National Library of Energy BETA

Sample records for reactor sustainability lwrs

  1. Light Water Reactor Sustainability (LWRS) Program | Department...

    Energy Savers [EERE]

    Nuclear Reactor Technologies Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) ...

  2. Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap...

    Office of Environmental Management (EM)

    Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability ...

  3. Light Water Reactor Sustainability (LWRS) Initiative Science...

    Energy Savers [EERE]

    disposed instead of untreated used fuel. April 29, 2010 Constituents of Used Light Water Reactor Nuclear Fuel (by mass) April 29, 2010 Descriptions from NE R&D Roadmap to...

  4. Light Water Reactor Sustainability Program - Integrated Program...

    Office of Environmental Management (EM)

    Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and ...

  5. Light Water Reactor Sustainability Program - Non-Destructive...

    Office of Environmental Management (EM)

    Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for ... important information to the Light Water Reactor Sustainability (LWRS) program ...

  6. Light Water Reactor Sustainability (LWRS) Initiative Science...

    Broader source: Energy.gov (indexed) [DOE]

    ... committee Meeting was held in Paris, France to further refine the specific work ... Integrated University Program 5,000 0 5,000 5,000 RE-ENERGYSE 0 5,000 0 0 Nuclear Power 2010 ...

  7. Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2013-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

  8. Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2012-09-01

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

  9. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. Light Water Reactor Sustainability Program - Integrated Program Plan - Revision 3 (2.66 MB)

  10. Light Water Reactor Sustainability Technical Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2015 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research

  11. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure...

  12. Light Water Reactor Sustainability Accomplishments Report

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  13. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  14. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    SciTech Connect (OSTI)

    Powers, Jeffrey J.; George, Nathan; Maldonado, G. Ivan; Worrall, Andrew

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  15. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  16. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce; Bragg-Sitton, Shannon; Smith, Curtis; Barnard, Cathy

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  17. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  18. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  19. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    SciTech Connect (OSTI)

    Thomas, Kenneth; Oxstrand, Johanna

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal

  20. Light Water Reactor Sustainability Nondestructive Evaluation...

    Broader source: Energy.gov (indexed) [DOE]

    US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability ... A multitude of concrete-based structures are typically part of a light water reactor (LWR) ...

  1. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A; Matlack, Katie; Ramuhalli, Pradeep; Light, Glenn

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  2. Verification and Validation Strategy for LWRS Tools

    SciTech Connect (OSTI)

    Carl M. Stoots; Richard R. Schultz; Hans D. Gougar; Thomas K Larson; Michael Corradini; Laura Swiler; David Pointer; Jess Gehin

    2012-09-01

    One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verified and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.

  3. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect (OSTI)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  4. Analysis of key safety metrics of thorium utilization in LWRs...

    Office of Scientific and Technical Information (OSTI)

    nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast ... of thorium in the United States is in currently operating light water reactors (LWRs). ...

  5. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement

  6. Light Water Reactor Sustainability Technical Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high...

  7. Self-Sustaining Thorium Boiling Water Reactors

    SciTech Connect (OSTI)

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  8. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect (OSTI)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has

  9. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  10. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect (OSTI)

    Monteleone, S.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  11. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    SciTech Connect (OSTI)

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will have passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.

  12. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation

  13. Accident Tolerant Fuels for LWRs: A Perspective (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Accident Tolerant Fuels for LWRs: A Perspective Citation Details In-Document Search Title: Accident Tolerant Fuels for LWRs: A Perspective Authors: Zinkle, Steven ...

  14. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Office of Environmental Management (EM)

    DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and ...

  15. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    SciTech Connect (OSTI)

    Corradini, M. L.

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary

  16. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Broader source: Energy.gov (indexed) [DOE]

    ... Cycle R&D Program under the advanced fuels activity at the beginning of Fiscal Year ... LTO lead RST Gap Analysis LWRS Accident-Tolerant Components LWRS Severe Accident ...

  17. Light Water Reactor Sustainability Program Grizzly Year-End Progress Report

    SciTech Connect (OSTI)

    Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner; Marie Backman; Brian Wirth; Stephen Novascone; Jason Hales

    2013-09-01

    The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INL’s MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. The reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i

  18. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  19. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  20. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  1. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2011-09-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  2. Analysis of key safety metrics of thorium utilization in LWRs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; Powers, Jeffrey

    2016-04-08

    Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel (233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on conceptsmore » that mix thorium with uranium (UO2 + ThO2) or that add fertile thorium (ThO2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO2 + ThO2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO2 + UO2 and ThO2 + PuO2 against those of UO2 and typical UO2 + PuO2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of

  3. DOE-NE Light Water Reactor Sustainability Program and EPRI Long Term Operations Program Joint Research and Development

    Broader source: Energy.gov [DOE]

    Description of Joint DOE and EPRI research and development programs related to reactor sustainability INL/EXT-12-24562

  4. Self-Sustaining Thorium Boiling Water Reactors (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; ... Language: English Subject: 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; ...

  5. Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

    2012-12-31

    Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

  6. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with...

    Office of Scientific and Technical Information (OSTI)

    Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning ...

  7. Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The FY10 activities for development of a nuclear concrete materials database to support the Light Water Reactor Sustainability Program are summarized. The database will be designed and constructed...

  8. Light Water Reactor Sustainability Program: Materials Aging and...

    Office of Environmental Management (EM)

    Program: Materials Aging and Degradation Technical Program Plan Light Water Reactor ... Primary water stress corrosion cracking (PWSCC) is one key form of degradation in extended ...

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LWRs; Develop and effectively apply modern virtual reactor technology; Engage the nuclear energy community through modeling and simulation; and Deploy new partnership and...

  10. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the...

  11. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  12. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  13. Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.

    SciTech Connect (OSTI)

    Yun, D.; Taiwo, T. A.; Kim, T. K.; Mohamed, A.; Nuclear Engineering Division

    2010-10-01

    The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluate the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.

  14. Considerations for realistic ECCS evaluation methodology for LWRs

    SciTech Connect (OSTI)

    Rohatgi, U.S.; Saha, P.; Chexal, V.K.

    1985-01-01

    This paper identifies the various phenomena which govern the course of large and small break LOCAs in LWRs, and affect the key parameters such as Peak Clad Temperature (PCT) and timing of the end of blowdown, beginning of reflood, PCT, and complete quench. A review of the best-estimate models and correlations for these phenomena in the current literature has been presented. Finally, a set of models have been recommended which may be incorporated in a present best-estimate code such as TRAC or RELAP5 in order to develop a realistic ECCS evaluation methodology for future LWRs and have also been compared with the requirements of current ECCS evaluation methodology as outlined in Appendix K of 10CFR50. 58 refs.

  15. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect (OSTI)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-07-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  16. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  17. Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reported on sustainability program accomplishments. The report provides an opportunity to review progress made on sustainability initiatives, evaluate how far we have come and how...

  18. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  19. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  20. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges

    Broader source: Energy.gov [DOE]

    The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR...

  1. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

    2011-09-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  2. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    SciTech Connect (OSTI)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant

  3. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  4. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect (OSTI)

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Reactor Technologies » Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure long-term reliability, productivity, safety, and security. The program is conducted in collaboration with national

  6. Practical combinations of light-water reactors and fast reactors for future actinide transmutation

    SciTech Connect (OSTI)

    Collins, Emory D.; Renier, John-Paul

    2007-07-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle. (authors)

  7. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis; Prescott, Steven; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  8. Slide 1

    Energy Savers [EERE]

    Sponsored by the DOE Light Water Reactor Sustainability Program Environmentally Assisted Fatigue: Experiment & Mechanistic Modeling for Light Water Reactor Sustainability (LWRS) ...

  9. Analysis of key safety metrics of thorium utilization in LWRs...

    Office of Scientific and Technical Information (OSTI)

    high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. ...

  10. LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water

  11. Sustain

    Energy Science and Technology Software Center (OSTI)

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactivemore » graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.« less

  12. Component failures that lead to reactor scrams. [PWR; BWR

    SciTech Connect (OSTI)

    Burns, E. T.; Wilson, R. J.; Lim, E. Y.

    1980-04-01

    This report summarizes the operating experience scram data compiled from 35 operating US light water reactors (LWRs) to identify the principal components/systems related to reactor scrams. The data base utilized to identify the scram causes is developed from a EPRI-utility sponsored survey conducted by SAI coupled with recent data from the USNRC Gray Books. The reactor population considered in this evaluation is limited to 23 PWRs and 12 BWRs because of the limited scope of the program. The population includes all the US NSSS vendors. It is judged that this population accurately characterizes the component-related scrams in LWRs over the first 10 years of plant operation.

  13. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  14. Performance of Trasuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Interim Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; Brian Boer; Gilles Youinou; Abderrafi M. Ougouag

    2011-03-01

    The current focus of the Deep Burn Project is on once-through burning of transuranice (TRU) in light water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles would be pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell calculations have been performed using the DRAGON-4 code in order assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells containing typical UO2 and MOX fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Loading of TRU-only FCM fuel into a pin without significant quantities of uranium challenges the design from the standpoint of several key reactivity parameters, particularly void reactivity, and to some degree, the Doppler coefficient. These unit cells, while providing an indication of how a whole core of similar fuel would behave, also provide information of how individual pins of TRU-only FCM fuel would influence the reactivity behavior of a heterogeneous assembly. If these FCM fuel pins are included in a heterogeneous assembly with LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance of the TRU-only FCM fuel pins may be preserved. A configuration such as this would be similar to CONFU assemblies analyzed in previous studies. Analogous to the plutonium content limits imposed on MOX fuel, some amount of TRU-only FCM pins in an otherwise-uranium fuel assembly may give acceptable reactivity

  15. RISMC advanced safety analysis working plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable “use case” demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  16. REACTOR

    DOE Patents [OSTI]

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  17. REACTOR

    DOE Patents [OSTI]

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  18. Light Water Reactor Sustainability Program FY13 Status Update for EPRI - RISMC Collaboration

    SciTech Connect (OSTI)

    Curtis Smith

    2013-09-01

    The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced "RISMC toolkit" that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory (INL) is collaborating with the Electric Power Research Institute (EPRI) in order to focus on applications of interest to the U.S. nuclear power industry. This report documents the collaboration activities performed between INL and EPRI during FY2013.

  19. Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Nuclear Engineering Division

    2005-04-29

    Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium

  20. REACTOR

    DOE Patents [OSTI]

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  1. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment

    Broader source: Energy.gov [DOE]

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the...

  2. REACTORS

    DOE Patents [OSTI]

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  3. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    SciTech Connect (OSTI)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  4. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect (OSTI)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and

  5. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    SciTech Connect (OSTI)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are needed to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nations NPPs.

  6. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  7. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    SciTech Connect (OSTI)

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are needed to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.

  8. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the needs of many programs at once - 4 I&C research across NE LWRS-Light Water Reactor Sustainability; ART-Advanced Reactor Technologies; Fuels -Advanced Fuels; ...

  9. Light Water Reactor Sustainability Program: Computer-based procedure for field activities: results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna; Bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program

  10. Reactor

    DOE Patents [OSTI]

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  11. Renewability and sustainability aspects of nuclear energy

    SciTech Connect (OSTI)

    Şahin, Sümer

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission

  12. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  13. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  14. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  15. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  16. Chapter 4: Advancing Clean Electric Power Technologies | High Temperature Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Reactors Chapter 4: Technology Assessments Introduction High temperature reactor (HTR) systems (i.e., reactors with core outlet temperatures between 700°C and 950°C) offer higher thermodynamic efficiency of converting the heat generated in the reactor to electricity (e.g., ~50% at 950°C or 47% at 850°C) than light water reactors (LWRs); this could greatly improve the economics of reactor systems. 1,2 However, the higher temperature also limits the number of fuel, coolant,

  17. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect (OSTI)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly over-design portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as safety margin. Historically, specific safety margin provisions have been formulated, primarily based on engineering judgment.

  18. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  19. Microsoft Word - Final Draft FY-13 LWRS IPP R1 Clean Angie KAM...

    Broader source: Energy.gov (indexed) [DOE]

    means the prudent use of resources - in this case, our nation's commercial nuclear power plants. Sustainability is defined as the ability to maintain safe and economic...

  20. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  1. Environmental Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability community-environmentassetsimagesiconearthday.jpg Environmental Sustainability: Creating the Future Exercising our commitment to operating a sustainable site...

  2. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  3. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect (OSTI)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  4. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets

    SciTech Connect (OSTI)

    Downar, Thomas; Zazimi, Mujid; Hill, Bob

    2015-01-31

    The objective of this proposal was to perform a detailed transient safety analysis of the Resource-Renewable BWR (RBWR) core designs using the U.S. NRC TRACE/PARCS code system. This project involved the same joint team that has performed the RBWR design evaluation for EPRI and therefore be able to leverage that previous work. And because of their extensive experience with fast spectrum reactors and parfait core designs, ANL was also part the project team. The principal outcome of this project was the development of a state-of-the-art transient analysis capability for GEN-IV reactors based on Monte Carlo generated cross sections and the US NRC coupled code system TRACE/PARCS, and a state-of-the-art coupled code assessment of the transient safety performance of the RBWR.

  5. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  6. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of ...

  7. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  8. A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool

    SciTech Connect (OSTI)

    Ben Spencer; Jeremey Busby; Richard Martineau; Brian Wirth

    2012-10-01

    Nuclear power currently provides a significant fraction of the United States’ non-carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation’s electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.

  9. U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

    Broader source: Energy.gov [DOE]

    A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear...

  10. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  11. Sustainable Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  12. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect (OSTI)

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  13. The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel

    SciTech Connect (OSTI)

    Chebeskov, A.; Kalashnikov, A.; Bevard, B.; Moses, D.; Pavlovichev, A.

    1997-09-01

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

  14. Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals Sustainability Goals We support and encourage energy conservation and environmental sustainability. Energy Conservation Efficient Water Use & Management High Performance...

  15. Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals Sustainability Goals We support and encourage energy conservation and environmental sustainability. Energy Conservation Efficient Water Use & Management High Performance ...

  16. Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report

    SciTech Connect (OSTI)

    R. Sonat Sen; Brian Boer; John D. Bess; Michael A. Pope; Abderrafi M. Ougouag

    2012-03-01

    This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP to perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require

  17. A brief history of design studies on innovative nuclear reactors

    SciTech Connect (OSTI)

    Sekimoto, Hiroshi

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  18. Departmental Sustainability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-12-17

    The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan.

  19. Sustainability Support

    Broader source: Energy.gov [DOE]

    Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

  20. Energy Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Features Energy Sustainability aboutassetsimagesicon-70th2.jpg Energy Sustainability Our Science Digests embrace complex issues around our science, technologies, and ...

  1. Environmental Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exercising our commitment to operating a sustainable site by creating a 50-year horizon of ... teams whose efforts minimize waste, conserve resources and apply sustainable practices.

  2. Reduction of worldwide plutonium inventories using conventional reactors and advanced fuels: A systems study

    SciTech Connect (OSTI)

    Krakowski, R.A.; Bathke, C.G.; Chodak, P. III

    1997-09-01

    The potential for reducing plutonium inventories in the civilian nuclear fuel cycle through recycle in LWRs of a variety of mixed-oxide forms is examined by means of a cost-based plutonium-flow systems model that includes an approximate measure of proliferation risk. The impact of plutonium recycle in a number of forms is examined, including the introduction of nonfertile fuels into conventional (LWR) reactors to reduce net plutonium generation, to increase plutonium burnup, and to reduce exo-reactor plutonium inventories.

  3. Sustainability Awards

    Broader source: Energy.gov [DOE]

    DOE recognizes exemplary performance by sites and individuals through the DOE's annual Sustainability Awards.

  4. Safe, Secure and Sustainable Nuclear Energy | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safe, Secure and Sustainable Nuclear Energy Nuclear engineer Mitch Farmer holds a piece of corium from a nuclear reactor severe accident experiment, in which molten core debris, or ...

  5. Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    The LWR Sustainability (LWRS) Program activities must support the timeline dictated by utility life extension decisions to demonstrate a lead test rod in a commercial reactor within 10 years. In...

  6. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program is developing the fundamental scientific basis to understand, predict, and measure changes in materials and...

  7. Departmental Sustainability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-02

    The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan. Supersedes DOE O 450.1A and DOE O 430.2B. OPI changed to MA on 1/27/2016.

  8. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  9. Sustainability | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability NREL is a leader in sustainability and our goal is to minimize the use of energy, materials, and water while carrying out the lab's mission of clean energy research. ...

  10. Supercell Depletion Studies for Prismatic High Temperature Reactors

    SciTech Connect (OSTI)

    J. Ortensi

    2012-10-01

    The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challenges exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.

  11. sustainable development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainable development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  12. Sustainable Manufacturing

    Office of Environmental Management (EM)

    Sustainable Federal Fleets Catalog of Services Sustainable Federal Fleets Catalog of Services Document details the Federal Energy Management Program's catalog of technical assistance services it offers for federal agencies that want to implement sustainable fleet projects. Download the Sustainable Federal Fleets Catalog of Services. (377.78 KB) More Documents & Publications Fleet Briefings Renewable Energy Catalog of Services Project Financing Catalog of Services

    Principal Investigator

  13. A Blueprint for Urban Sustainability: Integrating Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004 A Blueprint for Urban Sustainability: Integrating Sustainable ...

  14. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect (OSTI)

    Mardiansah, Deby; Takaki, Naoyuki

    2010-06-22

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  15. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    SciTech Connect (OSTI)

    None

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  16. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    SciTech Connect (OSTI)

    Holbrook, Mark; Kinsey, Jim

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  17. Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2012-09-01

    Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

  18. Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2013-01-01

    Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

  19. Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

    2012-09-20

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

  20. NREL: Sustainable NREL - Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Renewable Energy Part of NREL's sustainability approach is to maximize on-site renewable energy generation. Renewable energy projects installed on campus include: Solar NREL's ...

  1. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  2. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    SciTech Connect (OSTI)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  3. SUSTAINABILITY NEWS

    Energy Savers [EERE]

    SUSTAINABILITY NEWS Earth Day Celebration at the Nationals Stadium was a Success Thank you to everyone who came out! The celebration was a success for both DOE and for the Washington Nationals, who scored eight runs in a win over the Minnesota Twins. Deputy Secretary of Energy Elizabeth Sherwood-Randall, SPO Director John Shonder and other DOE leaders were on hand to welcome the crowds, and DOE's Sustainability video was shown on the jumbotrons throughout the stadium. To view photos from the

  4. Sustainability Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    honors Los Alamos in 2014 Sustainability Awards December 3, 2014 Building and instrument efficiency, greenhouse gas reduction efforts noted LOS ALAMOS, N.M., Dec. 3, 2014-The National Nuclear Security Administration (NNSA) this week awarded 15 Sustainability Awards for innovation and excellence to its national laboratories and sites, and Los Alamos National Laboratory is among the winners, with honorees in both the Best in Class and Environmental Stewardship categories. "Los Alamos has

  5. Sustainability Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Around the House Sustainability Around the House April 13, 2015 - 7:46am Addthis Rain barrels collect rain water and provide a free source of fresh water for your lawn. | Photo courtesy of iStockphoto/schulzie Rain barrels collect rain water and provide a free source of fresh water for your lawn. | Photo courtesy of iStockphoto/schulzie Christina Stowers Communications Specialist in the Weatherization and Intergovernmental Programs Office How does it work? Choosing the right

  6. Sustainable markets for sustainable energy

    SciTech Connect (OSTI)

    Millan, J.; Smyser, C.

    1997-12-01

    The author discusses how the Inter-American Development Bank (IDB) is involved in sustainable energy development. It presently has 50 loans and grants for non conventional renewable energy projects and ten grants for efficiency programs for $600 and $17 million respectively, representing 100 MW of power. The IDB is concerned with how to create a sustainable market for sustainable energy projects. The IDB is trying to work with government, private sector, NGOs, trading allies, credit sources, and regulators to find proper roles for such projects. He discusses how the IDB is working to expand its vision and objectives in renewable energy projects in Central and South America.

  7. BOILING REACTORS

    DOE Patents [OSTI]

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  8. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    SciTech Connect (OSTI)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  9. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  10. SFPNA Sustainability

    U.S. Energy Information Administration (EIA) Indexed Site

    Laura M Thompson, PhD Director of Sustainable Development & Global Policy Initiatives Sappi North America US energy consumption by source and sector 2015 US industrial sector uses 11% renewable energy US paper industry energy consumption (eia 2015) US paper industry uses 54.5% renewable energy 1.6% 21.8% 11.1% 54.5% 11.0% Petroleum Natural Gas Coal Renewable Purchased US Industry Goal on Energy Efficiency http://afandpa.org/sustainability The American Forest and Paper Association (AF&PA)

  11. REACTOR AND NOVEL METHOD

    DOE Patents [OSTI]

    Young, G.J.; Ohlinger, L.A.

    1958-06-24

    A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.

  12. CONVECTION REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  13. Burnup concept for a long-life fast reactor core using MCNPX.

    SciTech Connect (OSTI)

    Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

    2013-02-01

    This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

  14. SUSTAINABILITY SUPERSTARS

    Energy Savers [EERE]

    A special thanks to our interns, Maya Macon and Matt Schneider, for all their hard work and support this summer. We valued their time with us and wish them luck while they complete their studies. Send us your champion! SUSTAINABILITY NEWS FEMP Launches 2013 Better Buildings Federal Award Nominations are currently being accepted for the 2013 Better Buildings Federal Award (BBFA), which recognizes the Federal government's highest- performing energy efficient buildings. The BBFA is part of the

  15. SUSTAINABILITY SUPERSTARS

    Energy Savers [EERE]

    SUSTAINABILITY SUPERSTARS Cutting the ribbon at Brookhaven National Laboratory (BNL) for the Long Island Solar Farm on Nov. 18, 2011 are Doon Gibbs of BNL and Michael Holland of DOE Brookhaven Site Office along with local and commercial partners. Send us your champion! SUCCESS STORIES NREL Recycles 2,652 Pounds of Old Film Before moving to the new wing of the new LEED Platinum Research Support Facility, the National Renewable Energy Laboratory's (NREL) Publications Services needed a solution for

  16. Sustainable NREL

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory prides itself on not only advancing the renewable energy, but "walking the talk" when it comes to sustainable practices. "When you look at our laboratories, you will see energy efficiency in action, but you'll also see renewable energy. We walk the walk and we talk the talk. We believe in it and we want to live it also."

  17. SUSTAINABILITY NEWS

    Energy Savers [EERE]

    OMB and CEQ release E.O. 13693 Implementing Instructions On June 10, the Office of Management and Budget (OMB) and White House Council on Environmental Quality (CEQ) released the Implementing Instructions for Executive Order (E.O.) 13693, Planning for Federal Sustainability in the Next Decade. The instructions provide clarifying guidance and goal calculation methodologies for goals within the new EO. The Implementation Instructions also identify the governing committees, organizations, working

  18. SUSTAINABILITY NEWS

    Energy Savers [EERE]

    EISA Section 432 Reporting is Underway; Due June 18, 2014 EISA Section 432 reporting is currently underway. The June reporting process covers comprehensive energy evaluations, projects, measurement & validation, and benchmarking. Pre-populated reporting templates were distributed through DOE program offices for dissemination to sites on May 22. Completed reports are due to the Sustainability Performance Office by June 18. For more information about EISA Section 432, visit:

  19. Bioenergy for Sustainable Development

    Broader source: Energy.gov [DOE]

    Deployment Markets Keynote Bioenergy for Sustainable Development Gerard Ostheimer, Global Lead, Sustainable Bioenergy High Impact Opportunity Of Sustainable Energy For All (SE4ALL)

  20. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  1. Environmental Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Goals Environmental Sustainability Goals We are making sustainability a way of doing business at the Laboratory. Energy Conservation LANL continues to strive to ...

  2. NREL: Sustainable NREL - About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Sustainable NREL NREL proactively pursues sustainability in all its operations to ... Sustainability Integrated in Mission and Operation Fully integrated in the lab's mission ...

  3. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the ...

  4. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  5. REACTOR COOLING

    DOE Patents [OSTI]

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  6. Reduction of Worldwide Plutonium Inventories Using Conventional Reactors and Advanced Fuels: A Systems Study

    SciTech Connect (OSTI)

    Krakowski, R.A., Bathke, C.G.

    1997-12-31

    The potential for reducing plutonium inventories in the civilian nuclear fuel cycle through recycle in LWRs of a variety of mixed oxide forms is examined by means of a cost based plutonium flow systems model. This model emphasizes: (1) the minimization of separated plutonium; (2) the long term reduction of spent fuel plutonium; (3) the optimum utilization of uranium resources; and (4) the reduction of (relative) proliferation risks. This parametric systems study utilizes a globally aggregated, long term (approx. 100 years) nuclear energy model that interprets scenario consequences in terms of material inventories, energy costs, and relative proliferation risks associated with the civilian fuel cycle. The impact of introducing nonfertile fuels (NFF,e.g., plutonium oxide in an oxide matrix that contains no uranium) into conventional (LWR) reactors to reduce net plutonium generation, to increase plutonium burnup, and to reduce exo- reactor plutonium inventories also is examined.

  7. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  8. Status Report on Activities of the Systems Assessment Task Force, OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon Michelle

    2015-09-01

    The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, parametric studies, and selection of system codes. The Cladding and Core Materials and Fuel Concepts task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment Task Force is chaired by Shannon Bragg-Sitton (INL), while the Cladding Task Force will be chaired by a representative from France (Marie Moatti, Electricite de France [EdF]) and the Fuels Task Force will be chaired by a representative from Japan (Masaki Kurata, Japan Atomic Energy Agency [JAEA]). This report provides an overview of the Systems Assessment Task Force charter and status of work accomplishment.

  9. DOE Sustainability SPOtlight

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

  10. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  11. Engineering problems of tandem-mirror reactors

    SciTech Connect (OSTI)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  12. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  13. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    SciTech Connect (OSTI)

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe2+) irradiation.

  14. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Rak, Z., and D.W. Brenner, Materials Processing and Optimization (MPO) Fuels, ... Energy Agency (IAEA) Meeting on Accident Tolerant Fuel (ATF) Concepts for LWRs, ...

  16. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  17. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  18. REACTOR SHIELD

    DOE Patents [OSTI]

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  19. Reactor apparatus

    DOE Patents [OSTI]

    Echtler, J. Paul

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  20. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  1. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  2. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  3. Project Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NE I&C Review Webinar Agenda September 16, 2014 AM Welcome and Overview of LWRS and ART Programs 10:00 Webinar instructions Bruce Hallbert (INL) 10:15 Welcome and Overview of the Advanced Sensors and Instrumentation Program and Meeting Objectives Suibel Schuppner (DOE) Light Water Reactor Sustainability (LWRS) Program 10:30 Overview of LWRS Advanced II&C R&D Bruce Hallbert (INL) 11:00 Advanced Outage Control Center Shawn St. Germain (INL) 11:30 Online Monitoring of Material Aging and

  4. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  5. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  6. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  7. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  8. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  9. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  10. Sustainable Scientists

    SciTech Connect (OSTI)

    Mills, Evan

    2008-12-31

    Scientists are front and center in quantifying and solving environmental problems. Yet, as a spate of recent news articles in scientific journals point out, much can be done to enhance sustainability within the scientific enterprise itself, particularly by trimming the energy use associated with research facilities and the equipment therein (i,ii,iii, iv). Sponsors of research unwittingly spend on the order of $10 billion each year on energy in the U.S. alone, and the underlying inefficiencies drain funds from the research enterprise while causing 80 MT CO2-equivalent greenhouse-gas emissions (see Box). These are significant sums considering the opportunity costs in terms of the amount of additional research that could be funded and emissions that could be reduced if the underlying energy was used more efficiently. By following commercially proven best practices in facility design and operation, scientists--and the sponsors of science--can cost-effectively halve these costs, while doing their part to put society on alow-carbon diet.

  11. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  12. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    SciTech Connect (OSTI)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  13. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards Newsletter highlights the ...

  14. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  15. DOE Sustainability SPOtlight

    Energy Savers [EERE]

    7 October 2014 U.S. Department of Energy Sustainability Performance Office SUSTAINABILITY ANNOUNCEMENTS SPO Launches Sustainability Dashboard for Data Reporting and Analysis On October 7, the Sustainability Performance Office (SPO) launched the DOE Sustainability Dashboard to serve several important functions for DOE sustainability reporting. The Dashboard maintains historical datasets for each DOE site and National Laboratory and will collect current year data for reporting to the Office of

  16. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  17. POWER REACTOR

    DOE Patents [OSTI]

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  18. REACTOR CONTROL

    DOE Patents [OSTI]

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  19. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  20. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  1. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living a Sustainable Future Living a Sustainable Future August 1, 2013 Biomass to fuel project The Laboratory's biomass team is working to solve the energy crisis through...

  2. Science Serving Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Goal 8: Science Serving Sustainability LANL takes opportunities to engage the ... ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Community involvement: Andy Erickson and Duncan ...

  3. Sustainable Development Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    team wins best paper award at Sustainable Development Conference October 22, 2015 LANL ... Best Paper Award at the Third Annual International Conference for Sustainable Development. ...

  4. Create a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Create a Sustainable Future Image of river edge with text overlay of 'How does LANL ... We fund projects that reduce environmental effects. Create a Sustainable Future Home ...

  5. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living a Sustainable Future Living a Sustainable Future August 1, 2013 Biomass to fuel project The Laboratory's biomass team is working to solve the energy crisis through ...

  6. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... Uses renewable resources grown with sustainable forestry practices Encourages ...

  7. NREL: Sustainable NREL - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    occupant vehicles trips throughout the day. Printable Version Sustainable NREL Home About Sustainable NREL Environment Greenhouse Gases Water Waste & Pollution Green Purchasing...

  8. NREL: Sustainable NREL - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    email address: Your message: Send Message Printable Version Sustainable NREL Home About Sustainable NREL Environment Buildings Community Outreach Did you find what you needed?...

  9. (Reactor dosimetry)

    SciTech Connect (OSTI)

    West, C.D.

    1990-09-13

    The lead in most aspects of research reactor design and use passed from the USA about 15 years ago, soon after the construction of the HFIR and HFBR. The Europeans have consistently upgraded and improved their existing facilities and have built new ones including the HFR at Grenoble and ORPHEE at Saclay. They studied ultra-high flux concepts ({approximately}10{sup 20}/m{sup {minus}2}{center dot}s{sup {minus}1}) about 10 years ago, and are in the design phase of a new, highly efficient medium flux reactor to be built at Garching, near Munich in Germany. A visit was made to Interatom, the firm -- the equivalent of the Architect/Engineer for the ANS project -- responsible, under contract to the Technical University of Munich, for the new Munich reactor design. There are many similarities to the ANS design, and we reviewed and discussed technical and safety aspects of the two reactors. A request was made for some new, hitherto proprietary, experimental data on reactor thermal hydraulics and cooling that will be very valuable to the ANS project. I presented a seminar on the ANS project. A visit was made to Kernforschungszentrum Karlsruhe and knowledge was gained from Dr. Kuchle, a true pioneer of ultra-high flux reactor concepts, of their work. Dr. Kuchle kindly reviewed the ANS reference core and cooling system design (with favorable conclusions). I then talked with researchers working on materials irradiation damage and activation of structural materials by neutron irradiation, both key issues for the ANS. I was shown some new techniques they have developed for testing materials irradiation effects at high fluences, in a short time, using accelerated particle beams.

  10. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  11. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  12. METHOD OF SUSTAINING A NEUTRONIC CHAIN REACTING SYSTEM

    DOE Patents [OSTI]

    Fermi, E.; Leverett, M.C.

    1957-11-12

    This patent relates to neutronic reactors and a method of sustainlng a chain reaction. The reactor shown in the patent for carrying out the method is the gas-cooled type comprised of a solid moderator having a plurality of passages therethrough for receiving bodies of fissionable material. In carrying out the method, the reactor is loaded by inserting in the passages fuel elements and moderator material in a proportion to sustain a chain reaction As the reproduction ratio decreases below the desired fiiaire due to impurities formed during operation of the reactor, the moderator material is gradually replaced with additional fuel material to maintain the reproduction ratio above unity.

  13. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    87 To fundamentally understand the thermal and radiation stability of duplex stainless steel welds serving in LWRs would significantly contribute to the LWRs sustainability by ...

  14. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  15. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Starr, C.

    1963-01-01

    This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

  16. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  17. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  18. Neutronic reactor

    DOE Patents [OSTI]

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  19. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  20. Safer nuclear reactors could result from Los Alamos research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safer nuclear reactors could result from research Safer nuclear reactors could result from Los Alamos research Self-repairing materials within nuclear reactors may one day become a reality. March 25, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory

  1. Office of Sustainability Support

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Sustainability Support serves as AUs organizational lead in partnering with the Departments Sustainability Performance Office to support the understanding and implementation of sustainability programs and requirements within the Department, including through supporting development and implementation of DOEs annual Strategic Sustainability Program Plan.

  2. Federal Sustainable Print Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-07-07

    This Guide provides acceptable approaches for implementing the IT sustainability requirements and criteria required by DOE Order 436.1, Departmental Sustainability, dated 5-2-11 and related to the sustainability requirements contained in Executive Order 13693, "Planning for Federal Sustainability in the Next Decade.

  3. Sustainable Nanomaterials Industry Perspective

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by MeadWestvaco Corporation held on June 26, 2012

  4. Federal Sustainable Print Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-11-17

    The Guide provides acceptable approaches for implementing the IT sustainability requirements and criteria required by DOE Order 436.1, Departmental Sustainability, dated 5-2-11, and related to the sustainability requirements contained in Executive Order 13693, "Planning for Federal Sustainability in the Next Decade." Does not cancel/supersede other directives.

  5. Evolutionary/advanced light water reactor data report

    SciTech Connect (OSTI)

    1996-02-09

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

  6. Steady-state spheromak reactor studies. Revision

    SciTech Connect (OSTI)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.

  7. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  8. Doe Sustainability SPOtlight - 2014 Sustainability Awards

    Energy Savers [EERE]

    ... of Energy Sustainability Awards CHANGE AGENT An individual (or group of individuals) ... group actions, tracking progress against objectives, and keeping federal staff engaged. ...

  9. REACTOR MONITORING

    DOE Patents [OSTI]

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  10. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  11. REACTOR UNLOADING

    DOE Patents [OSTI]

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  12. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  13. Nuclear reactor

    DOE Patents [OSTI]

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  14. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  15. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  16. Neutronic reactor

    DOE Patents [OSTI]

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  17. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, J.B.

    1960-01-01

    A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.

  18. A survey of alternative once-through fast reactor core designs

    SciTech Connect (OSTI)

    Fei, T.; Richard, J. G.; Kersting, A. R.; Don, S. M.; Oi, C.; Driscoll, M. J.; Shwageraus, E.

    2012-07-01

    Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO{sub 2}/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO{sub 2} fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features. (authors)

  19. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  20. REACTOR CONTROL

    DOE Patents [OSTI]

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  1. B Reactor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operational Management History Manhattan Project Signature Facilities B Reactor B Reactor B Reactor Completed in September 1944, the B Reactor was the world's first ...

  2. Nuclear reactor

    DOE Patents [OSTI]

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  3. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  4. Photocatalytic reactor

    DOE Patents [OSTI]

    Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

    1999-01-19

    A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

  5. Sustainable Nanomaterials Workshop

    Broader source: Energy.gov [DOE]

    The Sustainable Nanomaterials Workshop (held in Washington, D.C., on June 26, 2012) gathered stakeholders from industry and academia to discuss the current state of the art for sustainable nanomat...

  6. Sustainability | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability At Jefferson Lab Common sources of federal greenhouse gas emissions, according to the U.S. Department of Energy. A D D I T I O N A L L I N K S: Sustainability Home ...

  7. 2014 DOE Sustainability Awards

    Broader source: Energy.gov [DOE]

    The 2014 U.S. Department of Energy (DOE) Sustainability Awards continues efforts to recognize teams and individuals for their outstanding contributions to the Department’s sustainability mission, including accomplishments in managing pollution, waste, energy, water, and vehicle fleets.

  8. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1995: Twenty-eighth annual report. Volume 17

    SciTech Connect (OSTI)

    Thomas, M.L.; Hagemeyer, D.

    1997-01-01

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 1995 annual reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Since there are no geologic repositories for high-level waste currently licensed, only six categories will be considered in this report. In 1995, the annual collective dose per reactor for light water reactor licensees (LWRs) was 199 person-cSv (person-rem). This is the same value that was reported for 1994. The annual collective dose per reactor for boiling water reactors (BWRs) was 256 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 170 person-cSv (person-rem). Analyses of transient worker data indicate that 17,153 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1995, the average measurable dose calculated from reported data was 0.26 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.32 cSv (rem).

  9. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Goal 3: High Performance Sustainable Buildings Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its occupants. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL The Radiological Laboratory

  10. Metrology for Sustainable Nanomaterials

    Broader source: Energy.gov [DOE]

    Presentation by Michael Postek (National Institute of Standards and Technology, NIST) for the Sustainable Nanomaterials Workshop on June 26, 2012

  11. The sustainable system for global nuclear energy utilization

    SciTech Connect (OSTI)

    Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Kawashima, Masatoshi; Nakayama, Yoshiyuki; Ishiguma, Kazuo; Fuji-ie, Yoichi

    2007-07-01

    The sustainable system for global nuclear energy utilization has been developed based on the concept of the Self-Consistent Nuclear Energy System. As the results, it is clarified that metallic fuel fast reactor cycle with recycling of actinides and five LLFPs is one of the most promising systems for the sustainable nuclear utilization. It is important to develop the related technologies toward its realization. (authors)

  12. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    SciTech Connect (OSTI)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo; Sartori, Alberto; Ricotti, Marco

    2012-07-01

    . Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the

  13. NREL: Sustainable NREL - Community Benefits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Benefits Essential to the lab's sustainability efforts is helping sustain the ... to help them replicate the lab's sustainability model Educating learners at all ...

  14. Sustainable Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Sustainable Acquisition Sustainable Acquisition Mission The team establishes a national approach to expand purchases of sustainable goods and services, including ...

  15. Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Awards Sustainability Awards Significant sustainability achievements at U.S. Department of Energy (DOE) facilities are recognized in several ways. DOE recognizes...

  16. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Sustainability Opening Plenary Session: Bioenergy Sustainability-Charting the Path toward a Viable Future Jody Endres, Assistant Professor, College of Agricultural, Consumer and Environmental Sciences, University of Illinois b13_endres_op-2.pdf (1.43 MB) More Documents & Publications Biomass 2013 Agenda 2015 Peer Review Presentations-Plenaries Biomass 2013: Breakout Speaker Biographies

  17. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. H Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities H Reactor About Us About Hanford Cleanup Hanford History ... 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and ...

  19. C Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs ... 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and ...

  20. F Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities F Reactor About Us About Hanford Cleanup Hanford History ... 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and ...

  1. N Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities N Reactor About Us About Hanford Cleanup Hanford History Hanford ... 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and ...

  2. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards

    Office of Energy Efficiency and Renewable Energy (EERE)

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2013 Sustainability Awards.

  3. Control Means for Reactor

    DOE Patents [OSTI]

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  4. Blueprint for Sustainability - Sustainable Solutions for Every...

    Broader source: Energy.gov (indexed) [DOE]

    Highlights of Ford's near, mid, and long term plans for sustainability with a focus on efficient diesel engines and hybrid vehicles. deer08kapp.pdf (1.25 MB) More Documents & ...

  5. Power Burst Facility (PBF) Reactor Reactor Decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Click here to view Click here to view Reactor Decommissioning Click on an image to enlarge A crane removes the reactor vessel from the Power Burst Facility (top), then places it ...

  6. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  7. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  8. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.

    1957-09-17

    A reactor of the type having coolant liquid circulated through clad fuel elements geometrically arranged in a solid moderator, such as graphite, is described. The core is enclosed in a pressure vessel and suitable shielding, wherein means is provided for circulating vapor through the core to superheat the same. This is accomplished by drawing off the liquid which has been heated in the core due to the fission of the fuel, passing it to a nozzle within a chamber where it flashes into a vapor, and then passing the vapor through separate tubes extending through the moderator to pick up more heat developed in the core due to the fission of the fuel, thereby producing superheated vapor.

  9. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license

  10. Nuclear reactor

    DOE Patents [OSTI]

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  11. Sustainability Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to some of America's greatest sustainability challenges in energy, environment, ... Examples of our sustainability research include the following, Image Magnetic ...

  12. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Bioenergy Sustainable Bioenergy Argonne's research in bioenergy includes topics associated with feedstock production and biomass conversion. Argonne scientists also ...

  13. Reactor and method of operation

    DOE Patents [OSTI]

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  14. Development of COBRA-TF for Modeling Full-Core Reactor Operating...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Oak Ridge National Laboratory (ORNL); Oak Ridge Leadership Computing Facility (OLCF); Consortium for Advanced Simulation of LWRs (CASL) Sponsoring Org: USDOE Country ...

  15. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  16. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  17. NREL Sustainability Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date: March 25, 2015 Technology Area: Sustainability PIs: Daniel Inman and Garvin Heath Organization: National Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information. NREL Sustainability Analysis WBS 4.2.1.30 2 Goal - Air Emissions from Bioenergy Systems NREL's sustainability analysis program aims to better understand air emissions from the biofuel supply chain, applicable air regulations and implications for cost,

  18. Environmental Sustainability Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Goals Environmental Sustainability Goals We are making sustainability a way of doing business at the Laboratory. Energy Conservation LANL continues to strive to reduce greenhouse gas emissions to meet and surpass Department of Energy goals. The Lab's goal is to reduce emissions from energy use in our facilities and driving vehicles in our fleet by 28 percent. Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by

  19. DOE Sustainability SPOtlight

    Energy Savers [EERE]

    6 September 2014 U.S. Department of Energy Sustainability Performance Office SUSTAINABILITY ANNOUNCEMENTS OMB/CEQ Ranks The Most Sustainable Agencies in the Federal Government In an effort to lead by example, the Obama administration has put forth multiple executive orders in hopes of leading agencies toward greener technology and lower greenhouse gas emissions. The Office of Management and Budget (OMB) has teamed up with the Council on Environmental Quality to track the progress of these

  20. Sustainable Development Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its needs without diminishing the prospects of future generations." - Lester R. Brown, Founder and President, Worldwatch Institute Department of Energy facilities managers have a significant role to play in achieving the goals of E.O. 13423, Strengthening Federal Environmental Energy and Transportation Management and E.O. 13514, Federal Leadership in

  1. Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Sustainability Sustainability The Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and advances environmental, economic, and social benefits. BETO's Sustainability Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a

  2. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  3. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect (OSTI)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  4. SUSTAINABILITY SUPERSTAR Environmental Management's

    Energy Savers [EERE]

    Environmental Management's Donna Green is retiring! Donna began her DOE career at Argonne National Lab in 1998 before moving to EM in 2008 and quickly assuming the lead on their Sustainability program. She has led the charge to integrate sustainable practices into all aspects of the EM mission, and is one of the 2012 DOE Sustainability Award winners for that effort. We wish her well in her new endeavors! Send us your champion! SUSTAINABILITY NEWS 11 DOE Sites Win Awards in EPA 2012 Federal

  5. Sustainable Buildings and Infrastructure

    Broader source: Energy.gov [DOE]

    "A sustainable society is one which satisfies its needs without diminishing the prospects of future generations."- Lester R. Brown, Founder and President, Worldwatch Institute

  6. NREL: Sustainable NREL - Cafeteria

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Features Composting and recycling bins Locally-sourced food Dual-rinse, water conserving dishwashers Methods for recycling stormwater Native and xeriscape ...

  7. Site Sustainability Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    436.1 SITE SUSTAINABILITY PLAN Princeton Plasma Physics Laboratory PPPL is operated by ... Laboratory Director, Operations Princeton Plasma Physics Laboratory December 2014 FY 2015 ...

  8. Sustainability & Strategic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Technologies Office * Design cases of biofuel pathways * Environmental sustainability metrics for conversion stage * GREET analysis of full pathway to identify drivers of GHG ...

  9. Sustainability | Department of Energy

    Energy Savers [EERE]

    State, has achieved the first Leadership for Energy and Environmental Design (LEED) "gold" certification for sustainable design. EM Staff and Contractors Powerpedia EM Portal

  10. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and bioscience capabiities. Occupational Medicine will become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field...

  11. Portsmouth Site Sustainability Team

    Broader source: Energy.gov [DOE]

    Planning and coordination of recycling and other environmentally responsible efforts. Site Sustainability Team (SST). environmental stewardship and compliance, Executive Order Orders 13514 13423, Environmental Compliance, Acquisition, Cleanup, EMS, Energy, Greenhouse Gases, High Performance Buildings, NEPA, Electronics Stewardship, Pollution Prevention, Chemical Management, Sustainability, Transportation, Climate Change Adaption, Water Efficiency, Natural Resources and development and implementation of the PORTS Site Sustainability Plan Portsmouth Site Sustainability Plan. Fluor-B&W Portsmouth, Fluor-BWXT Portsmouth, BWCS BWXT Conversion Services, WEMS Wastren EnergX Mission Support.

  12. NREL: Sustainable NREL - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Below are news stories related to NREL's sustainability efforts. February 22, 2016 NREL analysis finds tax credit extensions can impact renewable energy deployment and ...

  13. 2016 DOE Sustainability Awards

    Office of Energy Efficiency and Renewable Energy (EERE)

    LM received a 2016 DOE Sustainability Award, in the Waste Reduction and Pollution Prevention category, for groundwater treatment innovations at the Rocky Flats, Colorado, Site. See page 6.

  14. WSHFC Sustainable Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Washington State Housing Finance Commission (WSHFC) has established a Sustainable Energy Program to offer low-cost financing for new green construction, energy efficiency upgrades, and...

  15. Sustainability fact sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitment to Bioenergy Sustainability The U.S. Department of Energy's Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems ...

  16. Sustainability Performance Office News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    management-spo1461771 Sustainability Performance Office News en Executive Order 13693 Training Now Available On Demand http:energy.govmanagementspoarticles...

  17. Sustainability: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability: Energy Efficiency (Green Consulting Unit) Overview Walks students through the process of building a model home while considering 11 parameters that influence energy ...

  18. Implementation of Stochastic Polynomials Approach in the RAVEN Code

    SciTech Connect (OSTI)

    Cristian Rabiti; Paul Talbot; Andrea Alfonsi; Diego Mandelli; Joshua Cogliati

    2013-10-01

    RAVEN, under the support of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, has been tasked to provide the necessary software and algorithms to enable the application of the conceptual framework developed by the Risk Informed Safety Margin Characterization (RISMC) [1] path. RISMC is one of the paths defined under the Light Water Reactor Sustainability (LWRS) DOE program.

  19. Nuclear reactors and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Pearlman, H

    1989-11-01

    According to the author, the first sustained nuclear fission chain reaction was not at the University of Chicago, but at the Oklo site in the African country of Gabon. Proof of this phenomenon is provided by mass spectrometric and analytical chemical measurements by French scientists. The U.S. experience in developing power-producing reactors and their related fuel and fuel cycles is discussed.

  20. Sustainable Subsurface Energy Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Subsurface Energy Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  1. Sustainability at BPA 2012

    SciTech Connect (OSTI)

    2012-12-01

    BPA’s Sustainability Action Plan is grounded in our commitment to environmental stewardship and Executive Order 13514 that calls on the federal agencies to “lead by example” by setting a 2020 greenhouse gas emissions target, increasing energy efficiency; reducing fleet petroleum consumption; conserving water; reducing waste; supporting sustainable communities; and leveraging federal purchasing power to promoting environmentally responsible products and technologies.

  2. 2014 DOE Sustainability Awards

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2014, the U.S. Department of Energy (DOE) Sustainability Awards recognized 14 teams and individuals representing DOE sites and national laboratories. These winners are being recognized for their outstanding sustainability contributions, including accomplishments in managing pollution, waste, energy, water, and vehicle fleets.

  3. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  4. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1994. Twenty-seventh annual report

    SciTech Connect (OSTI)

    Thomas, M.L.; Hagemeyer, D.

    1996-01-01

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). Annual reports for 1994 were received from a total of 303 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 303 licensees indicated that 152,028 individuals were monitored, 79,780 of whom received a measurable dose. The collective dose incurred by these individuals was 24,740 person-cSv (person-rem){sup 2} which represents a 15% decrease from the 1993 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.31 cSv (rem) for 1994. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. In 1994, the annual collective dose per reactor for light water reactor licensees (LWRs) was 198 person-cSv (person-rem). This represents a 18% decrease from the 1993 value of 242 person-cSv (person-rem). The annual collective dose per reactor for boiling water reactors (BWRs) was 327 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 131 person-cSv (person-rem). Analyses of transient worker data indicate that 18,178 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1994, the average measurable dose calculated from reported data was 0.28 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.31 cSv (rem).

  5. Light Water Reactor Sustainability Program: Integrated Program Plan

    Broader source: Energy.gov [DOE]

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more...

  6. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    SciTech Connect (OSTI)

    Bolisetti, Chandrakanth; Coleman, Justin Leigh

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area of interest. The specific nonlinear soil behavior included in the NLSSI calculation presented in this report is gapping and sliding. Other NLSSI effects are not included in the calculation. The results presented in this report document initial model runs in the linear and nonlinear analysis process. Final comparisons between traditional and advanced SPRA will be presented in the September 30th deliverable.

  7. Sustainment of Spheromak Pasmas in SSPX

    SciTech Connect (OSTI)

    Stallard, B W; Hill, D N; Holcomb, C; Hooper, E B; McLean, H S; Wood, RD; Woodruff, S; Bulmer, R H; Ryutov, D D; Pearlstein, L D; Wang, Z

    2001-06-13

    SSPX (Sustained Spheromak Physics eXperiment) was constructed to investigate the key physics issues of buildup and sustainment of spheromak plasmas with elevated electron temperature. Long pulse buildup to high magnetic field and temperature, at modest gun current, may point the way to a potentially simpler and more compact fusion reactor. Reported here are T{sub e} measurements in new magnetic flux geometries, results from sustainment experiments with {approx}1ms pulses, and power balance modeling of buildup. The experiment uses coaxial gun injection. Tungsten coated walls reduce plasma impurities. The magnet coil set has been upgraded from 3 (base set) to 9 coils (bias coils) to control the vacuum magnetic flux geometry within the gun and flux conserver (a=l=0.5 m). SSPX is powered by a formation bank (0.5 MJ, {tau}{sub rise}{approx}0.15 ms) and a sustainment bank (1.5 MJ, {tau}{sub p}{approx}1 ms). Radiated power <20% of input power and the burn-out of low Z impurities (C, N, and O{sup +Z{le}5}) have been achieved using bakeout, wall conditioning, and titanium gettering. These techniques have produced long decay time plasmas and electron temperature > 100 eV.

  8. Argonne receives 2014 Illinois Governor's Sustainability Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives 2014 Illinois Governor's Sustainability Award By Else Tennessen * November 10, ... Illinois Sustainable Technology Center's 2014 Illinois Governor's Sustainability Award. ...

  9. Interagency Sustainability Working Group | Department of Energy

    Energy Savers [EERE]

    Facilities Sustainable Buildings & Campuses Interagency Sustainability Working Group ... Working Group (ISWG) is the coordinating body for sustainable federal buildings. ...

  10. Enabling Sustainable Acquisition by Improving Procurement Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Sustainable Acquisition by Improving Procurement Systems Enabling Sustainable Acquisition by Improving Procurement Systems Enabling Sustainable Acquisition by Improving ...

  11. Sustainable Nanomaterials from Forest Products: Umaine Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Nanomaterials from Forest Products: Umaine Perspective Sustainable Nanomaterials from Forest Products: Umaine Perspective Sustainable Nanomaterials from Forest Products ...

  12. Sustainability in Real Estate Operations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Convention Center * Phoenix, Arizona Sustainability in Real Estate Operations Sustainability Sustainability Planning Eleni Reed GSA Public Buildings Service August 11, 2015 Sustainability in Real Estate Operations GSA incorporates sustainability practices in real estate operations Sustainability performance is an integral aspect of GSA's real estate operations 3 GSA PORTFOLIO 8,721 total assets * 376.9 million sq. ft. 1,574 owned assets * 183.4 million owned sq. ft. 7,147 leased assets * 193.4

  13. Metrics for the Evaluation of Light Water Reactor Accident Tolerant Fuel

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2001-09-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of LWRs became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of accident tolerant fuel (ATF) development is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. The U.S. Department of Energy is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This paper summarizes technical evaluation methodology proposed in the U.S. to aid in the optimization and down-selection of candidate ATF designs. This methodology will continue to be refined via input from the research community and industry, such that it is available to support the planned down-selection of ATF concepts in 2016.

  14. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  15. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  16. Hybrid plasmachemical reactor

    SciTech Connect (OSTI)

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  17. Diversity & Flexibility Key to Sustainability

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsDiversity & Flexibility Key to SustainabilityDavid Babson, Senior Fuels Engineer, Union of...

  18. Fermilab | Sustainability | Nature/Ecology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab at Work Search Search Go Skip over navigation to main content Sustainability Nature and Ecology Sustainability Tips Electronics Stewardship Energy and Water Conservation...

  19. Sustainability Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Sustainability Plan This plan describes the Laboratory's projects, tasks, and activities towards helping achieve Department of Energy sustainability goals. Recycling ...

  20. Sustainable Transportation: Accelerating Widespread Adoption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reduce GHG emissions, a truly sustainable solution will require more than just ... NREL's sustainable transportation research, development, and deployment (RD&D) efforts are ...

  1. Sustainable Nanomaterials Workshop - Participants List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Nanomaterials Workshop June 26 th , 2012 - Washington, D.C. Participant List ... of Maine Barry Goodell Department of Sustainable Biomaterials Gopal Goyal International ...

  2. Alliance for Sustainable Energy, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dan Arvizu, President Alliance for Sustainable Energy, LLC National Renewable Energy ... Alliance for Sustainable Energy, LLC (Alliance) manages and operates NREL under a contract ...

  3. Sustainable Transportation - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Closer Look Slideshow: Sustainable Transportation NREL research, development, and ... Continuum Sustainable Transportation Fall 2013 Issue 5 Download the print version. RSS ...

  4. Reactor System Transient Code.

    Energy Science and Technology Software Center (OSTI)

    1999-07-14

    RELAP3B describes the behavior of water-cooled nuclear reactors during postulated accidents or power transients, such as large reactivity excursions, coolant losses or pump failures. The program calculates flows, mass and energy inventories, pressures, temperatures, and steam qualities along with variables associated with reactor power, reactor heat transfer, or control systems. Its versatility allows one to describe simple hydraulic systems as well as complex reactor systems.

  5. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  6. NEUTRONIC REACTOR POWER PLANT

    DOE Patents [OSTI]

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  7. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-6.

  8. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide highlights the DOE O 413.3B drivers for incorporating high performance sustainable building (HPSB) principles into Critical Decisions 1 through 4 and provides guidance for implementing the Order's HPSB requirements.

  9. Create a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Create a Sustainable Future Image of river edge with text overlay of 'How does LANL accomplish future stewardship of the natural and historical resources?' We sample to detect any...

  10. Developing Alaskan Sustainable Housing

    Broader source: Energy.gov [DOE]

    The Association of Alaska Housing Authorities is holding a 3-day training event for housing development professionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

  11. NEUTRONIC REACTOR SHIELDING

    DOE Patents [OSTI]

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  12. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  13. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  14. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  15. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  16. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  17. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  18. Sustainability at BPA 2013

    SciTech Connect (OSTI)

    2013-12-01

    THIS IS THE THIRD YEAR BPA has reported on sustainability program accomplishments. The report provides an opportunity to review progress made on sustainability initiatives, evaluate how far we have come and how much we can improve. The program has demonstrated maturation as the concepts of sustainability and resource conservation are communicated and understood. The sustainability program started as an employee-driven “grass roots” effort in 2010. Sustainability is becoming a consideration in how work is performed. The establishment of several policies supporting sustainability efforts proves the positive progress being made. In 2009, BPA became a founder and member of The Climate Registry, a nonprofit collaboration that sets standards to calculate, verify and report greenhouse gas emissions. This year, BPA completed and published our Greenhouse Gas inventory for the years of 2009, 2010 and 2011. The 2012 inventory is currently in the process of third-party verification and scheduled for public release in January 2014. These inventories provide a concrete measure of the progress we are making.

  19. Sustainable Biofuels Development Center

    SciTech Connect (OSTI)

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  20. An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2010-10-01

    Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zubers hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.

  1. Nissan Sustainability Showcase: 21st Century Sustainable Manufacturing

    SciTech Connect (OSTI)

    2010-04-19

    Presentation from the Save Energy Now LEADER Industrial Sustainability and Energy Management Showcase.

  2. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  3. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  4. Nuclear reactor overflow line

    DOE Patents [OSTI]

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  5. B Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  6. SUSTAINABILITY ANNOUNCEMENTS 2014 DOE Sustainability Awards Now Accepting Nominations

    Energy Savers [EERE]

    2014 DOE Sustainability Awards Now Accepting Nominations The Sustainability Performance Office (SPO) sponsors the DOE Sustainability Awards to recognize outstanding achievements of teams and individuals at DOE facilities across the country. The DOE Sustainability Awards celebrate programs, projects, and people that advance the Department's sustainability mission, including excellence in energy, water, and vehicle fleet management. The process for submitting nominations for the 2014 Awards is

  7. SUSTAINABILITY NEWS Update and Reminder: FY 2016 Sustainability Reporting

    Energy Savers [EERE]

    Update and Reminder: FY 2016 Sustainability Reporting In September, the Sustainability Performance Office (SPO) released guidance for annual sustainability reporting. Each year DOE sites prepare Site Sustainability Plans (SSPs) and Consolidated Energy Data Reports (CEDRs) to assess performance against federal sustainability goals and plan for future goal attainment. This year's SSPs and CEDRs are due to the SPO by December 7, 2015. On October 23, the SPO revised the SSP guidance to further

  8. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  9. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  10. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  11. Fission reactors and materials

    SciTech Connect (OSTI)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

  12. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current generation light water reactors LWRs sodium cooled fast reactors SFRs small modular reactors SMRs and Next Generation Nuclear Plants NGNPs produce harsh environments in and ...

  13. Flipbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Current generation light water reactors LWRs sodium cooled fast reactors SFRs small modular reactors SMRs and Next Generation Nuclear Plants NGNPs produce harsh environments in and ...

  14. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  15. The road to sustainability

    SciTech Connect (OSTI)

    Sarrao, John L; Crabtree, George

    2009-01-01

    Sustainability is the hottest topic in energy research today, but what does it actually mean? George Crabtree and John Sarrao describe what makes a technology sustainable, and outline the materials-science challenges standing between us and clean, long-lasting energy. Although most people agree that more-sustainable energy technologies are desirable, they often find it harder to agree on exactly how sustainable these technologies need to be, and even precisely what is meant by sustainability. To clarify the debate, we suggest three criteria for sustainability, each of which captures a different feature of the problem. While we do not have the lUxury of achieving full sustainability for all of our next-generation energy technologies, we can use these definitions to select our strategic sustainability targets and track our progress toward achieving them. As will become clear, the most sustainable energy technologies require the most challenging fundamental science breakthroughs. The first criterion for sustainability is 'lasts a long time'. This quality has been a feature of many energy sources we have used historically, including wood in ancient times and oil throughout most of the 20th century. The definition of 'long time' is, of course, relative: the world's demand for energy long ago outpaced the ability of wood to supply it, and the production of oil is likely to peak sometime within the next few decades. Substantial reductions in the rate of oil consumption through higher-efficiency processes can significantly impact on how long non-renewable resources last. In applying the 'long time' criterion, we need to distinguish between energy sources that are effectively limitless and those that are finite but, for the moment, adequate. The second criterion for sustainability is 'does no harm'. Burning fossil fuels releases pollutants such as sulphur and mercury that endanger human health, as well as greenhouse gases like carbon dioxide that threaten climate stability

  16. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  17. NEUTRONIC REACTOR SYSTEM

    DOE Patents [OSTI]

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  18. THERMAL NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  19. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  20. Small Modular Reactors (SMRs) | Department of Energy

    Energy Savers [EERE]

    Reactor Technologies Small Modular Reactors (SMRs) Small Modular Reactors (SMRs) ... to the NRC by late-2016 Complete reactor module final design by mid-2019 For more ...

  1. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  2. Analysis and Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis and Sustainability 2013 Project Peer Review Alison Goss Eng BETO Operations Lead 2 | Bioenergy Technologies Office Expanding to commercial-scale volumes while delivering on the promise of clean renewable energy requires proactively: * Understanding resource availability * Considering complex policy, socioeconomic, market, and environmental factors * Developing beneficial collaborative solutions with diverse stakeholders * Promoting technologies and best practices that enable a viable,

  3. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  4. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smr Small Modular Reactors The Savannah River National Laboratory (SRNL) has announced several partnerships to bring refrigerator-sized modular nuclear reactors, known as Small Modular Reactors or SMRs, to the Savannah River Site facility and jump start development of the U.S. Energy Freedom CenterTM. Currently, all large commercial power reactors in the United States and most in the rest of the world are based on "light water" designs - that is, they use uranium fuel and ordinary

  5. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  6. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  7. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOE Patents [OSTI]

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  8. Sustainable NREL - Site Sustainability Plan FY 2015 (Management Publication)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

  9. SUSTAINABILITY NEWS 2016 Site Sustainability Plan (SSP) Guidance Issued

    Energy Savers [EERE]

    2016 Site Sustainability Plan (SSP) Guidance Issued On September 18, the Sustainability Performance Office (SPO) issued guidance for annual sustainability data reporting. The 2016 Site Sustainability Plan (SSP) Guidance, Consolidated Energy Data Report (CEDR) Technical Support Document (TSD), and pre-populated site CEDRs were distributed to HQ program points of contact for further dissemination to the field. Completed SSPs and CEDRs are due to the SPO by December 7. Beginning October 14, the SPO

  10. SUSTAINABILITY NEWS CEQ Issues Revised Guiding Principles for Sustainable

    Energy Savers [EERE]

    CEQ Issues Revised Guiding Principles for Sustainable Federal Buildings The White House Council on Environmental Quality (CEQ) has issued revisions to the Guiding Principles for Sustainable Federal Buildings (Guiding Principles) per Executive Order (E.O.) 13693, Planning for Federal Sustainability for the Next Decade. The new Guiding Principles updates and replaces the High Performance and Sustainable Buildings Guidance issued by CEQ in December 2008. These guidelines outline the new

  11. SUSTAINABILITY NEWS President Obama Issues Executive Order on Sustainability

    Energy Savers [EERE]

    President Obama Issues Executive Order on Sustainability On March 19, President Obama issued an executive order (E.O.) aimed at maintaining federal leadership in sustainability. Planning for Federal Sustainability in the Next Decade (E.O. 13693) will serve as the roadmap for ensuring federal agencies incorporate sustainable design into building infrastructure, reduce facility energy and water use, increase the use of renewable energy, and reduce fleet-related greenhouse gas (GHG) emissions. The

  12. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  13. Actinide management with commercial fast reactors

    SciTech Connect (OSTI)

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  14. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  15. Enthusiastic employees: sustaining the Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy sustainability is a daunting task: How do we develop top-notch innovations with ... Take Monica Witt, for example. The Lab's sustainability program manager and a key advocate ...

  16. Sustainable Acquisition | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The U.S. Department of Energy's (DOE) Sustainable Acquisition Program serves to ensure the purchase of more sustainable products by working with DOE sites to help them integrate ...

  17. NEUTRONIC REACTOR BURIAL ASSEMBLY

    DOE Patents [OSTI]

    Treshow, M.

    1961-05-01

    A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

  18. NEUTRONIC REACTOR SYSTEM

    DOE Patents [OSTI]

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  19. Light water reactor program

    SciTech Connect (OSTI)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  20. REFLECTOR FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  1. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  2. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  3. NREL's Sustainable Campus Overview

    SciTech Connect (OSTI)

    Rukavina, Frank; Pless, Shanti

    2015-04-06

    The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.

  4. Site Sustainability Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 DOE ORDER 436.1 SITE SUSTAINABILITY PLAN Princeton Plasma Physics Laboratory PPPL is operated by Princeton University for the U.S. Department of Energy under contract DE-AC02-09CH1 PLAN APPROVAL Robert S. Sheneman Deputy Head Environment, Safety, Health & Security Department Michael Viola Head, Facilities & Site Services Division Jerry D. Levine Head, Environment, Safety, Health & Security Department William B. Davis Head, Information Technology Department, CIO Michael D. Williams

  5. Sustainable Agriculture Network | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Network Jump to: navigation, search Logo: Sustainable Agriculture Network Name: Sustainable Agriculture Network Website: clima.sanstandards.org References: Sustainable...

  6. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively ...

  7. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf ...

  8. Department of Energy 2013 Sustainability Awards Information ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Sustainability Awards Information Department of Energy 2013 Sustainability Awards Information Flyer list 2013 Sustainability Awards nomination and category information. PDF icon ...

  9. 2016 DOE Sustainability Awards Information Sheet | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 DOE Sustainability Awards Information Sheet 2016 DOE Sustainability Awards Information Sheet Provides information about the 2016 DOE Sustainability Awards nomination process. ...

  10. High Performance and Sustainable Buildings Guidance | Department...

    Office of Environmental Management (EM)

    High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance (192.76 KB) More ...

  11. Sustainable Buildings and Infrastructure | Department of Energy

    Office of Environmental Management (EM)

    Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure "A sustainable society is one which satisfies its needs without diminishing the prospects of ...

  12. High Performance Sustainable Building Design RM | Department...

    Office of Environmental Management (EM)

    High Performance Sustainable Building Design RM High Performance Sustainable Building Design RM The High Performance Sustainable Building Design (HPSBD) Review Module (RM) is a ...

  13. Institutional Change Process for Sustainability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for Sustainability Institutional Change Process for Sustainability For establishing institutional change in a federal agency to achieve sustainability or other energy ...

  14. Sustainability in Bioenergy: A Nation Connected | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability in Bioenergy: A Nation Connected Sustainability in Bioenergy: A Nation Connected Addthis "Sustainability in Bioenergy: A Nation Connected" is a short documentary ...

  15. Contact the Sustainability Performance Office | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home About Contact the Sustainability Performance Office Contact the Sustainability Performance Office The U.S. Department of Energy Sustainability Performance Office ...

  16. 2015 Strategic Sustainability Performance Plan | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Strategic Sustainability Performance Plan 2015 Strategic Sustainability Performance Plan Document displays the U.S. Department of Energy's 2015 Strategic Sustainability ...

  17. Go Sustainable Energy, LLC | Open Energy Information

    Open Energy Info (EERE)

    Sustainable Energy, LLC Jump to: navigation, search Logo: Go Sustainable Energy, LLC Name: Go Sustainable Energy, LLC Address: 3857 N. High Street, Suite 208 Place: Columbus, Ohio...

  18. EERE FY 2016 Budget Overview -- Sustainable Transportation |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation EERE FY 2016 Budget Overview -- Sustainable Transportation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Sustainable...

  19. Alliance for Sustainable Colorado | Open Energy Information

    Open Energy Info (EERE)

    for Sustainable Colorado Jump to: navigation, search Logo: Alliance for Sustainable Colorado Name: Alliance for Sustainable Colorado Address: 1536 Wynkoop Street Place: Denver,...

  20. Contact the Sustainability Performance Office | Department of...

    Office of Environmental Management (EM)

    Performance Office Contact the Sustainability Performance Office The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) oversees departmental sustainability...

  1. Some Aspects of Reactor Theory

    DOE R&D Accomplishments [OSTI]

    Weinberg, Alvin M.

    1952-10-10

    Some general remarks are made on reactor theory, particularly the asymptotic theory and multigroup methods. Unsolved reactor problems are also briefly discussed. (B.J.H.)

  2. Reactor Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    reactor materials crosscut effort will enable the development of innovative and ... Research into specific degradation modes or material needs unique to a particular reactor ...

  3. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect (OSTI)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic honeycomb structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  4. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  5. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton

    2014-02-01

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  6. A Blueprint for Urban Sustainability: Integrating Sustainable Energy Practices into Metropolitan Planning, May 2004

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blueprint to define sustainable energy planning as integrated energy & environmental planning to support community sustainability

  7. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  8. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  9. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  10. On Enhancing Risk Monitors for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (AdvSMRs) can contribute to safe, sustainable, and carbon-neutral energy production. However, the economics of AdvSMRs suffer from the loss of economy-of-scale for both construction and operation. The controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance (O&M) costs. These expenses could potentially be managed through optimized scheduling of O&M activities for components, reactor modules, power blocks, and the full plant. Accurate, real-time risk assessment with integrated health monitoring of key active components can support scheduling of both online and offline inspection and maintenance activities.

  11. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  12. CONTROL FOR NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  13. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  14. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  15. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  16. COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  17. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  18. Reactor safety assessment system

    SciTech Connect (OSTI)

    Sebo, D.E.; Bray, M.A.; King, M.A.

    1987-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (USNRC). RSA is designed for use at the USNRC Operations Center in the event of a serious incident at a licensed nuclear power plant. RSAS is a situation assessment expert system which uses plant parametric data to generate conclusions for use by the NRC Reactor Safety Team. RSAS uses multiple rule bases and plant specific setpoint files to be applicable to all licensed nuclear power plants in the United States. RSAS currently covers several generic reactor categories and multiple plants within each category.

  19. NUCLEAR REACTOR FUEL SYSTEMS

    DOE Patents [OSTI]

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  20. Beyond Compliance: Integrating Nonproliferation into Corporate Sustainability

    SciTech Connect (OSTI)

    Hund, Gretchen; Kurzrok, Andrew J.

    2013-06-01

    This paper investigates nonproliferation as a potential corporate sustainability value. It reviews the history of corporate sustainability, builds the case for nonproliferation as a sustainability value, and develops recommendations for the integration of nonproliferation into the frameworks of sustainability.

  1. Sustainable and efficient biohydrogen production via electrohydrogenesis

    SciTech Connect (OSTI)

    Cheng, S.; Logan, B.E.

    2007-11-20

    Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles, but most hydrogen is generated from nonrenewable fossil fuels such as natural gas. Here, the authors show that efficient and sustainable hydrogen production is possible from any type of biodegradable organic matter by electrohydrogenesis. In this process, protons and electrons released by exoelectrogenic bateria in specially designed reactors (based on modifying microbial fuel cells) are catalyzed to form hydrogen gas through the addition of a small voltage to the circuit. By improving the materials and reactor architecture, hydrogen gas was produced at yields of 2.01-3.95 mol/mol (50-99% of the theoretical maximum) at applied voltages of 0.2 to 0.8 V using acetic acid, a typical dead-end product of glucose or cellulose fermentation. At an applied voltage of 0.6 V, the overall energy efficiency of the process was 288% based solely on electricity applied, and 82% when the heat of combusion of acetic acid was included in the energy balance, at a gas production rate of 1.1 m{sup 3} of H{sub 2} per cubic meter of reactor per day. Direct high-yield hydrogen gas production was further demonstrated by using glucose, several volatile acids (acetic, butyric, lactic, propionic, and valeric), and cellulose at maximum stoichiometric yields of 54-91% and overall energy efficiencies of 64-82%. This electrohydrogenic process thus provides a highly efficient route for producting hydrogen gas from renewable and carbon-neutral biomass resources.

  2. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, ... DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Sustainable ...

  3. Testimonials - Partnerships in Sustainable Transportation - The...

    Office of Environmental Management (EM)

    Testimonials - Partnerships in Sustainable Transportation - The Ohio State University Testimonials - Partnerships in Sustainable Transportation - The Ohio State University Addthis ...

  4. Sustainable Environmental Stewardship | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Environmental Stewardship Sustainable Environmental Stewardship Sunrise at the Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory ...

  5. Sustainable manufacturing Workshop: Workshop Summary Report

    Energy Savers [EERE]

    AMO Workshop on Sustainable Manufacturing i | P a g e Table of Contents 1. Workshop ......... 6 Sustainable Manufacturing Technology Assessment ...

  6. Engineering Molecular Transformations for Sustainable Energy...

    Office of Scientific and Technical Information (OSTI)

    Engineering Molecular Transformations for Sustainable Energy Conversion Citation Details In-Document Search Title: Engineering Molecular Transformations for Sustainable Energy ...

  7. Sustainable Acquisition Developments

    Broader source: Energy.gov [DOE]

    The Administration continues its emphasis on sustainable acquisition. Attached are 2 letters describing recent developments. The first is dated October 5, 2011, from OFPP Administrator, Daniel Gordon, describing the 95% goal, emphasizing the importance of the program and forecasting changes in the Federal Procurement Data System. Second is a letter from the Defense Procurement and Acquisition Policy Office dated October 4, 2011, furnishing some details regarding changes being made in the Federal Procurement Data System to better enable report of accomplishments. Expect to receive more information from the Information Systems Division of the OCIO as the FPDS changes are made.

  8. Small Modular Nuclear Reactors: Parametric Modeling of Integrated...

    Office of Environmental Management (EM)

    Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel ... Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel ...

  9. P Reactor Grouting

    SciTech Connect (OSTI)

    2010-01-01

    Filling the P Reactor with grout. This seals the radioactive material and reduces the environmental footprint left from the Cold War. Project sponsored by the Recovery Act at the Savannah River Site.

  10. Reactor hot spot analysis

    SciTech Connect (OSTI)

    Vilim, R.B.

    1985-08-01

    The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

  11. NEUTRONIC REACTOR STRUCTURE

    DOE Patents [OSTI]

    Daniels, F.

    1961-10-24

    A reactor core, comprised of vertical stacks of hexagonal blocks of beryllium oxide having axial cylindrical apertures extending therethrough and cylindrical rods of a sintered mixture of uranium dioxide and beryllium oxide, is described. (AEC)

  12. SUSTAINABILITY NEWS 2014 Site Sustainability Plan (SSP) Guidance Issued

    Energy Savers [EERE]

    2014 Site Sustainability Plan (SSP) Guidance Issued The Sustainability Performance Office (SPO) issued the 2014 Site Sustainability Plan (SSP) guidance to DOE HQ program contacts on August 16. Pre-populated site Consolidated Energy Data Report (CEDR) spreadsheets and a CEDR Technical Support Document (TSD) were also released. SSPs are due to the SPO through program offices on December 6. Beginning September 25, the SPO will be hosting weekly SSP/CEDR open calls every Wednesday (1:00 PM Eastern)

  13. SUSTAINABILITY NEWS DOE Releases 2013 Strategic Sustainability Performance Plan

    Energy Savers [EERE]

    DOE Releases 2013 Strategic Sustainability Performance Plan On December 5, 2013, the Department of Energy (DOE) released its 2013 Strategic Sustainability Performance Plan (SSPP). Required by Executive Order (E.O.) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, the SSPP provides a framework for actions to fulfill Federally-mandated sustainability requirements. The fourth annual SSPP outlines DOE's progress-to-date while committing the Department to additional steps

  14. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  15. Future reactor experiments

    SciTech Connect (OSTI)

    Wen, Liangjian

    2015-07-15

    The non-zero neutrino mixing angle θ{sub 13} has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  16. Compact power reactor

    DOE Patents [OSTI]

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  17. K-Reactor readiness

    SciTech Connect (OSTI)

    Rice, P.D.

    1991-12-04

    This document describes some of the more significant accomplishments in the reactor restart program and details the magnitude and extent of the work completed to bring K-Reactor to a state of restart readiness. The discussion of restart achievements is organized into the three major categories of personnel, programs, and plant. Also presented is information on the scope and extent of internal and external oversight of the efforts, as well as some details on the startup plan.

  18. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact

  19. F Reactor Inspection

    SciTech Connect (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  20. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  1. Blueprint for Sustainability- Sustainable Solutions for Every Consumer

    Broader source: Energy.gov [DOE]

    Highlights of Ford's near, mid, and long term plans for sustainability with a focus on efficient diesel engines and hybrid vehicles.

  2. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOE Patents [OSTI]

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  3. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect (OSTI)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

  4. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  5. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect (OSTI)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  6. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Water Reactors (CASL) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  7. Hanford Projects Receive Sustainability Awards

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – Hanford’s Department of Energy offices and their contractors received special recognition Tuesday for their part in promoting sustainability.

  8. Developing Alaskan Sustainable Housing Training

    Broader source: Energy.gov [DOE]

    Hosted by the Association of Alaska Housing Authorities (AAHA), this three-day training event covers strategies and technical issues related to sustainable housing development.

  9. Introducing the DOE Sustainability Dashboard

    Broader source: Energy.gov [DOE]

    Please join us as we introduce DOE's new Sustainability Dashboard. This webinar will provide an overview and demonstration of the new Dashboard and offer an opportunity for questions.

  10. Institutional Change Basics for Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE)

    Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates.

  11. Institutional Change Process for Sustainability

    Broader source: Energy.gov [DOE]

    For establishing institutional change in a federal agency to achieve sustainability or other energy efficiency goals, follow the five-step institutional change process.

  12. Sustain Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: BS40 5QA Sector: Services Product: Sustain provides consultancy and delivery services to help clients and partners in the public and private sectors bring...

  13. Sustainable Purchasing Leadership Council Summit

    Broader source: Energy.gov [DOE]

    The Summit brings together 300 leaders in sustainable purchasing from the public, private, and NGO sectors to share best and emerging practices across sectors and regions.

  14. NREL: Energy Analysis - Sustainability Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Life Cycle Assessment Harmonization Sustainable Biomass Resource Development and Use Renewable Energy on Contaminated Lands Technology Systems Analysis Geospatial Analysis Key ...

  15. NREL: Sustainable NREL -Green Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Purchasing Committed to protecting the natural environment, NREL promotes green purchasing-also referred to as sustainable acquisition-by: Implementing new policies,...

  16. sustain.layout3.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engage employees and programs at all levels in the organization through our Environmental Management System Sustainability starts with individual choices. For example, saving...

  17. Sustainable Building Rating Systems Summary

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-07-01

    The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

  18. NREL: Sustainable NREL Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy efficiency and renewable energy ... Center Sustainability yielding dramatic energy reductions. ... and electric sector CO2 emissions February 22, 2016 RSS ...

  19. NREL: Sustainable NREL - Parking Garage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daylighting and translucent skylights Natural ventilation Faade- and roof-mounted photovoltaics (1.13 MW) LED lights with lighting control system Sustainability Features ...

  20. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect (OSTI)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  1. High Solids Enzymatic Hydrolysis Reactors (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biorefinery Research Facility | NREL, Golden, Colorado | December 2011 | NREL/PO-5100-50150 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. * Designed for operation at total solids loadings greater than 20% (w/w) * Reactors are operated in a batch mode with a 36-hour turnaround time * Two reactors are staged to accept a continuous stream of pretreated biomass to achieve semi-

  2. Hopi Sustainable Energy Plan

    SciTech Connect (OSTI)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  3. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  4. Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan

    SciTech Connect (OSTI)

    Rukavina, Frank

    2015-07-01

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL's Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.

  5. Advanced Reactor Concepts Technical Review Panel Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The concepts included five fast reactors and three thermal reactors. As to reactor coolants, there were three sodium-cooled reactors, two gas-cooled reactors, one light ...

  6. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    DOE Patents [OSTI]

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  7. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by ...

  8. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  9. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect (OSTI)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the

  10. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  11. Breazeale Reactor Modernization Program

    SciTech Connect (OSTI)

    Davison, C. C.

    2003-04-16

    The Penn State Breazeale Nuclear Reactor is the longest operating licensed research reactor in the nation. The facility has played a key role in educating scientists, engineers and in providing facilities and services to researchers in many different disciplines. In order to remain a viable and effective research and educational institution, a multi-phase modernization project was proposed. Phase I was the replacement of the 25-year old reactor control and safety system along with associated wiring and hardware. This phase was fully funded by non-federal funds. Tasks identified in Phases II-V expand upon and complement the work done in Phase I to strategically implement state-of-the-art technologies focusing on identified national needs and priorities of the future.

  12. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  13. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  14. Dynamic bed reactor

    DOE Patents [OSTI]

    Stormo, Keith E. (Moscow, ID)

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  15. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  16. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Lazarus, Jonathan D.

    1987-01-01

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  17. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  18. A NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Luebke, E.A.; Vandenberg, L.B.

    1959-09-01

    A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.

  19. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  20. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Sherry, T D; Kohlhorst, D P; Little, S K

    2011-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the impacts to

  1. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Spencer, Charles G

    2012-12-01

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

  2. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  3. NEUTRONIC REACTOR SYSTEM

    DOE Patents [OSTI]

    Daniels, F.

    1957-10-15

    Gas-cooled solid-moderator type reactors wherein the fissionable fuel and moderator materials are each in the form of solid pebbles, or discrete particles, and are substantially homogeneously mixed in the proper proportion and placed within the core of the reactor are described. The shape of these discrete particles must be such that voids are present between them when mixed together. Helium enters the bottom of the core and passes through the voids between the fuel and moderator particles to absorb the heat generated by the chain reaction. The hot helium gas is drawn off the top of the core and may be passed through a heat exchanger to produce steam.

  4. THERMAL NUCLEAR REACTOR

    DOE Patents [OSTI]

    Fenning, F.W.; Jackson, R.F.

    1957-09-24

    Nuclear reactors of the graphite moderated air cooled type in which canned slugs or rods of fissile material are employed are discussed. Such a reactor may be provided with a means for detecting dust particles in the exhausted air. The means employed are lengths of dust absorbent cord suspended in vertical holes in the shielding structure above each vertical coolant flow channel to hang in the path of the cooling air issuing from the channels, and associated spindles and drive motors for hauling the cords past detectors, such as Geiger counters, for inspecting the cords periodically. This design also enables detecting the individual channel in which a fault condition may have occurred.

  5. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  6. NEUTRONIC REACTOR CONTROL ELEMENT

    DOE Patents [OSTI]

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  7. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E.; Camp, A.L.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  8. Repair of hydroprocessing reactors

    SciTech Connect (OSTI)

    Niccolls, E.H.; Imgram, A.G.; Bagdasarian, A.J.

    1995-12-01

    In this paper the authors very briefly review the types of damage observed and repairs performed in hydroprocessing reactors. The authors will summarize the fundamental damage mechanisms, and where in the reactors they have needed to make repairs over the years. The era from the 1960`s through about 1990 will be briefly discussed. They describe in more detail repairs undertaken in the 1990`s. Finally, they will note important technical issues their industry faces regarding repairs, and the long term reliable operation of these vessels.

  9. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  10. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  11. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  12. MEANS FOR SHIELDING REACTORS

    DOE Patents [OSTI]

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  13. Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor

    Office of Environmental Management (EM)

    removed from Hanford's 300 Area | Department of Energy Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area January 22, 2014 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE 509-376-5365 Cameron.Hardy@re.doe.gov Mark McKenna, Washington Closure 509-372-9032 media@wch-rcc.com RICHLAND, WA - Hanford's River Corridor contractor, Washington

  14. 2012 DOE Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Sustainability Awards 2012 DOE Sustainability Awards In 2012, the U.S. Department of Energy (DOE) Sustainability Awards recognized 20 teams and individuals representing DOE national laboratories for their outstanding sustainability contributions, including accomplishments in managing pollution, waste, energy, water, and vehicle fleets. The 2012 winners improved sustainability operations by developing on-site renewable energy sources; repairing and replacing inefficient equipment;

  15. Sustainable Buildings Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Buildings Checklist Sustainable Buildings Checklist Document provides a checklist to evaluate sustainability in existing federal buildings. It provides points to consider during building sustainability assessments and a system for tracking progress made toward each Guiding Principle. Download the Sustainable Buildings Checklist. (95.5 KB

  16. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    SciTech Connect (OSTI)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2002-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on the mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range

  17. B Reactor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built...

  18. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  19. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  20. Hallam, Nebraska, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Fact Sheet D&D D&D Hallam, Nebraska, Decommissioned Reactor Site This fact sheet provides information about the Hallam, Nebraska, Decommissioned Reactor Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Defense Decontamination and Decommissioning (D&D) Program. Location of the Hallam Decommissioned Reactor Site Description and History The Hallam decommissioned reactor site is in southeastern Nebraska, approximately 19 miles south of