Sample records for reactor sustainability lwrs

  1. Light Water Reactor Sustainability (LWRS) Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Water Reactor Sustainability (LWRS) Program Login Instructions go here. User ID: Password: Log In Forgot your password?...

  2. Light Water Reactor Sustainability (LWRS) Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson -of Energy 1procedures,Light Water Reactor

  3. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

  4. Light Water Reactor Sustainability Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

  5. Light Water Reactor Sustainability Newsletter Kathryn A. McCarthy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S ome of the Light Water Reactor Sustainability (LWRS) Program managers have changed; therefore, I would like to provide a brief introduction to all of the LWRS program managers:...

  6. Light Water Reactor Sustainability Newsletter Kathryn McCarthy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Integration Office T he Light Water Reactor Sustainability (LWRS) Pro- gram Integrated Program Plan was released on January 31, 2012; it can be downloaded at https:...

  7. Light Water Reactor Sustainability Newsletter By Rich Reister

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the safety, and extend the life of current reactors. The Light Water Re- actor Sustainability (LWRS) program is NE's principal means of achieving this objective. We have...

  8. Light Water Reactor Sustainability Newsletter Thomas M. Rosseel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (ORNL), through the Department of Energy's (DOE) Light Water Reactor Sustainability (LWRS) Program, is coordinating and contracting with Zion Solutions, LLC (a...

  9. Light Water Reactor Sustainability Newsletter By John Gaertner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year 2011 LWRS Program funding is very clear: "Regarding the Light Water Reactor Sustainability program, (Congress) expects a high cost share from industry." Cost sharing is...

  10. LWR Sustainability Program Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    References LWRS Program Reports Technical Integration Office Light Water Reactor Sustainability Program Accomplishments Report, 2014. pdf Light Water Reactor Sustainability...

  11. Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2013-09-01T23:59:59.000Z

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

  12. Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2012-09-01T23:59:59.000Z

    Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

  13. Light Water Reactor Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Light Water Reactor Sustainability Program ACCOMPLISHMENTS REPORT 2013 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

  14. Light Water Reactor Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

  15. Light Water Reactor Sustainability Program Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Organization LWRS Program Management Richard Reister Federal Project Director Light Water Reactor Deployment Office of Nuclear Energy U.S. Department of Energy...

  16. LWRS Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What's New Archive Light Water Reactor Sustainability Program Accomplishments Report: 2013 An accomplishments report highlighting progress in the development of the scientific...

  17. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01T23:59:59.000Z

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  18. Light Water Reactor Sustainability Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30-35, August 2012. Clayton, D. A. and M. S. Hileman, 2012, Light Water Reactor Sustainability Non-Destructive Evaluation for Concrete Research and Development Roadmap, ORNLTM-...

  19. Materials Inventory Database for the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01T23:59:59.000Z

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  20. Light Water Reactor Sustainability Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and nuclear waste disposal. Dr. Corradini has extensive research experience in the phenomenology of beyond design basis Meet the New LWRS Program Pathway Lead accidents in light...

  1. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    McCarthy, Kathryn A. [INL; Busby, Jeremy [ORNL; Hallbert, Bruce [INL; Bragg-Sitton, Shannon [INL; Smith, Curtis [INL; Barnard, Cathy [INL

    2014-04-01T23:59:59.000Z

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  2. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01T23:59:59.000Z

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  3. Light Water Reactor Sustainability Program Integrated Program Plan

    SciTech Connect (OSTI)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01T23:59:59.000Z

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  4. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01T23:59:59.000Z

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  5. Verification and Validation Strategy for LWRS Tools

    SciTech Connect (OSTI)

    Carl M. Stoots; Richard R. Schultz; Hans D. Gougar; Thomas K Larson; Michael Corradini; Laura Swiler; David Pointer; Jess Gehin

    2012-09-01T23:59:59.000Z

    One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verified and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.

  6. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    SciTech Connect (OSTI)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to serve as a template for other utilities’ projects for control room modernization.

  7. ANL/NE-12/43 Light Water Reactor Sustainability (LWRS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanical fatigue due to flow-induced vibration, chemical corrosion related damage such as flow- assisted general corrosion, crevice corrosion, and stress corrosion...

  8. Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National Laboratories

  9. Self-Sustaining Thorium Boiling Water Reactors

    E-Print Network [OSTI]

    Ganda, Francesco

    A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar ...

  10. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    SciTech Connect (OSTI)

    Idaho National Laboratory

    2009-12-01T23:59:59.000Z

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

  11. Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels

    SciTech Connect (OSTI)

    Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

    1991-10-01T23:59:59.000Z

    This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs.

  12. Light Water Reactor Sustainability Program - Non-Destructive...

    Energy Savers [EERE]

    for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for...

  13. Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhenJuly 28,The U.S. Life CyclePowerA LED

  14. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2012-09-01T23:59:59.000Z

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  15. Assessment of helical-cruciform fuel rods for high power density LWRs

    E-Print Network [OSTI]

    Conboy, Thomas M

    2010-01-01T23:59:59.000Z

    In order to significantly increase the power density of Light Water Reactors (LWRs), the helical-cruciform (HC) fuel rod assembly has been proposed as an alternative to traditional fuel geometry. The HC assembly is a ...

  16. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect (OSTI)

    Monteleone, S. [comp.

    1995-04-01T23:59:59.000Z

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  17. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01T23:59:59.000Z

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  18. The use of reduced-moderation light water reactors for transuranic isotope burning in thorium fuel

    E-Print Network [OSTI]

    Lindley, Benjamin A.

    2015-02-03T23:59:59.000Z

    Light water reactors (LWRs) are the world’s dominant nuclear reactor system. Uranium (U)-fuelled LWRs produce long-lived transuranic (TRU) isotopes. TRUs can be recycled in LWRs or fast reactors. The thermal neutron spectrum in LWRs is less suitable...

  19. Light Water Reactor Sustainability Newsletter Kathryn A. McCarthy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 7 6 5 4 3 25 110 120 80 80 80 100 120 61 115 60 100 120 25 27 4 LWRS Newsletter Curtis Smith Risk-Informed Safety Margin Characterization Pathway Lead The RISMC Methodology and...

  20. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply.

    SciTech Connect (OSTI)

    Sienicki, J. J.; Wade, D. C.; Moisseytsev, A.; Nuclear Engineering Division

    2008-01-01T23:59:59.000Z

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus, there is a need for small and medium size fast reactors in non-fuel cycle states operating in a converter mode as well as large sodium-cooled fast breeders in fuel cycle states. Desired attributes for exportable small fast reactors include: proliferation resistance features such as restricted access to fuel; long core life further restricting access by reducing or eliminating the need for refueling; restricted potential to be misused in a breeding mode; fuel form that is unattractive in the safeguards sense; and a conversion ratio of unity to self-generate as much fissile material as is consumed. Desired attributes for exportable small reactor deployments in developing nations and remote sites also include: a small power level to match the smaller demand of towns or sites that are off-grid or on immature local grids; low enough cost to be economically competitive with alternative energy sources available to developing nation customers (e.g. diesel generators in remote locations); readily transported and assembled from transportable modules; simple to operate and highly reliable reducing plant operating staff requirements; as well as high reliability and passive safety reducing the number of accident initiators and need for safety systems as well as reducing the size of the exclusion and emergency planning zones. The Lead-Cooled Fast Reactor (LFR) has the desired attributes. An example of a small exportable LFR concept is the 20 MWe (45 MWt) Small Secure Transportable Autonomous Reactor (SSTAR) incorporating proliferation resistance, fissile selfsufficiency, autonomous load following, a high degree of passive safety, and supercritical carbon dioxide Brayton cycle energy conversion for high plant efficiency and improved economic competitiveness.

  1. Light Water Reactor Sustainability Program Grizzly Year-End Progress Report

    SciTech Connect (OSTI)

    Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner; Marie Backman; Brian Wirth; Stephen Novascone; Jason Hales

    2013-09-01T23:59:59.000Z

    The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INL’s MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. The reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i.e. late blooming phases) to become active later in life beyond the current operational experience. To develop a tool that can eventually serve a role in decision-making, it is clear that research and development must be perfomed at multiple scales. At the engineering scale, a multiphysics analysis code that can capture the thermomechanical response of the RPV under accident conditions, including detailed fracture mechanics evaluations of flaws with arbitrary geometry and orientation, is needed to assess whether the fracture toughness, as defined by the master curve, including the effects of embrittlement, is exceeded. At the atomistic scale, the fundamental mechanisms of degradation need to be understood, including the effects of that degradation on the relevant material properties. In addition, there is a need to better understand the mechanisms leading to the transition from ductile to brittle fracture through improved continuum mechanics modeling at the fracture coupon scale. Work is currently being conducted at all of these levels with the goal of creating a usable engineering tool informed by lower length-scale modeling. This report summarizes progress made in these efforts during FY 2013.

  2. Microsoft Word - CASS_Aging-LWRS_5YR_Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LTR-2012440 Light Water Reactor Sustainability Cast Stainless Steel Aging Research Plan September 2012 Prepared by: T. S. Byun and J. T. Busby Oak Ridge National Laboratory This...

  3. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14T23:59:59.000Z

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  4. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01T23:59:59.000Z

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  5. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01T23:59:59.000Z

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  6. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    SciTech Connect (OSTI)

    R. Johansen

    2011-09-01T23:59:59.000Z

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  7. REACTOR PRESSURE VESSEL ISSUES FOR THE LIGHT-WATER REACTOR SUSTAINABILITY PROGRAM

    SciTech Connect (OSTI)

    Nanstad, Randy K [ORNL; Odette, George Robert [UCSB

    2010-01-01T23:59:59.000Z

    The Light Water Reactor Sustainability Program Plan is a collaborative program between the U.S. Department of Energy and the private sector directed at extending the life of the present generation of nuclear power plants to enable operation to at least 80 years. The reactor pressure vessel (RPV) is one of the primary components requiring significant research to enable such long-term operation. There are significant issues that need to be addressed to reduce the uncertainties in regulatory application, such as, 1) high neutron fluence/long irradiation times, and flux effects, 2) material variability, 3) high-nickel materials, 4)specimen size effects and the fracture toughness master curve, etc. The first issue is the highest priority to obtain the data and mechanistic understanding to enable accurate, reliable embrittlement predictions at high fluences. This paper discusses the major issues associated with long-time operation of existing RPVs and the LWRSP plans to address those issues.

  8. INL/EXT-14-33257 Light Water Reactor Sustainability Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    57 Light Water Reactor Sustainability Program 3D J-Integral Capability in Grizzly September 2014 DOE Office of Nuclear Energy DISCLAIMER This information was prepared as an account...

  9. Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

    2012-12-31T23:59:59.000Z

    Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

  10. Light Water Reactor Sustainability Newsletter Rebecca Smith-Kevern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rebecca Smith-Kevern Director, Office of Light Water Reactor Technologies. I am often asked why the Federal Government should fund a program that supports the continued operation...

  11. The design of high power density annular fuel for LWRs

    E-Print Network [OSTI]

    Yuan, Yi, 1975-

    2004-01-01T23:59:59.000Z

    Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

  12. Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL Logo Search Sustainability Home About Sustainable INL Electronics Stewardship Energy Efficiency Fleet Management Green Purchasing Recycling Renewable Energy Sustainable...

  13. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01T23:59:59.000Z

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  14. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01T23:59:59.000Z

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  15. Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.

    SciTech Connect (OSTI)

    Yun, D.; Taiwo, T. A.; Kim, T. K.; Mohamed, A.; Nuclear Engineering Division

    2010-10-01T23:59:59.000Z

    The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluate the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.

  16. PPPL3224, Preprint: February 1997, UC420, 426 Plasma Transport Control and SelfSustaining Fusion Reactor*

    E-Print Network [OSTI]

    to demonstrate this concept with D­T reactor­grade plasmas. For edge transport control, a method based an economical and environmentally sound fusion reactor prototype is the ultimate goal of controlled fusionPPPL­3224, Preprint: February 1997, UC­420, 426 Plasma Transport Control and Self­Sustaining Fusion

  17. PPPL-3224, Preprint: February 1997, UC-420, 426 Plasma Transport Control and Self-Sustaining Fusion Reactor*

    E-Print Network [OSTI]

    to demonstrate this concept with D-T reactor-grade plasmas. For edge transport control, a method based an economical and environmentally sound fusion reactor prototype is the ultimate goal of controlled fusionPPPL-3224, Preprint: February 1997, UC-420, 426 Plasma Transport Control and Self-Sustaining Fusion

  18. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01T23:59:59.000Z

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  19. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect (OSTI)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S. [Dept. of Nuclear Science and Engineering, Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01T23:59:59.000Z

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  20. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    SciTech Connect (OSTI)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  1. Optimization strategies for sustainable fuel cycle of the BR2 Reactor

    SciTech Connect (OSTI)

    Kalcheva, S.; Van Den Branden, G.; Koonen, E. [SCK-CEN, BR2 Reactor, Boeretang 200, Mol, 2400 (Belgium)

    2013-07-01T23:59:59.000Z

    The objective of the present study is to achieve a sustainable fuel cycle in a long term of reactor operation applying advanced in-core loading strategies. The optimization criteria concern mainly enhancement of nuclear safety by means of reactivity margins and minimization of the operational fuel cycle cost at a given (constant) power level and same or longer cycle length. An important goal is also to maintain the same or to improve the experimental performances. Current developments are focused on optimization of control rods localization; optimization of fresh and burnt fuel assemblies in-core distribution; optimization of azimuth and axial fuel burn up strategies, including fuel assembly rotating and flipping upside down. (authors)

  2. Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    innovation. For this second report our major targets included: * Energy reduction; * Water reduction; * Fuel efficiency; * Electronic stewardship; * Sustainable acquisition; *...

  3. International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008

    E-Print Network [OSTI]

    Boyer, Edmond

    International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino International Forum for the new nuclear energy systems, we have developed a new concept of molten salt reactor Products which poison the core can be extracted without stopping reactor operation; nuclear waste

  4. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01T23:59:59.000Z

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  5. E-Print Network 3.0 - advanced passive lwrs Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection: Fossil Fuels 9 Renew Workshop on Fusion-Fission Hybrids Summary: supply (from mining) Electricity (from LWRs) Waste management (on site storage) Natural uranium: 50......

  6. Action Plan and Status of Resolutions for LWRS Steering Committee Recommendations Dated August 13, 2009

    SciTech Connect (OSTI)

    Hongbin Zhang

    2009-08-01T23:59:59.000Z

    The resolutions to the recommendations from the Report of the Steering Committee for the LWRS Program Dated August 13, 2009 are documented.

  7. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

    2011-09-01T23:59:59.000Z

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  8. Sustainability

    Broader source: Energy.gov [DOE]

    Opening Plenary Session: Bioenergy Sustainability—Charting the Path toward a Viable Future Jody Endres, Assistant Professor, College of Agricultural, Consumer and Environmental Sciences, University of Illinois

  9. Reactor physics assessment of thick silicon carbide clad PWR fuels

    E-Print Network [OSTI]

    Bloore, David A. (David Allan)

    2013-01-01T23:59:59.000Z

    High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

  10. Optimization of hydride fueled pressurized water reactor cores

    E-Print Network [OSTI]

    Shuffler, Carter Alexander

    2004-01-01T23:59:59.000Z

    This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

  11. Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century

    SciTech Connect (OSTI)

    Beller, D.E.; Sailor, W.C.; Venneri, F.

    1998-10-06T23:59:59.000Z

    A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO{sub 2}-fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO{sub 2} fuel cycle.

  12. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor

    SciTech Connect (OSTI)

    Scarpa, A. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States); Pirone, R. [Istituto di Ricerche sulla Combustione-CNR, P.le V. Tecchio 80, 80125 Naples (Italy); Russo, G. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Vlachos, D.G. [Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States)

    2009-05-15T23:59:59.000Z

    The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

  13. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

    2012-07-30T23:59:59.000Z

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  14. Nuclear reactor safety heat transfer

    SciTech Connect (OSTI)

    Jones, O.C.

    1982-07-01T23:59:59.000Z

    Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

  15. DOE Executive Management Office of Nuclear Energy LWRS Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Office * Reactor Metals * Concrete * Cabling * Mitigation Technologies * NDE Technologies * Margins Analysis Methods and Tools * Next-Generation Plant Simulation...

  16. Reactor siting risk comparisons related to recommendations of NUREG-0625

    SciTech Connect (OSTI)

    Barsell, A.W.; Dombek, F.S.; Orvis, D.D.

    1980-11-01T23:59:59.000Z

    This document evaluates how implementing the remote siting recommendations for nuclear reactors (NUREG-0625) made by the Siting Policy Task Force of the US Nuclear Regulatory Commission (NRC) can reduce potential public risk. The document analyzes how population density affects site-specific risk for both light water reactors (LWRs) and high-temperature gas-cooled reactors (HTGRs).

  17. E-Print Network 3.0 - annular reactor estudo Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of LWRs i) Fast Burner Reactors which fission the ... Source: MIT Plasma Science and Fusion Center Collection: Plasma Physics and Fusion 5 Scheme of N-Nbar search experiment...

  18. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect (OSTI)

    Clayton, Dwight; Smith, Cyrus [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

    2014-02-18T23:59:59.000Z

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  19. Component failures that lead to reactor scrams. [PWR; BWR

    SciTech Connect (OSTI)

    Burns, E. T.; Wilson, R. J.; Lim, E. Y.

    1980-04-01T23:59:59.000Z

    This report summarizes the operating experience scram data compiled from 35 operating US light water reactors (LWRs) to identify the principal components/systems related to reactor scrams. The data base utilized to identify the scram causes is developed from a EPRI-utility sponsored survey conducted by SAI coupled with recent data from the USNRC Gray Books. The reactor population considered in this evaluation is limited to 23 PWRs and 12 BWRs because of the limited scope of the program. The population includes all the US NSSS vendors. It is judged that this population accurately characterizes the component-related scrams in LWRs over the first 10 years of plant operation.

  20. Performance of Trasuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Interim Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; Brian Boer; Gilles Youinou; Abderrafi M. Ougouag

    2011-03-01T23:59:59.000Z

    The current focus of the Deep Burn Project is on once-through burning of transuranice (TRU) in light water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles would be pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell calculations have been performed using the DRAGON-4 code in order assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells containing typical UO2 and MOX fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Loading of TRU-only FCM fuel into a pin without significant quantities of uranium challenges the design from the standpoint of several key reactivity parameters, particularly void reactivity, and to some degree, the Doppler coefficient. These unit cells, while providing an indication of how a whole core of similar fuel would behave, also provide information of how individual pins of TRU-only FCM fuel would influence the reactivity behavior of a heterogeneous assembly. If these FCM fuel pins are included in a heterogeneous assembly with LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance of the TRU-only FCM fuel pins may be preserved. A configuration such as this would be similar to CONFU assemblies analyzed in previous studies. Analogous to the plutonium content limits imposed on MOX fuel, some amount of TRU-only FCM pins in an otherwise-uranium fuel assembly may give acceptable reactivity performance. Assembly calculations will be performed in future work to explore the design options for heterogeneous assemblies of this type and their impact on reactivity coefficients.

  1. Light Water Reactor Sustainability Program FY13 Status Update for EPRI - RISMC Collaboration

    SciTech Connect (OSTI)

    Curtis Smith

    2013-09-01T23:59:59.000Z

    The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced "RISMC toolkit" that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory (INL) is collaborating with the Electric Power Research Institute (EPRI) in order to focus on applications of interest to the U.S. nuclear power industry. This report documents the collaboration activities performed between INL and EPRI during FY2013.

  2. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    SciTech Connect (OSTI)

    Bruce P Hallbert

    2015-01-01T23:59:59.000Z

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are needed to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.

  3. Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Nuclear Engineering Division

    2005-04-29T23:59:59.000Z

    Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

  4. Prognostics Health Management for Advanced Small Modular Reactor Passive Components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-10-18T23:59:59.000Z

    In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

  5. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    SciTech Connect (OSTI)

    Gilles Youinou; R. Sonat Sen

    2013-09-01T23:59:59.000Z

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  6. Renewability and sustainability aspects of nuclear energy

    SciTech Connect (OSTI)

    ?ahin, Sümer, E-mail: ssahin@atilim.edit.tr [Department of Mechanical Engineering, Faculty of Engineering, ATILIM University, 06836 ?ncek, Gölba??, Ankara (Turkey)

    2014-09-30T23:59:59.000Z

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG?PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG?PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG?PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG?PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG?PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG?PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ? 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ? 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG?PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ?160 kg {sup 233}U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ?1.3.

  7. An autonomous long-term fast reactor system and the principal design limitations of the concept

    E-Print Network [OSTI]

    Tsvetkova, Galina Valeryevna

    2004-09-30T23:59:59.000Z

    Actinides MOX Mixed OXide MSR Molten-Salt Reactors NERI Nuclear Energy Research Initiative vii PWR Pressurized Water Reactor RGPu Reactor-Grade Plutonium SCNES Self-Consistent Nuclear Energy System STAR Secure Transportable Autonomous Reactor... of LWR?s, the drastic increase of Am and Cm inventories are observed after uranium fuel irradiation and the second recycling of MOX fuel.1 Therefore, partitioning and transmutation of the recovered MA?s could significantly reduce the long...

  8. LWRS Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    progress on this round of testing of computer-based procedures and delivery through hand-held computers," said Carlos Williams, IT client manager, Information Services. "This...

  9. LWRS Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 Second Workshop on U.S. Nuclear Power Plant Life Extension and Development February 22-24, 2011 February 22, 2011 Opening Plenary 8:30-10:00 Delivering Innovative Solutions...

  10. LWRS Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important area of study. The plant operators carry out periodic cable inspections using NDE techniques to measure degradation and determine when replacement is needed. Degradation...

  11. LWRS Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilities across the industry (representing 70% of the existing LWR fleet) and Electric Power Research Institute advises the program. The Utility Working Group developed a...

  12. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information, and Control (II&C) Systems Technologies pathway of the Light Water Reactor Sustainability(LWRS) Program conducts a vigorous engagement strategy with the...

  13. Safety Margin Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk-Informed Safety Margin Characterization (RISMC) Pathway Curtis L. Smith RISMC Pathway Lead Idaho National Laboratory Light Water Reactor Sustainability (LWRS) Program Goals...

  14. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01T23:59:59.000Z

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  15. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01T23:59:59.000Z

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  16. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01T23:59:59.000Z

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  17. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

  18. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect (OSTI)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  19. Environmental Sustainability & Green Energy

    E-Print Network [OSTI]

    Denham, Graham

    of carbon nanotubes for solar energy · ChemicalReactorEngineeringCentre: developing innovative green reactorEnvironmental Sustainability & Green Energy With escalating concerns about global energy shortages technologies and discovering alternative sources of energy. Western University has emerged as a leader

  20. Development of a system model for advanced small modular reactors.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01T23:59:59.000Z

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandia's concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  1. Status report on fast reactor recycle and impact on geologic disposal.

    SciTech Connect (OSTI)

    Bauer, T. H.; Morris, E. E.; Wigeland, R. A.; Nuclear Engineering Division; INL

    2007-10-30T23:59:59.000Z

    The GNEP program envisions continuing the use of light-water reactors (LWRs), with the addition of processing the discharged, or spent, LWR fuel to recover actinide and fission product elements, and then recycling the actinide elements in sodium-cooled fast reactors. Previous work has established the relationship between the processing efficiencies of spent LWR fuel, as represented by spent PWR fuel, and the potential increase in repository utilization for the resulting processing waste. The purpose of this current study is to determine a similar relationship for the waste from processing spent fast reactor fuel, and then to examine the wastes from the combination of LWRs and fast reactors as would be deployed with the GNEP approach.

  2. Status Report on Fast Reactor Recycle and Impact on Geologic Disposal

    SciTech Connect (OSTI)

    Roald Wigeland; T. H. Bauer; E. E. Morris

    2007-04-01T23:59:59.000Z

    The GNEP program envisions continuing the use of light-water reactors (LWRs), with the addition of processing the discharged, or spent, LWR fuel to recover actinide and fission product elements, and then recycling the actinide elements in sodium-cooled fast reactors. Previous work has established the relationship between the processing efficiencies of spent LWR fuel, as represented by spent PWR fuel, and the potential increase in repository utilization for the resulting processing waste. The purpose of this current study is to determine a similar relationship for the waste from processing spent fast reactor fuel, and then to examine the wastes from the combination of LWRs and fast reactors as would be deployed with the GNEP approach.

  3. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13T23:59:59.000Z

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  4. Fertile free fuels for plutonium and minor actinides burning in LWRs

    E-Print Network [OSTI]

    Zhang, Yi, 1979-

    2003-01-01T23:59:59.000Z

    The feasibility of using various uranium-free fuels for plutonium incineration in present light water reactors is investigated. Two major categories of inert matrix fuels are studied: composite ceramic fuel particles ...

  5. Datacenter Sustainability Page 1 Sustainability

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Datacenter Sustainability Page 1 Datacenter Sustainability #12;Datacenter Sustainability Page 2 sustainability imperative and how advanced technologies, smart business practices, and strategic partnerships are helping us reduce our impact on the environment. Also learn how our investments in efficient, sustainable

  6. Fuel qualification issues and strategies for reactor-based surplus plutonium disposition

    SciTech Connect (OSTI)

    Cowell, B.S.; Copeland, G.L.; Moses, D.L.

    1997-08-01T23:59:59.000Z

    The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

  7. General features of direct-cycle, supercritical-pressure, light-water-cooled reactors

    SciTech Connect (OSTI)

    Oka, Y.; Koshizuka, S. [Univ. of Tokyo (Japan). Nuclear Engineering Research Lab.

    1996-07-01T23:59:59.000Z

    The concept of direct-cycle, supercritical-pressure, light-water-cooled reactors is developed. Breeding is possible in the tight lattice core. The power output can be maximized in the fast converter reactor. The gross thermal efficiency of the high temperature reactor adopting Inconel as fuel cladding is expected to be 44.8%. The plant system is similar to the supercritical-fossil-fired power plant which adopts once-through type coolant circulation system. The volume and height of the containment are approximately half of the BWR. The basic safety principles follows those of LWRs. The reactor will solve the economic problems of LWR and LMFBR.

  8. Light Water Reactor Sustainability Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the operation of commercial nuclear power plants require conservative mar- gins of fracture toughness for the RPV materials, both during normal operation and under accident...

  9. Light Water Reactor Sustainability Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The small volume required for such analysis is beneficial for correlating with the small-scale mechanical testing currently being investigated. Further studies on the...

  10. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect (OSTI)

    Jean Ragusa; Karen Vierow

    2011-09-01T23:59:59.000Z

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  11. Sustainable Development

    E-Print Network [OSTI]

    Brierley, Andrew

    160 Sustainable Development Sustainable Development Degree options BSc or MA (Single Honours Degree) Sustainable Development Contributing Schools Biology; Chemistry; Computer Science; Geography & Geosciences in arts subjects as partner subjects within Sustainable Development, then you should apply for the MA

  12. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01T23:59:59.000Z

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  13. Research and Development Roadmaps for Nondestructive Evaluation of Cables, Concrete, Reactor Pressure Vessels, and Piping Fatique

    SciTech Connect (OSTI)

    Clayton, Dwight A [ORNL] [ORNL; Bakhtiari, Sasan [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Smith, Cyrus M [ORNL] [ORNL; Simmons, Kevin [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Coble, Jamie [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Brenchley, David [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Meyer, Ryan [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

    2013-01-01T23:59:59.000Z

    To address these research needs, the MAaD Pathway supported a series of workshops in the summer of 2012 for the purpose of developing R&D roadmaps for enhancing the use of Nondestructive Evaluation (NDE) technologies and methodologies for detecting aging and degradation of materials and predicting the remaining useful life. The workshops were conducted to assess requirements and technical gaps related to applications of NDE for cables, concrete, reactor pressure vessels (RPV), and piping fatigue for extended reactor life. An overview of the outcomes of the workshops is presented here. Details of the workshop outcomes and proposed R&D also are available in the R&D roadmap documents cited in the bibliography and are available on the LWRS Program website (http://www.inl.gov/lwrs).

  14. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01T23:59:59.000Z

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  15. A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool

    SciTech Connect (OSTI)

    Ben Spencer; Jeremey Busby; Richard Martineau; Brian Wirth

    2012-10-01T23:59:59.000Z

    Nuclear power currently provides a significant fraction of the United States’ non-carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation’s electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.

  16. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect (OSTI)

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11T23:59:59.000Z

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  17. Sustainable Development

    E-Print Network [OSTI]

    Brierley, Andrew

    150 Sustainable Development Sustainable Development MA or BSc (Single Honours Degree) Sustainable Sustainable Development, then you should apply for the MA degree, and students most interested in Science subjects as partner subjects within Sustainable Development should apply for the BSc degree. Subject

  18. The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel

    SciTech Connect (OSTI)

    Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

    1997-09-01T23:59:59.000Z

    In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

  19. Sustainability Support

    Broader source: Energy.gov [DOE]

    Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

  20. Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report

    SciTech Connect (OSTI)

    R. Sonat Sen; Brian Boer; John D. Bess; Michael A. Pope; Abderrafi M. Ougouag

    2012-03-01T23:59:59.000Z

    This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP to perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require less soluble boron by, for example, increasing the reactivity hold-down by burnable poisons. Then, the whole core analysis will be repeated until an acceptable design is found. Calculations of departure from nucleate boiling ratio (DNBR) will be included in the safety evaluation as well. Once a startup core is shown to be viable, subsequent reloads will be simulated by shuffling fuel and introducing fresh fuel. The PASTA code has been updated with material properties of UN fuel from literature and a model for the diffusion and release of volatile fission products from the SiC matrix material . Preliminary simulations have been performed for both normal conditions and elevated temperatures. These results indicated that the fuel performs well and that the SiC matrix has a good retention of the fission products. The path forward for fuel performance work includes improvement of metallic fission product release from the kernel. Results should be considered preliminary and further validation is required.

  1. A brief history of design studies on innovative nuclear reactors

    SciTech Connect (OSTI)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com [Emeritus Professor, Tokyo Institute of Technology (Japan)

    2014-09-30T23:59:59.000Z

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  2. SustainabilityStudies sustainability@uci.edu

    E-Print Network [OSTI]

    Rose, Michael R.

    SustainabilityStudies sustainability@uci.edu Sustainable Business Management Certificate Program in the sustainability field, such as managers, directors, architects, urban planners, landscape architects, designers opportunities and risks while minimizing potential liability. extension.uci.edu/sustainability Sustainable

  3. Environmentally assisted cracking of light-water reactor materials

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1996-02-01T23:59:59.000Z

    Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

  4. Implementation of safeguards and security for fissile materials disposition reactor alternative facilities

    SciTech Connect (OSTI)

    Jaeger, C.D.; Duggan, R.A.; Tolk, K.M.

    1995-10-01T23:59:59.000Z

    A number of different disposition alternatives are being considered and include facilities which provide for long-ten-n and interim storage, convert and stabilize fissile materials for other disposition alternatives, immobilize fissile material in glass and/or ceramic material, fabricate fissile material into mixed oxide (MOX) fuel for reactors, use reactor based technologies to convert material into spent fuel, and dispose of fissile material using a number of geologic alternatives. Particular attention will be given to the reactor alternatives which include existing, partially completed, advanced or evolutionary LWRs and CANDU reactors. The various reactor alternatives are all very similar and include processing which converts Pu to a usable form for fuel fabrication, a MOX fuel fab facility located in either the US or in Europe, US LWRs or the CANDU reactors and ultimate disposal of spent fuel in a geologic repository. This paper focuses on how the objectives of reducing security risks and strengthening arms reduction and nonproliferation will be accomplished and the possible impacts of meeting these objectives on facility operations and design. Some of the areas in this paper include: (1) domestic and international safeguards requirements, (2) non-proliferation criteria and measures, (3) the threat, and (4) potential proliferation risks, the impacts on the facilities, and safeguards and security issues unique to the presence of Category 1 or strategic special nuclear material.

  5. Departmental Sustainability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-02T23:59:59.000Z

    The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future; institute wholesale cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE corporate management decisions; and ensure that DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan. Cancels DOE O 450.1A and DOE O 430.2B

  6. PNNL-21731

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the U.S. Department of Energy under Contract DE-AC05-76RL01830 Light Water Reactor Sustainability (LWRS) Program - Non-Destructive Evaluation (NDE) R&D Roadmap for Determining...

  7. Blueprint for Sustainability - Sustainable Solutions for Every...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blueprint for Sustainability - Sustainable Solutions for Every Consumer Blueprint for Sustainability - Sustainable Solutions for Every Consumer Highlights of Ford's near, mid, and...

  8. Living Sustainably

    E-Print Network [OSTI]

    Milbrath, Lester W.

    1998-01-01T23:59:59.000Z

    sustainable society does something more than keep people alive; livingsustainable modes of behavior that also lead to quality in living.

  9. SUSTAINABLE DEVELOPMENT

    E-Print Network [OSTI]

    van der Torre, Leon

    Report on SUSTAINABLE DEVELOPMENT 2 0 1 1 ­ 2 0 1 2 ISCN-GULF Charter Report #12;3 1. FACILITIES with projects of our University's Cell for Sustainable Development; it also presents evidence for steady alike. THIS REPORT This is the second report on sustainable development at the University of Luxembourg

  10. SUSTAINABLE A university for sustainable development

    E-Print Network [OSTI]

    Johannesson, Henrik

    THE SUSTAINABLE UNIVERSITY #12;A university for sustainable development The University contribution to a sustainable future. By systematically integrating sustainable development into research. The University of Gothenburg's Vision 2020 confirms that sustainable development is important; we always consider

  11. Metropolitan Accessibility and Transportation Sustainability:Sustainability

    E-Print Network [OSTI]

    Papalambros, Panos

    Metropolitan Accessibility and Transportation Sustainability:Sustainability: Comparative Reduce (fulfillment of)Promote Sustainability: Meet needs of (fulfillment of) needs present Institute SMART Sustainable Mobility and Accessibility Research andSMART Sustainable Mobility

  12. Sustainable Food Sustainable Water Land Use & Wildlife Culture & Commun ble Transport Sustainable Materials Local & Sustainable Food Sustainable Wat

    E-Print Network [OSTI]

    Netoff, Theoden

    Sustainable Food Sustainable Water Land Use & Wildlife Culture & Commun ble Transport Sustainable Materials Local & Sustainable Food Sustainable Wat appiness Zero Carbon Zero Waste Sustainable Transport Sustainable Materia munity Equity & Local Economy Health & Happiness Zero Carbon Zero Was Water Land Use

  13. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01T23:59:59.000Z

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  14. LWRS_cover copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004. 6. T.S. Byun, E. Lara-Curzio, R.A. Lowden, L.L. Snead, and Y. Katoh, "Miniaturized fracture stress tests for thin-walled tubular SiC specimens," J. Nucl. Mater. 367-270,...

  15. Supercell Depletion Studies for Prismatic High Temperature Reactors

    SciTech Connect (OSTI)

    J. Ortensi

    2012-10-01T23:59:59.000Z

    The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challenges exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.

  16. Sustainable Fracking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Fracking As industry taps unconventional energy resources, DOE can help identify and mitigate risks of new extraction approaches. For example, recovery of the vast...

  17. Venice Sustainability Advisory Panel

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Venice Sustainability Advisory PanelFINAL REPORT Venice Sustainability Advisory Panel FinalInvestigator The Venice Sustainability Advisory Panel (

  18. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect (OSTI)

    Mardiansah, Deby; Takaki, Naoyuki [Course of Applied Science, School of Engineering, Tokai University (Japan)

    2010-06-22T23:59:59.000Z

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  19. sustainable environment

    E-Print Network [OSTI]

    sustainable resource management environment fisheries aquaculture Cefas capability statement #12 that they can manage their environments and resources in a responsible, effective and sustainable manner. Our costs · Understand, assess and develop opportunities in the short, medium and long-term · Build

  20. Environmentally assisted cracking in Light Water Reactors: Semiannual report, April 1993--September 1993. Volume 17

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Karlsen, T.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1994-06-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRS) during the six months from April 1993 to September 1993. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels; (b) EAC of cast stainless steels (SSs); and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions in simulated boiling-water reactor (BWR) water at 289{degree}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section 11 of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy.

  1. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    SciTech Connect (OSTI)

    Not Available

    1984-04-01T23:59:59.000Z

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  2. Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

    2012-09-20T23:59:59.000Z

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

  3. Reactor Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Physics Reactor and nuclear physics is a key area of research at INL. Much of the research done in reactor physics can be separated into one of three categories:...

  4. ENVIRONMENTAL SUSTAINABILITY

    E-Print Network [OSTI]

    , meanwhile, could focus lim- Initiative and Application Model Impact Environmental Information Networ27 ICT AND ENVIRONMENTAL SUSTAINABILITY T he environment is a large complex sys- tem. Managing. Environmental Monitoring and Associated Resource Management and Risk Mitigation ICTimprovestheabilitytoobtain

  5. Science Serving Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Greening Transportation Green Purchasing & Green Technology Pollution Prevention Science Serving Sustainability ENVIRONMENTAL SUSTAINABILITY GOALS at...

  6. Sustainabiliity Sustainability Plan

    E-Print Network [OSTI]

    Heller, Barbara

    Sustainabiliity IIT Campus Sustainability Plan 2010­2020 Published Fall Semester 2010 www.iit.edu/campus_sustainability #12;IIT Campus Sustainability Plan 2010-2020 Fall Semester 2010 1 Section I: Background Sustainability ...................................................................................................................................................................8 IIT Academic Entities on Sustainability

  7. Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2012-09-01T23:59:59.000Z

    Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

  8. Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2013-01-01T23:59:59.000Z

    Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

  9. Microencapsulated Fuel Technology for Commercial Light Water and Advanced Reactor Application

    SciTech Connect (OSTI)

    Terrani, Kurt A [ORNL; Snead, Lance Lewis [ORNL; Gehin, Jess C [ORNL

    2012-01-01T23:59:59.000Z

    The potential application of microencapsulated fuels to light water reactors (LWRs) has been explored. The specific fuel manifestation being put forward is for coated fuel particles embedded in silicon carbide or zirconium metal matrices. Detailed descriptions of these concepts are presented, along with a review of attributes, potential benefits, and issues with respect to their application in LWR environments, specifically from the standpoints of materials, neutronics, operations, and economics. Preliminary experiment and modeling results imply that with marginal redesign, significant gains in operational reliability and accident response margins could be potentially achieved by replacing conventional oxide-type LWR fuel with microencapsulated fuel forms.

  10. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    SciTech Connect (OSTI)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01T23:59:59.000Z

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  11. Sustainability Framework 1 Queen's University

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Sustainability Framework 1 Queen's University Sustainability Strategic Framework #12;Sustainability Framework 2 Contents Introduction .................................................................................................................................................. 2 Queen's Sustainability Mission

  12. 2012 Accomplishments Report | Light Water Reactor Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Completed development plan for silicon carbide (SiC) ceramic matrix composite (CMC) nuclear fuel cladding; this plan will guide future R&D on advanced cladding * Completed...

  13. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More DocumentsCommunicationsProvides an overview of

  14. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More DocumentsCommunicationsProvides an overview

  15. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More DocumentsCommunicationsProvides an overviewMilestone

  16. ucsf sustainability healthy environment, sustainable future

    E-Print Network [OSTI]

    Yamamoto, Keith

    ucsf sustainability healthy environment, sustainable future UC SAN FRANCISCO ANNUAL REPORT FY 2009-2010 Annual Report of the Chancellor's Advisory Committee on Sustainability #12;TABLE OF CONTENTS Executive Summary 1 UCSF Sustainability Governance 3 Table 1: CACS Members 4 Figure 1: UCSF Sustainability

  17. Psychology of Sustainable Development

    E-Print Network [OSTI]

    Milfont, Taciano Lemos

    2003-01-01T23:59:59.000Z

    to achieve sustainable development: economic, environmental,out historical aspects of sustainable development and itsPsychology of Sustainable Development By Peter Schmuck and

  18. Ecosystems and Sustainable Development

    E-Print Network [OSTI]

    Tufford, Dan

    1999-01-01T23:59:59.000Z

    Review: Ecosystems and Sustainable Development Editors: J.L.Ecosystems and Sustainable Development. Southhampton, UK:as well. Ecosystems and Sustainable Development is a strong

  19. Ecosystems and Sustainable Development

    E-Print Network [OSTI]

    Tufford, Dan

    1999-01-01T23:59:59.000Z

    Ecosystems and Sustainable Development Editors: J.L. Uso,Ecosystems and Sustainable Development. Southhampton, UK:ISBN: 1-85312-502-4. Sustainable development research is a

  20. Psychology of Sustainable Development

    E-Print Network [OSTI]

    Milfont, Taciano Lemos

    2003-01-01T23:59:59.000Z

    to achieve sustainable development: economic, environmental,Psychology of Sustainable Development By Peter Schmuck andPsychology of Sustainable Development. Norwell, MA: Kluwer

  1. Active stewardship: sustainable future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active stewardship: sustainable future Active stewardship: sustainable future Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the...

  2. Review: Hijacking Sustainability

    E-Print Network [OSTI]

    Antonelli, Monika

    2010-01-01T23:59:59.000Z

    addressing the attack on sustainability, Sharon Beder’s 2002Review: Hijacking Sustainability By Adrian Parr Reviewed byParr, Adrian. Hijacking Sustainability. Cambridge, MA: MIT

  3. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01T23:59:59.000Z

    2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

  4. Environmental Sustainability

    E-Print Network [OSTI]

    Energy Systems & Climate Change 21 3.2 Communication 24 #12;Prospectus for Environmental Sustainability: Distance Learning 2014-2015 3 MEEN40820 Technical Communications 24 IS40030 People Information & Communication 26 ENVB40380 Managing the Interface between Science & Policy 28 3.3 Resource Characterisation

  5. Environmental Sustainability

    E-Print Network [OSTI]

    Energy Systems & Climate Change 21 3.2 Communication 24 #12;Prospectus for Environmental Sustainability: Distance Learning 2013-2014 3 MEEN40820 Technical Communications 24 IS40030 People Information & Communication 26 ENVB40380 Managing the Interface between Science & Policy 28 3.3 Resource Characterisation

  6. Sustainablesta Sustainable

    E-Print Network [OSTI]

    Richner, Heinz

    welfare impacts associated with poor sanitation in Southeast Asia has shown that the annual per capita research related to the core issues of the region, namely (i) environmental sanitation and health, (ii of adequate environmental sanitation has been identified as one of the main issues related to sustainable

  7. Environmentally assisted cracking in light water reactors

    SciTech Connect (OSTI)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1996-07-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  8. Sustainability Published December 2009

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Sustainability Report Published December 2009 #12;#12;NIEHS Sustainability Report #12;#12;Table........................................................................................................9 Managing for Sustainability....................................................................................................45 #12;A Message from Our Director In order to sustain and improve life on Earth, we must

  9. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    SciTech Connect (OSTI)

    Lindley, Benjamin A.; Parks, Geoffrey T. [University of Cambridge, Cambridge (United Kingdom)] [University of Cambridge, Cambridge (United Kingdom); Franceschini, Fausto [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)] [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2013-07-01T23:59:59.000Z

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  10. DOE Sustainability SPOtlight

    Broader source: Energy.gov [DOE]

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

  11. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  12. Sustainable NREL

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The National Renewable Energy Laboratory prides itself on not only advancing the renewable energy, but "walking the talk" when it comes to sustainable practices. "When you look at our laboratories, you will see energy efficiency in action, but you'll also see renewable energy. We walk the walk and we talk the talk. We believe in it and we want to live it also."

  13. Sustainable NREL

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory prides itself on not only advancing the renewable energy, but "walking the talk" when it comes to sustainable practices. "When you look at our laboratories, you will see energy efficiency in action, but you'll also see renewable energy. We walk the walk and we talk the talk. We believe in it and we want to live it also."

  14. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

  15. ORNL/TM-2012/380 Roadmap for Nondestructive Evaluation of Reactor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Light Water Reactor Sustainability Program September 2012 Prepared by Cyrus Smith Randy Nanstad Robert Odette Dwight Clayton Katie Matlack Pradeep Ramuhalli Glenn Light...

  16. E-Print Network 3.0 - army gas-cooled reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENABLING SUSTAINABLE NUCLEAR POWER Summary: and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... . Tedder, J. Lackey, J....

  17. Interdisciplinary Perspectives on Sustainability Sustainability 300

    E-Print Network [OSTI]

    D'Orsogna, Maria Rita

    will build skills to apply theories to real- world problems of sustainability, and develop the ability1 Interdisciplinary Perspectives on Sustainability Sustainability 300 Fall 2014 Class: 19301 Room and Sustainability loraine.lundquist@csun.edu JR 219B Course Description This course uses an interdisciplinary

  18. sustainability and u} Sustainability at the

    E-Print Network [OSTI]

    Webb, Peter

    sustainability and u} #12;Sustainability at the University of Minnesota is a continuous effort. The University of Minnesota is committed to incorporating sustainability into its teaching, research and outreach and the operations that support them. sustainability} From groundbreaking research to unique recycling options

  19. Assessment of University Sustainability Activities SUSTAINABILITY TRACKING,

    E-Print Network [OSTI]

    Dodla, Ramana

    Assessment of University Sustainability Activities under the SUSTAINABILITY TRACKING, ASSESSMENT Rashed-Ali, PhD. Prepared for: The UTSA Sustainability Council May 3rd , 2011 #12;yhd/s ^hDD Zz 2 | P a g-Ali, Assistant Professor in the College of Architecture, conducted a survey and assessment of UTSA sustainability

  20. Environmentally assisted cracking in light water reactors. Semiannual report, October 1993--March 1994. Volume 18

    SciTech Connect (OSTI)

    Chung, H.M.; Chopra, O.K.; Erck, R.A.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1995-03-01T23:59:59.000Z

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1993 to March 1994. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns in operating plants and as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels, (b) EAC of wrought and cast austenitic stainless steels (SSs), and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS after accumulation of relatively high fluence. Fatigue tests have been conducted on A302-Gr B low-alloy steel to verify whether the current predictions of modest decreases of fatigue life in simulated pressurized water reactor water are valid for high-sulfur heats that show environmentally enhanced fatigue crack growth rates. Additional crack growth data were obtained on fracture-mechanics specimens of austenitic SSs to investigate threshold stress intensity factors for EAC in high-purity oxygenated water at 289{degrees}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating boiling water reactors were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements, which are not specified in the ASTM specifications, may contribute to IASCC of solution-annealed materials.

  1. Burnup concept for a long-life fast reactor core using MCNPX.

    SciTech Connect (OSTI)

    Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

    2013-02-01T23:59:59.000Z

    This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

  2. Review of the proposed materials of construction for the SBWR and AP600 advanced reactors

    SciTech Connect (OSTI)

    Diercks, D.R.; Shack, W.J.; Chung, H.M.; Kassner, T.F. [Argonne National Lab., IL (United States)

    1994-06-01T23:59:59.000Z

    Two advanced light water reactor (LWR) concepts, namely the General Electric Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive 600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory. The objectives of these reviews were to (a) evaluate proposed advanced-reactor designs and the materials of construction for the safety systems, (b) identify all aging and environmentally related degradation mechanisms for the materials of construction, and (c) evaluate from the safety viewpoint the suitability of the proposed materials for the design application. Safety-related systems selected for review for these two LWRs included (a) reactor pressure vessel, (b) control rod drive system and reactor internals, (c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators (AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the use of cobalt-based alloys in these plants was reviewed. The selected materials for both reactors were generally sound, and no major selection errors were found. It was apparent that considerable thought had been given to the materials selection process, making use of lessons learned from previous LWR experience. The review resulted in the suggestion of alternate an possibly better materials choices in a number of cases, and several potential problem areas have been cited.

  3. Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators

    SciTech Connect (OSTI)

    Jeffrey C. Joe; Johanna H. Oxstrand

    2014-06-01T23:59:59.000Z

    The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks. We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.

  4. Cultivating Sustainable Coffee: Persistent Paradoxes

    E-Print Network [OSTI]

    Bacon, Christopher M.; Mendez, Ernesto; Fox, Jonathan A

    2008-01-01T23:59:59.000Z

    survival and sustainable development processes will dependinclusive and sustainable rural development processes. Ininclusive sustainable rural devel- opment process (Miranda

  5. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01T23:59:59.000Z

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  6. Light water reactor safety research program. Quarterly report Jan-Mar 80

    SciTech Connect (OSTI)

    Berman, M.

    1980-09-01T23:59:59.000Z

    The Molten Fuel Concrete Interactions (MFCI) study is comprised of experimental and analytical investigations of the chemical and physical phenomena associated with interactions between molten core materials and concrete. Such interactions are possible during hypothetical fuel-melt accidents in light water reactors (LWRs) when molten fuel and steel from the reactor core penetrate the pressure vessel and cascade onto the concrete substructure. The purpose of the MFCI study is to develop an understanding of these interactions suitable for risk assessment. Emphasis is placed on identifying and investigating the dominant interaction phenomena occurring between prototypic materials. The table of contents is the following: Molten fuel concrete interactions study; Steam explosion phenomena; Separate effects tests for TRAP code development; and Containment emergency sump performance.

  7. Achieving Sustainability Cindy Carlsson

    E-Print Network [OSTI]

    Minnesota, University of

    Achieving Sustainability at MnDOT Cindy Carlsson MnDOT Office of Policy Analysis, Research and Innovation 22nd Annual Transportation Research Conference May 24, 2011 #12;Sustainable practices respect Sustainability #12;Environmental Sustainability Sustainable practices · Are compatible with and may enhance

  8. Sustainability Cal State Fullerton

    E-Print Network [OSTI]

    de Lijser, Peter

    Sustainability at Cal State Fullerton A Report from the Sustainability Initiative Study Group October 28, 2008 #12;Sustainability at Cal State Fullerton A Report from the Sustainability Initiative Safety Sally Yassine Contracts & Procurement #12;Sustainability at Cal State Fullerton A Report from

  9. Sustainable Furman NOVEMBER 2009

    E-Print Network [OSTI]

    and destination taking the long view #12;SUSTAINABLE FURMAN 1 EXECUTIVE SUMMARY Living sustainably entails takingSustainable Furman #12;NOVEMBER 2009 sustainability meeting humanity's needs journey in perpetuity, a commitment to sustainability promotes the well-being of people and campuses over the long term

  10. Sustainable Procurement Policy

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Sustainable Procurement Policy #12;2 Sustainable Procurement What is sustainable procurement? "Sustainable procurement is a process whereby organisations meet their needs for goods, services, works to the environment" Procuring the Future (Sustainable Procurement Task Force June 2006) Why is it important

  11. "Leadership for Sustainable

    E-Print Network [OSTI]

    Saskatchewan, University of

    ! 1! ! ! "Leadership for Sustainable Development in Commonwealth Africa" 8th !Forum! Commonwealth! Secretariat! #12;! 2! Ethical Leadership for Sustainable Development Background Paper prepared! Executive Summary The "Ethical Leadership for Sustainable Development" paper offers Heads of Public Service

  12. Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprising Light Water Reactors and Accelerator-Driven Systems

    SciTech Connect (OSTI)

    H.R. Trellue

    2003-06-01T23:59:59.000Z

    Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shorter half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium ({approx}40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation.

  13. Living a Sustainable Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solve the energy crisis through biological methods, including genetically engineering algae and cyanobacteria. Create a Sustainable Future: Living Living a Sustainable Future How...

  14. Sustainability Bulletin USGBC Sustainable Speaker Series

    E-Print Network [OSTI]

    Kidd, William S. F.

    series of events recognizing Earth Day and the need to increase sustainable living on campus. This yearMay 2014 Sustainability Bulletin #12;USGBC Sustainable Speaker Series May 13 Give and Go May 13th themselves from many of the technology devices that have become ubiquitous in our daily lives, and to start

  15. Engineering problems of tandem-mirror reactors

    SciTech Connect (OSTI)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22T23:59:59.000Z

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  16. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01T23:59:59.000Z

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  17. Risk-informed design guidance for a Generation-IV gas-cooled fast reactor emergency core cooling system

    E-Print Network [OSTI]

    Delaney, Michael J. (Michael James), 1979-

    2004-01-01T23:59:59.000Z

    Fundamental objectives of sustainability, economics, safety and reliability, and proliferation resistance, physical protection and stakeholder relations must be considered during the design of an advanced reactor. However, ...

  18. Sustainable Development and Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2001-01-01T23:59:59.000Z

    03 Sustainable Development and Sustainable Transportation:17 Sustainable Development and Sustainable Transportation:Wimsatt, Alma. “Sustainable Development and International

  19. Sustainable Development & Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2001-01-01T23:59:59.000Z

    03 Sustainable Development and Sustainable Transportation:17 Sustainable Development and Sustainable Transportation:Wimsatt, Alma. “Sustainable Development and International

  20. Sustainable Development Summer Intern Report 2013 Sustainable Development Summer Intern

    E-Print Network [OSTI]

    Sustainable Development Summer Intern Report 2013 Sustainable Development Summer Intern Final amongst university's invested in sustainable development. Our small but mighty size allows us to build through positive sustainable practices. As the Sustainable Development Summer Intern I am fortunate enough

  1. Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute

    E-Print Network [OSTI]

    California at Davis, University of

    Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute College of Agricultural Sustainability Institute Professor, Department of LAWR With input from Steve Kaffka, Ford Denison Sustainability Institute The Russell Ranch Sustainable Agriculture Facility is a unique 300-acre facility near

  2. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489–Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

  3. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01T23:59:59.000Z

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  4. Sustainable Stanford Greening Infrastructure & Choices

    E-Print Network [OSTI]

    sustainability coordinators Work with Office of Sustainability as staff to assist and coordinate with building;1717 Building Level Conservation Solicit participation for the campus Building Level Sustainability Program #12Sustainable Stanford Greening Infrastructure & Choices Fahmida Ahmed Office of Sustainability #12

  5. Received two 2013 Sustainability Awards from DOE for "Sustainable Campus" and "Innovative and Holistic Sustainability." PNNL advances the DOE sustainability

    E-Print Network [OSTI]

    Received two 2013 Sustainability Awards from DOE for "Sustainable Campus" and "Innovative and Holistic Sustainability." PNNL advances the DOE sustainability mission with a diverse, focused effort toward goals for 2020 and beyond. The Sustainability Program and Information Management Services put

  6. Framework for Measuring Sustainable

    E-Print Network [OSTI]

    Levinson, David M.

    Knight Foundation will use this sustainability framework for internal organizational purposes with the possibility

  7. Sustainable Nanomaterials Industry Perspective

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by MeadWestvaco Corporation held on June 26, 2012

  8. Measuring Energy Sustainability

    E-Print Network [OSTI]

    20 Measuring Energy Sustainability David L. Greene Abstract For the purpose of measurement, energy sustainability is defined as ensuring that future generations have energy resources that enable them to achieve that there are valid, more comprehensive understandings of sustainability and that energy sustainability as de- fined

  9. Office of Sustainability Support

    Broader source: Energy.gov [DOE]

    The Office of Sustainability Support serves as AU’s organizational lead in partnering with the Department’s Sustainability Performance Office to support the understanding and implementation of sustainability programs and requirements within the Department, including through supporting development and implementation of DOE’s annual Strategic Sustainability Program Plan.

  10. Sustainability in colleges 15

    E-Print Network [OSTI]

    Melham, Tom

    Sustainability in colleges 15 Carbon reduction 5 Water 7 Travel8 Waste,recyclingandreuse10 Sustainability Report 2011/2012 #12;2University of Oxford Environmental Sustainability Report 2011/12 "As Chair of the Sustainability Steering Group, I have seen a significant shift in staff and students' expectations

  11. UC Sustainability Office Report

    E-Print Network [OSTI]

    Hickman, Mark

    UC Sustainability Office Report Introduction Welcome to the third annual UC Sustainability Office infrastructure, UC is now trending in a positive direction against some sustainability indicators. Electricity products and membership of the UC Sustainability Community is growing. There are concerns around the amount

  12. Achieving Sustainability Cindy Carlsson

    E-Print Network [OSTI]

    Minnesota, University of

    Achieving Sustainability Cindy Carlsson Mn/DOT Office of Policy Analysis, Research and Innovation April 21, 2011 #12;Sustainability Is Not New Mn/DOT has long been a leader in CSS and environmental excellence. . . . . . so we're well along on the path to sustainability! #12;Today Sustainability is More

  13. Progress Report 2014 Sustainability

    E-Print Network [OSTI]

    Y Yale Progress Report 2014 Sustainability Strategic Plan #12;President Salovey announced Yale's continued commitment to sustainability when he released the University's second Sustainability Strategic-going efforts to address sustainability and called upon students, faculty, and staff to play an active role

  14. Sustainability Commitments Commitment

    E-Print Network [OSTI]

    Heller, Barbara

    : On a fully sustainable urban campus, campus buildings become a living example of environmental researchSustainability Commitments Emissions Commitment: On a fully sustainable urban campus, the materials for elimination. Supply Chain/Waste Management Commitment: On a fully sustainable urban campus, material flows

  15. Sustainable Rangelands Roundtable Overview

    E-Print Network [OSTI]

    Wyoming, University of

    Sustainable Rangelands Roundtable Overview Kristie Maczko, PhD John Tanaka, PhD http://SustainableRangelands.org #12;Overview Sustainable Rangelands Roundtable (SRR) background, products and current projects Introduction to criteria and indicators #12;Sustainable Rangelands Roundtable Is a collaborative partnership

  16. VISIONS FOR A SUSTAINABLE

    E-Print Network [OSTI]

    Riesenhuber, Maximilian

    THE VISIONS FOR A SUSTAINABLE GEORGETOWN INITIATIVE study with recommendations for a campus climate action plan prepared for the Hoyas Roundtable on Sustainability MARCH 15, 2012 THE HOYA ROUNDTABLE SERIES: SPOTLIGHT ON SUSTAINABILITY GEORGETOWN SUSTAINABILITY #12;Georgetown University is taking major steps toward

  17. ASSET Minor Sustainable

    E-Print Network [OSTI]

    ASSET Minor Sustainable Design Engineering Sustainable Science, Engineering and Technology (ASSET a sustainable world as a complex, multidisciplinary challenge. This minor will help you understand this thinking especially for this purpose. · You'll learn how to enact successful strategies for dealing with sustainable

  18. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    SciTech Connect (OSTI)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01T23:59:59.000Z

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  19. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01T23:59:59.000Z

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.

  20. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16T23:59:59.000Z

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  1. Sustainable Acquisition Coding System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents &...

  2. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1981-01-01T23:59:59.000Z

    Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

  3. Research reactors - an overview

    SciTech Connect (OSTI)

    West, C.D.

    1997-03-01T23:59:59.000Z

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  4. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Semiannual report, October 1990--March 1991: Volume 13

    SciTech Connect (OSTI)

    Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

    1992-07-01T23:59:59.000Z

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties.

  5. SUSTAINABLE A university for sustainable development

    E-Print Network [OSTI]

    Johannesson, Henrik

    carbon offset. Additional areas of action include research and education, collaboration and communication scientifically peer-reviewed articles on sustainable development were published. · Carbon dioxide emissions from

  6. Steady-state spheromak reactor studies

    SciTech Connect (OSTI)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01T23:59:59.000Z

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.

  7. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10T23:59:59.000Z

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  8. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L. (Stanford, CA); Bachmann, Andre (Palo Alto, CA)

    1992-01-01T23:59:59.000Z

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  9. Sustainable Energy: Choosing Among Options

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2006-01-01T23:59:59.000Z

    Review: Sustainable Energy: Choosing Among Options Byand William A. Peters. Sustainable Energy: Choosing AmongAll the authors of Sustainable Energy are associated with

  10. Corporate sustainability assessment methodology

    E-Print Network [OSTI]

    Pinchuk, Natallia

    2011-01-01T23:59:59.000Z

    Sustainability is a vague concept specifically in the context of a corporate world. There are numerous definitions for corporate sustainability and just as many ways of evaluating it. This work attempts to define, structure ...

  11. Sustainable Nanomaterials Workshop

    Broader source: Energy.gov [DOE]

    The Sustainable Nanomaterials Workshop (held in Washington, D.C., on June 26, 2012) gathered stakeholders from industry and academia to discuss the current state of the art for sustainable nanomat...

  12. Sustainability, Ethics, and Aesthetics

    E-Print Network [OSTI]

    Moldavanova, Alisa

    2013-01-01T23:59:59.000Z

    Among four dimensions of sustainability (environmental, economic, social, and cultural), it is the latter aspect that is least examined by scholars. However, understanding how culture contributes to the long term sustainability of communities...

  13. Biomarkers for Sustainable

    E-Print Network [OSTI]

    Predictive Biomarkers for Sustainable Environments For more information, contact: Ann Miracle for Sustainable Environments PaCIFIC NorThwEST NaTIoNaL LaBoraTory Detecting environmental damage before it's too

  14. Sustainable tourism in Russia.

    E-Print Network [OSTI]

    Khoroshavina, Sofya

    2010-01-01T23:59:59.000Z

    ??Im Jahr 1987 wurden im Brundtland Report erstmals das Konzept der Nachhaltigen Entwicklung („SustainableDevelopment“) sowie der Begriff Nachhaltiger Tourismus („SustainableTourism“) erwähnt. Seitdem wird diesen Prinzipien… (more)

  15. Sustainable Development Summer Intern Report 2010 Sustainable Development Summer Intern

    E-Print Network [OSTI]

    Sustainable Development Summer Intern Report 2010 1 Sustainable Development Summer Intern Final of Bishop's University. The role of the Sustainable Development Summer Intern (SDSI) is to coordinate and organize sustainable development information and activities during the summer months. Ensuring

  16. Sustainability Peer Educator Positions Position: Sustainability Peer Educator

    E-Print Network [OSTI]

    Boonstra, Rudy

    Sustainability Peer Educator Positions Position: Sustainability Peer Educator Available Positions 2013 ­ April 2014 Position Summary: Working with the Sustainability Project Coordinator, this team of students will be responsible for enhancing and educating UTSC students, staff and faculty on sustainability

  17. Sustainability Curriculum Models Sustainability Design Charrette Curriculum Workshop

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    Sustainability Curriculum Models Sustainability Design Charrette Curriculum Workshop December 4 student that goes through WWU understands how sustainability is practiced on campus Students leave with a commitment, knowledge, and resources to practice sustainability in work and private life. Content

  18. Architecture, Engineering and Construction Sustainability Report Biannual Sustainability Report

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Architecture, Engineering and Construction Sustainability Report i Biannual Sustainability Report Projects $5 Million and Over August 2012 Active Projects

  19. Light water reactor safety research program, quarterly report, July-September 1980. Volume 3

    SciTech Connect (OSTI)

    Berman, M.

    1981-04-01T23:59:59.000Z

    The report covers research performed during July-September 1980 for the NRC Light Water Reactor Safety Research Program comprised of: (1) The Molten Fuel Concrete Interactions (MFCI) study of experimental and analytical investigations of the chemical and physical phenomena associated with interactions between molten core materials and concrete; (2) Steam Explosion Phenomena program to assess the probability and consequences of steam explosions during postulated meltdown accidents in LWRs; (3) Separate Effects Tests for TRAP Code Development investigating vapor pressures of fission-product species at elevated temperatures, chemical compound formation and reaction rates; (4) Containment Emergency Sump Performance (CESP) program to investigate the reliability of ECCS sumps; (5) Hydrogen Program designed to quantify the threat posed by hydrogen released during LWR accidents; and (6) Combustible Gas in Containment Program to study the generation of H2 from the corrosion of zinc and other materials located within LWR containment buildings.

  20. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01T23:59:59.000Z

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  1. STRATEGIC FOCUS: Sustainable Systems

    E-Print Network [OSTI]

    to apply sustain- ability principles to building and design, transportation and other fields, to green, presented an ecologically-sustainable sanitation system developed for a small hospital in northern Haiti1010 STRATEGIC FOCUS: Sustainable Systems Biology doctoral student Tanya Lubansky uses quan

  2. Sustainable Development Report

    E-Print Network [OSTI]

    Laval, Université

    Sustainable Development Report 2010-2011 #12;2 Table of Contents Université Laval at a glance 2-2011 highlights 9 University community initiatives 15 Sustainable development educational program 21 Research and creativity in sustainable development 24 Awards, recognition, and distinctions 28 Implementation

  3. SUSTAINABILITY New Perspectives

    E-Print Network [OSTI]

    Edwards, Paul N.

    the basic principle of sustainability to all areas of human activity, from energy to all manner of consumerSUSTAINABILITY New Perspectives and Opportunities Globalization TrendLab 2012 #12;Globalization TrendLab 2012 Sustainability New Perspectives and Opportunities #12;Based on a conference organized

  4. UC Sustainability Office Report

    E-Print Network [OSTI]

    Hickman, Mark

    1 UC Sustainability Office Report Introduction Welcome to the second annual UC Sustainability Office Report. 2012 saw the Sustainability Office focus its attentions on enhancing the student experience and building on UC's statement of strategic intent of `people prepared to make a difference'. We

  5. Global Change Sustainability

    E-Print Network [OSTI]

    Tipple, Brett

    Global Change and Sustainability Center The GCSC is an inclusionary and interdisciplinary hub that promotes, coordinates, and conducts local to global environmental- and sustainability-related research to complex environmental and sustainability issues and challenges. 2012 Annual Report #12;1GCSC 2012 ANNUAL

  6. Sustainability and Horticulture

    E-Print Network [OSTI]

    Weiblen, George D

    N2O CH4 CO2 CO2 Sustainability and Horticulture: Examples from Tree Fruit Production David Granatstein WSU-Center for Sustaining Agriculture and Natural Resources Wenatchee, WA USA Kermit Olsen Lecture, St. Paul, MN, March 21, 2012 Yakima Valley #12;#12;CH4 Outline What is `sustainability' ? Global

  7. BERKSHIRE ENCYCLOPEDIA OF SUSTAINABILITY

    E-Print Network [OSTI]

    Kammen, Daniel M.

    BERKSHIRE ENCYCLOPEDIA OF SUSTAINABILITY V O L U M E S 1-10 A ground-breaking interdisciplinary@berkshirepublishing.com | Tel +1 413 528 0206 19 April, 2012 In the 10-volume Berkshire Encyclopedia of Sustainability, experts, regional sustainability issues, and resource and ecosystem management. The ten volumes are available

  8. SUSTAINABILITY WHO CAN APPLY

    E-Print Network [OSTI]

    FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

  9. Sustainability Bulletin Clothing Collection

    E-Print Network [OSTI]

    Kidd, William S. F.

    Sustainability Bulletin April 2014 #12;Upcoming Clothing Collection March 3-April 14 Hunter Lovins on Wednesday, April 23rd from 11am-2pm brought to you by EAP and the Office of Environmental Sustainability will be in the Campus Center Ballroom to highlight other aspects of well-being such as health, nutrition, sustainability

  10. Sustainability Masters Programmes

    E-Print Network [OSTI]

    Sustainability Masters Programmes School of Earth and Environment FACULTY OF ENVIRONMENT #12 for sustainability (e.g. a low-carbon economy, or economic development that considers environmental and social issues) needs people with an in-depth understanding of sustainability and climate change issues. Forward

  11. WINTER 2014 Sustainability and

    E-Print Network [OSTI]

    Stephens, Graeme L.

    WINTER 2014 Sustainability and Renewable Energy in Costa Rica January 4 - 14 Dr. James Hoffmann, Program Director Lecturer Sustainability Studies Program E-511 Melville Library Stony Brook, NY 11794 sustainability and renewable energy. Students will spend 11 days in Costa Rica to participate in site visits

  12. Final Report Sustainability at

    E-Print Network [OSTI]

    Escher, Christine

    1 Final Report Sustainability at Oregon State University Prepared by The Institute for Natural Resources Oregon State University June 2009 #12;2 Sustainability at Oregon State University June 2009 The Institute for Natural Resources Created by the Oregon Legislature through the 2001 Oregon Sustainability Act

  13. Sustainability Initiative Executive Summary

    E-Print Network [OSTI]

    Sheridan, Jennifer

    UW­Madison Sustainability Initiative Executive Summary October 2010 #12;2 We are pleased to present the final report of the campus Sustainability Task Force. This report fulfills the charge we gave to sustainability for consideration by UW­Madison's leadership and campus community. There are many reasons why

  14. Social Sustainability: Geography 446

    E-Print Network [OSTI]

    Social Sustainability: Geography 446 submitted to Sally Hermansen & Lorna Seppala The University of British Columbia Vancouver, BC Curranne Labercane February 4th, 2009 #12;Definition Social Sustainability- A socially sustainable community provides an inclusive, equitable, and decent quality of life for current

  15. SUSTAINABLE DEVELOPMENT REPORT

    E-Print Network [OSTI]

    Laval, Université

    ­ Encourage research and innovation in sustainable development 14 - Standard of Living, EconomySUSTAINABLE DEVELOPMENT REPORT 2011-2012 #12;2 Table of Contents UNIVERSIT� LAVAL AT A GLANCE 3 A WORD FROM THE RECTOR 4 A WORD FROM THE EXECUTIVE VICE-RECTOR, DEVELOPMENT 5 SUSTAINABLE DEVELOPMENT

  16. Evolutionary/advanced light water reactor data report

    SciTech Connect (OSTI)

    NONE

    1996-02-09T23:59:59.000Z

    The US DOE Office of Fissile Material Disposition is examining options for placing fissile materials that were produced for fabrication of weapons, and now are deemed to be surplus, into a condition that is substantially irreversible and makes its use in weapons inherently more difficult. The principal fissile materials subject to this disposition activity are plutonium and uranium containing substantial fractions of plutonium-239 uranium-235. The data in this report, prepared as technical input to the fissile material disposition Programmatic Environmental Impact Statement (PEIS) deal only with the disposition of plutonium that contains well over 80% plutonium-239. In fact, the data were developed on the basis of weapon-grade plutonium which contains, typically, 93.6% plutonium-239 and 5.9% plutonium-240 as the principal isotopes. One of the options for disposition of weapon-grade plutonium being considered is the power reactor alternative. Plutonium would be fabricated into mixed oxide (MOX) fuel and fissioned (``burned``) in a reactor to produce electric power. The MOX fuel will contain dioxides of uranium and plutonium with less than 7% weapon-grade plutonium and uranium that has about 0.2% uranium-235. The disposition mission could, for example, be carried out in existing power reactors, of which there are over 100 in the United States. Alternatively, new LWRs could be constructed especially for disposition of plutonium. These would be of the latest US design(s) incorporating numerous design simplifications and safety enhancements. These ``evolutionary`` or ``advanced`` designs would offer not only technological advances, but also flexibility in siting and the option of either government or private (e.g., utility) ownership. The new reactor designs can accommodate somewhat higher plutonium throughputs. This data report deals solely with the ``evolutionary`` LWR alternative.

  17. Development of the Mathematics of Learning Curve Models for Evaluating Small Modular Reactor Economics

    SciTech Connect (OSTI)

    Harrison, T. J. [ORNL

    2014-02-01T23:59:59.000Z

    The cost of nuclear power is a straightforward yet complicated topic. It is straightforward in that the cost of nuclear power is a function of the cost to build the nuclear power plant, the cost to operate and maintain it, and the cost to provide fuel for it. It is complicated in that some of those costs are not necessarily known, introducing uncertainty into the analysis. For large light water reactor (LWR)-based nuclear power plants, the uncertainty is mainly contained within the cost of construction. The typical costs of operations and maintenance (O&M), as well as fuel, are well known based on the current fleet of LWRs. However, the last currently operating reactor to come online was Watts Bar 1 in May 1996; thus, the expected construction costs for gigawatt (GW)-class reactors in the United States are based on information nearly two decades old. Extrapolating construction, O&M, and fuel costs from GW-class LWRs to LWR-based small modular reactors (SMRs) introduces even more complication. The per-installed-kilowatt construction costs for SMRs are likely to be higher than those for the GW-class reactors based on the property of the economy of scale. Generally speaking, the economy of scale is the tendency for overall costs to increase slower than the overall production capacity. For power plants, this means that doubling the power production capacity would be expected to cost less than twice as much. Applying this property in the opposite direction, halving the power production capacity would be expected to cost more than half as much. This can potentially make the SMRs less competitive in the electricity market against the GW-class reactors, as well as against other power sources such as natural gas and subsidized renewables. One factor that can potentially aid the SMRs in achieving economic competitiveness is an economy of numbers, as opposed to the economy of scale, associated with learning curves. The basic concept of the learning curve is that the more a new process is repeated, the more efficient the process can be made. Assuming that efficiency directly relates to cost means that the more a new process is repeated successfully and efficiently, the less costly the process can be made. This factor ties directly into the factory fabrication and modularization aspect of the SMR paradigm—manufacturing serial, standardized, identical components for use in nuclear power plants can allow the SMR industry to use the learning curves to predict and optimize deployment costs.

  18. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States). Nuclear Engineering Dept.; Gellene, G.I. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

    1999-05-01T23:59:59.000Z

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  19. Sustainable Supply Chain Networks Sustainable Cities

    E-Print Network [OSTI]

    Nagurney, Anna

    years since the industrial revolution (Burruss (2004)). Anna Nagurney Sustainability #12;Pollution, and natural gas), has risen 30% in the 200 years since the industrial revolution (Burruss (2004)). The average

  20. Design of Sustainable Supply Chains Sustainable Cities

    E-Print Network [OSTI]

    Nagurney, Anna

    years since the industrial revolution (Burruss (2004)). Anna Nagurney Sustainability #12;Pollution, and natural gas), has risen 30% in the 200 years since the industrial revolution (Burruss (2004)). The average

  1. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2005-01-01T23:59:59.000Z

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

  2. Sustainable Urban Development: A Literature Review and Analysis

    E-Print Network [OSTI]

    Wheeler, Stephen

    1996-01-01T23:59:59.000Z

    Towards Sustainable Development and Sustainable Urban Forms,Sustainable Urban Development Sustainable Seattle Indicatorseds. , Making Development Sustainable: From Concepts to

  3. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1995: Twenty-eighth annual report. Volume 17

    SciTech Connect (OSTI)

    Thomas, M.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Hagemeyer, D. [Science Applications International Corp., Oak Ridge, TN (United States)

    1997-01-01T23:59:59.000Z

    This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 1995 annual reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Since there are no geologic repositories for high-level waste currently licensed, only six categories will be considered in this report. In 1995, the annual collective dose per reactor for light water reactor licensees (LWRs) was 199 person-cSv (person-rem). This is the same value that was reported for 1994. The annual collective dose per reactor for boiling water reactors (BWRs) was 256 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 170 person-cSv (person-rem). Analyses of transient worker data indicate that 17,153 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1995, the average measurable dose calculated from reported data was 0.26 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.32 cSv (rem).

  4. Sustainable Building Basics

    Broader source: Energy.gov [DOE]

    Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

  5. Implementation of Sustainability at

    E-Print Network [OSTI]

    Johansen, Tom Henning

    0 Assessing Implementation of Sustainability at UiO Grønt UiO S u s t a i n a b i l i t y i n R e sustainability commitment among universities and proposed Best Green University Practices in 2010. It presents the current status of UiO Environmental Sustainability. #12;1 If you cannot measure it, you cannot manage it

  6. JSC Sustainability Engagement Strategy

    E-Print Network [OSTI]

    Peterson, L.

    2012-01-01T23:59:59.000Z

    ? Joel Walker, our Center Sustainability Officer, says ?Sustainability should be something we don?t even think about; it should be engrained in our thinking. We just do it.? ? Mike Coats, JSC Center Director, and Joel Walker empower you to begin... Technical Solutions ? JSC Sustainability Partnership Team (SPT) ? Contact Mike Ewert (EC) to join! ? Ensure Contractor Involvement ? Contractor Environmental Partnership ? Contact Jennifer Morrison (JA/ERT) to join! 13 14 People: (Ms. Laurie...

  7. Design of Sustainable Supply Chains for Sustainable Cities Anna Nagurney

    E-Print Network [OSTI]

    Nagurney, Anna

    Design of Sustainable Supply Chains for Sustainable Cities Anna Nagurney Isenberg School of sustainable supply chains with a focus on cities that captures the frequency of network link operations, which and frequency costs, and meeting demand. Keywords: sustainable cities, supply chains, sustainability, network

  8. Financing Sustainable EnergyFinancing Sustainable Energy City of Berkeley

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Financing Sustainable EnergyFinancing Sustainable Energy City of Berkeley #12;Source of Green House for Sustainable EnergyFramework for Sustainable Energy Financing District · Adopted new Special Tax Financing Law indebtedness by unanimous consent of property owner #12;Framework for Sustainable Energy

  9. Sustainable Agriculture Loan Program

    Broader source: Energy.gov [DOE]

    The Minnesota Sustainable Agriculture Loan program will provide loans to Minnesota residents actively engaged in farming for capital expenditures which enhance the environmental and economic...

  10. NREL Sustainability Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date: March 25, 2015 Technology Area: Sustainability PIs: Daniel Inman and Garvin Heath Organization: National Renewable Energy Laboratory This presentation does not contain any...

  11. Attitudes towards sustainable development.

    E-Print Network [OSTI]

    Olkinuora, Veera

    2014-01-01T23:59:59.000Z

    ??The purpose of this thesis is to offer up to date information on the international students’ knowledge and attitude towards sustainable development in Oulu University… (more)

  12. Sustainable Development at University.

    E-Print Network [OSTI]

    Yao, Zhilei

    2010-01-01T23:59:59.000Z

    ?? After the Rio United Nations Conference on Enviroment and Development, the need of sustainable development obtained recognition from the vast majority of countries and… (more)

  13. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01T23:59:59.000Z

    a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

  14. Energy Efficiency Market Sustainable Business Planning | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning, a presentation...

  15. 2012 DOE Strategic Sustainability Performance Plan | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Strategic Sustainability Performance Plan 2012 DOE Strategic Sustainability Performance Plan The 2012 DOE Strategic Sustainability Performance Plan embodies DOE's...

  16. Law, Sustainability, and the Pursuit of Happiness

    E-Print Network [OSTI]

    Farber, Daniel A.

    2011-01-01T23:59:59.000Z

    of the steps needed for sustainability can actually improvesatisfaction. Thus, sustainability for society and theSustainability.

  17. Implementation of Stochastic Polynomials Approach in the RAVEN Code

    SciTech Connect (OSTI)

    Cristian Rabiti; Paul Talbot; Andrea Alfonsi; Diego Mandelli; Joshua Cogliati

    2013-10-01T23:59:59.000Z

    RAVEN, under the support of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, has been tasked to provide the necessary software and algorithms to enable the application of the conceptual framework developed by the Risk Informed Safety Margin Characterization (RISMC) [1] path. RISMC is one of the paths defined under the Light Water Reactor Sustainability (LWRS) DOE program.

  18. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01T23:59:59.000Z

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. WWU Sustainability Curriculum Design Charrette

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    WWU Sustainability Curriculum Design Charrette Feburary 4, 2009 6-9 PM ­ (VU 462 AB) "What Does Sustainability Literacy look like at WWU"? Hosted by: WWU Sustainability Academy & WWU Sustainability Committee's Subcommittee on Curriculum Dear Colleagues: You are invited to join fellow WWU Sustainability Academy members

  20. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

  1. Applying risk informed methodologies to improve the economics of sodium-cooled fast reactors

    E-Print Network [OSTI]

    Nitta, Christopher C

    2010-01-01T23:59:59.000Z

    In order to support the increasing demand for clean sustainable electricity production and for nuclear waste management, the Sodium-Cooled Fast Reactor (SFR) is being developed. The main drawback has been its high capital ...

  2. Nuclear reactor engineering

    SciTech Connect (OSTI)

    Glasstone, S.; Sesonske, A.

    1982-07-01T23:59:59.000Z

    A book is reviewed which emphasizes topics directly related to the light water reactor power plant and the fast reactor power system. Current real-world problems are addressed throughout the text, and a chapter on safety includes much of the postThree Mile Island impact on operating systems. Topics covered include Doppler broadening, neutron resonances, multigroup diffusion theory, reactor kinetics, reactor control, energy removal, nonfuel materials, reactor fuel, radiation protection, environmental effects, and reactor safety.

  3. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

  4. University of Oxford Environmental Sustainability Policy 2008

    E-Print Network [OSTI]

    Melham, Tom

    water) drains and sewers. SUSTAINABLE BUILDINGS ­ The University of Oxford Sustainable Buildings Policy is to build environmentally sustainable buildings, and embed sustainable building best practice

  5. Tag: Sustainability | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Tag: Sustainability Displaying 1 - 9 of 9... Category: About NNSA announces 2014 sustainability awards NNSA has awarded six 2014 Sustainability Awards for innovation...

  6. Sustainability at BPA 2012

    SciTech Connect (OSTI)

    none,

    2012-12-01T23:59:59.000Z

    BPA’s Sustainability Action Plan is grounded in our commitment to environmental stewardship and Executive Order 13514 that calls on the federal agencies to “lead by example” by setting a 2020 greenhouse gas emissions target, increasing energy efficiency; reducing fleet petroleum consumption; conserving water; reducing waste; supporting sustainable communities; and leveraging federal purchasing power to promoting environmentally responsible products and technologies.

  7. ENVIRONMENT AND SUSTAINABLE DEVELOPMENT

    E-Print Network [OSTI]

    Nesterov, Yurii

    of sustainable development; uConservation of resources and biodiversity; uClimate change and carbon management; uES AND BIODIVERSITy B.1 - conservation genetics and biodiversity 29 PH. BARET, A.-L. JACQUEMART B.2 - Environmental of collective action arrangements and regulation for biodiversity conservation and sustainable use 41 T

  8. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01T23:59:59.000Z

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

  9. Physics methods for calculating light water reactor increased performances

    SciTech Connect (OSTI)

    Vandenberg, C.; Charlier, A.

    1988-11-01T23:59:59.000Z

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained.

  10. CANDU reactors, their regulation in Canada, and the identification of relevant NRC safety issues

    SciTech Connect (OSTI)

    Charak, I.; Kier, P.H. [Argonne National Lab., IL (United States)

    1995-04-01T23:59:59.000Z

    Atomic Energy of Canada, Limited (AECL) and its subsidiary in the US, are considering submitting the CANDU 3 design for standard design certification under 10 CFR Part 52. CANDU reactors are pressurized heavy water power reactors. They have some substantially different safety responses and safety systems than the LWRs that the commercial power reactor licensing regulations of the US Nuclear Regulatory Commission (NRC) have been developed to deal with. In this report, the authors discuss the basic design characteristics of CANDU reactors, specifically of the CANDU 3 where possible, and some safety-related consequences of these characteristics. The authors also discuss the Canadian regulatory provisions, and the CANDU safety systems that have evolved to satisfy the Canadian regulatory requirements as of December 1992. Finally, the authors identify NRC regulations, mainly in 10 CFR Parts 50 and 100, with issues for CANDU 3 reactor designs. In all, eleven such regulatory issues are identified. They are: (1) the ATWS rule ({section}50.62); (2) station blackout ({section}50.63); (3) conformance with Standard Review Plan (SRP); (4) appropriateness of the source term ({section}50.34(f) and {section}100.11); (5) applicability of reactor coolant pressure boundary (RCPB) requirements ({section}50.55a, etc); (6) ECCS acceptance criteria ({section}50.46)(b); (7) combustible gas control ({section}50.44, etc); (8) power coefficient of reactivity (GDC 11); (9) seismic design (Part 100); (10) environmental impacts of the fuel cycle ({section}51.51); and (11) (standards {section}50.55a).

  11. Energy Realpolitik: Towards a Sustainable Energy Strategy

    E-Print Network [OSTI]

    Schroeder, W Udo

    2008-01-01T23:59:59.000Z

    A long-term strategy based on existing technological, ecological, economical, and geopolitical realities is urgently needed to develop a sustainable energy economy, which should be designed with adaptability to unpredicted changes in any of these aspects. While only a highly diverse energy portfolio and conservation can ultimately guarantee optimum sustainability, based on a comparison of current primary energy generation methods, it is argued that future energy strategy has to rely heavily on expanded coal and nuclear energy sectors. A comparison of relative potentials, merits and risks associated with fossil-fuel, renewable, and nuclear technologies suggests that the balance of technologies should be shifted in favor of new-generation, safe nuclear methods to produce electricity, while clean-coal plants should be assigned to transportation fuel. Novel nuclear technologies exploit fission of uranium and thorium as primary energy sources with fast-spectrum and transmutation (burner) reactors. A closed fuel cy...

  12. UC Student Sustainability Survey Dr Matt Morris, Sustainability Advocate, UC Sustainability Office, October 2013

    E-Print Network [OSTI]

    Hickman, Mark

    1 2013 UC Student Sustainability Survey Dr Matt Morris, Sustainability Advocate, UC Sustainability (but like the 2011 survey, n=300) it also asked about specific sustainability initiatives on campus the findings from the 2012 survey, again indicating a strong level of student interest in sustainability

  13. UC Student Sustainability Survey Dr Matt Morris, Sustainability Advocate, UC Sustainability Office, October 2012

    E-Print Network [OSTI]

    Hickman, Mark

    1 2012 UC Student Sustainability Survey Dr Matt Morris, Sustainability Advocate, UC Sustainability the results of the inaugural 2011 UC Sustainability Survey, and partly to test an alternative method asked questions relating to attitudes to and awareness of sustainability, as well as knowledge

  14. Architecture, Engineering and Construction Sustainability Report Biannual Sustainability Report

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Architecture, Engineering and Construction Sustainability Report Biannual Sustainability Report Projects $5 Million and Over February 2012 Alice Crocker Lloyd Hall Renovation

  15. Sustainable Development Research Institute fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Sustainable Development Research Institute fonds Compiled by Erwin Wodarczak and Melanie Hardbattle Projects series Sous-fonds Description o "Women and Sustainable Development: Canadian Perspectives (UBC Library catalogue) #12;Fonds Description Sustainable Development Research Institute fonds. ­ 1985

  16. CLEMSON UNIVERSITY Sustainability Action Plan

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    .......................................................................... 8 Action Steps for Sustainability Education, Culture, and Leadership CLEMSON UNIVERSITY Sustainability Action Plan Submitted by the President's Commission on Sustainability, August 1, 2011 Version 1.0.9 #12; 1 Table of Contents President

  17. SUSTAINABILITY AND FOOD Anthropology Professors

    E-Print Network [OSTI]

    Holliday, Vance T.

    SUSTAINABILITY AND FOOD Anthropology Professors Maribel Alvarez Diane Austin Mamadou Baro Tim. Potential Helpful Minors Environmental Studies Environmental Sciences Nutritional Science Sustainable Built Environments Sustainable Plant Systems Potential Employers Documentary Films Government Jobs

  18. CONCRETE PAVING & TEXTURING FOR SUSTAINABILITY

    E-Print Network [OSTI]

    Minnesota, University of

    CONCRETE PAVING & TEXTURING FOR SUSTAINABILITY Bernard Igbafen Izevbekhai, Research Operations 2012 #12;OUTLINE #12;SUSTAINABILITY · Meeting the needs of the present generation without compromising Brundtland Commission in 1987: · Successful application of the principles of sustainable development lies

  19. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01T23:59:59.000Z

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  20. Sustainable Energy Fund (Metropolitan Edison)

    Broader source: Energy.gov [DOE]

    FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund and the Penelec Sustainable Energy Fund in 2000. The Community Foundation for the Alleghenies in...

  1. Augustenborg: A Sustainable Community Assessment.

    E-Print Network [OSTI]

    Xu, Yiran

    2011-01-01T23:59:59.000Z

    ?? During the last decades, sustainable development has generated a growing attention in the world.Eco-city projects, as a step towards practical application of sustainable development… (more)

  2. A positive approach to sustainability

    E-Print Network [OSTI]

    Dossa, Zahir (Zahir A.)

    2013-01-01T23:59:59.000Z

    Sustainability is a complex term that is becoming increasingly used. While extremely important, sustainability is often misused and misunderstood, yielding undesirable effects. Furthermore, many organizations promote the ...

  3. Nuclear reactor safety. Quarterly progress report, October 1-December 31, 1979

    SciTech Connect (OSTI)

    Jackson, J.F.; Stevenson, M.G. (comps.)

    1980-05-01T23:59:59.000Z

    Progress is reported in the following areas: LWRs, LMFBRs, HTGRs, GCFRs, and safety analysis of the TMI-2 severe overcooling accident. (DLC)

  4. Sustainable BioMaterials Fall/Spring Semester Sustainable Enterprise, Sustainable Residential Structures,

    E-Print Network [OSTI]

    Buehrer, R. Michael

    in the concepts of sustainability, decisions related to developing green business of sustainability and the basis for decisions made related to green building-requisites. Sustainable Nature-based Enterprises (SBIO 3004) This green business class is recommended

  5. Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage

    SciTech Connect (OSTI)

    Bailey, W.J.

    1989-03-01T23:59:59.000Z

    The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

  6. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11T23:59:59.000Z

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  7. SRS Small Modular Reactors

    SciTech Connect (OSTI)

    None

    2012-04-27T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  8. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21T23:59:59.000Z

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  9. Office of Sustainability 2013-2014 Sustainability Ambassador Student Internship

    E-Print Network [OSTI]

    Tipple, Brett

    Office of Sustainability 2013-2014 Sustainability Ambassador Student Internship Organization: The University of Utah Office of Sustainability's primary objective is to decrease the University's environmental of sustainability. We work with the many campus organizations on topics that include energy, food, water, grounds

  10. GPHY 421 Sustainable Cities Prof. Ulrich Kamp 1 SUSTAINABLE CITIES

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    GPHY 421 ­ Sustainable Cities ­ Prof. Ulrich Kamp 1 SUSTAINABLE CITIES (GPHY 421) - Fall 2011 of sustainability efforts in cities around the world. Topics include, for example, urban sprawl and smart growth architecture, and urban forestry and agriculture. We will discuss how sustainable cities of today are, and how

  11. The Sustainability FYE Cluster The Sustainability FYE Cluster will make sustainable urban living a core experience for First

    E-Print Network [OSTI]

    The Sustainability FYE Cluster The Sustainability FYE Cluster will make sustainable urban living University. The Sustainability community infuses the learning-living community with practical and theoretical approaches to sustainable living, merging students' living community with unique academic and field

  12. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16T23:59:59.000Z

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  13. Environmental Standardization for Sustainability

    E-Print Network [OSTI]

    Bagby, John

    Environmental Standardization for Sustainability by Professor John W. Bagby College of Information that environmental controls are expressed as environmental standards, a traditional driver of investment in pollution control. Environmental standards spur investment in green technologies that promise to stimulate

  14. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09T23:59:59.000Z

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Cancels DOE G 413.3-6.

  15. Environmental Frontier of Sustainability

    E-Print Network [OSTI]

    Takada, Shoji

    A A Global Environmental Studies Frontier of Sustainability Science Akihisa MORI, Global Environmental Studies Satoshi KONISHI, Institute of Advanced Energy, etc Integrated Research Bld, economics, energy, architecture, meteorology and biology and so on. In this sense, this class welcomes

  16. Review: Greenhouse Solutions with Sustainable Energy

    E-Print Network [OSTI]

    Hamilton-Smith, Elery

    2009-01-01T23:59:59.000Z

    Solutions with Sustainable Energy By Mark DiesendorfSolutions with Sustainable Energy. Sydney, NSW: University

  17. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    SciTech Connect (OSTI)

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo [Westinghouse Electric Company LLC,Cranberry Township, PA, 16066 (United States); Sartori, Alberto; Ricotti, Marco [Politecnico di Milano, Milan (Italy)

    2012-07-01T23:59:59.000Z

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been

  18. Sustainable Energy Management Programs

    E-Print Network [OSTI]

    Hanner, S.

    2014-01-01T23:59:59.000Z

    Sustainable Energy Management Programs Steve Hanner Allen ISD/TEMA . ESL-KT-14-11-45 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Starting an Energy Management Program • Recognize need, Elicit District Commitment... • Appoint Energy Manager • Analyze Existing Conditions • Develop Plan • Implement and Monitor Program ESL-KT-14-11-45 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Sustainable Programs Feature – District Commitment...

  19. ENERGY, CLIMATE AND SUSTAINABLE

    E-Print Network [OSTI]

    ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT NAMAs and the Carbon Market Nationally Appropriate . . . . . . . . . . . 63 ChristianEllermann, NaMas FOr disPersed eNergy eNd-Use sectOrs: Using the building sectorDenmark,theNetherlandsMinistryofForeignAffairs,nortotherespectiveorganizationsofeachindividualauthor. CapacityDevelopmentforCDM(CD4CDM)Project UNEPRisøCentre, RisøNationalLaboratoryforSustainableEnergy The

  20. Code qualification of structural materials for AFCI advanced recycling reactors.

    SciTech Connect (OSTI)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31T23:59:59.000Z

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

  1. Sustainability at BPA 2013

    SciTech Connect (OSTI)

    none,

    2013-12-01T23:59:59.000Z

    THIS IS THE THIRD YEAR BPA has reported on sustainability program accomplishments. The report provides an opportunity to review progress made on sustainability initiatives, evaluate how far we have come and how much we can improve. The program has demonstrated maturation as the concepts of sustainability and resource conservation are communicated and understood. The sustainability program started as an employee-driven “grass roots” effort in 2010. Sustainability is becoming a consideration in how work is performed. The establishment of several policies supporting sustainability efforts proves the positive progress being made. In 2009, BPA became a founder and member of The Climate Registry, a nonprofit collaboration that sets standards to calculate, verify and report greenhouse gas emissions. This year, BPA completed and published our Greenhouse Gas inventory for the years of 2009, 2010 and 2011. The 2012 inventory is currently in the process of third-party verification and scheduled for public release in January 2014. These inventories provide a concrete measure of the progress we are making.

  2. A Toolkit for Building Sustainability at Dartmouth

    E-Print Network [OSTI]

    1 A Toolkit for Building Sustainability at Dartmouth Environmental Studies 50, Spring 2011 College Sustainability Strategic Planning Process. Dartmouth College has a strong legacy of sustainability, are racing forward with new sustainability initiatives, sustainable building designs, and new, innovative

  3. Pacific Northwest National Laboratory Sustainable PNNL

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Sustainable PNNL Sustainability at Pacific Northwest National of sustainability throughout our research and operations: environmental stewardship ­ minimizing use of water with the core principles of sustainability. Our success at incorporating sustainability into our work

  4. Occupational radiation exposure at commercial nuclear power reactors and other facilities 1994. Twenty-seventh annual report

    SciTech Connect (OSTI)

    Thomas, M.L.; Hagemeyer, D. [Science Applications International Corporation, Oak Ridge, TN (United States)

    1996-01-01T23:59:59.000Z

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). Annual reports for 1994 were received from a total of 303 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 303 licensees indicated that 152,028 individuals were monitored, 79,780 of whom received a measurable dose. The collective dose incurred by these individuals was 24,740 person-cSv (person-rem){sup 2} which represents a 15% decrease from the 1993 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.31 cSv (rem) for 1994. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. In 1994, the annual collective dose per reactor for light water reactor licensees (LWRs) was 198 person-cSv (person-rem). This represents a 18% decrease from the 1993 value of 242 person-cSv (person-rem). The annual collective dose per reactor for boiling water reactors (BWRs) was 327 person-cSv (person-rem) and, for pressurized water reactors (PWRs), it was 131 person-cSv (person-rem). Analyses of transient worker data indicate that 18,178 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1994, the average measurable dose calculated from reported data was 0.28 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.31 cSv (rem).

  5. Sustainable TransportationSustainable Transportation Principles and PracticesPrinciples and Practices

    E-Print Network [OSTI]

    Kyte, Michael

    Sustainable TransportationSustainable Transportation Principles and Practices for sustainable practices in Transportation · Provide a context for including sustainable practices and shared commitment #12;WeWe''ll Look at Sustainability at Three Levelsll Look at Sustainability at Three

  6. Security & Sustainability College of Charleston

    E-Print Network [OSTI]

    Young, Paul Thomas

    Security & Sustainability POLI 399 College of Charleston Fall 2013 Day/Time: T/H; 10@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt or virtual apt Instructor is that if sustained well-being and prosperity of human and ecological systems is the goal of sustainability

  7. School of Environment and Sustainability

    E-Print Network [OSTI]

    Saskatchewan, University of

    School of Environment and Sustainability Room 323, Kirk Hall 117 Science Place Saskatoon, SK S7N 5C8 Telephone: (306) 966-1985 E-mail: sens.info@usask.ca Master of Environment and Sustainability (MES) Opportunity Sustainability Science in the Delta Dialogue Network The School of Environment and Sustainability

  8. Applied Sustainability Political Science 319

    E-Print Network [OSTI]

    Young, Paul Thomas

    1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception

  9. Harnessing Sustainability to Uplift Communities

    E-Print Network [OSTI]

    Hall, Sharon J.

    Harnessing Sustainability to Uplift Communities Thursday, February 28, 2013 12:00 - 1:30 p sustainable can also be applied to solve other problems. In this way, sustainability creates value sustainability is being applied locally to uplift communities from poverty and malnutrition. Brooks is a founder

  10. Sustainability Across the Curriculum Symposium

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Sustainability Across the Curriculum Symposium March 23, 2011 9:00am ­ 12:00pm 100 Nedderman Hall, and Community Engagement Work Group of the University Sustainability Committee The "Sustainability Across Sustainability Committee will feature faculty and graduate student panels discussing a variety of topics related

  11. Going for "Green" Sustainable Building

    E-Print Network [OSTI]

    Going for "Green" Sustainable Building Certification Statistics Europe Status May 2011 rics.org/sustainability #12;Sustainable Building Certification Statistics Europe Foreword Investors are increasingly the usefulness of sustainability certificates in mainstreaming the uptake of so-called `green' buildings across

  12. Towards Evidence-Based Sustainable

    E-Print Network [OSTI]

    Wang, Hai

    Towards Evidence- Based Sustainable Communities Report on Survey of Urban Sustainability Centers. Hilda Blanco and Genevieve Giuliano at the Center for Sustainable Communities, the School of Policy Poticha, Director of the Office for Sustainable Housing and Communities, and Ben Winter and Joshua Geyer

  13. Light Water Reactor Sustainability Newsletter Kathryn McCarthy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    References * Coble, J. and J.W. Hines, 2009, "Development of a MATLAB- based Process and Equipment Prognostics Toolbox," 2009 Integrated Systems Health Management...

  14. Microsoft Word - Light Water Reactor Sustainability Program Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on operator attention demands and limitations on operator activities based on the current conduct of operations protocols. This report will identify opportunities to maximize...

  15. Light Water Reactor Sustainability Newsletter By George Griffith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure, and component (SSC) behavior will be coupled more closely to scenar- io phenomenology than is practical in today's simula- tion codes. The main output of R7 is a...

  16. Light Water Reactor Sustainability Nondestructive Evaluation for Concrete

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National LaboratoriesResearch and

  17. Light Water Reactor Sustainability Program - Non-Destructive Evaluation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National LaboratoriesResearch andR&D

  18. Light Water Reactor Sustainability Program: Integrated Program Plan |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National LaboratoriesResearch

  19. Light Water Reactor Sustainability Program: Materials Aging and Degradation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveraging National LaboratoriesResearchTechnical

  20. Light Water Reactor Sustainability Technical Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-CycleDutyR&D

  1. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORT TOJaredKansas1 -

  2. Light Water Reactor Sustainability Technical Documents | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORT TOJaredKansas1 -Energy Initiatives »

  3. Post-doc: Modelling & Control of Continuous Reactors

    E-Print Network [OSTI]

    Langendoen, Koen

    development in mechatronics and microsystems, sustainable industrial processes, transportation systems scope is a demonstration of continuous reactors with in-line analytics for fine chemical production for improvement of operation and actuation and will provide data for sensor development and control guidelines. 4

  4. Neutronics for critical fission reactors and subcritical fission in hybrids

    SciTech Connect (OSTI)

    Salvatores, Massimo [CEA-Cadarache, DEN-Dir, Bat. 101, St-Paul-Lez-Durance 13108 (France)

    2012-06-19T23:59:59.000Z

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  5. Doe Sustainability SPOtlight - 2014 Sustainability Awards

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S.7685 Vol. 76, No. 29 Friday,DocumentSustainability

  6. Integrated Coastal Resource Management: A Prescription for Sustainable Development

    E-Print Network [OSTI]

    English, Brian J.

    2003-01-01T23:59:59.000Z

    1996). Sustainable Development Sustainable developmentNations' role in sustainable development. In C. Thomas (protection and sustainable development. Another positive

  7. Nondestructive examination (NDE) reliability for inservice inspection of light waters reactors

    SciTech Connect (OSTI)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T. (Pacific Northwest Lab., Richland, WA (USA))

    1989-11-01T23:59:59.000Z

    Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from April 1988 through September 1988. 33 refs., 70 figs., 12 tabs.

  8. The road to sustainability

    SciTech Connect (OSTI)

    Sarrao, John L [Los Alamos National Laboratory; Crabtree, George [ANL

    2009-01-01T23:59:59.000Z

    Sustainability is the hottest topic in energy research today, but what does it actually mean? George Crabtree and John Sarrao describe what makes a technology sustainable, and outline the materials-science challenges standing between us and clean, long-lasting energy. Although most people agree that more-sustainable energy technologies are desirable, they often find it harder to agree on exactly how sustainable these technologies need to be, and even precisely what is meant by sustainability. To clarify the debate, we suggest three criteria for sustainability, each of which captures a different feature of the problem. While we do not have the lUxury of achieving full sustainability for all of our next-generation energy technologies, we can use these definitions to select our strategic sustainability targets and track our progress toward achieving them. As will become clear, the most sustainable energy technologies require the most challenging fundamental science breakthroughs. The first criterion for sustainability is 'lasts a long time'. This quality has been a feature of many energy sources we have used historically, including wood in ancient times and oil throughout most of the 20th century. The definition of 'long time' is, of course, relative: the world's demand for energy long ago outpaced the ability of wood to supply it, and the production of oil is likely to peak sometime within the next few decades. Substantial reductions in the rate of oil consumption through higher-efficiency processes can significantly impact on how long non-renewable resources last. In applying the 'long time' criterion, we need to distinguish between energy sources that are effectively limitless and those that are finite but, for the moment, adequate. The second criterion for sustainability is 'does no harm'. Burning fossil fuels releases pollutants such as sulphur and mercury that endanger human health, as well as greenhouse gases like carbon dioxide that threaten climate stability. Some alternatives to fossil fuels have their own degrees of potential harm, including the underground migration and leakage of sequestered carbon dioxide and the hazards of storing spent nuclear fuel. The third and most strict criterion for sustainability is 'leaves no change'. When the material outputs of energy generation and use are recycled to replace the inputs, the chemical cycle is said to be closed and the chemical state of the world is unchanged. The process of converting renewable energy sources like sunlight and wind to carriers like hydrogen or electricity comes closest to fulfilling this restrictive definition. Fossil energy systems, in contrast, usually operate as once-through processes, irreversibly converting hydrocarbons to carbon dioxide and water. Some such systems could, however, be retrofitted to collect and recycle the combustion products to make new hydrocarbon fuel. If this process used the Sun as its energy source, fossil fuels, too, could meet this criterion.

  9. Undergraduate reactor control experiment

    SciTech Connect (OSTI)

    Edwards, R.M.; Power, M.A.; Bryan, M. (Pennsylvania State Univ., University Park (United States))

    1992-01-01T23:59:59.000Z

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise.

  10. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01T23:59:59.000Z

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  11. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28T23:59:59.000Z

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  12. Reactor Sharing Program

    SciTech Connect (OSTI)

    Vernetson, W.G.

    1993-01-01T23:59:59.000Z

    Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

  13. An Investigation of the Use of Fully Ceramic Microencapsulated Fuel for Transuranic Waste Recycling in Pressurized Water Reactors

    SciTech Connect (OSTI)

    Gentry, Cole A [ORNL] [ORNL; Godfrey, Andrew T [ORNL] [ORNL; Terrani, Kurt A [ORNL] [ORNL; Gehin, Jess C [ORNL] [ORNL; Powers, Jeffrey J [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    An investigation of the utilization of TRistructural- ISOtropic (TRISO)-coated fuel particles for the burning of plutonium/neptunium (Pu/Np) isotopes in typical Westinghouse four-loop pressurized water reactors is presented. Though numerous studies have evaluated the burning of transuranic isotopes in light water reactors (LWRs), this work differentiates itself by employing Pu/Np-loaded TRISO particles embedded within a silicon carbide (SiC) matrix and formed into pellets, constituting the fully ceramic microencapsulated (FCM) fuel concept that can be loaded into standard LWR fuel element cladding. This approach provides the capability of Pu/Np burning and, by virtue of the multibarrier TRISO particle design and SiC matrix properties, will allow for greater burnup of Pu/Np material, plus improved fuel reliability and thermal performance. In this study, a variety of heterogeneous assembly layouts, which utilize a mix of FCM rods and typical UO2 rods, and core loading patterns were analyzed to demonstrate the neutronic feasibility of Pu/Np-loaded TRISO fuel. The assembly and core designs herein reported are not fully optimized and require fine-tuning to flatten power peaks; however, the progress achieved thus far strongly supports the conclusion that with further rod/assembly/core loading and placement optimization, Pu/Np-loaded TRISO fuel and core designs that are capable of balancing Pu/Np production and destruction can be designed within the standard constraints for thermal and reactivity performance in pressurized water reactors.

  14. Sustainable NREL - Site Sustainability Plan FY 2015 (Management Publication)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

  15. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  16. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  17. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  18. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  19. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

    1993-01-01T23:59:59.000Z

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  20. Hypothetical Reactor Accident Study

    E-Print Network [OSTI]

    - W 4 DfcSkoollo Rise-R-427 CARNSORE: Hypothetical Reactor Accident Study O. Walmod-Larsen, N. O: HYPOTHETICAL REACTOR ACCIDENT STUDY O. Walmod-Larsen, N.O. Jensen, L. Kristensen, A. Heide, K.L. NedergĂĄrd, P-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are de- scribed

  1. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01T23:59:59.000Z

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  2. Investigations of Alternative Steam Generator Location and Flatter Core Geometry for Lead-Cooled Fast Reactors

    SciTech Connect (OSTI)

    Carlsson, Johan; Tucek, Kamil; Wider, Hartmut [Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2006-07-01T23:59:59.000Z

    This paper concerns two independent safety investigations on critical and sub-critical heavy liquid metal cooled fast reactors using simple flow paths. The first investigation applies to locating the steam generators in the risers instead of the down-comers of a simple flow path designed sub-critical reactor of 600 MW{sub th} power. This was compared to a similar design, but with the steam generators located in the downcomers. The transients investigated were Total-Loss-of-Power and unprotected Loss-Of-Flow. It is shown that this reactor peaks at 1041 K after 29 hours during a Total-Loss-Of-Power accident. The difference between locating the steam generators in the risers and the downcomers is insignificant for this accident type. During an unprotected Loss-Of-Flow accident at full power, the core outlet temperature stabilizes at 1010 K, which is 337 K above nominal outlet temperature. The second investigation concerns a 1426 MW{sub th} critical reactor where the influence of the core height versus the core outlet temperature is studied during an unprotected Loss-Of-Flow and Total-Loss-Of-Power accident. A pancake type core geometry of 1.0 m height and 5.8 m diameter, is compared to a compact core of 2 m height and 4.5 m diameter. Moderators, like BeO and hydrides, and their influence on safety coefficients and burnup swings are also presented. Both cores incinerate transuranics from spent LWR fuel with minor actinide fraction of 5%. We show that LFRs can be designed both to breed and burn transuranics from LWRs. It is shown that the hydrides lead to the most favorable reactivity feedbacks, but the poorest reactivity swing. The computational fluid dynamics code STAR-CD was used for all thermal hydraulic calculations, and the MCNP and MCB for neutronics, and burn-up calculations. (authors)

  3. Sustainable Development: Physical and Moral Issues

    E-Print Network [OSTI]

    Hermanowicz, S W

    2006-01-01T23:59:59.000Z

    Sustainable Development: Physical and Moral Issues Slav W.e-mail: hermanowicz@ce.berkeley.edu Sustainable developmentaims and objectives of sustainable development are right and

  4. Guide to Sustainable Development and Environmental Policy

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2002-01-01T23:59:59.000Z

    Review: Guide to Sustainable Development and EnvironmentalEds. ). Guide to Sustainable Development and EnvironmentalThe Guide to Sustainable Development and Environmental

  5. The Green Cathedral: Sustainable Development of Amazonia

    E-Print Network [OSTI]

    Tobin, R. James

    1994-01-01T23:59:59.000Z

    The Green Cathedral: Sustainable Development of Amazonia R.The Green Cathedral: Sustainable Development of Amazonia. (Ais between sustainable and unsustainable development of the

  6. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Enabling Platform for Sustainable Energy Pathways. Presentedin Road Vehicles. Sustainable Energy Research Group, Schooland W. A. Peters (2005). Sustainable Energy: Choosing Among

  7. Pursuing happiness: The architecture of sustainable change

    E-Print Network [OSTI]

    Lyubomirsky, S; Sheldon, K M; Schkade, D

    2005-01-01T23:59:59.000Z

    Activity Set Point Architecture of Sustainable Happiness 46Circumstantial Change Architecture of Sustainable HappinessSage Foundation. Architecture of Sustainable Happiness 36

  8. Campus Sustainability Office Campus Planning Office

    E-Print Network [OSTI]

    Caughman, John

    Campus Sustainability Office (CSO) Campus Planning Office (CPO) Campus Sustainability Manager (Molly Bressers) Campus Sustainability Office and Campus Planning Office September 2014 Student Employee

  9. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively...

  10. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

  11. Sustainable Office Lighting Options

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Sustainable Office Lighting Options Task Lighting: Task lighting is a localized method of lighting a workspace so that additional, unnecessary lighting is eliminated, decreasing energy usage and costs. Illumination levels in the targeted work areas are higher with task lighting than with the ambient levels

  12. HumanoidHospital Sustainable

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    HHO HumanoidHospital Nanoscale Science Nano-Bio Interface Sustainable Energy Renewable Materials Areas Vision IcHHo will address the problem of accidental medical errors by developing an intelligent real-life medical scenarios. Mission IcHHO will develop interactive Humanoid Patients (male, female

  13. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  14. Sustainability Statement Environment Team

    E-Print Network [OSTI]

    in transport emissions as part of a wide range of measures required under the Climate Change Act 2008. The end Management 16 ­ 17 Key Area 8 ­ Sustainability in the Curriculum 18 Key Area 9 ­ Communication 19 ­ 20

  15. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20T23:59:59.000Z

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  16. SFU SUSTAINABILITY STRATEGIC PLAN

    E-Print Network [OSTI]

    a priority in the early 1980s, and recycling was begun in the early 1990s in response to lobbying it became a signatory to the Talloires Declaration. The Policy articulates two principles that led directly them." In 2012, these fundamental commitments led to the creation of a new Senior Sustainability

  17. Total Sustainability Humber College

    E-Print Network [OSTI]

    Thompson, Michael

    % reduction un effluent pipes Higher discounts from consolidated suppliers Dependence on solar energy 8 out they installed a solar roof for $1.2M thanks to their commitment to renewable energy Closed-Loop cycle for raw Food production and Waste Management Sustainable Food Farm at Clarkson University, Postdam, NY

  18. What is Sustainable Agriculture?

    E-Print Network [OSTI]

    Wang, Changlu

    security, its midwives were not gov- ernment policy makers but small farmers, environmentalists model has degraded soil and water, reduced the biodiversity that is a key element to food security Photo courtesy USDA NRCS #12;Page 2 ATTRA Sustainable Agriculture: An Introduction on imported oil

  19. Planning for Sustainable Communities: A Survey of Sustainability Practices

    E-Print Network [OSTI]

    Delaware, University of

    Fellow Center for Energy and Environmental Policy College of Human Services, Education and Public Policy#12;Planning for Sustainable Communities: A Survey of Sustainability Practices Among Twelve with an analysis of the challenges and opportunities that accompany Delaware's efforts to develop sustainable

  20. Sustainability of Concrete forSustainability of Concrete for Infrastructure

    E-Print Network [OSTI]

    Bertini, Robert L.

    Sustainability of Concrete forSustainability of Concrete for Infrastructure Dr. Jason H. Ideker limits sustainability in concrete materials? ­ Degradation: Alkali-silica reaction ­ Environmental for infrastructure rehabilitation and rapid repair ­ Instrumentation and monitoring to track performance · Testing

  1. Communicating about bioenergy sustainability

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Perla, Dr. Donna [US Environmental Protection Agency] [US Environmental Protection Agency; Lucier, Dr. Al [National Council on Air and Stream Improvement] [National Council on Air and Stream Improvement

    2013-01-01T23:59:59.000Z

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives, including problems and opportunities in various bioenergy production pathways. Scientists also need to develop approaches that contribute information relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports, and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that nonscientists can understand; and (3) the implications of methods, assumptions and limitations should be clear. The scientists job is to analyze information in order to build a better understanding of environmental, cultural and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on Sustainability of Bioenergy Systems: Cradle to Grave because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives in order to foster sustainability.

  2. Sustainability Community Special Interest Group

    E-Print Network [OSTI]

    Blevis, Eli

    Sustainability Community Special Interest Group Meeting, CHI 2012 Eli Blevis, Yue Pan, & David: Weather Effects #12;Discussion Catalyst: Social Sustainability #12;Discussion Catalyst: Barriers & Brick Catalyst: Education #12;Discussion Catalyst: Cultural Factors #12;Discussion Catalyst: Finding Our Way #12

  3. Sustainable FACULTY OF APPLIED SCIENCE

    E-Print Network [OSTI]

    Michelson, David G.

    Working Together Towards a Sustainable Energy Future FACULTY OF APPLIED SCIENCE Clean Energy aspects of sustainable energy solutions, and is committed to using its extensive expertise to serve, Electrical & Computer, Materials, Mechanical, Mining), the School of Architecture & Landscape Architecture

  4. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01T23:59:59.000Z

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  5. External Assurance Letter from Sustainable Business Consulting Sustainable Business Consulting evaluated Pacific Northwest National Laboratory's (PNNL) sustainability report to

    E-Print Network [OSTI]

    External Assurance Letter from Sustainable Business Consulting Sustainable Business Consulting evaluated Pacific Northwest National Laboratory's (PNNL) sustainability report to establish in the spirit of GRI disclosure. The 2012 Sustainability Report provides a balanced and reasonable

  6. External Assurance Letter from Sustainable Business Consulting Sustainable Business Consulting evaluated Pacific Northwest National Laboratory's (PNNL) sustainability report to

    E-Print Network [OSTI]

    External Assurance Letter from Sustainable Business Consulting Sustainable Business Consulting evaluated Pacific Northwest National Laboratory's (PNNL) sustainability report to establish the information in the spirit of GRI disclosure. The 2011 Sustainability Report provides a reasonable and balanced

  7. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  8. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  9. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  10. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

    1994-01-01T23:59:59.000Z

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  11. University of Saskatchewan Sustainability Assessment

    E-Print Network [OSTI]

    Peak, Derek

    of sustainable development initiatives, of which "green buildings" is one component. It is meant to appeal of 2001 with the introduction of the Sustainable Development Coordinator in the Department of Facilities planning, development and operations. The establishment of the Sustainable Development Coordinator position

  12. Economic Architecture and Sustainable Communities

    E-Print Network [OSTI]

    Hall, Sharon J.

    and investment conditions during the sustainability movement. Join scientist and Green Sense radio show host and social-improvement initiatives combine to build sustainable communities. Mr. Colangelo is recognized as a national expert on brownfields, an authoritative source on sustainable development, and an author

  13. Modelling sustainable development Ivar Ekeland

    E-Print Network [OSTI]

    Ekeland, Ivar

    Modelling sustainable development Ivar Ekeland www.ceremade.dauphine.fr/~ekeland CERMADE.ceremade.dauphine.fr/~ekeland (CERMADE, Universite Paris-Dauphine)Modelling sustainable development Collloque Sorin, IHP, Juin 2012 1 / 17 #12;Sustainable development The de...nition given by the Brundtland commision to the UN (1987

  14. Nordic network for Sustainable Energy

    E-Print Network [OSTI]

    Nordic network for Sustainable Energy Systems in Isolated Locations (NordSESIL) Gordon A. Mackenzie of the Nordic region to access sustainable energy solutions by creating and stimulating a network of relevant sustainable energy projects happening' in isolated areas of the Nordic region. #12;Partners, organisation (1

  15. WANGER INSTITUTE FOR SUSTAINABLE ENERGY

    E-Print Network [OSTI]

    Heller, Barbara

    WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) Strategic Plan Summary #12;WISER Strategic Plan Summary | 1 WANGER INSTITUTE FOR SUSTAINABLE ENERGY RESEARCH (WISER) STRATEGIC PLAN SUMMARY 1 by developing and supporting undergraduate research in energy and sustainability related areas. · Develop co

  16. DCP is national sustainability leader

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    UF Voices DCP is national sustainability leader Yesterday, Oct. 26, the College of Design, Construc-Orlando. Located in down- town Orlando, the program will bring sustainable design training to urban challenges approaches to sustainability. Another example is the international competition, Solar Decathlon Europe

  17. Sustainable Spring/Summer 2013

    E-Print Network [OSTI]

    and Sustainable Development Walk & Bike Conservewater Reuse & Re cycle Plantnativespecies InstallCFClightbulbs #12 The Kentucky Institute for the Environment and Sustainable Development (KIESD) was created in July 1992 within on environmental and sustainable development issues at the local, state, national and international levels. KIESD

  18. Economic Sustainability and Ecological Compatibility

    E-Print Network [OSTI]

    Economic Sustainability and Ecological Compatibility: Where is the room to move? October 21st - 22: Economic Sustainability and Ecological Compatibility: Where is the room to move? October 21st - 22nd , 2010, Economic Sustainability: Room to Move? Workshop Hosted by Colorado Forest Restoration Institute Walden

  19. Our commitment to business sustainability

    E-Print Network [OSTI]

    Our commitment to business sustainability `Timber is one of the most environmentally friendly intensive materials' Sustainability is about achieving a balance between meeting the needs of humans that sustainable principles are embedded in every aspect of our business ­ which means considering our impact

  20. Smithsonian Institution 2013 Strategic Sustainability

    E-Print Network [OSTI]

    Mathis, Wayne N.

    Smithsonian Institution 2013 Strategic Sustainability Performance Plan Office of Facilities for learning and teaching. The Smithsonian has been, and must be, sustainable for generations to come sustainability planning and performance. Therefore we include them in this plan, for example in the number

  1. SUSTAINABILITY CONNECTIONISSUE 12 JANUARY 2013

    E-Print Network [OSTI]

    Crawford, T. Daniel

    SUSTAINABILITY FOCUS ON ICTAS CONNECTIONISSUE 12 · JANUARY 2013 A V I R G I N I A T E C H R E S E SUSTAINABILITY and the FABRIC OF ICTAS RESEARCH Building a future that includes the availability of water, energy to Examine the Building Plumbing Microbiome New Faces at ICTAS ICTAS Center of Excellence in Sustainable

  2. Master of science in Sustainability

    E-Print Network [OSTI]

    Master of science in Sustainability Management #12;"As someone who is passionate about sustainability, I want my work to have an impact and I know my future efforts will have an even greater impact on society with the knowledge and experience I gain from the program." --Davida Heller, Sustainability

  3. COMMERCIAL SERVICES SUSTAINABLE FOOD POLICY

    E-Print Network [OSTI]

    Haase, Markus

    COMMERCIAL SERVICES SUSTAINABLE FOOD POLICY February 2013 Commercial Services (CS) provides a range high standards of sustainability across all its activities. This policy supports CS aim to become a `Sustainable, Efficient and Effective Organisation' that "....will carefully consider the impact of our

  4. Course Syllabus -Page 1 Sustainable Development

    E-Print Network [OSTI]

    Hermanowicz, Slawomir W.

    Course Syllabus - Page 1 Sustainable Development: Ethics, Physics and Technology Proposed Course 94720, USA Course Description Although sustainability and sustainable development have become common issue underlying sustainable development, change and its limits, from different perspectives: ethics

  5. Table of Contents Resilient Sustainable Communities

    E-Print Network [OSTI]

    ..................................... 5 Onondaga County: Sustainable Development Plan....................... 9 Comparison of the Hazard Mitigation Plan and Onondaga County Sustainable Development Plan DraftTable of Contents Resilient Sustainable Communities: Integrating Hazard Mitigation & Sustainability

  6. THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY

    E-Print Network [OSTI]

    Feschotte, Cedric

    THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY GREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERFall 2010 - Spring 2011 GREENERGREENERGREENERGREENERGREENERGREENER Working for a Sustainable Campus

  7. Sustainability Plan Part I: Strategy and Goals

    E-Print Network [OSTI]

    Escher, Christine

    Sustainability Plan Part I: Strategy and Goals Prepared By: Oregon State University Sustainability University (OSU) Sustainable Facilities Committee (SFC) was established in November, 2004 by the OSU infrastructure and operations toward sustainability. Additionally, the group serves as a discussion forum

  8. Benchmarking Sustainability: the use of Indicators

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    Benchmarking Sustainability: the use of Indicators Introduction The concept of sustainable development is both very popular and elusive. The overwhelming appeal of sustainability is situated to build a generally shared perception of sustainable development (Butler, 1998). For many people

  9. Sustainable Transportation Program | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program SHARE Sustainable Transportation Program Oak Ridge National Laboratory's Sustainable Transportation Program Office administratively facilitates the integration of...

  10. Institutional Change for Sustainability | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Change for Sustainability Institutional Change for Sustainability Institutional Change Continuous Improvement Cycle Institutional Change Continuous Improvement Cycle...

  11. Program Sustainability: Incorporating Energy Efficiency into...

    Broader source: Energy.gov (indexed) [DOE]

    Program Sustainability: Incorporating Energy Efficiency into Disaster Recovery Efforts Peer Exchange Call Program Sustainability: Incorporating Energy Efficiency into Disaster...

  12. Program Sustainability: Coordinating Energy Efficiency with Water...

    Broader source: Energy.gov (indexed) [DOE]

    Program Sustainability: Coordinating Energy Efficiency with Water Conservation Services Peer Exchange Call Program Sustainability: Coordinating Energy Efficiency with Water...

  13. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  14. ORNL Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Halford, Christopher K [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The research conducted at Oak Ridge National Laboratory (ORNL) spans many disciplines and has the potential for far-reaching impact in many areas of everyday life. ORNL researchers and operations staff work on projects in areas as diverse as nuclear power generation, transportation, materials science, computing, and building technologies. As the U.S. Department of Energy s (DOE) largest science and energy research facility, ORNL seeks to establish partnerships with industry in the development of innovative new technologies. The primary focus of this current research deals with developing technologies which improve or maintain the quality of life for humans while reducing the overall impact on the environment. In its interactions with industry, ORNL serves as both a facility for sustainable research, as well as a representative of DOE to the private sector. For these reasons it is important that the everyday operations of the Laboratory reflect a dedication to the concepts of stewardship and sustainability.

  15. Greensburg Sustainable Comprehensive Plan

    High Performance Buildings Database

    Greensburg, KS In October 2007, the architectural and planning firm, BNIM, was selected formally by the City of Greensburg, with support from the USDA, to prepare the first phase of a comprehensive master plan to rebuild the city, which provides a framework for the rebuilding of Greensburg based around the principles of economic, social and environmental sustainability. The BNIM Planning team presented the final draft of Greensburg's Comprehensive Plan to the City Council and to a public hearing on January 16, 2008.

  16. Sustainable energy Examen Final

    E-Print Network [OSTI]

    Ernst, Damien

    Sustainable energy Examen Final 24 mai 2013 Consignes ­ Vous disposez de 2 heures 30. ­ N'oubliez pas de r´epondre `a chaque question sur des feuilles s´epar´ees et d'indiquer votre nom sur chaque feuille. ­ La r´eponse `a la question huit doit se faire en anglais et sur la derni`ere feuille de l

  17. Sustainability: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppression ofSurprisinghealthSustainability: Energy

  18. ETH Sustainability Educating Change Agents for

    E-Print Network [OSTI]

    Richner, Heinz

    : ETHiopia Summer School in Addis Ababa sustainable solutions in architecture, water & sanitationETH Sustainability Educating Change Agents for Sustainability The ETH Sustainability Summer School for Sustainability» first results: summer schools 2009-2012 lessons learned 2ETH Sustainability content #12;VPPR

  19. Sustainability Studies at WWU Minor and Major

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    Sustainability Studies at WWU ­ Minor and Major Schematic Concept Draft October 13, 2008 Sustainability Faculty and Advisement: WWU Sustainability Academy WWW SUSTAINABILITY MINOR -- 30 Credits A. Sustainability Literacy, (4 Credits) B Sustainability research skills (9 Credits) C. Research and seminars

  20. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09T23:59:59.000Z

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  1. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

    2010-01-21T23:59:59.000Z

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  2. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  3. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  4. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20T23:59:59.000Z

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  5. Next Generation Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Advances We are coordinating the Generation IV Nuclear Systems Initiative - an international effort to develop the next generation of nuclear power reactors. Skip...

  6. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01T23:59:59.000Z

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

  7. SILER: Seismic-Initiated events risk mitigation in Lead-cooled Reactors

    SciTech Connect (OSTI)

    Forni, M. [ENEA, Via Martin di Monte Sole 4, 40129 Bologna (Italy); De Grandis, S. [SINTEC, Via Santo Stefano 20, 40125 Bologna (Italy)

    2012-07-01T23:59:59.000Z

    SILER is a Collaborative Project, partially funded by the European Commission, aimed at studying the risk associated to seismic initiated events in Generation IV Heavy Liquid Metal reactors and developing adequate protection measures. The attention is focused on the evaluation of the effects of earthquakes (with particular regards to beyond design seismic events) and to the identification of mitigation strategies, acting both on structures and components design (as well as on the development of seismic isolation devices) which can also have positive effects on economics, leading to an high level of plant design standardization. Attention is also devoted to the identification of plant layout solutions able to avoid risks of radioactive release from both the core and other structures (i.e. the spent fuel storage pools). Specific effort is paid to the development of guidelines and design recommendations for addressing the seismic issue in next generation reactor systems. In addition, consideration will be devoted to transfer the knowledge developed in the project to Generation III advanced systems, in line with the objective of the SNE-TP SRA to support present and future Light Water Reactors and their further development, for which safety issues are key aspects to be addressed. Note, in this respect, that the benefits of base isolation in terms of response to design seismic actions are already widely recognized for Generation III LWRs, along with the possibility of a significant standardization of structural and equipment design. SILER activities started on October 1 st 2011 and are carried out by 18 partners: ENEA (Italy, Coordinator), AREVA NP SAS (France), SCK-CEN (Belgium), FIP Industriale (Italy), MAURER SOHENE (Germany), EC-JRC (Ispra (Italy)), SINTEC (Italy), KTH (Sweden), BOA-BKT (Germany), IDOM (Spain), ANSALDO (Italy), IPUL (Latvia), NUMERIA (Italy), VCE (Austria), SRS (Italy), CEA (France), EA (Spain), NUVIA (France). (authors)

  8. ANL-LWRS-14-01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature (300 O C) and high purity water condition, with 0.136 mm (5.347mil) stroke amplitude and 0.0272 mmS (1.0694 milS) stroke rate (test number- F11) Environmental...

  9. LWRS_literature_review_v2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atom dissolves into crystal structure of almost all metals. In addition, the rate of hydrogen embrittlement is accelerated by residual and or applied stress. Hydrogen atoms...

  10. Microsoft Word - LWRS-BWR-Report.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected...

  11. Busby LWRS for Xcut webinar.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prevBuilding theINNOVATION

  12. Sustainable hydrogen production

    SciTech Connect (OSTI)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01T23:59:59.000Z

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  13. NREL: Sustainable NREL - About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resource assessmentFueltheAbout Sustainable

  14. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainability Ames Laboratory is committed to

  15. Examining Sustainable Development Policy in California Cities: 2011 Energy Sustainable California Communities Survey

    E-Print Network [OSTI]

    Kwon, Myungjung

    2013-01-01T23:59:59.000Z

    2004) “What Makes a Good Sustainable Development Plan? AnPrinciples of Sustainable Development,” Environment and1396. Examining Sustainable Development Policy in California

  16. Sustainable Food & Bioenergy Systems Program-Sustainable Crop Production Option 2014-2015 Catalog

    E-Print Network [OSTI]

    Dyer, Bill

    Sustainable Food & Bioenergy Systems Program- Sustainable Crop Production Option 2014-2015 Catalog SFBS 146 Intro to Sustainable Food & Bioenergy Systems ................................ S

  17. Sustainable Development and Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2001-01-01T23:59:59.000Z

    Wimsatt, Alma. “Sustainable Development and International1098-A, September Sustainable Development and Public PolicyThe Economics of Sustainable Development. ” Population and

  18. Sustainable Development & Sustainable Transportation: Strategies for Economic Prosperity, Environmental Quality, and Equity

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2001-01-01T23:59:59.000Z

    Wimsatt, Alma. “Sustainable Development and International1098-A, September Sustainable Development and Public PolicyThe Economics of Sustainable Development. ” Population and

  19. Sustainability 2013 Poster Contest & Guidelines The Clark School Engineering Sustainability Workshop 2013

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Sustainability 2013 Poster Contest & Guidelines The Clark School Engineering Sustainability Workshop 2013 Call for Submissions ­ Engineering Sustainability Student Poster Contest OPEN TO: All

  20. A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...

    Office of Scientific and Technical Information (OSTI)

    A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

  1. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Volume 14, Semiannual report, April 1991--September 1991

    SciTech Connect (OSTI)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Good, M.S.; Greenwood, M.S.; Heasler, P.G.; Hockey, R.L.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

    1992-07-01T23:59:59.000Z

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWR`s); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from April 1991 through September 1991.

  2. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Volume 15, Semiannual report: October 1991--March 1992

    SciTech Connect (OSTI)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from October 1991 through March 1992.

  3. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Semiannual report, April 1992--September 1992: Volume 16

    SciTech Connect (OSTI)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Greenwood, M.S.; Heasler, P.G.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01T23:59:59.000Z

    The Evaluation and Improvement of NDE Reliability for Inservice inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs);using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel and other components inspected in accordance with Section XI of the ASME Code. This is a programs report covering the programmatic work from April 1992 through September 1992.

  4. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  5. Portfolio for fast reactor collaboration

    SciTech Connect (OSTI)

    Rippon, S.

    1981-12-01T23:59:59.000Z

    The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

  6. REACTOR OPERATIONS AND CONTROL

    E-Print Network [OSTI]

    Pázsit, Imre

    REACTOR OPERATIONS AND CONTROL KEYWORDS: core calculations, neural networks, control rod elevation of a control rod, or a group of control rods, is an important parameter from the viewpoint of reactor control DETERMINATION OF PWR CONTROL ROD POSITION BY CORE PHYSICS AND NEURAL NETWORK METHODS NINOS S. GARIS* and IMRE

  7. Sustainability Strategy for Wudalianchi, China.

    E-Print Network [OSTI]

    Guo, Jingfen

    2011-01-01T23:59:59.000Z

    ??This thesis develops a situated sustainability strategy for Wudalianchi, China, which has been nominated as World Heritage natural site. After reviewing related research on World… (more)

  8. Institutional Change Process for Sustainability

    Broader source: Energy.gov [DOE]

    For establishing institutional change in a Federal agency to achieve sustainability or other energy efficiency goals, follow the five-step institutional change process. In accordance with the...

  9. Interagency Sustainability Working Group Members

    Broader source: Energy.gov [DOE]

    Chaired by the Federal Energy Management Program, the Interagency Sustainability Working Group is composed of representatives from every major Federal agency.

  10. Sustainable Sourcing of Biomass Feedstock

    Broader source: Energy.gov [DOE]

    Opening Plenary Session: Bioenergy Sustainability—Charting the Path toward a Viable Future Al Lucier, Senior Vice President, National Council for Air and Stream Improvement, Inc.

  11. Sustainable Building Rating Systems Summary

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-07-01T23:59:59.000Z

    The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

  12. Enthusiastic employees: sustaining the Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    innovations with some of the world's most powerful technology without consuming excessive energy or creating waste? Green Teams work hard to make sustainable choices at home, at...

  13. Benefits of Sustainable Building Design

    Broader source: Energy.gov [DOE]

    The application of sustainable building design not only helps Federal facilities meet laws and regulations, it also provides them with many other benefits. These benefits include:

  14. Taxonomy of sustainable IT values.

    E-Print Network [OSTI]

    Mysore, Alka

    2012-01-01T23:59:59.000Z

    ??Sustainable IT is the effort towards design, manufacture, use and disposal of computer hardware efficiently and effectively with minimal or no impact to the environment.… (more)

  15. Introducing the DOE Sustainability Dashboard

    Broader source: Energy.gov [DOE]

    Please join us as we introduce DOE's new Sustainability Dashboard. This webinar will provide an overview and demonstration of the new Dashboard and offer an opportunity for questions.

  16. Hanford Projects Receive Sustainability Awards

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. – Hanford’s Department of Energy offices and their contractors received special recognition Tuesday for their part in promoting sustainability.

  17. Developing Alaskan Sustainable Housing Training

    Broader source: Energy.gov [DOE]

    Hosted by the Association of Alaska Housing Authorities (AAHA), this three-day training event covers strategies and technical issues related to sustainable housing development.

  18. Environmentally assisted cracking in light water reactors annual report January - December 2005.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chen, Y.; Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.

    2007-08-31T23:59:59.000Z

    This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data, obtained in the pressurized water reactor environment, are presented on Ni-alloy welds prepared in the laboratory or obtained from the nozzle-to-pipe weld of the V. C. Summer reactor. The experimental CGRs under cyclic and constant load are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of these materials to environmentally enhanced cracking under a variety of loading conditions.

  19. Reactor & Nuclear Systems Publications | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications...

  20. Reed Reactor Facility. Final report

    SciTech Connect (OSTI)

    Frantz, S.G.

    1994-12-31T23:59:59.000Z

    This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

  1. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    SciTech Connect (OSTI)

    Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

    1994-10-01T23:59:59.000Z

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

  2. Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

    2013-08-01T23:59:59.000Z

    Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

  3. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton

    2014-02-01T23:59:59.000Z

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  4. SuStainability 02 University of Calgary

    E-Print Network [OSTI]

    Calgary, University of

    SuStainability RepoRt 2012-2013 #12;02 University of Calgary Table of Contents What is Sustainability? The University of Calgary Sustainability Policy defines sustainability as articulated: "Sustainable development is development that meets the needs of the present without compromising the ability

  5. Sustainable Food and the Institute for

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Sustainable Food and the California Institute for Rural Studies Sustainable Food and the Promise conditions increased prices and/or market- share #12;What is Sustainable California Institute for Rural Studies Agriculture/Sustainable Food? 3 "E's" of sustainabilityStudies 221 G Street Suite 204 Davis, CA

  6. Sustainable Development Student Intern Report 2013-2014 Sustainable Development Student Intern

    E-Print Network [OSTI]

    Sustainable Development Student Intern Report 2013-2014 Sustainable Development Student Intern demonstrated its commitment to sustainable development through supporting student and university projects to sustainable development concentrated their efforts in both the campus and the Lennoxville community. Student

  7. Efficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable Buildings M. Kostic

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Efficient and Sustainable Energy: Ecology and Energy Challenges Energy Efficient and Sustainable proven and the "cutting-edge" comprehensive buildings' "green & sustainable" energy technologies of the Northern Illinois Region, an inspiration for multidisciplinary "Energy & Environmental Sustainability

  8. Creating a Pathway to Sustainability IIT Wanger Institute for Sustainable Energy Research

    E-Print Network [OSTI]

    Heller, Barbara

    #12;Creating a Pathway to Sustainability IIT Wanger Institute for Sustainable Energy Research Table of Contents Energy and Sustainability Educational and Research Activities at IIT......................................1 Henry Linden: IIT's Sustainable Energy Architect

  9. Simon Fraser University | Sustainability Communications Designer | August 13, 2014 Sustainability Communications Coordinator

    E-Print Network [OSTI]

    Simon Fraser University | Sustainability Communications Designer | August 13, 2014 Sustainability Communications Coordinator JOB DESCRIPTION Position Title: Sustainability Communications Coordinator Position, 2014-March, 2016 (extension possible) Reports to: Director, SFU Sustainability Office Posting Date

  10. Sustainability 2012, 4, 210-226; doi:10.3390/su4020210 sustainability

    E-Print Network [OSTI]

    Sustainability 2012, 4, 210-226; doi:10.3390/su4020210 sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability accounting. Keywords: climate policy; burden sharing; negative emissions OPEN ACCESS #12;Sustainability 2012

  11. Sustainability Peer Educator Group Lead Positions Position: Sustainability Peer Educators Group Lead

    E-Print Network [OSTI]

    Boonstra, Rudy

    Sustainability Peer Educator Group Lead Positions Position: Sustainability Peer Educators Group times) Term of position: September 2013 ­ April 2014 Position Summary: Working with the Sustainability Project Coordinator, the Sustainability Peer Educator Group Leads will be responsible

  12. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Plum Borough, PA)

    1982-01-01T23:59:59.000Z

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  13. Nuclear reactor control column

    SciTech Connect (OSTI)

    Bachovchin, D.M.

    1982-08-10T23:59:59.000Z

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  14. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01T23:59:59.000Z

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  15. Sustainable Urban Development: A Literature Review and Analysis

    E-Print Network [OSTI]

    Wheeler, Stephen

    1996-01-01T23:59:59.000Z

    Introduction I. What is Sustainable Development in General?PAGE Definitions of Sustainable Development Perspectiveson Sustainable Development Perspectives on Sustainable Urban

  16. Site Sustainability Plan (SSP) 2013 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sustainability Plan (SSP) 2013 Site Sustainability Plan (SSP) 2013 Site Sustainability Plan (SSP) 2013 2013 Site Sustainability Plan More Documents & Publications Site...

  17. Site Sustainability Plan (SSP) 2010 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0 Site Sustainability Plan (SSP) 2010 Site Sustainability Plan (SSP) 2010 2010 More Documents & Publications Site Sustainability Plan (SSP) 2012 Site Sustainability Plan (SSP) 2013...

  18. Site Sustainability Plan (SSP) 2012 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 Site Sustainability Plan (SSP) 2012 Site Sustainability Plan (SSP) 2012 2012 More Documents & Publications Site Sustainability Plan (SSP) 2013 2014 Site Sustainability Plan Site...

  19. Sustainable Internet Architecture PROJECT DESCRIPTION

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    Sustainable Internet Architecture PROJECT DESCRIPTION 1 Introduction The Internet currently plays that the problems in the current Internet architecture stem from its lack of sustainability which impedes future de of challenges. Numerous research studies on a new Internet architecture (e.g., [16, 37, 48, 54, 55]) have

  20. Asian Perspectives on Sustainable Development

    E-Print Network [OSTI]

    Hall, Sharon J.

    Asian Perspectives on Sustainable Development Thursday, March 28, 2013 9:00 ­ 10:30 a.m. Wrigley society can help spur a more sustainable growth. Pamela Mar's work focuses on Asian development, corporate and social development. Asia needs to rethink how it grows to ensure that social progress and environmental

  1. Campus Sustainability Goals Energy & Climate

    E-Print Network [OSTI]

    Jacobs, Lucia

    Campus Sustainability Goals Energy & Climate By 2014, reduce greenhouse gas emissions to 1990 use to 10% below 2008 levels by 2020. Built Environment Design future projects to minimize energy and water consumption and wastewater production; incorporate sustainable design principles into capital

  2. Campus Sustainability at Virginia Tech

    E-Print Network [OSTI]

    Virginia Tech

    together to ensure a more sustainable future for us all. Sincerely, Fred Selby, Energy and Sustainability Internship Program by forming four interdisciplinary teams, comprised of 28 students. These teams utilized. A total of 15 Blacksburg campus Leadership in Energy and Environmental Design (LEED) registered projects

  3. Arduino Sustainability Project Prepared for

    E-Print Network [OSTI]

    Kachroo, Pushkin

    Arduino Sustainability Project Prepared for: Dr. Pushkin Kachroo EE 290 UNLV Christian Calvo 2009 by the Arduino microcontroller to satisfy the theme of sustainability. The device I decided to construct is determined by the LDR. The LDR output signal is fed into an analog input of the Arduino. The value is read

  4. Doctoral Defense "Sustainable Wastewater Management

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Sustainable Wastewater Management: Modeling and Decision Strategies for Unused Medications and Wastewater Solids" Sherri Cook Date: May 22, 2014 Time: 11:00 AM Location: 2355 GGB Chair to help decision-makers evaluate new practices for sustainable wastewater management. To this end

  5. Architecture, Engineering and Construction Sustainability Report Major Projects Quarterly Sustainability Report

    E-Print Network [OSTI]

    Kamat, Vineet R.

    1 Architecture, Engineering and Construction Sustainability Report Major Projects Quarterly Sustainability Report June 2011 Alice Crocker Lloyd Hall Renovation

  6. Hopi Sustainable Energy Plan

    SciTech Connect (OSTI)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01T23:59:59.000Z

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  7. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Sherry, T. D.; Kohlhorst, D. P.; Little, S. K.

    2011-12-01T23:59:59.000Z

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the impacts to resources, including energy/fuel, water, waste, pesticides, and pollution generation; (8) Incorporate sustainable design principles into the design and construction of facility upgrades, new facilities, and infrastructure; and (9) Comply with federal and state regulations, executive orders, and DOE requirements. Y-12 is working to communicate its sustainment vision through procedural, engineering, operational, and management practices. The site will make informed decisions based on the application of the five Guiding Principles for HPSBs to the maximum extent possible.

  8. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Spencer, Charles G

    2012-12-01T23:59:59.000Z

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

  9. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

    1994-01-01T23:59:59.000Z

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  10. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07T23:59:59.000Z

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  11. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01T23:59:59.000Z

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  12. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03T23:59:59.000Z

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  13. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

    2011-03-22T23:59:59.000Z

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  14. Sustainability at UCSB CampusSustainability at UCSB Campus Perrin Pellegrin

    E-Print Network [OSTI]

    Bigelow, Stephen

    Sustainability at UCSB CampusSustainability at UCSB Campus Perrin Pellegrin Campus Sustainability Manager Facilities Management, UCSB April 25, 2006 Perrin Pellegrin Campus Sustainability Manager Facilities Management, UCSB April 25, 2006 #12;Sustainability at UCSB CampusSustainability at UCSB Campus

  15. A REPORT TO THE PRESIDENT ON Sustainability

    E-Print Network [OSTI]

    Johnston, Daniel

    , green building, sustainable building occupant behavior, maintenance and restoration of natural future sustainability projects and the development of a comprehensive training program. BackgroundA REPORT TO THE PRESIDENT ON Sustainability Presented by The University of Texas at Austin Staff

  16. Cornell's Urban Sustainability Initiatives ACSF Lunch Summary

    E-Print Network [OSTI]

    Angenent, Lars T.

    Sustainability Initiatives lunch. After introductions of participants, Josh Cerra (Landscape Architecture) gave sustainability initiatives conducted in cooperation with Landscape Architecture in the ethnically diverseCornell's Urban Sustainability Initiatives ACSF Lunch Summary Compiled by Marianne Krasny (NTRES

  17. Sustainable Development: Case Studies & Lessons Learned

    E-Print Network [OSTI]

    Netoff, Theoden

    Sustainable Development: Case Studies & Lessons Learned Prepared For City of Rosemount UMore Development LLC PA 8081 Capstone: Sustainability Planning Humphrey School of Public Affairs University studies that analyze how local and national developments have either successfully implemented sustainable

  18. ICT for Sustainability ETH Zurich, Switzerland

    E-Print Network [OSTI]

    Giger, Christine

    ICT for Sustainability ETH Zurich, Switzerland February 14 ­ 16, 2013 Background and Objectives "ICT for sustainability" is about utilizing) for making our world more sustainable: saving energy and material resources

  19. UCSF Sustainability Action Plan: Executive Summary

    E-Print Network [OSTI]

    Yamamoto, Keith

    UCSF Sustainability Action Plan: Executive Summary Issue Date: April 21, 2011 #12;UCSF Sustainability Action Plan Executive Summary April 21, 2011 Page 1 Table of Contents An Introduction to the Sustainability Action Plan

  20. Jane Mwenechanya Degree studied: MSc Sustainability &

    E-Print Network [OSTI]

    Mottram, Nigel

    Jane Mwenechanya Degree studied: MSc Sustainability & Environmental Studies Year of graduation on environmental sustainability issues by combining both the scientific and social aspect in dealing with the environmental problems. What did you particularly enjoy about the MSc Sustainability & Environmental Studies