Environmental Management (EM)

    Department of Energy Technological Assessment of Plasma Facing Components for DEMO Reactors Technological Assessment of Plasma Facing Components for DEMO Reactors Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Technological Assessment of Plasma Facing Components for DEMO Reactors More Documents & Publications Tritium Plasma Experiment and Its Role in PHENIX Program Tritium research activities in Safety and Tritium

  14. Cost-Shared Development of Innovative Small Modular Reactor Designs |

    Office of Environmental Management (EM)

    Department of Energy Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic,

  15. Annual Merit Review Evaluates Impact of Sustainable Transportation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Annual Merit Review Evaluates Impact of Sustainable Transportation Projects Annual Merit Review Evaluates Impact of Sustainable Transportation Projects June 5, 2015 - 11:32am Addthis A vehicle undergoes dynamometer testing at Argonne National Laboratory's Advanced Powertrain Research Facility in Illinois. The project is one of many that is being evaluated at the Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation

  16. NREL Praised for Efforts in Sustainable Pollution Prevention - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Praised for Efforts in Sustainable Pollution Prevention August 26, 2004 Golden, Colo. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) received three 2004 DOE Pollution Prevention Best-In-Class awards for its work through the Sustainable NREL program on new buildings, recycling, and education, outreach and information sharing. The awards recognize accomplishments and innovative activities in pollution prevention and environmental

  17. Sustainable Federal Buildings and Campuses | Department of Energy

    Energy Savers [EERE]

    Sustainable Federal Buildings and Campuses Sustainable Federal Buildings and Campuses An air-intake structure outside this high-performance federal building lowers energy costs by taking in chilly night air to cool the building's data center. An air-intake structure outside this high-performance federal building lowers energy costs by taking in chilly night air to cool the building's data center. The Federal Energy Management Program provides strategies, best practices, and resources to help

  18. Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)

    SciTech Connect (OSTI)

    Slovensky, M.

    2014-03-01

    NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.

  19. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of High Energy Density Fuels" | Department of Energy "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" This webinar, part of the Biomass Program's bimonthly webinar series, featured presenters from Los Alamos National Laboratory who focused on high energy density fuels PDF icon

  20. Sustainability at Home: Raising the Bar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Home: Raising the Bar Sustainability at Home: Raising the Bar August 11, 2015 - 4:50pm Addthis Make sure that you hire accredited and certified workers for your home energy projects. <em>Photo courtesy of NREL 6307614</em> Make sure that you hire accredited and certified workers for your home energy projects. Photo courtesy of NREL 6307614 Christina Stowers Communications Specialist in the Weatherization and Intergovernmental Programs Office When I say "sustainability at