Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Light Water Reactor Sustainability (LWRS) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure long-term reliability, productivity, safety, and security. The program is conducted in collaboration with national laboratories, universities, industry, and international partners. Idaho National Laboratory serves as the Technical Integration Office and coordinates the research and development (R&D) projects in the following pathways: Materials Aging and Degradation Assessment, Advanced Instrumentation, Information, and Control Systems

2

ANL/NE-12/43 Light Water Reactor Sustainability (LWRS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANLNE-1243 Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping ...

3

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national

4

Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(LWRS) Program - R&D Roadmap (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping. A selected group of subject matter experts (SMEs) from DOE national laboratories, academia, vendors, EPRI, and NRC were invited to each

5

Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Nuclear Energy Updates Dr. Pete Lyons Acting Assistant Secretary for Nuclear Energy U.S. Department of Energy December 9, 2010 NEAC Meeting Leadership Changes Pete Miller retired Pete Lyons - Acting NE-1 Shane Johnson - Acting NE-2 Dennis Miotla - Acting COO Monica Regalbuto - Acting DAS for Fuel Cycle Technologies John Herczeg- Acting ADAS for Fuel Cycle Technologies John Kelly - DAS for Nuclear Reactor Technologies Bob Boudreau- Acting ADAS International Nuclear Energy Coop Monica Regalbuto John Kelly NE University Programs (NEUP) - Overview and FY 2011 Schedule NEUP FY 2011 Solicitations Schedule RPA/FOA Pre- Applications Proposals Due Awards Announced R&D (PS and Blue Sky) Oct. '10 Dec. '10 Feb. '11 May '11 Integrated Research Projects (IRP) Dec. '10 Late Jan '11

6

Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 New Program Proposal for Fiscal Year 2011 - Modified Open Cycle Carter "Buzz" Savage Nuclear Energy Advisory Committee Meeting April 29, 2010 Washington, DC April 29, 2010 Recycle of Used Fuel Option to recycle used fuel has been the subject of much debate and discussion. Nonproliferation issues and economics have limited recycle options. Recycle of used fuel enables increased utilization of uranium resource and potential waste management benefits. - Once through fuel cycle uses less than 1% of energy value of the uranium. Courtesy AREVA 2 April 29, 2010 Summary of Fuel Cycle Options 3 Once-Through Fuel Cycle - One pass through reactor, used fuel directly disposed in a geologic repository. Modified Open Cycle - No or limited separations steps and

7

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Technologies » Light Water Reactor Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2013 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. April 30, 2013 Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and

8

Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

R. Johansen

2012-09-01T23:59:59.000Z

9

Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

R. Johansen

2013-09-01T23:59:59.000Z

10

Light Water Reactor Sustainability (LWRS) Program | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

the research and development (R&D) projects in the following pathways: Materials Aging and Degradation Assessment, Advanced Instrumentation, Information, and Control Systems...

11

Light Water Reactor Sustainability Program - Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program - Integrated Program Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. The LWRS Program provides technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants, utilizing the unique capabilities of the national laboratory system. Sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer than-initially-licensed lifetime. It has two facets

12

Light Water Reactor Sustainability Nondestructive Evaluation for Concrete  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nondestructive Evaluation for Nondestructive Evaluation for Concrete Research and Development Roadmap Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. The purpose of the US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend

13

Metal-fueled HWR (heavy water reactors) severe accident issues: Differences and similarities to commercial LWRs (light water reactors)  

DOE Green Energy (OSTI)

Differences and similarities in severe accident progression and phenomena between commercial Light Water Reactors (LWR) and metal-fueled isotopic production Heavy Water Reactors (HWR) are described. It is very important to distinguish between accident progression in the two systems because each reactor type behaves in a unique manner to a fuel melting accident. Some of the lessons learned as a result of the extensive commercial severe accident research are not applicable to metal-fueled heavy water reactors. A direct application of severe accident phenomena developed from oxide-fueled LWRs to metal-fueled HWRs may lead to large errors or substantial uncertainties. In general, the application of severe accident LWR concepts to HWRs should be done with the intent to define the relevant issues, define differences, and determine areas of overlap. This paper describes the relevant differences between LWR and metal-fueled HWR severe accident phenomena. Also included in the paper is a description of the phenomena that govern the source term in HWRs, the areas where research is needed to resolve major uncertainties, and areas in which LWR technology can be directly applied with few modifications.

Ellison, P.G.; Hyder, M.L.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (USA)); Coryell, E.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

14

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

15

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a Memorandum of Understanding in late 2010 to "establish guiding principles under which research activities (between LWRS and LTO) could be

16

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a Memorandum of Understanding in late 2010 to "establish guiding principles under which research activities (between LWRS and LTO) could be

17

LWRS_literature_review_v2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of Stress Corrosion Cracking/Fatigue Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components S. Mohanty, S. Majumdar, and K.Natesan Nuclear Engineering Division Argonne National Laboratory Argonne, IL 60439 June 2012 Work sponsored by the U.S. Department of Energy Office of Nuclear Energy Light Water Reactor Sustainability Program A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components 1. INTRODUCTION In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the 104 light-water reactors (LWRs) in the United States generated approximately 100

18

Materials Inventory Database for the Light Water Reactor Sustainability Program  

Science Conference Proceedings (OSTI)

Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items fabrication, processing, splitting, and more by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

Kazi Ahmed; Shannon M. Bragg-Sitton

2013-08-01T23:59:59.000Z

19

Light Water Reactor Sustainability Program: Integrated Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Water Reactor Sustainability Program: Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and...

20

Reactor Pressure Vessel Task of Light Water Reactor Sustainability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure...

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Light Water Reactor Sustainability Program Integrated Program Plan  

SciTech Connect

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energys Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administrations energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Programs plans.

Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

2013-04-01T23:59:59.000Z

22

Light Water Reactor Sustainability Program Integrated Program Plan  

Science Conference Proceedings (OSTI)

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

2012-01-01T23:59:59.000Z

23

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program  

SciTech Connect

The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

2012-09-01T23:59:59.000Z

24

Verification and Validation Strategy for LWRS Tools  

SciTech Connect

One intension of the Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to create advanced computational tools for safety assessment that enable more accurate representation of a nuclear power plant safety margin. These tools are to be used to study the unique issues posed by lifetime extension and relicensing of the existing operating fleet of nuclear power plants well beyond their first license extension period. The extent to which new computational models / codes such as RELAP-7 can be used for reactor licensing / relicensing activities depends mainly upon the thoroughness with which they have been verified and validated (V&V). This document outlines the LWRS program strategy by which RELAP-7 code V&V planning is to be accomplished. From the perspective of developing and applying thermal-hydraulic and reactivity-specific models to reactor systems, the US Nuclear Regulatory Commission (NRC) Regulatory Guide 1.203 gives key guidance to numeric model developers and those tasked with the validation of numeric models. By creating Regulatory Guide 1.203 the NRC defined a framework for development, assessment, and approval of transient and accident analysis methods. As a result, this methodology is very relevant and is recommended as the path forward for RELAP-7 V&V. However, the unique issues posed by lifetime extension will require considerations in addition to those addressed in Regulatory Guide 1.203. Some of these include prioritization of which plants / designs should be studied first, coupling modern supporting experiments to the stringent needs of new high fidelity models / codes, and scaling of aging effects.

Carl M. Stoots; Richard R. Schultz; Hans D. Gougar; Thomas K Larson; Michael Corradini; Laura Swiler; David Pointer; Jess Gehin

2012-09-01T23:59:59.000Z

25

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

26

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the operation of commercial nuclear power plants, require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including

27

Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 20092013  

SciTech Connect

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

Idaho National Laboratory

2009-12-01T23:59:59.000Z

28

Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009201/span>3  

Science Conference Proceedings (OSTI)

Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to declineeven with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement and leadership on nuclear safety and security issues.

Idaho National Laboratory

2009-12-01T23:59:59.000Z

29

Busby LWRS for Xcut webinar.pptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Light W ater R eactor S ustainability R &D P rogram Overview of DOE-NE LWRS Materials and Aging Degradation Pathway DOE-NE Materials Program Crosscutting Coordination Webinar July 30, 2013 Outline of presentation * Mo:va:on a nd O verview o f L WRS P rogram * Key a c:vi:es w ithin M aterials A ging a nd Degrada:on p or:on o f L WRS * Partnerships * Examples o f r esearch - Concrete - Cabling - Metals 2 71 21 13 4 Extension g ranted Extension r equest planned Extending the lifetimes of today's reactors: A sustainable energy solution Most o f U .S. n uclear power p lant ( NPP) fleet i s s cheduled t o re:re b etween 2 029 and 2 056 Extending N PP life:mes to 8 0 y ears o r m ore would provide mul:ple b enefits Subsequent license r enewal makes e conomic sense R&D i s n eeded t o p rovide the technical basis

30

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of High Value Surveillance Materials Assessment of High Value Surveillance Materials Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely

31

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Assessment of Thermal Annealing Needs and Challenges Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from 40y to 80y implies a doubling of the neutron exposure for the RPV. Thus,

32

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Light Water Reactor Initiatives » Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents September 30, 2011 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement

33

Light Water Reactor Sustainability Program - Non-Destructive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful...

34

Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels  

Science Conference Proceedings (OSTI)

This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs.

Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

1991-10-01T23:59:59.000Z

35

Corrosion-product release in LWRs: 1983 progress report  

SciTech Connect

Corrosion products released from coolant system surfaces are a major cause of radiation buildup in LWRs. This study confirms that cobalt release from Inconel steam generator tubing is a key contributor to radiation fields, and it offers new insights into the release mechanisms of Inconel and other reactor alloys.

Lister, D.H.

1985-01-01T23:59:59.000Z

36

Corrosion-Product Release in LWRs: 1983 Progress Report  

Science Conference Proceedings (OSTI)

Corrosion products released from coolant system surfaces are a major cause of radiation buildup in LWRs. This study confirms that cobalt release from Inconel steam generator tubing is a key contributor to radiation fields, and it offers new insights into the release mechanisms of Inconel and other reactor alloys.

1985-02-04T23:59:59.000Z

37

Assessment of helical-cruciform fuel rods for high power density LWRs  

E-Print Network (OSTI)

In order to significantly increase the power density of Light Water Reactors (LWRs), the helical-cruciform (HC) fuel rod assembly has been proposed as an alternative to traditional fuel geometry. The HC assembly is a ...

Conboy, Thomas M

2010-01-01T23:59:59.000Z

38

Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation  

SciTech Connect

The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

Isabella J van Rooyen

2012-09-01T23:59:59.000Z

39

Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies  

SciTech Connect

The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 2021, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industrys needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

2009-08-01T23:59:59.000Z

40

Rethinking the Offer: The Impact on Nuclear Non-Proliferation of Providing North Korea or Iran with Light Water Reactors.  

E-Print Network (OSTI)

??This paper examines the impact on nuclear non-proliferation efforts of providing the DPRK and Iran with light water reactors (LWRs). I argue that LWRs in (more)

Lee, Eun Joo

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior  

SciTech Connect

This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

Monteleone, S. [comp.

1995-04-01T23:59:59.000Z

42

Self-sustaining nuclear pumped laser-fusion reactor experiment  

DOE Green Energy (OSTI)

The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100. (MHR)

Boody, F.P.; Choi, C.K.; Miley, G.H.

1977-01-01T23:59:59.000Z

43

Light Water Reactor Sustainability Program: Materials Aging and Degradation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Aging and Materials Aging and Degradation Technical Program Plan Light Water Reactor Sustainability Program: Materials Aging and Degradation Technical Program Plan Components serving in a nuclear reactor plant must withstand a very harsh environment including extended time at temperature, neutron irradiation, stress, and/or corrosive media. The many modes of degradation are complex and vary depending on location and material. However, understanding and managing materials degradation is a key for the continued safe and reliable operation of nuclear power plants. Extending reactor service to beyond 60 years will increase the demands on materials and components. Therefore, an early evaluation of the possible effects of extended lifetime is critical. The recent NUREG/CR-6923 gives a

44

Light Water Reactor Sustainability Program Grizzly Year-End Progress Report  

SciTech Connect

The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INLs MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. The reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i.e. late blooming phases) to become active later in life beyond the current operational experience. To develop a tool that can eventually serve a role in decision-making, it is clear that research and development must be perfomed at multiple scales. At the engineering scale, a multiphysics analysis code that can capture the thermomechanical response of the RPV under accident conditions, including detailed fracture mechanics evaluations of flaws with arbitrary geometry and orientation, is needed to assess whether the fracture toughness, as defined by the master curve, including the effects of embrittlement, is exceeded. At the atomistic scale, the fundamental mechanisms of degradation need to be understood, including the effects of that degradation on the relevant material properties. In addition, there is a need to better understand the mechanisms leading to the transition from ductile to brittle fracture through improved continuum mechanics modeling at the fracture coupon scale. Work is currently being conducted at all of these levels with the goal of creating a usable engineering tool informed by lower length-scale modeling. This report summarizes progress made in these efforts during FY 2013.

Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner; Marie Backman; Brian Wirth; Stephen Novascone; Jason Hales

2013-09-01T23:59:59.000Z

45

A Proof of Concept: Grizzly, the LWRS Program Materials Aging and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proof of Concept: Grizzly, the LWRS Program Materials Aging and Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool By Ben Spencer (INL) Jeremey Busby (ORNL) Richard Martineau (INL) Brian Wirth (UTK) Introduction Nuclear power currently provides a significant fraction of the United States' non- carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation's electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended

46

A Proof of Concept: Grizzly, the LWRS Program Materials Aging and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Proof of Concept: Grizzly, the LWRS Program Materials Aging and A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool Nuclear power currently provides a significant fraction of the United States' non- carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation's electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required. Ensuring public safety and environmental protection is a prerequisite to

47

A Proof of Concept: Grizzly, the LWRS Program Materials Aging and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Proof of Concept: Grizzly, the LWRS Program Materials Aging and A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool Nuclear power currently provides a significant fraction of the United States' non- carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation's electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required. Ensuring public safety and environmental protection is a prerequisite to

48

Light Water Reactor Sustainability Program - Non-Destructive Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program - Non-Destructive Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters.

49

Light Water Reactor Sustainability Program: Integrated Program Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Program Plan Integrated Program Plan Light Water Reactor Sustainability Program: Integrated Program Plan Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by more than 30% from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power

50

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

Science Conference Proceedings (OSTI)

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

51

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program The Department of Energy's (DOE's) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operation of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging

52

Light Water Reactor Sustainability (LWRS) Program Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants  

SciTech Connect

The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

2012-09-14T23:59:59.000Z

53

Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report  

Science Conference Proceedings (OSTI)

Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

R. Johansen

2011-09-01T23:59:59.000Z

54

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

55

DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-NE Light Water Reactor Sustainability Program and EPRI DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation's

56

The design of high power density annular fuel for LWRs  

E-Print Network (OSTI)

Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

Yuan, Yi, 1975-

2004-01-01T23:59:59.000Z

57

Overview of the US Department of Energy Light Water Reactor Sustainability Program  

Science Conference Proceedings (OSTI)

The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

K. A. McCarthy; D. L. Williams; R. Reister

2012-05-01T23:59:59.000Z

58

International Forum for Reactor Aging Management (IFRAM)  

SciTech Connect

The Nuclear Regulatory Commission has undertaken a program to lay the groundwork for defining proactive actions to manage degradation of materials in light water reactors (LWRs). This article discusses the international forum for reactor aging management.

Bond, Leonard J.

2010-11-01T23:59:59.000Z

59

Fast Reactor Technology: A Path to Long-Term Energy Sustainability Position Statement  

E-Print Network (OSTI)

The American Nuclear Society believes that the development and deployment of advanced nuclear reactors based on fast-neutron fission technology is important to the sustainability, reliability, and security of the worlds long-term energy supply. Of the known and proven energy technologies, only nuclear fission can provide the large quantities of energy required by industrial societies in a sustainable and environmentally acceptable manner. Natural uranium mined from the earth's crust is composed primarily of two isotopes: 99.3 % is U-238, and 0.7 % is the fissile U-235. Nearly all current power reactors are of the thermal neutron design, and their capability to extract the potential energy in the uranium fuel is limited to less than 1 % of that available. The remainder of the potential energy is left unused in the spent fuel and in the uranium, depleted in U-235, that remains from the process of enriching the natural uranium in the isotope U-235 for use in thermal reactors. With known fast reactor technology, this unutilized energy can be harvested, thereby extending by a hundred-fold the amount of energy extracted from the same amount of mined uranium. Fast reactors can convert U-238 into fissile material at rates faster than it is consumed making it economically feasible to utilize ores with very low uranium concentrations and potentially even

unknown authors

2005-01-01T23:59:59.000Z

60

Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community  

Science Conference Proceedings (OSTI)

Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.  

Science Conference Proceedings (OSTI)

The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluate the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.

Yun, D.; Taiwo, T. A.; Kim, T. K.; Mohamed, A.; Nuclear Engineering Division

2010-10-01T23:59:59.000Z

62

Deaeration of makeup water for LWRs  

Science Conference Proceedings (OSTI)

Dissolved oxygen in pressurized water reactor condensate and steam generator feedwater promotes corrosion of secondary cycle piping, heat exchangers and steam generators. Since dissolved oxygen in make-up water is a direct source of secondary cycle oxygen ingress, make-up water system upgrading modifications for production and storage of deoxygenated water are described. Specifications and cost estimates for the addition of a vacuum deaerator and a sealed condensate storage tank to a 300 gpm existing or new make-up water system are given.

Schlesinger, H.A.; Falk, K.

1986-06-01T23:59:59.000Z

63

Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study  

SciTech Connect

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

2012-08-01T23:59:59.000Z

64

Action Plan and Status of Resolutions for LWRS Steering Committee Recommendations Dated August 13, 2009  

Science Conference Proceedings (OSTI)

The resolutions to the recommendations from the Report of the Steering Committee for the LWRS Program Dated August 13, 2009 are documented.

Hongbin Zhang

2009-08-01T23:59:59.000Z

65

Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3  

SciTech Connect

The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant status control, information management, knowledge management, and 'Real-Time-Truth' as it relates to the current plant conditions. The following report includes two attachments; each attachment represents Pilot Project 1 and 3. The two attachments also provide a report on two distinct milestones that were completed and are described below: M3L11IN06030307 - Complete initiation of two pilot projects Complete initiation of pilot projects on real-time configuration management and control to overcome limitations with existing permanent instrumentation and real-time awareness of plant configurations; two candidate projects that consider low-cost wireless technology for in situ configuration monitoring and candidate technologies and an information architecture for outage management and control will be initiated with utilities. M3L11IN06030309 - Complete data collection, R&D plans, and agreements needed to conduct the two pilot projects Complete data collection conducted at pilot project utilities to support real-time configuration management and outage control center pilot studies conducted; R&D plan for pilot projects produced and needed agreements established to support R&D activities.

Ronald Farris; Johanna Oxstrand; Gregory Weatherby

2011-09-01T23:59:59.000Z

66

Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation  

SciTech Connect

The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

2011-09-01T23:59:59.000Z

67

Microsoft Word - CASS_Aging-LWRS_5YR_Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORNL/LTR-2012/440 ORNL/LTR-2012/440 Light Water Reactor Sustainability Cast Stainless Steel Aging Research Plan September 2012 Prepared by: T. S. Byun and J. T. Busby Oak Ridge National Laboratory This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

68

Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Within the context of long-term waste management and sustainable nuclear fuel supply, there continue to be discussions regarding whether the United States should consider recycling of light-water reactor (LWR) spent nuclear fuel (SNF) for the current fleet of U.S. LWRs. This report presents a parametric study of equilibrium fuel cycle costs for an open fuel cycle without plutonium recycling (once-through) and with plutonium recycling (single-recycling using mixed-oxide, or MOX, fuel), assuming an all-pre...

2009-02-25T23:59:59.000Z

69

Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs  

SciTech Connect

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

1994-04-01T23:59:59.000Z

70

Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century  

Science Conference Proceedings (OSTI)

A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO{sub 2}-fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO{sub 2} fuel cycle.

Beller, D.E.; Sailor, W.C.; Venneri, F.

1998-10-06T23:59:59.000Z

71

Optimization of hydride fueled pressurized water reactor cores  

E-Print Network (OSTI)

This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

Shuffler, Carter Alexander

2004-01-01T23:59:59.000Z

72

Reactor physics assessment of thick silicon carbide clad PWR fuels  

E-Print Network (OSTI)

High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

Bloore, David A. (David Allan)

2013-01-01T23:59:59.000Z

73

Fast Spectrum Molten Salt Reactor Options  

DOE Green Energy (OSTI)

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

74

High Temperature Gas Reactors The Next Generation ?  

E-Print Network (OSTI)

HPT CCS Reactor CBCS #12;14 Integrated Plant Systems #12;15 Differences Between LWRS · Higher Thermal - Not shown Fresh Fuel Storage Used Fuel Storage Tanks #12;39 MPBR Specifications Thermal Power 250 MW Core temperatures about 1670 C. #12;MPBRBUSBARGENERATIONCOSTS(`92$) ReactorThermal Power (MWt) 10x250 Net Efficiency

75

THE CASE FOR FUSION-FISSION HYBRIDS ENABLING SUSTAINABLE NUCLEAR POWER  

E-Print Network (OSTI)

this century with OTC) · Closing the nuclear fuel cycle requires augmenting with fast reactors the present nuclear fuel discharged from LWRs ii) Fast Breeder Reactors which transmute the non-fissionable U-238 (>99-Fission Hybrid (FFH) is a subcritical nuclear reactor with a fusion neutron source. · The motivation for the FFH

76

Safety and licensing for small and medium power reactors  

SciTech Connect

Proposed new concepts for small and medium power reactors differ substantially from traditional Light Water Reactors (LWRs). Although designers have a large base of experience in safety and licensing, much of it is not relevant to new concepts. It can be a disadvantage if regulators apply LWR rules directly. A fresh start is appropriate. The extensive interactions between industry, regulators, and the public complicates but may enhance safety. It is basic to recognize the features that distinguish nuclear energy safety from that for other industries. These features include: nuclear reactivity, fission product radiation, and radioactive decay heat. Small and medium power reactors offer potential advantages over LWRs, particularly for reactivity and decay heat.

Trauger, D.B.

1987-01-01T23:59:59.000Z

77

Physical characteristics of LWRs and SCLWRs loaded by ({sup 233}U-Th-{sup 238}U) oxide fuel with small additions of {sup 231}Pa  

SciTech Connect

The paper investigates the possibility and attractiveness of using (U-Th) fuel in light-water reactors (LWRs) and in light-water reactors with super-critical coolant parameters (SCLWRs). It is proposed to dilute {sup 233}U with {sup 238}U to enhance the proliferation resistance of this fissionable isotope. If is noteworthy that she idea was put forward for the first time by she well known American physicist and participant of the Manhattan Project Dr. T. Taylor. Various fuel compositions are analyzed and compared on fuel breeding, achievable values of fuel burn-up and cross-sections of parasitic neutron absorption. It is also demonstrated that small {sup 231}Pa additions (several percent) into the fuel allows: to increase fuel burn-up, to achieve more negative temperature reactivity coefficient of coolant and to enhance nonproliferation of the fuel. (authors)

Kulikov, E.G.; Shmelev, A.N.; Apse, V.A. [Moscow Engineering Physics Institute - State University, Kashirskoe shosse, 31, Moscow (Russian Federation); Kulikov, G.G. [International Science and Technology Center, Krasnoproletarskaya ul., 32-34, P.0. Box 20, Moscow (Russian Federation)

2007-07-01T23:59:59.000Z

78

Light Water Reactor Sustainability Program FY13 Status Update for EPRI - RISMC Collaboration  

Science Conference Proceedings (OSTI)

The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced "RISMC toolkit" that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory (INL) is collaborating with the Electric Power Research Institute (EPRI) in order to focus on applications of interest to the U.S. nuclear power industry. This report documents the collaboration activities performed between INL and EPRI during FY2013.

Curtis Smith

2013-09-01T23:59:59.000Z

79

Performance of Trasuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Interim Report, Including Void Reactivity Evaluation  

Science Conference Proceedings (OSTI)

The current focus of the Deep Burn Project is on once-through burning of transuranice (TRU) in light water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles would be pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell calculations have been performed using the DRAGON-4 code in order assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells containing typical UO2 and MOX fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Loading of TRU-only FCM fuel into a pin without significant quantities of uranium challenges the design from the standpoint of several key reactivity parameters, particularly void reactivity, and to some degree, the Doppler coefficient. These unit cells, while providing an indication of how a whole core of similar fuel would behave, also provide information of how individual pins of TRU-only FCM fuel would influence the reactivity behavior of a heterogeneous assembly. If these FCM fuel pins are included in a heterogeneous assembly with LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance of the TRU-only FCM fuel pins may be preserved. A configuration such as this would be similar to CONFU assemblies analyzed in previous studies. Analogous to the plutonium content limits imposed on MOX fuel, some amount of TRU-only FCM pins in an otherwise-uranium fuel assembly may give acceptable reactivity performance. Assembly calculations will be performed in future work to explore the design options for heterogeneous assemblies of this type and their impact on reactivity coefficients.

Michael A. Pope; Brian Boer; Gilles Youinou; Abderrafi M. Ougouag

2011-03-01T23:59:59.000Z

80

Plan for Demonstration of Online Monitoring for the Light Water Reactor Sustainability Online Monitoring Project  

SciTech Connect

Condition based online monitoring technologies and development of diagnostic and prognostic methodologies have drawn tremendous interest in the nuclear industry. It has become important to identify and resolve problems with structures, systems, and components (SSCs) to ensure plant safety, efficiency, and immunity to accidents in the aging fleet of reactors. The Machine Condition Monitoring (MCM) test bed at INL will be used to demonstrate the effectiveness to advancement in online monitoring, sensors, diagnostic and prognostic technologies on a pilot-scale plant that mimics the hydraulics of a nuclear plant. As part of this research project, INL will research available prognostics architectures and their suitability for deployment in a nuclear power plant. In addition, INL will provide recommendation to improve the existing diagnostic and prognostic architectures based on the experimental analysis performed on the MCM test bed.

Magdy S. Tawfik; Vivek Agarwal; Nancy J. Lybeck

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CERNA WORKING PAPER SERIES What drives innovation in nuclear reactors technologies?  

E-Print Network (OSTI)

, rapidly shifted toward the development of nuclear reactor design technologies especially as NPPs designs evolved toward more standardized technologies (e.g., Light Water Reactors (LWRs)) by the late 1960s (OECD organizations is especially strong for nuclear reactors technology development (OECD/NEA, 2007). 19 Forward

Paris-Sud XI, Université de

82

Prognostics Health Management for Advanced Small Modular Reactor Passive Components  

SciTech Connect

In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

2013-10-18T23:59:59.000Z

83

Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis  

Science Conference Proceedings (OSTI)

The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

Gilles Youinou; R. Sonat Sen

2013-09-01T23:59:59.000Z

84

Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors  

Science Conference Proceedings (OSTI)

The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

1981-09-01T23:59:59.000Z

85

REACTOR  

DOE Patents (OSTI)

A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

Roman, W.G.

1961-06-27T23:59:59.000Z

86

Licensing topical report: applicability of Division 1 regulatory guides to high-temperature gas-cooled reactors  

SciTech Connect

The application of Division 1 (power reactors) regulatory guides to high-temperature gas-cooled reactors (HTGRs) is discussed. About eighty of the Division 1 guides can be applied to any type of reactor; the remaining sixty, mostly written for light water reactors (LWRs), are divided between (1) those not applicable to the HTGR because of fundamental differences in design, (2) those applicable in intent but containing positions specific to LWRs, and (3) those written for LWRs but of sufficient generality to be applied to the HTGR without major exception. Emphasis is placed on issues which involve the unique characteristics of the HTGR. The regulatory guides evaluated are those extant as of early 1980. The positions presented are subject to periodic updating owing to the continuing modification of the guides and because the design options for the HTGR are at various stages of development. Nevertheless, this report is believed to provide a sound basis for evaluating conformance with existing Division 1 guides.

Lewis, J.H.

1980-12-01T23:59:59.000Z

87

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak...

88

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report  

SciTech Connect

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

Philip E. MacDonald

2003-09-01T23:59:59.000Z

89

Burning actinides in very hard spectrum reactors  

SciTech Connect

The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs.

Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

1978-03-20T23:59:59.000Z

90

Safety of next generation power reactors  

Science Conference Proceedings (OSTI)

This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address.

Not Available

1988-01-01T23:59:59.000Z

91

Sustainability Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Goals Sustainability Goals We support and encourage energy conservation and environmental sustainability. Energy Conservation Efficient Water Use & Management...

92

On reactor type comparisons for the next generation of reactors  

SciTech Connect

In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs.

Alesso, H.P.; Majumdar, K.C.

1991-08-22T23:59:59.000Z

93

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research...

94

Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan  

SciTech Connect

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly over-design portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as safety margin. Historically, specific safety margin provisions have been formulated, primarily based on engineering judgment.

Curtis Smith; Cristian Rabiti; Richard Martineau

2012-11-01T23:59:59.000Z

95

Engineering activities at the MIT research reactor in support of power reactor technology  

SciTech Connect

The Massachusetts Institute of Technology (MIT) research reactor (MITR-II) is a 5-MW(thermal) light-water-cooled and-moderated reactor (LWR) with in-core neutron and gamma dose rates that closely approximate those in current LWRs. Compact in-pile loops that simulate pressurized water reactor (PWR) and boiling water reactor (BWR) thermal hydraulics and coolant chemistry have been designed for installation in the MITR-II. A PWR loop has been completed and is currently operating in the reactor. A BWR loop is under construction, and an in-pile facility for irradiation-assisted stress corrosion crack (IASCC) testing is being designed. Another major area of research and on-line testing is the closed-loop, nonlinear, digital control of various reactor parameters, including the power level, temperature, and net energy production.

Harling, O.K.; Bernard, J.A.; Driscoll, M.J.; Kohse, G.E.; Ballinger, R.G.

1989-01-01T23:59:59.000Z

96

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production  

Science Conference Proceedings (OSTI)

The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

2005-02-13T23:59:59.000Z

97

Sustainability Portal  

Science Conference Proceedings (OSTI)

NIST Home > Sustainability Portal. Sustainability Portal. Programs and Projects. Smart Grid Program ... Precision Timing for Smart Grid Systems ...

2013-04-08T23:59:59.000Z

98

Passive and inherent safety technologies for light-water nuclear reactors  

SciTech Connect

Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

Forsberg, C.W.

1990-07-01T23:59:59.000Z

99

Fertile free fuels for plutonium and minor actinides burning in LWRs  

E-Print Network (OSTI)

The feasibility of using various uranium-free fuels for plutonium incineration in present light water reactors is investigated. Two major categories of inert matrix fuels are studied: composite ceramic fuel particles ...

Zhang, Yi, 1979-

2003-01-01T23:59:59.000Z

100

Fuel qualification issues and strategies for reactor-based surplus plutonium disposition  

SciTech Connect

The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

Cowell, B.S.; Copeland, G.L.; Moses, D.L.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sustainability watch  

Science Conference Proceedings (OSTI)

With the December 2010 issue, inform begins a new column, featuring some of the latest news and research on sustainability. Sustainability watch Inform Magazine Inform Archives Sustainability watch With this issue, infor

102

Sustainability Support  

Energy.gov (U.S. Department of Energy (DOE))

Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

103

Sustainable Transport  

E-Print Network (OSTI)

THOUGHT PIECE Sustainable Transport by Melvin M. Webberwant to sustain any mode of transport only if we judge it todraconian in rejecting transport modes that have failed in

Webber, Melvin

2006-01-01T23:59:59.000Z

104

New Reactor Designs  

U.S. Energy Information Administration (EIA)

LWRs generate power through steam turbines similar to those used for most power generated by burning coal or fuel ... combined with British Nuclear Fuels Limited to ...

105

Ensuring the Performance of Nuclear Reactor Pressure Vessels for ...  

Science Conference Proceedings (OSTI)

The Light Water Reactor Sustainability Program is a collaborative program ... and in situ Mechanical Test Methods in the US Fusion Reactor Materials Program.

106

Design and Manufacturing Guidelines for High-Strength Components in LWRs--Alloy X-750  

Science Conference Proceedings (OSTI)

Alloy X-750, commonly used in high-strength internal reactor components, occasionally experiences intergranular stress corrosion cracking (IGSCC). EPRI's new design and manufacturing guidelines, specifying parameters that can influence IGSCC resistance, will assist utilities in reducing the probability of in-service failures of alloy X-750 components.

1991-05-01T23:59:59.000Z

107

Corrosion-product release in LWRs. Progress report, 1984-1985  

SciTech Connect

This research program is aimed at studying corrosion product release from typical PWR and BWR materials to reactor coolant. The ultimate objective is to define reactor operating conditions so that corrosion product release is minimized and, as a consequence, so that radiation fields are brought under control. This, the third report on the program, describes on-line and off-line measurements of release of radiotraced corrosion products from stainless steel and Inconel to simulated PWR coolant in an out-reactor loop. Also described are the results of experiments on stainless steeland Inconel exposed to lithiated coolant in a loop in which corrosion products were removed from the coolant stream with a high-temperature ion exchanger. Finally, some aspects of the mechanisms of release and film growth at surfaces of Stellite-6 in lithiated coolant are discussed. The results of the radiotracer experiments provide further numerical data on elemental release from PWR materials at two chemistry extremes- lithiated and borated chemistry. In particular, release data for nickel have been obtained through a procedure for Ni-63 determination. The effect of the level of corrosion products in the coolant on film formation and release is shown to be crucial. The precipitation of the outer oxide layers on system materials controls the release kinetics, so that total system parameters such as the transport of material between sources and sinks of corrosion products must be taken into account when release behavior in a reactor is being considered.

Lister, D.H.

1986-08-01T23:59:59.000Z

108

LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System  

Science Conference Proceedings (OSTI)

The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

Dr. John Garnier; Dr. Kevin McHugh

2012-09-01T23:59:59.000Z

109

Light Water Reactors [Corrosion and Mechanics of Materials] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share To continue safe operation of current LWRs, the aging degradation of the

110

Design Considerations for Economically Competitive Sodium Cooled Fast Reactors  

SciTech Connect

The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phnix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

Hongbin Zhang; Haihua Zhao

2009-05-01T23:59:59.000Z

111

Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems  

SciTech Connect

Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

Bailey, W.J.; Berting, F.M.

1990-12-01T23:59:59.000Z

112

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

113

A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool  

SciTech Connect

Nuclear power currently provides a significant fraction of the United States non-carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nations electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.

Ben Spencer; Jeremey Busby; Richard Martineau; Brian Wirth

2012-10-01T23:59:59.000Z

114

Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)  

Science Conference Proceedings (OSTI)

High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

2009-10-01T23:59:59.000Z

115

The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel  

SciTech Connect

In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

1997-09-01T23:59:59.000Z

116

Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report  

Science Conference Proceedings (OSTI)

This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP to perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require less soluble boron by, for example, increasing the reactivity hold-down by burnable poisons. Then, the whole core analysis will be repeated until an acceptable design is found. Calculations of departure from nucleate boiling ratio (DNBR) will be included in the safety evaluation as well. Once a startup core is shown to be viable, subsequent reloads will be simulated by shuffling fuel and introducing fresh fuel. The PASTA code has been updated with material properties of UN fuel from literature and a model for the diffusion and release of volatile fission products from the SiC matrix material . Preliminary simulations have been performed for both normal conditions and elevated temperatures. These results indicated that the fuel performs well and that the SiC matrix has a good retention of the fission products. The path forward for fuel performance work includes improvement of metallic fission product release from the kernel. Results should be considered preliminary and further validation is required.

R. Sonat Sen; Brian Boer; John D. Bess; Michael A. Pope; Abderrafi M. Ougouag

2012-03-01T23:59:59.000Z

117

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ater-reactor-sustainability-program-integrated-program-plan-0 Download LWRS Program and EPRI Long-Term Operations Program- Joint R&D Plan To address the challenges associated with...

118

Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel  

Science Conference Proceedings (OSTI)

Expanding interest in nuclear power and advanced fuel cycles indicate that use of mixed-oxide (MOX) fuel in the current and new U.S. reactor fleet could become an option for utilities in the coming decades. In light of this renewed interest, EPRI has reviewed the substantial knowledge base on MOX fuel irradiation in light water reactors (LWRs). The goal was to evaluate the technical feasibility of MOX fuel use in the U.S. reactor fleet for both existing and advanced LWR designs (Generation III/III+).

2009-05-29T23:59:59.000Z

119

Sustainability Watch  

Science Conference Proceedings (OSTI)

This months Sustainability Watch column was provided by Marguerite Torrey, inform technical projects editor. Following is her summary of the hot topic on sustainable technologies presented on Tuesday, May 3, at the 102nd AOCS Annual Meeting & Expo. Sustai

120

Venice Sustainability Advisory Panel  

E-Print Network (OSTI)

Venice Sustainability Advisory PanelFINAL REPORT Venice Sustainability Advisory Panel FinalInvestigator The Venice Sustainability Advisory Panel (

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Flow-induced vibration for light-water reactors. Progress report, April 1978-December 1979  

SciTech Connect

Flow-Induced vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. This progress report summarizes the accomplishments achieved during the period from April 1978 to December 1979.

Schardt, J. F.

1980-03-01T23:59:59.000Z

122

Environmentally assisted cracking of light-water reactor materials  

SciTech Connect

Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

1996-02-01T23:59:59.000Z

123

A Three Dimensional Heterogeneous Coarse Mesh Transport Method for Reactor Calculations.  

E-Print Network (OSTI)

??Current advancements in nuclear reactor core design are pushing reactor cores towards greater heterogeneity in an attempt to make nuclear power more sustainable in terms (more)

Forget, Benoit

2006-01-01T23:59:59.000Z

124

In Search of Sustainability  

E-Print Network (OSTI)

Review: In Search of Sustainability By Jenny Goldie, Boband Bryan Furnass. In Search of Sustainability. Collingwood,in sustainability. In Search of Sustainability opens with an

Hamilton-Smith, Elery

2005-01-01T23:59:59.000Z

125

Environmental Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment » Environment » Environmental Stewardship » Environmental Sustainability /community-environment/_assets/images/icon_earthday.jpg Environmental Sustainability: Creating the Future Exercising our commitment to operating a sustainable site by creating a 50-year horizon of planning and preparing for effective environmental stewardship while executing national mission. Sustainability Goals» Recycling» Green Purchasing» Pollution Prevention» Reusing Water» Feature Stories» LOOK INTO LANL - highlights of our science, people, technologies close Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. READ MORE An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes Bioenergy Research Center.

126

Sustainable Scientists  

E-Print Network (OSTI)

thanks to extensive green and energy-efficient features, andenergy efficiency improvement programs (xxxviii) and their GreenGreen Grid alliance to address efficiency and sustainability issues (xxxvii). This group is exploring energy

Mills, Evan

2009-01-01T23:59:59.000Z

127

Generation -IV Reactor Concepts  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

128

Plutonium Recycling in Light Water Reactors at Framatome ANP: Status and Trends  

SciTech Connect

The civil and military utilization of nuclear power results in continuously increasing stockpiles of spent fuel and separated plutonium. Since fast breeder reactors are at present not available, the majority of spent fuel discharged from commercial nuclear reactors is intended for direct final disposal or designated for interim storage. An effective form of intermediate plutonium storage is recycling in thermal reactors. Recycling of the recovered plutonium in commercial light water reactors (LWRs) is currently practiced in Belgium, France, Germany, and Switzerland. The number of mixed-oxide (MOX) assemblies reloaded each year in a large variety of reactors demonstrates that plutonium recycling in LWRs has reached industrial maturity. The status of experience gained today at Framatome ANP confirms the reliability of the design codes and the suitability of fuel assembly and core designs. The validation database for increasing exposures of MOX fuel is being continuously expanded. This provides the basis for further extending the discharge exposures of MOX assemblies and for licensing the use of higher plutonium concentrations. Options to support the weapons plutonium reduction programs and for the development of advanced MOX assembly designs are investigated.

Porsch, Dieter [Framatome ANP GmbH (France); Stach, Walter [Framatome ANP GmbH (France); Charmensat, Pascal [Framatome ANP S.A.S. (France); Pasquet, Michel [Framatome ANP S.A.S. (France)

2005-08-15T23:59:59.000Z

129

Sustainable Polymers Staff  

Science Conference Proceedings (OSTI)

Sustainable Polymers Staff Directory. Kathryn Beers, Group Leader. ... Contact. Sustainable Polymers Kathryn L. Beers, Group Leader. ...

2013-07-09T23:59:59.000Z

130

Topic: Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Project. Sustainable Manufacturing Program. Sustainability Characterization for Product Assembly Processes Project. Testbed ...

2012-09-19T23:59:59.000Z

131

Technologies for Upgrading Light Water Reactor Outlet Temperature  

SciTech Connect

Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

2013-07-01T23:59:59.000Z

132

Economic Sustainability  

E-Print Network (OSTI)

This report is part of a series of research studies into alternative energy and resource pathways for the global economy. In addition to disseminating original research findings, these studies are intended to contribute to policy dialog and public awareness about environment-economy linkages and sustainable growth. All opinions expressed here are those of the author and should not be attributed to their affiliated institutions. For this project on Energy Pathways, we express thanks to Next 10, who recognized the importance of this issue for Californias sustainable growth agenda and provided conceptual impetus and financial support. Thanks are also due for outstanding research assistance by the following:

David Roland-holst; Fredrich Kahrl; Jennifer Baranoff; Alex Cheng; Adrian Li; Jennifer Ly; Cristy Sanada; Lawrence Shing; Sam Beckerman; Billie Chow; Deal Shelley Jiang; Tom Lueker; Xian Ming Li; Mehmet Seflek; F. Noel Perry; Morrow Cater; Sarah Henry; Adam Rose; John A. skip

2009-01-01T23:59:59.000Z

133

Supercell Depletion Studies for Prismatic High Temperature Reactors  

SciTech Connect

The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challenges exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.

J. Ortensi

2012-10-01T23:59:59.000Z

134

Robustness of RISMC Insights under Alternative Aleatory/Epistemic Uncertainty Classifications: Draft Report under the Risk-Informed Safety Margin Characterization (RISMC) Pathway of the DOE Light Water Reactor Sustainability Program  

SciTech Connect

The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, would be founded on probabilistic characterizations of uncertainty in SSC performance. In the context of probabilistic risk assessment (PRA) technology, there has arisen a general consensus about the distinctive roles of two types of uncertainty: aleatory and epistemic, where the former represents irreducible, random variability inherent in a system, whereas the latter represents a state of knowledge uncertainty on the part of the analyst about the system which is, in principle, reducible through further research. While there is often some ambiguity about how any one contributing uncertainty in an analysis should be classified, there has nevertheless emerged a broad consensus on the meanings of these uncertainty types in the PRA setting. However, while RISMC methodology shares some features with conventional PRA, it will nevertheless be a distinctive methodology set. Therefore, the paradigms for classification of uncertainty in the PRA setting may not fully port to the RISMC environment. Yet the notion of risk-informed margin is based on the characterization of uncertainty, and it is therefore critical to establish a common understanding of uncertainty in the RISMC setting.

Unwin, Stephen D.; Eslinger, Paul W.; Johnson, Kenneth I.

2012-09-20T23:59:59.000Z

135

In Search of Sustainability  

E-Print Network (OSTI)

Review: In Search of Sustainability By Jenny Goldie, BobFurnass. In Search of Sustainability. Collingwood, Victoria,the movement towards sustainability. It inevitably reflects

Hamilton-Smith, Elery

2005-01-01T23:59:59.000Z

136

Sustainability of products.  

E-Print Network (OSTI)

???Sustainability is a hot topic for years and sustainability assessment has been generally used as an approach to assess the level of sustainability. For the (more)

???.

2012-01-01T23:59:59.000Z

137

Review: Hijacking Sustainability  

E-Print Network (OSTI)

addressing the attack on sustainability, Sharon Beders 2002Review: Hijacking Sustainability By Adrian Parr Reviewed byParr, Adrian. Hijacking Sustainability. Cambridge, MA: MIT

Antonelli, Monika

2010-01-01T23:59:59.000Z

138

The Illusion of Sustainability  

E-Print Network (OSTI)

K.M. Aziz. (1996). Sustainability of a Water, SanitationFrom Rio to Iragua: Sustainability versus Efficiency andThe Illusion of Sustainability* Michael Kremer Department of

Kremer, Michael Robert; Miguel, Edward A.

2004-01-01T23:59:59.000Z

139

Sustainability and Transport  

E-Print Network (OSTI)

2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

Gilbert, Richard

2006-01-01T23:59:59.000Z

140

Sustainabilitys Correlation to Profit.  

E-Print Network (OSTI)

??Sustainability and its correlation to profits in hospitality institutions is the subject of this paper. The lack of knowledge about sustainability and the benefits of (more)

Drummond, Cheryl Annissa

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 22340 of 29,416 results. 31 - 22340 of 29,416 results. Download CX-004752: Categorical Exclusion Determination Havre Substation Stage 03 CX(s) Applied: B4.11 Date: 12/13/2010 Location(s): Montana Office(s): Western Area Power Administration-Upper Great Plains Region http://energy.gov/nepa/downloads/cx-004752-categorical-exclusion-determination Page Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure... http://energy.gov/ne/nuclear-reactor-technologies/light-water-reactor-sustainability-lwrs-program Page Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research,

142

Sustainability | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainability Sustainability Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration...

143

Enabling Materials Resource Sustainability  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... REWAS 2013: Enabling Materials Resource Sustainability: Enabling Sustainability through Education and Consumer Awareness Sponsored...

144

Sustainable Manufacturing Briefing  

Science Conference Proceedings (OSTI)

... enhance their brands. Is sustainability an opportunity or cost? There is no ... demonstrate, deploy, and accredit new sustainable manufacturing ...

2012-08-29T23:59:59.000Z

145

Light Water Reactor Sustainability Nondestructive Evaluation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the safety of LWR plants include the containment building, spent fuel pool, and cooling towers. This use has made its long-term performance crucial for the safe operation...

146

Materials Sustainability: Digital Resource Center -- Sustainability ...  

Science Conference Proceedings (OSTI)

FORUMS > SUSTAINABILITY: ECONOMICS, LIFECYCLE ANALYSIS, GREEN HOUSE GASES, AND CLIMATE CHANGE, Replies, Views, Originator, Last Post ...

147

Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation  

SciTech Connect

Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

Isabella J van Rooyen

2013-01-01T23:59:59.000Z

148

Pre-irradiation testing and analysis to support the LWRS Hybrid SiC-CMC-Zircaloy-04 unfueled rodlet irradiation  

SciTech Connect

Nuclear fuel performance is a significant driver of nuclear power plant operational performance, safety, economics and waste disposal requirements. The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Pathway focuses on improving the scientific knowledge basis to enable the development of high-performance, high burn-up fuels with improved safety and cladding integrity and improved nuclear fuel cycle economics. To achieve significant improvements, fundamental changes are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction.

Isabella J van Rooyen

2012-09-01T23:59:59.000Z

149

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

150

Fusion-breeder-reactor design studies  

SciTech Connect

Studies of the technical and economic feasibility of producing fissile fuel in tandem mirrors and in tokamaks for use in fission reactors are presented. Fission-suppressed fusion breeders promise unusually good safety features and can provide make-up fuel for 11 to 18 LWRs of equal nuclear power depending on the fuel cycle. The increased revenues from sales of both electricity and fissile material might allow the commercial application of fusion technology significantly earlier than would be possible with electricity production from fusion alone. Fast-fission designs might allow a fusion reactor with a smaller fusion power and lower Q value to be economical and thus make this application of fusion even earlier. A demonstration reactor with a fusion power of 400 MW could produce 600 kg of fissile material per year at a capacity factor of 50%. The critical issues, for which small scale experiments are either being carried out or planned, are: (1) material compatibility, (2) beryllium feasibility, (3) MHD effects, and (4) pyrochemical reprocessing.

Moir, R.W.; Lee, J.D.; Coops, M.S.

1983-04-05T23:59:59.000Z

151

The Sustainability of Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 S. Duclos 2010-11-30 Research Priorities for More Efficient Use of Critical Materials from a U.S. Corporate Perspective Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Steven Duclos Chief Scientist Manager, Material Sustainability GE Global Research Niskayuna, NY December 3, 2010 2 /4 S. Duclos 2010-11-30 GE Criticality Diagram Supply and Price Risk Impact on GE Lower Higher Lower Higher Proportional to spend Rare Earth Elements area Re 3 /4 S. Duclos 2010-11-30 OEM Technology Options in Addressing Metals Supply Challenges Sourcing Manufacturing Engineering/R&D Each element and each application will use a unique mix of options *Volume material buys *Diversification *Hedging *Global sourcing *Strategic inventory reserves

152

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

153

Mundaneum of sustainability.  

E-Print Network (OSTI)

??The Mundaneum of Sustainability focuses on influencing people's consciousness of sustainability in their daily lives, by creating a place where people senses are triggered through (more)

De Ruijter, P.

2011-01-01T23:59:59.000Z

154

Sustainable Energy Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Systems Group The Sustainable Energy Systems Group studies the impacts of energy generation and use, manufacturing, and other activities on the environment, the...

155

2012 DOE Sustainability Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 DOE Sustainability Awards PSO Site Title EE National Renewable Energy Laboratory Comprehensive Energy Management EM Headquarters - EM Environmental Management's Sustainability...

156

Solar energy as an alternate energy source to mixed oxide fuels in light-water cooled reactors  

DOE Green Energy (OSTI)

Supplemental information pertaining to the generic environmental impact statement on the Pu recycling process for mixed oxide light-water cooled reactors (GESMO) was requested from several sources. In particular, the role of alternate sources of energy was to be explored and the implications of these alternate sources to the question of Pu recycle in LWRs were to be investigated. In this vein, solar energy as an alternate source is the main subject of this report, along with other information related to solar energy. The general conclusion is that solar energy should have little effect on the decisions concerning GESMO.

Bertini, H.W.

1977-06-30T23:59:59.000Z

157

SUSTAINABLE COMPOSITES: CELLULOSE NANOFIBERS  

Science Conference Proceedings (OSTI)

SUSTAINABLE COMPOSITES: CELLULOSE NANOFIBERS. Iulia Sacui and Jeffrey Gilman. Our main focus is on using cellulose ...

158

Sustainable warehouse management  

Science Conference Proceedings (OSTI)

Sustainable warehouse is about integrating, balancing and managing the economic, environmental and social inputs and outputs of the warehouse operations. Sustainability is a core value to many businesses but they find it hard to implement in their current ... Keywords: sustainability modelling, sustainable warehouse management, system dynamics

Kah-Shien Tan; M. Daud Ahmed; David Sundaram

2009-06-01T23:59:59.000Z

159

Operational Philosophy for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

2013-02-01T23:59:59.000Z

160

Initial data testing of ENDF/B-VI for thermal reactor benchmark analysis  

SciTech Connect

This paper summarizes some early data testing of ENDF/B-VI by members of the Cross Section Evaluation Working Group (CSEWG) Thermal Reactor Data Testing Subcommittee. Projections of ENDF/B-VI performance in thermal benchmark calculations are beginning to be available; and in some cases the calculations were performed with only a portion of the cross sections taken from version VI, the remainder taken from earlier data files. A factor delaying the thermal reactor data testing is that the final {sup 235}U evaluation has not yet been officially released--only an earlier evaluation with a constant low-energy eta value (like in version V) is currently available. The official version VI {sup 235}U evaluation (scheduled for release as Mod-1) gives a drooping eta variation at low energy; i.e., eta decreases with decreasing energy. This behavior was suggested by European studies to improve the calculation of temperature coefficients in LWRs.

Williams, M.L. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Kahler, A.C. [Bettis Atomic Power Lab., West Mifflin, PA (United States); MacFarlane, R.E. [Los Alamos National Lab., NM (United States); Milgram, M. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Wright, R.Q. [Oak Ridge National Lab., TN (United States)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Flow-induced vibration for light water reactors. Progress report, October 1980-December 1980  

Science Conference Proceedings (OSTI)

Flow-Induced Vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program is managed by the General Electric Nuclear Power Systems Engineering Department and has three major contributors: General Electric Nuclear Power Systems Engineering Department (NPSED), General Electric Corporate Research and Development (CR and D) and Argonne National Laboratory (ANL). The program commenced December 1, 1976. This progress report summarizes the accomplishments achieved during the period from October 1980 to December 1980.

Torres, M.R.

1981-09-01T23:59:59.000Z

162

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network (OSTI)

Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

163

NUCLEAR REACTOR  

DOE Patents (OSTI)

A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

Treshow, M.

1961-09-01T23:59:59.000Z

164

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

Daniels, F.

1959-10-27T23:59:59.000Z

165

Sustainable Manufacturing in the Systems Integration Division  

Science Conference Proceedings (OSTI)

... Sustainability Modeling and Optimization Project. Sustainability of Unit Manufacturing Processes Project. Sustainable Manufacturing Program. ...

2011-12-23T23:59:59.000Z

166

Corporate sustainability assessment methodology  

E-Print Network (OSTI)

Sustainability is a vague concept specifically in the context of a corporate world. There are numerous definitions for corporate sustainability and just as many ways of evaluating it. This work attempts to define, structure ...

Pinchuk, Natallia

2011-01-01T23:59:59.000Z

167

Earth System Analysis for Sustainability  

E-Print Network (OSTI)

Earth System Analysis for Sustainability By Hans JoachimSystem Analysis for Sustainability. MIT Press, Cambridge,the factors shaping sustainability yet undertaken and makes

Hamilton-Smith, Elery

2005-01-01T23:59:59.000Z

168

Sustainable Energy: Choosing Among Options  

E-Print Network (OSTI)

Review: Sustainable Energy: Choosing Among Options Byand William A. Peters. Sustainable Energy: Choosing AmongAll the authors of Sustainable Energy are associated with

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

169

Bioenergy Technologies Office: Sustainability  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview Financial Opportunities Publications Contact Us Sustainability The Bioenergy Technologies Office's activities are guided by a commitment to environmental, economic,...

170

CONVECTION REACTOR  

DOE Patents (OSTI)

An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

Hammond, R.P.; King, L.D.P.

1960-03-22T23:59:59.000Z

171

NREL: Sustainable NREL - About  

NLE Websites -- All DOE Office Websites (Extended Search)

About Sustainable NREL About Sustainable NREL NR EL proactively pursues sustainability in all its operations to meet the lab's environmental stewardship goals. NREL is also charged with providing leadership within the U.S. Department of Energy (DOE) complex to achieve energy and environmental goals as described in DOE Executive Order 13423 and Executive Order 13514. Sustainability Integrated in Mission and Operation Fully integrated in the lab's mission and operations, sustainability leadership is demonstrated by our involvement in optimizing resources, reducing waste, reducing greenhouse gas emissions, protecting the environment, and reaching out to the community. NREL Sustainability Efforts In addition to implementing on-site energy efficiency and renewable energy technologies, NREL has rigorous sustainability policies that facilitate:

172

The Consortium for Advanced Simulation of Light Water Reactors  

SciTech Connect

The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

2011-10-01T23:59:59.000Z

173

Sustainable Electricity | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Electricity SHARE Sustainable Electricity Outdoor power line accelerated testing. Oak Ridge National Laboratory's Energy Efficiency and Electricity Technologies Program...

174

NREL: Sustainable NREL Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and renewable energy technologies. NREL's sustainability model can be replicated by homeowners, universities, industry, and government agencies. At NREL, sustainability...

175

Strategies for Sustainable Institute Operations  

Science Conference Proceedings (OSTI)

... 2 ? What we heard and read: ? NNMI RFI Responses to sustainability questions ... Blueprint for Action: Sustainable Operations Outline Page 3. ...

2013-01-23T23:59:59.000Z

176

Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts  

Science Conference Proceedings (OSTI)

The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.

R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

2012-04-01T23:59:59.000Z

177

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

Fraas, A.P.; Mills, C.B.

1961-11-21T23:59:59.000Z

178

Prospects of Using Reprocessed Uranium in CANDU Reactors, in the U.S. GNEP Program  

Science Conference Proceedings (OSTI)

Current Global Nuclear Energy Partnership (GNEP) plans envision reprocessing spent fuel (SF) with view to minimizing high-level waste (HLW) repository use and recovering actinides (U, Np, Pu, Am, and Cm) for transmutation in reactors as fuel and targets. The reprocessed uranium (RU), however, is to be disposed of. This paper presents a limited-scope analysis of possible reuse of RU in CANDU (Canada Deuterium Uranium) Reactors, within the context of the US GNEP program. Other papers on this topic submitted to this conference discuss the possibility of RU reuse in light-water reactors (LWRs) (with enrichment) and offer an independent economic analysis of RU reuse. A representative RU uranium 'vector', from reprocessed spent LWR fuel, comprises 98.538 wt% 238U, 0.46 wt% {sup 236}U, 0.986 wt% {sup 235}U, and 0.006 wt% {sup 234}U. After multiple recyclings, the concentration of {sup 234}U can approach 0.02 wt%. The presence of {sup 234}U and {sup 236}U in RU reduces the reactivity and fuel lifetime (exit burnup), which is particularly an issue in LWRs. While in PWR analyses, the burnup penalty caused by the concentration of {sup 236}U in RU needs to be offset by additional {sup 235}U enrichment in the amount of {approx}25% to 30% of the weight percentage of the {sup 236}U; however, the effect in CANDU is much smaller. Furthermore, since the {sup 235}U content in RU exceeds that of natural uranium, CANDU offers the advantageous option of uranium recycling without reenrichment. The exit burnup of CANDU RU-derived fuel is considerably larger than that for natural uranium-fueled scenario, despite the presence of {sup 234}U and {sup 236}U.

Ellis, Ronald James [ORNL

2007-01-01T23:59:59.000Z

179

Materials Failure Trends in LWRs  

Science Conference Proceedings (OSTI)

Hardware failures in U.S. nuclear plants cause forced outages, resulting in capacity factor losses of 10-20% and costing utilities hundreds of millions of dollars each year. This analysis of plant operating experience data identifies emerging materials-related failure trends and associated R&D needs.

1987-10-26T23:59:59.000Z

180

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Multi-Scale, Sustainable Reaction Engineering - A New Departmental Initiative  

E-Print Network (OSTI)

but it remains a continuing strength for the Department, underpinned by many new developments Illustration by Current/ Future Research Reactor and Reaction Efficiency Sustainable Energy Generation Transport Biofuels Modelling Reactor and Reaction... from Biomass via Iron Oxide Looping Dennis & Scott (2006). A.I.Ch.E.J., 52, 3325-3328. EPSRC Grant EP/F027435/1. Transport Biofuels Biomass Conversion to Fuel - Issues Options (i) gasification/GTL (ii) hydrolysis/fermentation Need...

Dennis, John

2008-07-29T23:59:59.000Z

182

Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Semiannual report, October 1990--March 1991: Volume 13  

SciTech Connect

The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties.

Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1992-07-01T23:59:59.000Z

183

Update Sustainable Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

on the significant impacts and breadth of transportation science research at ORNL and new directions to achieve efficient, clean, and sustainable mobility. Ron's talk attracted...

184

Sustainable Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling a Sustainable Nuclear Energy Future Since its inception, Argonne R&D has supported U.S. Department of Energy nuclear programs and initiatives, including today's...

185

NREL: Sustainable NREL - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News Below are news stories related to NREL's sustainability efforts. September 3, 2013 Architects and Building Engineers Flock to NREL National ASHRAE and AIA conferences in...

186

Sustainable Agriculture Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Minnesota Sustainable Agriculture Loan program will provide loans to Minnesota residents actively engaged in farming for capital expenditures which enhance the environmental and economic...

187

Toward a sustainable UGA.  

E-Print Network (OSTI)

??Sustainability of the college campus is a growing trend and complex pursuit. While The University of Georgia is making strides in several areas of campus (more)

Kirsche, Kevin Michael

2008-01-01T23:59:59.000Z

188

Sustainability Support - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Right Tab Left Tab VIDEOS Right Tab Left Tab EVENTS Environmental Protection, Sustainability Support & Corporate Safety Analysis HS-20 Home Mission & Functions Office of...

189

Sustainable Technologies I  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... Sustainability Study in Selective Laser Sintering An Energy ... Crushing and grinding, or comminution, circuits are the most energy intensive...

190

Why Measure Sustainability?  

Science Conference Proceedings (OSTI)

... aim for sustainability, and it creates an incentive for developing LCA ... the flow of solar energy reaching the Earth is nevertheless fixed, as is the mass ...

2009-10-21T23:59:59.000Z

191

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

Wigner, E.P.

1958-04-22T23:59:59.000Z

192

Microsoft Word - illinois_reactors_taiwo.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Fission Process and Control Fission Process and Control In nuclear power reactors, energy is produced by the nuclear fission process in which uranium atoms are split into two major atoms, called fission products, with significant heat generation. A nuclear reactor system is controlled to ensure that the fission process is a sustained nuclear chain reaction (see Fig. 1) that neither declines nor increases with operation time, i.e., it is at

193

ICOSSE 2011 - 2nd International Congress on Sustainability ...  

Science Conference Proceedings (OSTI)

... Technology for water sustainability and management; Water sustainability and sustainable water management; Sustainable energy; Advances in ...

2011-10-11T23:59:59.000Z

194

Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)  

Science Conference Proceedings (OSTI)

A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle costs are included in the analysis, with the fast reactors having a higher $/kw(e) capital cost than the LWRs, the overall busbar generation cost ($/MWh) for the closed cycles is approximately 12% higher than for the all-LWR once-through fuel cycle case, again based on the expected values from an uncertainty analysis. It should be noted that such a percentage increase in the cost of nuclear power is much smaller than that expected for fossil fuel electricity generation if CO2 is costed via a carbon tax, cap and trade regimes, or carbon capture and sequestration (CCS).

Williams, Kent Alan [ORNL; Shropshire, David E. [Idaho National Laboratory (INL)

2009-01-01T23:59:59.000Z

195

Preliminary analysis of the postulated changes needed to achieve rail cask handling capabilities at selected light water reactors  

SciTech Connect

Reactor-specific railroad and crane information for all LWRs in the US was extracted from current sources of information. Based on this information, reactors were separated into two basic groups consisting of reactors with existing, usable rail cask capabilities and those without these capabilities. The latter group is the main focus of this study. The group of reactors without present rail cask handling capabilities was further separated into two subgroups consisting of reactors considered essentially incapable of handling a large rail cask of about 100 tons and reactors where postulated facility changes could result in rail cask handling capabilities. Based on a selected population of 127 reactors, the results of this assessment indicate that usable rail cask capabilities exist at 83 (65%) of the reactors. Twelve (27%) of the remaining 44 reactors are deemed incapable of handling a large rail cask without major changes, and 32 reactors are considered likely candidates for potentially achieving rail cask handling capabilities. In the latter group, facility changes were postulated that would conceptually enable these reactors to handle large rail casks. The estimated cost per plant of required facility changes varied widely from a high of about $35 million to a low of <$0.3 million. Only 11 of the 32 plants would require crane upgrades. Spur track and right-of-way costs would apparently vary widely among sites. These results are based on preliminary analyses using available generic cost data. They represent lower bound values that are useful for developing an initial assessment of the viability of the postulated changes on a system-wide basis, but are not intended to be absolute values for specific reactors or sites.

Konzek, G.J.

1986-02-01T23:59:59.000Z

196

Advanced burner test reactor preconceptual design report.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

2008-12-16T23:59:59.000Z

197

SUSTAINABILITY New Perspectives  

E-Print Network (OSTI)

societies, but also contribute to creating a truly sustainable future. The specific areas of analysis include population dynamics, sustenance, energy, and pollution. The perspectives and roles and long-term sustainability need to be reconciled through market and regulatory mechanisms that reduce

Edwards, Paul N.

198

Measuring Energy Sustainability  

Science Conference Proceedings (OSTI)

For the purpose of measurement, energy sustainability is defined as ensuring that future generations have energy resources that enable them to achieve a level of well-being at least as good as that of the current generation. It is recognized that there are valid, more comprehensive understandings of sustainability and that energy sustainability as defined here is only meaningful when placed in a broader context. Still, measuring energy sustainability is important to society because the rates of consumption of some fossil resources are now substantial in relation to measures of ultimate resources, and because conflicts between fossil energy use and environmental sustainability are intensifying. Starting from the definition, an equation for energy sustainability is derived that reconciles renewable fl ows and nonrenewable stocks, includes the transformation of energy into energy services, incorporates technological change and, at least notionally, allows for changes in the relationship between energy services and societal well-being. Energy sustainability must be measured retrospectively as well as prospectively, and methods for doing each are discussed. Connections to the sustainability of other resources are also critical. The framework presented is merely a starting point; much remains to be done to make it operational.

Greene, David L [ORNL

2009-01-01T23:59:59.000Z

199

NUCLEAR REACTOR  

DOE Patents (OSTI)

A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

Moore, R.V.; Bowen, J.H.; Dent, K.H.

1958-12-01T23:59:59.000Z

200

High Performance and Sustainable Buildings Guidance | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance More Documents &...

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Law, Sustainability, and the Pursuit of Happiness  

E-Print Network (OSTI)

of the steps needed for sustainability can actually improvesatisfaction. Thus, sustainability for society and theSustainability.

Farber, Daniel A.

2011-01-01T23:59:59.000Z

202

Sustainable Acquisition Coding System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents & Publications Policy...

203

Exploring Sustainability VALS: Sustainability Value, Lifestyle Practices and Stewardship.  

E-Print Network (OSTI)

??Living sustainability is a set of behaviors for the long-term functioning of society. Sustainability VALS provides the clothing and textiles industry distinctive insight into comprehending (more)

Lee, Stacy Hyun-Nam

2011-01-01T23:59:59.000Z

204

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

205

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

1962-10-23T23:59:59.000Z

206

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

Wigner, E.P.

1960-11-22T23:59:59.000Z

207

REACTOR SHIELD  

DOE Patents (OSTI)

Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

1959-02-17T23:59:59.000Z

208

Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition  

Science Conference Proceedings (OSTI)

An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S. [and others

1995-09-01T23:59:59.000Z

209

NUCLEAR REACTOR  

DOE Patents (OSTI)

High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

Grebe, J.J.

1959-07-14T23:59:59.000Z

210

June 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source  

E-Print Network (OSTI)

's first large-scale, sustainable nuclear fusion reactor, an estimated $10 billion project that many than burning fossil fuels or even nuclear fission, which is used in nuclear reactors today but producesJune 29, 2005 France Will Get Fusion Reactor To Seek a Future Energy Source By CRAIG S. SMITH PARIS

211

Organizational Sustainability | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Outreach & Collaboration » Organizational Services » Outreach & Collaboration » Organizational Sustainability Organizational Sustainability About Organizational Sustainability Sustainability - a recognized business approach The Department of Energy's (DOE's) Office of Health, Safety and Security (HSS) is researching the concept of sustainability as one part of its efforts to ensure the Department's continuing effectiveness in reliably achieving its mission in an increasingly global and diverse business climate. Sustainability allows senior executives to capture a full and integrated view of diverse and complex organizations factoring in the economic, safety, environmental, and social needs. The relevance of sustainability is reflected in various manifestations in corporate business. For example, Dow Jones recognizes sustainability as an investable

212

Integrating social theory and sustainability.  

E-Print Network (OSTI)

??Though it generally has environmental connotations, sustainability is at its most basic a social concept. It is society that is of interest in being sustained; (more)

Fievet, Charles Joseph

2006-01-01T23:59:59.000Z

213

NREL: Sustainable NREL - Community Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Community Benefits Essential to the lab's sustainability efforts is helping sustain the community by supporting economic development and sharing knowledge and resources with the...

214

Sustainable Endeavors | Open Energy Information  

Open Energy Info (EERE)

Facebook icon Twitter icon Sustainable Endeavors Jump to: navigation, search Name Sustainable Endeavors Place Montana Sector Biomass, Renewable Energy Product Focused on...

215

Corrosion Damage Models and Sustainability  

Science Conference Proceedings (OSTI)

Presentation Title, Corrosion Damage Models and Sustainability ... Abstract Scope, The ability of industry to make sustainable choices in the future that optimize...

216

Green IT 2012: Sustainable Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DOE Sustainability Assistance Network July 19, 2012 Cate Berard Federal Electronics Challenge and EPA Jeff Eagan Office of Sustainability Support (HS-21) Green IT 2012:...

217

Collaborative Initiatives for Sustainable Products ...  

Science Conference Proceedings (OSTI)

... (EPA) 2. LCA for Sustainable Light Emitting Diode Fluorescent Lamps (DOE) 3. Sustainable Product Initiative (EPA) ? Cradle-to-Gate Tools ...

2009-10-23T23:59:59.000Z

218

A positive approach to sustainability  

E-Print Network (OSTI)

Sustainability is a complex term that is becoming increasingly used. While extremely important, sustainability is often misused and misunderstood, yielding undesirable effects. Furthermore, many organizations promote the ...

Dossa, Zahir (Zahir A.)

2013-01-01T23:59:59.000Z

219

Energy Realpolitik: Towards a Sustainable Energy Strategy  

E-Print Network (OSTI)

A long-term strategy based on existing technological, ecological, economical, and geopolitical realities is urgently needed to develop a sustainable energy economy, which should be designed with adaptability to unpredicted changes in any of these aspects. While only a highly diverse energy portfolio and conservation can ultimately guarantee optimum sustainability, based on a comparison of current primary energy generation methods, it is argued that future energy strategy has to rely heavily on expanded coal and nuclear energy sectors. A comparison of relative potentials, merits and risks associated with fossil-fuel, renewable, and nuclear technologies suggests that the balance of technologies should be shifted in favor of new-generation, safe nuclear methods to produce electricity, while clean-coal plants should be assigned to transportation fuel. Novel nuclear technologies exploit fission of uranium and thorium as primary energy sources with fast-spectrum and transmutation (burner) reactors. A closed fuel cy...

Schroeder, W Udo

2008-01-01T23:59:59.000Z

220

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High Performance Sustainable Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field uses solar energy to provide power for Los Alamos County and the...

222

Science Serving Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Goal 8: Science Serving Sustainability Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its...

223

HumanoidHospital Sustainable  

E-Print Network (OSTI)

HHO HumanoidHospital Nanoscale Science Nano-Bio Interface Sustainable Energy Renewable Materials, students, or applicants for admission or employment on the basis of race, gender, disability, age, veteran

Beex, A. A. "Louis"

224

Sustainable Electrical Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Electrical Energy Systems Speaker(s): Mark O'Malley Date: June 27, 2012 - 12:00pm Location: 90-1099 Seminar HostPoint of Contact: Sila Kiliccote The process of making...

225

2011 Sustainability Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

For additional information on DOE's Sustainability Awards, contact Drew Campbell Drew.Campbell@hq.doe.gov; 202-586-4181 Beverly Whitehead Beverly.Whitehead@hq.doe.gov; 202-586-6073...

226

Achieving Climate Sustainability  

Science Conference Proceedings (OSTI)

It is often assumed that climate change policies, including the Kyoto Protocol and the follow-on Copenhagen agreement now being negotiated, align well with sustainability's tenets. A closer look reveals this is not the case. First, they treat ...

William B. Gail

2010-02-01T23:59:59.000Z

227

Reactor options for disposition of excess weapon plutonium: Selection criteria and decision process for assessment  

Science Conference Proceedings (OSTI)

DOE is currently considering a wide range of alternatives for disposition of excess weapon plutonium, including using plutonium in mixed oxide fuel for light water reactors (LWRs). Lawrence Livermore National Laboratory (LLNL) has been tasked to assist DOE in its efforts to develop a decision process and criteria for evaluating the technologies and reactor designs that have been proposed for the fission disposition alternative. This report outlines an approach for establishing such a decision process and selection criteria. The approach includes the capability to address multiple, sometimes conflicting, objectives, and to incorporate the impact of uncertainty. The approach has a firm theoretical foundation and similar approaches have been used successfully by private industry, DOE, and other government agencies to support and document complex, high impact technology choice decisions. Because of their similarity and relatively simple technology, this report focuses on three light water reactors studied in Phase 1 of the DOE Plutonium Disposition Study. The decision process can be extended to allow evaluation of other reactor technologies and disposition options such as direct disposal and retrievable storage.

Edmunds, T.; Buonpane, L.; Sicherman, A.; Sutcliffe, W.; Walter, C.; Holman, G.

1994-01-01T23:59:59.000Z

228

Brookhaven Medical Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Research Reactor BMRR The last of the Lab's reactors, the Brookhaven Medical Research Reactor (BMRR), was shut down in December 2000. The BMRR was a three megawatt...

229

NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

1958-09-01T23:59:59.000Z

230

Reactor materials study of EBR-II and BN350  

E-Print Network (OSTI)

The objective of this research is to go through the technical review of how the body of information relating to the in-reactor behavior of structural materials of Experimental Breeder Reactor-II (EBR-II) and BN350 are associated. Such an effort would lead to reviewing and combining the data from both sides as it concerns important issues for the Light Water Reactor (LWR) and fast reactor communities. The most important issue is the applicability of the BN350 and EBR-II data for the studies on prolonging the lifetime of LWRs. EBR-II and BN350 are sodium cooled fast reactors that had operated for more than twenty-five years. Studies to review and compile the existing reactor materials data for the purpose of this thesis were completed both in the U.S. and in Kazakhstan. The compilation, comparison and combination of the data was done by developing several databases using SQL software. The BN350 data on ultimate tensile strength and total elongation depending on swelling have been shown. The BN350 data is over a large swelling range (0-15 %) and reveals total consumption of ductility and strength as the amount of swelling reaches high values. The BN350 data is an important example supporting other studies that show a dominant correlation between swelling and mechanical property loss in the high swelling range (>10 %). Different forms of axial strain data from both reactors, which could be of use in reactor control and decommissioning studies, are presented, as well. The swelling formulations developed for Russian and American austenitic steels before reaching steady-state conditions are compared, and possible applications of the formulation for Russian steels to some compositionally similar American steels have been discussed. The effects of slight composition and metallurgical condition differences on swelling are stated to explain the possible differences between the data points of American steel and the predictions for the corresponding Russian steel. Some of the compiled data on ferritic/martensitic steels are presented showing their better mechanical property and swelling behaviors in the EBR-II and BN350 exposure conditions.

Yilmaz, Fatma

2002-01-01T23:59:59.000Z

231

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report  

SciTech Connect

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

Philip E. MacDonald

2005-01-01T23:59:59.000Z

232

POWER REACTOR  

DOE Patents (OSTI)

A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

Zinn, W.H.

1958-07-01T23:59:59.000Z

233

REACTOR CONTROL  

DOE Patents (OSTI)

A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

Fortescue, P.; Nicoll, D.

1962-04-24T23:59:59.000Z

234

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

Christy, R.F.

1958-07-15T23:59:59.000Z

235

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

236

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

Wigner, E.P.; Young, G.J.

1958-10-14T23:59:59.000Z

237

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

Young, G.

1963-01-01T23:59:59.000Z

238

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

Wigner, E.P.; Weinberg, A.W.; Young, G.J.

1958-04-15T23:59:59.000Z

239

Power Burst Facility (PBF) Reactor Reactor Decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Decommissioning Click here to view Click here to view Reactor Decommissioning Click on an image to enlarge A crane removes the reactor vessel from the Power Burst Facility...

240

Materials Sustainability: Digital Resource Center -- Educational ...  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials Sustainability ... Ecology, Sustainability: Economics, Lifecycle Analysis, Green House Gases, and...

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Materials Sustainability: Digital Resource Center - Titanium: The ...  

Science Conference Proceedings (OSTI)

Jul 9, 2008 ... Navigation: Select, Sandbox, Open Discussion Regarding Materials Sustainability, ==== Materials Sustainability ==== Recycling - General...

242

Materials Sustainability: Digital Resource Center -- Industrial Ecology  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials Sustainability ... Ecology, Sustainability: Economics, Lifecycle Analysis, Green House Gases, and...

243

Earth Democracy: Justice, Sustainability, and Peace  

E-Print Network (OSTI)

Democracy: Justice, Sustainability, and Peace By VandanaDemocracy: Justice, Sustainability, and Peace. Cambridge,

Anderson, Byron

2006-01-01T23:59:59.000Z

244

Review: Greenhouse Solutions with Sustainable Energy  

E-Print Network (OSTI)

Solutions with Sustainable Energy By Mark DiesendorfSolutions with Sustainable Energy. Sydney, NSW: University

Hamilton-Smith, Elery

2009-01-01T23:59:59.000Z

245

NIST Prototypes Framework for Evaluating Sustainability ...  

Science Conference Proceedings (OSTI)

NIST Prototypes Framework for Evaluating Sustainability Standards. ... Whatever the drivers, businesses are boosting their sustainability efforts. ...

2011-10-26T23:59:59.000Z

246

Science Serving Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Goal 8: Science Serving Sustainability Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its occupants. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Community involvement: Andy Erickson and Duncan McBranch of LANL join John Arrowsmith of Los Alamos County to discuss the photovoltaic array collaboration with community leaders. Powered by solar: This collaboratively built model home in Los Alamos is entirely powered by a photovoltaic array field, showcasing the potential for solar-powering communities. Community involvement: A ribbon cutting ceremony marks the opening of the photovoltaic powered model home in Los Alamos County, a joint venture of LANL and the county. Engaging the surrounding communities: LANL takes opportunities to engage the surrounding communities in order to develop relationships fostering sustainable actions. Here, delegates applaud the opening of SERF which will help reduce liquid waste at LANL.

247

The Sustainable Hydrogen Economy  

DOE Green Energy (OSTI)

Identifying and building a sustainable energy system is perhaps one of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions and energy security. The hydrogen economy then is the production of hydrogen, its distribution and utilization as an energy carrier. A key piece of this hydrogen economy is the fuel cell. A fuel cell converts the chemical energy in a fuel into low-voltage dc electricity and when using hydrogen as the fuel, the only emission is water vapor. While the basic understanding of fuel cell technology has been known since 1839, it has only been recently that fuel cells have shown their potential as an energy conversion device for both transportation and stationary applications. This talk will introduce the sustainable hydrogen economy and address some of the issues and barriers relating to its deployment as part of a sustainable energy system.

Turner, John (NREL)

2005-07-06T23:59:59.000Z

248

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)

Wigner, E.P.

1962-12-25T23:59:59.000Z

249

Neutronic reactor  

DOE Patents (OSTI)

A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

Wende, Charles W. J. (West Chester, PA)

1976-08-17T23:59:59.000Z

250

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described that includes spaced vertical fuel elements centrally disposed in a pressure vessel, a mass of graphite particles in the pressure vessel, means for fluidizing the graphite particles, and coolant tubes in the pressure vessel laterally spaced from the fuel elements. (AEC)

Post, R.G.

1963-05-01T23:59:59.000Z

251

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

Starr, C.

1963-01-01T23:59:59.000Z

252

NEUTRONIC REACTOR  

DOE Patents (OSTI)

BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

1959-10-27T23:59:59.000Z

253

NEUTRONIC REACTORS  

DOE Patents (OSTI)

The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

Anderson, H.L.

1958-10-01T23:59:59.000Z

254

COMMENTARY Making sustainability work  

E-Print Network (OSTI)

Todays economic theory usually neglects the role of nature and environment. To make sustainability work it is, however, essential to (re-)integrate nature into the standard concepts of economics, especially by incorporating natural factors into the production function. It must be acknowledged that economic growth is not (only) the result of technical change but is mainly caused by rising energy-inputs into the economy, and that this is necessarily followed by resource exhaustion and pollution. Therefore, nature must not only be taken into account as a central factor of production but also in the form of environmental quality which is the basis for human quality of life. A numeric example shows that a small, but steady decrease of yearly resource consumption is already apt to redirect the economy on a path of sustainable development. 1998 Elsevier Science B.V. All rights reserved. Keywords: Sustainable development; Economic theory of production; Economic growth; Technical change; Non-renewable resources

Hans Christoph Binswanger

1996-01-01T23:59:59.000Z

255

The road to sustainability  

SciTech Connect

Sustainability is the hottest topic in energy research today, but what does it actually mean? George Crabtree and John Sarrao describe what makes a technology sustainable, and outline the materials-science challenges standing between us and clean, long-lasting energy. Although most people agree that more-sustainable energy technologies are desirable, they often find it harder to agree on exactly how sustainable these technologies need to be, and even precisely what is meant by sustainability. To clarify the debate, we suggest three criteria for sustainability, each of which captures a different feature of the problem. While we do not have the lUxury of achieving full sustainability for all of our next-generation energy technologies, we can use these definitions to select our strategic sustainability targets and track our progress toward achieving them. As will become clear, the most sustainable energy technologies require the most challenging fundamental science breakthroughs. The first criterion for sustainability is 'lasts a long time'. This quality has been a feature of many energy sources we have used historically, including wood in ancient times and oil throughout most of the 20th century. The definition of 'long time' is, of course, relative: the world's demand for energy long ago outpaced the ability of wood to supply it, and the production of oil is likely to peak sometime within the next few decades. Substantial reductions in the rate of oil consumption through higher-efficiency processes can significantly impact on how long non-renewable resources last. In applying the 'long time' criterion, we need to distinguish between energy sources that are effectively limitless and those that are finite but, for the moment, adequate. The second criterion for sustainability is 'does no harm'. Burning fossil fuels releases pollutants such as sulphur and mercury that endanger human health, as well as greenhouse gases like carbon dioxide that threaten climate stability. Some alternatives to fossil fuels have their own degrees of potential harm, including the underground migration and leakage of sequestered carbon dioxide and the hazards of storing spent nuclear fuel. The third and most strict criterion for sustainability is 'leaves no change'. When the material outputs of energy generation and use are recycled to replace the inputs, the chemical cycle is said to be closed and the chemical state of the world is unchanged. The process of converting renewable energy sources like sunlight and wind to carriers like hydrogen or electricity comes closest to fulfilling this restrictive definition. Fossil energy systems, in contrast, usually operate as once-through processes, irreversibly converting hydrocarbons to carbon dioxide and water. Some such systems could, however, be retrofitted to collect and recycle the combustion products to make new hydrocarbon fuel. If this process used the Sun as its energy source, fossil fuels, too, could meet this criterion.

Sarrao, John L [Los Alamos National Laboratory; Crabtree, George [ANL

2009-01-01T23:59:59.000Z

256

The road to sustainability  

DOE Green Energy (OSTI)

Sustainability is the hottest topic in energy research today, but what does it actually mean? George Crabtree and John Sarrao describe what makes a technology sustainable, and outline the materials-science challenges standing between us and clean, long-lasting energy. Although most people agree that more-sustainable energy technologies are desirable, they often find it harder to agree on exactly how sustainable these technologies need to be, and even precisely what is meant by sustainability. To clarify the debate, we suggest three criteria for sustainability, each of which captures a different feature of the problem. While we do not have the lUxury of achieving full sustainability for all of our next-generation energy technologies, we can use these definitions to select our strategic sustainability targets and track our progress toward achieving them. As will become clear, the most sustainable energy technologies require the most challenging fundamental science breakthroughs. The first criterion for sustainability is 'lasts a long time'. This quality has been a feature of many energy sources we have used historically, including wood in ancient times and oil throughout most of the 20th century. The definition of 'long time' is, of course, relative: the world's demand for energy long ago outpaced the ability of wood to supply it, and the production of oil is likely to peak sometime within the next few decades. Substantial reductions in the rate of oil consumption through higher-efficiency processes can significantly impact on how long non-renewable resources last. In applying the 'long time' criterion, we need to distinguish between energy sources that are effectively limitless and those that are finite but, for the moment, adequate. The second criterion for sustainability is 'does no harm'. Burning fossil fuels releases pollutants such as sulphur and mercury that endanger human health, as well as greenhouse gases like carbon dioxide that threaten climate stability. Some alternatives to fossil fuels have their own degrees of potential harm, including the underground migration and leakage of sequestered carbon dioxide and the hazards of storing spent nuclear fuel. The third and most strict criterion for sustainability is 'leaves no change'. When the material outputs of energy generation and use are recycled to replace the inputs, the chemical cycle is said to be closed and the chemical state of the world is unchanged. The process of converting renewable energy sources like sunlight and wind to carriers like hydrogen or electricity comes closest to fulfilling this restrictive definition. Fossil energy systems, in contrast, usually operate as once-through processes, irreversibly converting hydrocarbons to carbon dioxide and water. Some such systems could, however, be retrofitted to collect and recycle the combustion products to make new hydrocarbon fuel. If this process used the Sun as its energy source, fossil fuels, too, could meet this criterion.

Sarrao, John L [Los Alamos National Laboratory; Crabtree, George [ANL

2009-01-01T23:59:59.000Z

257

Achieving Sustainability Cindy Carlsson  

E-Print Network (OSTI)

and Innovation 22nd Annual Transportation Research Conference May 24, 2011 #12;Sustainable practices respect · Consider the needs of future generations · Evaluate a wide range of risks · Protect and enhance the environment · Conserve energy and natural resources · Involve the public in transportation planning processes

Minnesota, University of

258

Environmental Sustainability & Green Energy  

E-Print Network (OSTI)

and ensuring the safety of such structures as nuclear power plants · Researchfor-to-market wastewater treatment technologies, in partnership with the City of London Key Facilities and CentresChemicalsandFuelsfromAlternativeResources · WindEEEDome: Developing sustainable cities by exploring ways to build and retrofit buildings to produce

Sinnamon, Gordon J.

259

Agriculture - Sustainable biofuels Redux  

SciTech Connect

Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

Robertson, G. Phillip [W.K. Kellogg Biological Station and Great Lakes Bioenergy Research; Dale, Virginia H [ORNL; Doering, Otto C. [Purdue University; Hamburg, Steven P [Brown University; Melillo, Jerry M [ORNL; Wander, Michele M [University of Illinois, Urbana-Champaign; Parton, William [Colorado State University, Fort Collins

2008-10-01T23:59:59.000Z

260

of Biofuels Sustainable Feedstocks  

E-Print Network (OSTI)

The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Bioenergy and Sustainable Development?  

E-Print Network (OSTI)

of raw materials). Rather than provide subsidies (other than for the poorest households), a range reserved 1543-5938/07/1121-0131$20.00 Key Words biodiesel, bioethanol, biofuels, biomass, clean energy greenhouse gas (GHG) emissions. For large- scale commercial biofuels to contribute to sustainable development

Bensel, Terrence G.

262

Sustainable Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner, consistent with its mission. The team provides a process to evaluate sustainable building practices for any new construction, major renovation, and existing capital asset buildings in

263

Energy Management and Sustainability Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Management and Sustainability Policy Management and Sustainability Policy USAA Real Estate Company has a reputation for excellence in customer service and taking a leadership role in the real estate industry. As part of our commitment to excellence, we will identify and implement improved financial and operation efficiencies, particularly in how we purchase and use energy, striving toward world-class status in energy management and sustainability. Commitment to Energy & Sustainability Management Energy Management and Sustainability will continually play a role in achieving our strategic objectives. Specifically, the USAA Real Estate Company Energy Management and Sustainability Strategy is to: Support the organization's strategic plan to maximize ownership value and provide customers and

264

REACTOR UNLOADING  

DOE Patents (OSTI)

This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

Leverett, M.C.

1958-02-18T23:59:59.000Z

265

NUCLEAR REACTOR  

DOE Patents (OSTI)

A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

Treshow, M.

1958-08-19T23:59:59.000Z

266

Neutronic reactor  

DOE Patents (OSTI)

A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

Lewis, Warren R. (Richland, WA)

1978-05-30T23:59:59.000Z

267

NUCLEAR REACTORS  

DOE Patents (OSTI)

An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

1961-12-01T23:59:59.000Z

268

REACTOR CONTROL  

DOE Patents (OSTI)

This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

Ruano, W.J.

1957-12-10T23:59:59.000Z

269

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

270

CANDU reactors, their regulation in Canada, and the identification of relevant NRC safety issues  

Science Conference Proceedings (OSTI)

Atomic Energy of Canada, Limited (AECL) and its subsidiary in the US, are considering submitting the CANDU 3 design for standard design certification under 10 CFR Part 52. CANDU reactors are pressurized heavy water power reactors. They have some substantially different safety responses and safety systems than the LWRs that the commercial power reactor licensing regulations of the US Nuclear Regulatory Commission (NRC) have been developed to deal with. In this report, the authors discuss the basic design characteristics of CANDU reactors, specifically of the CANDU 3 where possible, and some safety-related consequences of these characteristics. The authors also discuss the Canadian regulatory provisions, and the CANDU safety systems that have evolved to satisfy the Canadian regulatory requirements as of December 1992. Finally, the authors identify NRC regulations, mainly in 10 CFR Parts 50 and 100, with issues for CANDU 3 reactor designs. In all, eleven such regulatory issues are identified. They are: (1) the ATWS rule ({section}50.62); (2) station blackout ({section}50.63); (3) conformance with Standard Review Plan (SRP); (4) appropriateness of the source term ({section}50.34(f) and {section}100.11); (5) applicability of reactor coolant pressure boundary (RCPB) requirements ({section}50.55a, etc); (6) ECCS acceptance criteria ({section}50.46)(b); (7) combustible gas control ({section}50.44, etc); (8) power coefficient of reactivity (GDC 11); (9) seismic design (Part 100); (10) environmental impacts of the fuel cycle ({section}51.51); and (11) (standards {section}50.55a).

Charak, I.; Kier, P.H. [Argonne National Lab., IL (United States)

1995-04-01T23:59:59.000Z

271

Site Suitability and Hazard Assessment Guide for Small Modular Reactors  

SciTech Connect

Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

Wayne Moe

2013-10-01T23:59:59.000Z

272

Creating Sustainable Partnerships  

E-Print Network (OSTI)

was in operation, and to this day, some of HFIR's research capabilities are unique in the world. "HFIR and other isotopes requires neutrons with various energy levels. hFIR is one of two facilities in the world capabilities of the high Flux Isotope Reactor. Since its construction in the mid-1960s, researchers have used hFIR

273

Latinas Crafting Sustainability in East Los Angeles  

E-Print Network (OSTI)

Dead, indigenismo, arts sustainability, East Los Angeles,Guajardo Latinas Crafting Sustainability in East Los Angelesin their growth and sustainability will help document their

Guajardo, Ana

2010-01-01T23:59:59.000Z

274

Is sustainability science really a science?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively...

275

September 18, 2008, Visiting Speakers Program - Sustainability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waves of Change Sustainability Challenges and the Corporate Response September, 2008 Jeff Erikson, SustainAbility Inc Washington, DC * UK, Europe, US, India * Consulting, research,...

276

Office of Sustainability Support - Mission and Functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Support (HS-21) Reports to the Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis Mission The Office of Sustainability Support...

277

The Evolution of Sustainable Personal Vehicles  

E-Print Network (OSTI)

Enabling Platform for Sustainable Energy Pathways. Presentedin Road Vehicles. Sustainable Energy Research Group, Schooland W. A. Peters (2005). Sustainable Energy: Choosing Among

Jungers, Bryan D

2009-01-01T23:59:59.000Z

278

DOE Sustainability Assistance Network (SAN) Notes, Thursday,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 4 DOE Sustainability Assistance Network (SAN) Notes Thursday, November 15, 2012 1. Sustainability Performance Office Highlights Paul Estabrooks, SPO The Sustainability...

279

Implementation of Sustainable Manufacturing Standards  

Science Conference Proceedings (OSTI)

... Manufacturing Standards Kathi Futornick, LEED AP Global Sustainability Practice URS Corporation NIST Workshop October 13-15, 2009 ...

2009-10-20T23:59:59.000Z

280

NIST Workshop on Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Day1: 15:15 15:30. Kathi Futornick. URS Corporation. Standards Opportunity in Sustainable Product Development and Manufacturing. ...

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Transportation Infrastructure and Sustainable Development  

E-Print Network (OSTI)

Transportation Infrastructure AND Sustainable Developmentnext two decades, urban infrastructure will be under immenseboth expansions in infrastructure that supports automobile

Boarnet, Marlon G.

2008-01-01T23:59:59.000Z

282

Integrated Biosystems for Sustainable Development  

E-Print Network (OSTI)

Integrated biosystems for sustainable development Proceedings of the InFoRM 2000 National Workshop on Integrated

Kev Warburton; Usha Pillai-mcgarry; Deborah Ramage; No Ms; Dr. Kev Warburton

2002-01-01T23:59:59.000Z

283

Sustainable Electricity | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean...

284

Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage  

Science Conference Proceedings (OSTI)

The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

Bailey, W.J.

1989-03-01T23:59:59.000Z

285

Corrosion-Product Release in Light Water Reactors  

Science Conference Proceedings (OSTI)

Corrosion products released from construction materials containing cobalt are a major source of radiation buildup in LWRs. Measures of released products vary under different PWR and BWR coolant chemistry conditions, suggesting possible strategies for reducing such releases.

1989-10-03T23:59:59.000Z

286

Update Sustainable Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Transportation Sustainable Transportation Vol.4, No.3 * October 2013 ORNL Achieves Breakthrough in Energy-Saving Lubricants Research A team of ORNL and General Motors (GM) researchers has developed a new group of ionic liquids as lubricant additives that could help improve the energy efficiency of light-duty cars and trucks. The ionic liquid, when added to prototype low viscosity engine oil, boosted fuel economy by more than 2% compared to a commercially available synthetic 5W-30 oil, as demonstrated by an industrial standard fuel efficiency engine test. Results from these tests, performed by an independent firm, Intertek Automotive Research, with oversight by GM, show a promising path for ORNL to achieve DOE's goal of a 2% efficiency gain through lubricants. "There are more

287

Sustainability: Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability: Energy Efficiency Sustainability: Energy Efficiency (Green Consulting Unit) Overview Walks students through the process of building a model home while considering 11 parameters that influence energy use, such as building orientation, room configuration, building envelope, and energy systems (heating, cooling, lighting, etc.). Objectives The students will be able to: Use models to learn how to maximize the comfort-conditioning of a home. Observe, gather, and analyze data from the model simulations. Draw conclusions from the data. Time Week 1 Period 1 (M) Introduction Period 2 (W) Activities 1, 2 Period 3 (F) Activities 3, 4 Week 2 Period 4 (M) Activities 5, 6, 7 Period 5 (W) Activities 8, 9, 10, 11 Period 6 (F) Activities Presentations and conclusion

288

ORNL Sustainable Campus Initiative  

Science Conference Proceedings (OSTI)

The research conducted at Oak Ridge National Laboratory (ORNL) spans many disciplines and has the potential for far-reaching impact in many areas of everyday life. ORNL researchers and operations staff work on projects in areas as diverse as nuclear power generation, transportation, materials science, computing, and building technologies. As the U.S. Department of Energy s (DOE) largest science and energy research facility, ORNL seeks to establish partnerships with industry in the development of innovative new technologies. The primary focus of this current research deals with developing technologies which improve or maintain the quality of life for humans while reducing the overall impact on the environment. In its interactions with industry, ORNL serves as both a facility for sustainable research, as well as a representative of DOE to the private sector. For these reasons it is important that the everyday operations of the Laboratory reflect a dedication to the concepts of stewardship and sustainability.

Halford, Christopher K [ORNL

2012-01-01T23:59:59.000Z

289

Sustainable Biomass Supply Systems  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

290

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network (OSTI)

OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

291

Applying risk informed methodologies to improve the economics of sodium-cooled fast reactors  

E-Print Network (OSTI)

In order to support the increasing demand for clean sustainable electricity production and for nuclear waste management, the Sodium-Cooled Fast Reactor (SFR) is being developed. The main drawback has been its high capital ...

Nitta, Christopher C

2010-01-01T23:59:59.000Z

292

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network (OSTI)

Reactors for Enhanced Nuclear Energy Sustainability. In:for low-waste proliferation- resistant nuclear energy.In: Progress in Nuclear Energy 40.3-4 (2002), pp. 431439. [

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

293

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

Pennell, William E. (Greensburg, PA); Rowan, William J. (Monroeville, PA)

1977-01-01T23:59:59.000Z

294

Site Sustainability Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Legacy Management December 2013 LMS/S07225 This page intentionally left blank This page intentionally left blank U.S. Department of Energy Site Sustainability Plan December 2013 Doc. No. S07225 Page i Contents Abbreviations ................................................................................................................................. iii I. Executive Summary ...............................................................................................................1 II. Performance Review and Plan Narrative ...............................................................................9 1 GHG Reduction and Comprehensive GHG Inventory ...........................................................9

295

ELECTRONUCLEAR REACTOR  

DOE Patents (OSTI)

An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

1960-04-19T23:59:59.000Z

296

Photocatalytic reactor  

DOE Patents (OSTI)

A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

Bischoff, Brian L. (Knoxville, TN); Fain, Douglas E. (Oak Ridge, TN); Stockdale, John A. D. (Knoxville, TN)

1999-01-01T23:59:59.000Z

297

CONTROL MEANS FOR REACTOR  

DOE Patents (OSTI)

An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

Manley, J.H.

1961-06-27T23:59:59.000Z

298

Office of Environmental Protection, Sustainability Support &...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Protection, Sustainability Support & Corporate Safety Analysis Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis Organizational...

299

Sustainable Buildings and Infrastructure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Buildings and Infrastructure Sustainable Buildings and Infrastructure Aviation Management Green Leases Executive Secretariat Energy Reduction at HQ Real Estate...

300

The Sustainable Enterprise: Enabling the Digital Thread  

Science Conference Proceedings (OSTI)

Page 1. The Sustainable Enterprise: Enabling the Digital Thread ... Verify & Validate Digital Thread Supports Honeywell's Sustainable Enterprise ...

2013-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Metrology Needs in Sustainability and Materials Performance  

Science Conference Proceedings (OSTI)

Symposium, Sustainable Materials Processing and Production. Presentation Title , Metrology Needs in Sustainability and Materials Performance. Author(s)...

302

NIST Sustainable Manufacturing Indicators Repository (SMIR)  

Science Conference Proceedings (OSTI)

... manufacturing strongly influence a product's life cycle impacts on the environment and the company's sustainability. Sustainable manufacturing ...

303

Sustainable Metrics for Unit Assembly Processes  

Science Conference Proceedings (OSTI)

... Sustainability, ASME sustainable processes and products, and/or ISO Technical Committee (TC) 207 on Environmental Management (http://www ...

2011-11-09T23:59:59.000Z

304

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

305

Principles of Reactor Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Physics M A Smith Argonne National Laboratory Nuclear Engineering Division Phone: 630-252-9747, Email: masmith@anl.gov Abstract: Nuclear reactor physics deals with...

306

Code qualification of structural materials for AFCI advanced recycling reactors.  

Science Conference Proceedings (OSTI)

This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

2012-05-31T23:59:59.000Z

307

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

Daniels, F.

1962-12-18T23:59:59.000Z

308

Sustainable hydrogen production  

SciTech Connect

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

309

Reactor and method of operation  

DOE Patents (OSTI)

A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

Wheeler, John A. (Princeton, NJ)

1976-08-10T23:59:59.000Z

310

Sustainable Supply Chains: Moving Chinese Garment Manufacturers Towards Sustainability.  

E-Print Network (OSTI)

??The fashion industry is beginning to understand the need to move strategically towards sustainability. Yet there appears at present little coordination between global fashion brands (more)

Anderson, Zach; Bannister, Mark

2010-01-01T23:59:59.000Z

311

AllianceforSustainable Energy, LLC AllianceforSustainable ...  

AllianceforSustainable Energy,LLC TheNational Renewable Energy Laboratory, anational laboratory oftheU.S.Department EnergyOfficeofEnergyEfficiency andRenewable Energy ...

312

SUSTAIN-28.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Behavior Issue 28 Spring/Summer 2013 The Kentucky Institute for the Environment and Sustainable Development W a l k & B ik e C o n s e r v e w a t e r R e u s e & R e c y c l e P l a n t n a t i v e s p e c i e s I n s t a l l C FC l i g h t b u l b s The University of Louisville is an equal opportunity institution and does not discriminate against persons on the basis of age, religion, sex, disability, color, national origin or veteran status. This publication was prepared by the University of Louisville and printed with state funds KRS 57.375. Editor Allan E. Dittmer Design/Layout Nick Dawson University of Louisville Design & Printing Services The Kentucky Institute for the Environment and Sustainable Development (KIESD) was created in July 1992 within the Office of the Vice President for Research,

313

Nondestructive examination (NDE) reliability for inservice inspection of light water reactors  

Science Conference Proceedings (OSTI)

The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section 11 of the ASME Code. This is a progress report covering the programmatic work from October 1989 through September 1990.

Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. (Pacific Northwest Lab., Richland, WA (United States))

1992-05-01T23:59:59.000Z

314

Nondestructive examination (NDE) reliability for inservice inspection of light waters reactors  

Science Conference Proceedings (OSTI)

Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from April 1988 through September 1988. 33 refs., 70 figs., 12 tabs.

Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T. (Pacific Northwest Lab., Richland, WA (USA))

1989-11-01T23:59:59.000Z

315

Federal Energy Management Program: Sustainable Federal Fleets  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Sustainable Federal Fleets to someone by E-mail Share Federal Energy Management Program: Sustainable Federal Fleets on Facebook Tweet about Federal Energy Management Program: Sustainable Federal Fleets on Twitter Bookmark Federal Energy Management Program: Sustainable Federal Fleets on Google Bookmark Federal Energy Management Program: Sustainable Federal Fleets on Delicious Rank Federal Energy Management Program: Sustainable Federal Fleets on Digg Find More places to share Federal Energy Management Program: Sustainable Federal Fleets on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Industrial Facilities Sustainable Federal Fleets Laboratories for the 21st Century Institutional Change

316

Sustainable Buildings and Campuses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Campuses and Campuses Sustainable Buildings and Campuses October 4, 2013 - 4:18pm Addthis Sustainable Buildings and Campuses The Federal Energy Management Program (FEMP) provides strategies, best practices, and resources to help Federal agencies implement sustainable design practices within Federal buildings and facilities. Learn about: Sustainable building design basics Federal requirements Sustainability for existing buildings Sustainable design for new construction and major renovations Life cycle cost analysis for sustainability Energy security planning Case studies Interagency Sustainability Working Group. Also see Sustainable Building Contacts. Addthis Related Articles Energy Department Training Breaks New Ground Sustainable Building Contacts Commissioning Training Available

317

Definition: Sustainability | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Sustainability Jump to: navigation, search Dictionary.png Sustainability An often broadly used term that refers to the study of future impacts of decisions made currently, and how we can best mitigate or eliminate negative impacts of activities today. Typically, sustainability is used to define choices made in energy and natural resource use. View on Wikipedia Wikipedia Definition Sustainability is the capacity to endure. In ecology the word describes how biological systems remain diverse and productive over time. Long-lived and healthy wetlands and forests are examples of sustainable biological systems. For humans, sustainability is the potential for long-term maintenance of well being, which has ecological, economic,

318

Reactor safety method  

DOE Patents (OSTI)

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

319

NEUTRONIC REACTOR MANIPULATING DEVICE  

DOE Patents (OSTI)

A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

Ohlinger, L.A.

1962-08-01T23:59:59.000Z

320

NREL: Energy Analysis - Sustainability Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Analysis Sustainability Analysis The laboratory's Sustainability Analysis looks at the environmental, life-cycle, climate, and other impacts of renewable energy technologies. Our energy choices have global implications that affect greenhouse gas emissions, water resource distribution, mineral consumption, and equipment manufacturing and transportation. The school of thought is that renewable energy technologies are more sustainable than many current sources of energy. However, we need to verify that this is true before we miss some important opportunities. NREL's capabilities in this analysis area include: resource-use optimization techno-economic feasibility and cost analysis life cycle assessment environmental externalities analysis cobenefits analysis manufacturing cost analysis

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sustainable Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

322

Energy Management and Sustainability Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Management and Sustainability Policy USAA Real Estate Company has a reputation for excellence in customer service and taking a leadership role in the real estate industry. As part...

323

NREL: Sustainable NREL - Environmental Stewardship  

NLE Websites -- All DOE Office Websites (Extended Search)

excellent environmental stewardship of its campuses into a highly replicable sustainability strategy, minimizing the environmental impacts of the lab's activities. Through...

324

ICTASDiscoveryAnalyticsCenter Sustainable  

E-Print Network (OSTI)

IDAC ICTASDiscoveryAnalyticsCenter Nanoscale Science Nano-Bio Interface Sustainable Energy on the basis of race, gender, disability, age, veteran status, national origin, religion, sexual orientation

Beex, A. A. "Louis"

325

Sustainable Building Rating Systems Summary  

SciTech Connect

The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

Fowler, Kimberly M.; Rauch, Emily M.

2006-07-01T23:59:59.000Z

326

Sustainable Federal Fleets: Fleet Reporting  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Programs & Offices | Consumer Information U.S. Department of Energy Energy Efficiency and Renewable Energy Sustainable Federal Fleets Welcome, Guest Login | Register...

327

GARS | Sustainable Energy Technologies Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy storage The Sustainable Energy Technologies Department finds alternatives to fossil fuels and improves energy efficiency to meet our exponentially growing energy needs...

328

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors configurations will contribute to an improved design, safety, and operation of nuclear reactors. In relation

Lindken, Ralph

329

An Engineering Test Reactor  

SciTech Connect

A relatively inexpensive reactor for the specific purpose of testing a sub-critical portion of another reactor under conditions that would exist during actual operation is discussed. It is concluded that an engineering tool for reactor development work that bridges the present gap between exponential and criticality experiments and the actual full scale operating reactor is feasible. An example of such a test reactor which would not entail development effort to ut into operation is depicted.

Fahrner, T.; Stoker, R.L.; Thomson, A.S.

1951-03-16T23:59:59.000Z

330

Hopi Sustainable Energy Plan  

SciTech Connect

The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

Norman Honie, Jr.; Margie Schaff; Mark Hannifan

2004-08-01T23:59:59.000Z

331

Environmentally assisted cracking in light water reactors.  

DOE Green Energy (OSTI)

This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the current choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature indicate that IASCC in 289 C water is dominated by a crack-tip grain-boundary process that involves S. An initial IASCC model has been proposed. A crack growth test was completed on mill annealed Alloy 600 in high-purity water at 289 C and 320 C under various environmental and loading conditions. The results from this test are compared with data obtained earlier on several other heats of Alloy 600.

Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.

2007-11-06T23:59:59.000Z

332

Sustainable and efficient biohydrogen production via electrohydrogenesis  

Science Conference Proceedings (OSTI)

Hydrogen gas has tremendous potential as an environmentally acceptable energy carrier for vehicles, but most hydrogen is generated from nonrenewable fossil fuels such as natural gas. Here, the authors show that efficient and sustainable hydrogen production is possible from any type of biodegradable organic matter by electrohydrogenesis. In this process, protons and electrons released by exoelectrogenic bateria in specially designed reactors (based on modifying microbial fuel cells) are catalyzed to form hydrogen gas through the addition of a small voltage to the circuit. By improving the materials and reactor architecture, hydrogen gas was produced at yields of 2.01-3.95 mol/mol (50-99% of the theoretical maximum) at applied voltages of 0.2 to 0.8 V using acetic acid, a typical dead-end product of glucose or cellulose fermentation. At an applied voltage of 0.6 V, the overall energy efficiency of the process was 288% based solely on electricity applied, and 82% when the heat of combusion of acetic acid was included in the energy balance, at a gas production rate of 1.1 m{sup 3} of H{sub 2} per cubic meter of reactor per day. Direct high-yield hydrogen gas production was further demonstrated by using glucose, several volatile acids (acetic, butyric, lactic, propionic, and valeric), and cellulose at maximum stoichiometric yields of 54-91% and overall energy efficiencies of 64-82%. This electrohydrogenic process thus provides a highly efficient route for producting hydrogen gas from renewable and carbon-neutral biomass resources.

Cheng, S.; Logan, B.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering

2007-11-20T23:59:59.000Z

333

Spheromak reactor with poloidal flux-amplifying transformer  

DOE Patents (OSTI)

It is an object of the present invention to provide for improved generation and sustainment of an energetic plasma in a spheromak fusion reactor. A large poloidal magnetic flux is inductively induced in a spheromak-shaped plasma utilizing a reduced magnetic field-generating current in a current-carrying flux core.

Furth, H.P.; Janos, A.C.; Uyama, T.; Yamada, M.

1986-05-21T23:59:59.000Z

334

Neutronics for critical fission reactors and subcritical fission in hybrids  

SciTech Connect

The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

Salvatores, Massimo [CEA-Cadarache, DEN-Dir, Bat. 101, St-Paul-Lez-Durance 13108 (France)

2012-06-19T23:59:59.000Z

335

A sustainable urban center refurbishment  

Science Conference Proceedings (OSTI)

During the last century a vast new building construction activity was verified. The old urban centers were abandoned and new housing areas grew up without comply with sustainable principles. The great architectural and urban value of these centers led ... Keywords: indicators, refurbishment, sustainability, urban center

Ana Karina Lopes; Fernanda Rodrigues; Victor M. Ferreira; Romeu Vicente

2011-02-01T23:59:59.000Z

336

Machine learning for computational sustainability  

Science Conference Proceedings (OSTI)

To avoid ecological collapse, we must manage Earth's ecosystems sustainably. Viewed as a control problem, the two central challenges of ecosystem management are to acquire a model of the system that is sufficient to guide good decision making and then ... Keywords: hidden Markov models,computational sustainability,species distribution models,dynamical ecosystem models

Tom Dietterich; Ethan Dereszynski; Rebecca Hutchinson; Dan Sheldon

2012-06-01T23:59:59.000Z

337

Intelligent manufacturing and environmental sustainability  

Science Conference Proceedings (OSTI)

The definition of sustainability which is generally adopted is: ''meeting the needs of the present generation without compromising the ability of future generations to meet their own needs'' (World Commission on the Environment and Development, 1987. ... Keywords: Added value, Corporate responsibility, Energy, Sustainability

William F. Gaughran; Stephen Burke; Patrick Phelan

2007-12-01T23:59:59.000Z

338

Sustainable Building Design Training | Open Energy Information  

Open Energy Info (EERE)

Sustainable Building Design Training Sustainable Building Design Training Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Building Design Training Agency/Company /Organization: United States Department of Energy Focus Area: Buildings Resource Type: Training materials Website: www1.eere.energy.gov/femp/program/sustainable_training.html References: Sustainable Building Design Training[1] Logo: Sustainable Building Design Training This training, sponsored by FEMP and other organizations, provides Federal agencies the essential information and skills needed to plan, implement, and manage sustainable buildings and sites. Overview "Sustainable Design Training Opportunities to learn more about sustainable design are available throughout the year. This training, sponsored by FEMP

339

Y-12 Site Sustainability Plan  

Science Conference Proceedings (OSTI)

The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the impacts to resources, including energy/fuel, water, waste, pesticides, and pollution generation; (8) Incorporate sustainable design principles into the design and construction of facility upgrades, new facilities, and infrastructure; and (9) Comply with federal and state regulations, executive orders, and DOE requirements. Y-12 is working to communicate its sustainment vision through procedural, engineering, operational, and management practices. The site will make informed decisions based on the application of the five Guiding Principles for HPSBs to the maximum extent possible.

Sherry, T. D.; Kohlhorst, D. P.; Little, S. K.

2011-12-01T23:59:59.000Z

340

Memorandum on Chemical Reactors and Reactor Hazards  

SciTech Connect

Two important problems in the investigation of reactor hazards are the chemical reactivity of various materials employed in reactor construction and the chracteristics of heat transfer under transient conditions, specifically heat transfer when driven by an exponentially increasing heat source (exp t/T). Although these problems are independent of each other, when studied in relation to reactor hazards they may occur in a closely coupled sequence. For example the onset of a dangerous chemical reactor may be due to structural failure of various reactor components under an exponentially rising heat source originating with a runaway nuclear reactor. For this reason, these two problems should eventually be studied together after an exploratory experimental survey has been made in which they are considered separately.

Mills, M.M.; Pearlman, H.; Ruebsamen, W.; Steele, G., Chrisney, J.

1951-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Y-12 Site Sustainability Plan  

SciTech Connect

The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

Spencer, Charles G

2012-12-01T23:59:59.000Z

342

Sustainability Priorities in the Electric Power Industry  

Science Conference Proceedings (OSTI)

Improving sustainability performance has become an important indicator of corporate success, stewardship, and responsibility. Many companies publish annual sustainability and corporate responsibility reports to communicate their policies, goals, and ongoing performance on key sustainability issues. Notably, the sustainability priorities communicated through these reports vary considerably across the electric power industry. This study summarizes how the industry portrays its sustainability priorities thr...

2011-10-31T23:59:59.000Z

343

Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWR Nuclear Fuel Cladding System Development Trade-off LWR Nuclear Fuel Cladding System Development Trade-off Study Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study The LWR Sustainability (LWRS) Program activities must support the timeline dictated by utility life extension decisions to demonstrate a lead test rod in a commercial reactor within 10 years. In order to maintain the demanding development schedule that must accompany this aggressive timeline, the LWRS Program focuses on advanced fuel cladding systems that retain standard UO2 fuel pellets for deployment in currently operating LWR power plants. The LWRS work scope focuses on fuel system components outside of the fuel pellet, allowing for alteration of the existing zirconium-based clad system through coatings, addition of ceramic sleeves, or complete replacement

344

COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION  

SciTech Connect

Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energys (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

2012-07-01T23:59:59.000Z

345

Entropy and Energy: Toward a Definition of Physical Sustainability  

E-Print Network (OSTI)

Bioeconomics and Sustainability. Edward Elgar, Cheltemham,Serious about Sustainability. , Environmental Science &Toward a Definition of Physical Sustainability Slawomir W.

Hermanowicz, Slawomir W

2005-01-01T23:59:59.000Z

346

Basic and Applied Science Research Reactors - Reactors designed...  

NLE Websites -- All DOE Office Websites (Extended Search)

BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th...

347

Sustainability - is it for the CIO?  

E-Print Network (OSTI)

A Tool for Corporate Sustainability. Journal of BusinessM. L. (Mar 1997). Sustainability and Technical Progress. The2009 ISSN 1076-7975 Sustainability - is it for the CIO?

Mangal, Vandana Ann

2010-01-01T23:59:59.000Z

348

Contemporary Strategies for Sustainable Design  

E-Print Network (OSTI)

This exploratory research examined the degree of adoption and impact of the concepts of Building Information Model (BIM), Integrated Project Delivery (IPD), Integrated Design Process (IDP) and Building Energy Simulation (BES) on the design processes of advanced architectural firms when executing sustainable design. Six offices identified by the press for a strong commitment to sustainable design and influence in the design of high performance buildings were selected as cases. In semi-standardized interviews, these firms presented their perceptions of the influence of BIM, BES, and IPD/IDP. The results show that a generalization of sustainable design processes is possible. A design process for sustainability (DEPROSU) model was created by collecting best practices from data gathered from the interviews and the critical literature review. Secondary contributions show that BIM, IDP/IPD and BES have a synergistic effect in sustainable design methods, and that the human resource profile from these firms has evolved towards multi-skilled professionals knowledgeable in BES, BIM, parametric design, sustainability and construction processes. This research provides evidence of commonalities found in the design processes of the selected firms. These commonalities, which have been represented in the DEPROSU model, can potentially be validated as protocols or standards for sustainable design, providing architectural design practices with concrete patterns for improvement and or validation of their design methods.

Farias, Francisco

2013-05-01T23:59:59.000Z

349

Efficient and Sustainable EnergyEfficient and Sustainable Energy NIU Energy Initiative  

E-Print Network (OSTI)

Efficient and Sustainable EnergyEfficient and Sustainable Energy NIU Energy Initiative: Efficient and Sustainable EnergyEfficient and Sustainable Energy EnergyEnergy//EconomyEconomy//Ecology Challenges and OpportunitiesEcology Challenges and Opportunities #12;Efficient and Sustainable EnergyEfficient and Sustainable

Kostic, Milivoje M.

350

Site Sustainability Plan (SSP) 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Site Sustainability Plan (SSP) 2010 Site Sustainability Plan (SSP) 2010 2010 More Documents & Publications Site Sustainability Plan (SSP) 2012 Site Sustainability Plan (SSP) 2013...

351

Site Sustainability Plan (SSP) 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Site Sustainability Plan (SSP) 2012 Site Sustainability Plan (SSP) 2012 2012 More Documents & Publications Site Sustainability Plan (SSP) 2013 Site Sustainability Plan (SSP) 2010...

352

Site Sustainability Plan (SSP) 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Site Sustainability Plan (SSP) 2013 Site Sustainability Plan (SSP) 2013 2013 Site Sustainability Plan More Documents & Publications Site Sustainability Plan (SSP) 2012 Site...

353

Advanced High Temperature Reactor Systems and Economic Analysis  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with advanced supercritical-water power cycles. The current design activities build upon a series of small-scale efforts over the past decade to evaluate and describe the features and technology variants of FHRs. Key prior concept evaluation reports include the SmAHTR preconceptual design report,1 the PB-AHTR preconceptual design, and the series of early phase AHTR evaluations performed from 2004 to 2006. This report provides a power plant-focused description of the current state of the AHTR. The report includes descriptions and sizes of the major heat transport and power generation components. Component configuration and sizing are based upon early phase AHTR plant thermal hydraulic models. The report also provides a top-down AHTR comparative economic analysis. A commercially available advanced supercritical water-based power cycle was selected as the baseline AHTR power generation cycle both due to its superior performance and to enable more realistic economic analysis. The AHTR system design, however, has several remaining gaps, and the plant cost estimates consequently have substantial remaining uncertainty. For example, the enriched lithium required for the primary coolant cannot currently be produced on the required scale at reasonable cost, and the necessary core structural ceramics do not currently exist in a nuclear power qualified form. The report begins with an overview of the current, early phase, design of the AHTR plant. Only a limited amount of information is included about the core and vessel as the core design and refueling options are the subject of a companion report. The general layout of an AHTR system and site showing the relationship of the major facilities is then provided. Next is a comparative evaluation of the AHTR anticipated performance and costs. Finally, the major system design efforts necessary to bring the AHTR design to a pre-conceptual level are then presented.

Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

2011-09-01T23:59:59.000Z

354

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

1993-01-01T23:59:59.000Z

355

Guidebook to nuclear reactors  

SciTech Connect

A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

Nero, A.V. Jr.

1976-05-01T23:59:59.000Z

356

Reactor Sharing Program  

Science Conference Proceedings (OSTI)

Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

Vernetson, W.G.

1993-01-01T23:59:59.000Z

357

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

358

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

359

Sustainability Awards Recognize Energy Department Employees Who...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainability Awards Recognize Energy Department Employees Who Go Above and Beyond Sustainability Awards Recognize Energy Department Employees Who Go Above and Beyond November 10,...

360

Exploring Computational Sustainability via Differential Variational Inequalities.  

E-Print Network (OSTI)

??Sustainability is a widely accepted paradigm for better future in governmental as well as non-governmental organizations. Computational sustainability is a rapidly growing area of study (more)

Chung, Sung Hoon

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Office of Environmental Protection, Sustainability Support &...  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Logo Welcome to the Office of Environmental Protection, Sustainability Support & Corporate Safety Analysis Sustainability Support Provides the understanding and implementation...

362

The Campus Sustainability Movement: A Strategic Perspective.  

E-Print Network (OSTI)

??Society is facing a crisis of un-sustainability. The sector of higher education is well poised to support transition to a sustainable society. This thesis assesses (more)

Henson, Michael; Missimer, Merlina

2007-01-01T23:59:59.000Z

363

Materials Sustainability: Digital Resource Center -- Recycling ... - TMS  

Science Conference Proceedings (OSTI)

Sustainability and Nickel Wepage that describes the sustainability challenges for nickel and nickel-containing materials. 0, 557, Diana Grady, 7/2/2008 9:23 AM

364

Sustainable Agriculture Network | Open Energy Information  

Open Energy Info (EERE)

"Sustainable Agriculture Network" Retrieved from "http:en.openei.orgwindex.php?titleSustainableAgricultureNetwork&oldid312235" Categories: Clean Energy Organizations...

365

Alliance For Sustainable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance For Sustainable Energy Alliance For Sustainable Energy Response from National Renewable Energy Laboratory on the Technology Transfer Questions in Federal Register dated...

366

Sustainable World Capital | Open Energy Information  

Open Energy Info (EERE)

"Sustainable World Capital" Retrieved from "http:en.openei.orgwindex.php?titleSustainableWorldCapital&oldid351925" Categories: Clean Energy Organizations Companies...

367

Federal Energy Management Program: Sustainable Buildings and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Buildings and Campuses to someone by E-mail Share Federal Energy Management Program: Sustainable Buildings and Campuses on Facebook Tweet about Federal Energy...

368

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

369

Towards a sustainable energy balance: progressive efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards a sustainable energy balance: progressive efficiency and the return of energy conservation Title Towards a sustainable energy balance: progressive efficiency and the return...

370

Federal Energy Management Program: Sustainable Building Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Contacts to someone by E-mail Share Federal Energy Management Program: Sustainable Building Contacts on Facebook Tweet about Federal Energy Management Program:...

371

Heritage Sustainable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Heritage Sustainable Energy LLC Jump to: navigation, search Name Heritage Sustainable Energy LLC Place Traverse City, Michigan Sector Wind energy Product Start up wind developer in...

372

Sustainable Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Sustainable Systems LLC Jump to: navigation, search Name Sustainable Systems LLC Place Missoula, Montana Zip 59812 Sector Renewable Energy Product Renewable energy and biobased...

373

Sustainable Power Partners | Open Energy Information  

Open Energy Info (EERE)

"Sustainable Power Partners" Retrieved from "http:en.openei.orgwindex.php?titleSustainablePowerPartners&oldid351920" Categories: Clean Energy Organizations Companies...

374

MAMA Sustainable Incubation AG | Open Energy Information  

Open Energy Info (EERE)

MAMA Sustainable Incubation AG Jump to: navigation, search Name MAMA Sustainable Incubation AG Place Berlin, Germany Sector Renewable Energy Product Berlin-based technology...

375

Sustainability White Paper | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White Paper Sustainability White Paper Sustainability is an initiative pursued by DOE to ensure the health of the nation, implement DOE's mission in support of that objective, and...

376

Sustainable development of hydropower in third countries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

&8220;Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development,...

377

Fact Sheet: Sustainable Development of Hydropower Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Development of Hydropower Initiative Fact Sheet: Sustainable Development of Hydropower Initiative A fact sheet detailling the mission behind the Clean Energy...

378

Sustainability White Paper | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainability White Paper Sustainability is an initiative pursued by DOE to ensure the health of the nation, implement DOE's mission in support of that objective, and enable...

379

BPA Headquarters Now Gold Certified for Sustainability  

Energy.gov (U.S. Department of Energy (DOE))

BPA recently became the first federal agency in Portland, Oregon, to achieve the city's Sustainability at Work Gold Certification for sustainability efforts at its headquarters building.

380

NSF Announces Sustainable Materials Funding Opportunity  

Science Conference Proceedings (OSTI)

Jul 9, 2012 ... Sustainable Materials is DMR's effort in Sustainable Chemistry, Engineering, and Materials (SusChEM), a cross-directorate initiative aimed at...

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dialogue 3: Strategies for Sustainable Institute Operations  

Science Conference Proceedings (OSTI)

... Dialogue 3: Strategies for Sustainable Institute Operations ... 3. What measures could assess progress of an Institute towards being self-sustainable? ...

2012-11-13T23:59:59.000Z

382

Introduction to Green & Sustainable Remediation: Three Approaches  

NLE Websites -- All DOE Office Websites (Extended Search)

TO GREEN & SUSTAINABLE REMEDIATION: THREE APPROACHES Dr. Jerry DiCerbo, Office of Sustainability Support (HS-21) June 2013 What is GSR? * Definitions differ among organizations...

383

Sustainability Reinvestment: Recycling Revenue and Energy Savings  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Support & Corporate Safety Analysis Sustainability Support Information Brief HS-21-IB-2012-29 (November 2012) 1 What is the purpose of this information...

384

DOE O 436.1, Departmental Sustainability  

Directives, Delegations, and Requirements

The order defines requirements and responsibilities for managing sustainability DOE to ensure that the Department carries out its missions in a sustainable ...

2011-05-02T23:59:59.000Z

385

National System Templates: Building Sustainable National Inventory...  

Open Energy Info (EERE)

National System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary Name: National System Templates: Building Sustainable...

386

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

387

High solids fermentation reactor  

DOE Patents (OSTI)

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

388

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

389

FAST NEUTRON REACTOR  

DOE Patents (OSTI)

A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

Soodak, H.; Wigner, E.P.

1961-07-25T23:59:59.000Z

390

NUCLEAR REACTOR CONTROL SYSTEM  

DOE Patents (OSTI)

A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

1959-11-01T23:59:59.000Z

391

Sustainability | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Sustainability Subscribe to RSS - Sustainability Sustainability is a set of practices in business, government and at home aimed at minimizing humans' impact on the environment and cutting greenhouse gas emissions by reducing waste, recycling, composting, conserving natural parks and numerous other efforts. Another Gold for PPPL: Laboratory Wins 2nd Gold GreenBuy Award PPPL has received a gold GreenBuy award from the U.S. Department of Energy for its green purchasing program in 2012 - winning the award for the second year. The Laboratory was only one of four laboratories to receive the highest honors for its green buying program and one of two, with the DOE's National Renewable Energy Laboratory in Golden, Colo., to receive the award for the second year.

392

Princeton Plasma Physics Lab - Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

sustainability Sustainability is a set sustainability Sustainability is a set of practices in business, government and at home aimed at minimizing humans' impact on the environment and cutting greenhouse gas emissions by reducing waste, recycling, composting, conserving natural parks and numerous other efforts. en Another Gold for PPPL: Laboratory Wins 2nd Gold GreenBuy Award http://www.pppl.gov/news/2013/09/another-gold-pppl-laboratory-wins-2nd-gold-greenbuy-award

PPPL has received a gold GreenBuy award from the U.S. Department of Energy for its green purchasing program in 2012 - winning the award for the second year.The Laboratory was only one of four laboratories

393

Vermont Sustainable Jobs Fund (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Vermont Sustainable Job Fund offers grants, loans, and technical assistance. VSJF's grant-making depends on the funds it raised and its strategic market development focus. Grant proposals are...

394

Self-sustained Inertial Oscillations  

Science Conference Proceedings (OSTI)

The authors describe a self-sustaining baroclinic inertial oscillation whose energy source rests in a uniform horizontal temperature gradient. This energy is released through the agency of a stratification-dependent mixing law that is meant to ...

Joseph Pedlosky; Henry Stommel

1993-08-01T23:59:59.000Z

395

Economic Sustainability and Ecological Compatibility  

E-Print Network (OSTI)

BY JESSICA CLEMENT Economic Sustainability Preserve our current industrial capacity Talk Xcel Corporation 9 Edwards Rich Colorado State Forest Service 10 Edwards Sally Xcel Energy 11 Ewy Don Focused

396

Deaeration of Makeup Water for LWRs  

Science Conference Proceedings (OSTI)

Oxygen control is a strong component of efforts to inhibit corrosion in PWR secondary coolant. Retrofitting existing plants with the two-stage vacuum deaerator and the condensate storage-tank cover pursued in this study is one way for utilities operating PWRs to meet this need.

1986-06-25T23:59:59.000Z

397

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

398

Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.

Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

2009-03-01T23:59:59.000Z

399

Nuclear reactor overflow line  

DOE Patents (OSTI)

The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

Severson, Wayne J. (Pittsburgh, PA)

1976-01-01T23:59:59.000Z

400

Reactor vessel support system  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Volume 14, Semiannual report, April 1991--September 1991  

Science Conference Proceedings (OSTI)

The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWR`s); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from April 1991 through September 1991.

Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Good, M.S.; Greenwood, M.S.; Heasler, P.G.; Hockey, R.L.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1992-07-01T23:59:59.000Z

402

Nondestructive examination (NDE) reliability for inservice inspection of light water reactors. Annual report, October 1989--September 1990: Volume 12  

Science Conference Proceedings (OSTI)

The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section 11 of the ASME Code. This is a progress report covering the programmatic work from October 1989 through September 1990.

Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1992-05-01T23:59:59.000Z

403

Spinning fluids reactor  

SciTech Connect

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

404

Fission reactors and materials  

SciTech Connect

The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

Frost, B.R.T.

1981-12-01T23:59:59.000Z

405

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Cao, Jun

2011-01-01T23:59:59.000Z

406

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

407

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2011-01-12T23:59:59.000Z

408

Sustainability protects resources for future generations  

SciTech Connect

This publication by the National Renewable Energy Laboratory addresses the steps necessary to provide livable urban centers for future generations through sustainable development, or sustainability. To illustrate this concept, nonsustainable cities and sustainable cities are compared. Sustainable city projects for several major US cites are reviewed.

NONE

1995-04-01T23:59:59.000Z

409

Office of Sustainability Appalachian State University  

E-Print Network (OSTI)

Neutrality A 100kw wind turbine stands atop campus' highest point #12;sustain Appalachian Climate Action

Rose, Annkatrin

410

FY 2012 Highlighted Sustainable Targets and Initiatives  

Energy.gov (U.S. Department of Energy (DOE))

Joint Environmental Management System (EMS) GoalsFY 2012 Highlighted Sustainable Targets and Initiatives

411

Nanotechnology? for Sustainable Water and Energy  

Science Conference Proceedings (OSTI)

Nanotechnology for Sustainable Water and Energy. Summary: Objective. We synthesize and characterize catalytic nanoparticles ...

2013-02-06T23:59:59.000Z

412

Thermodynamic & Kinetic Data for Sustainable Energy  

Science Conference Proceedings (OSTI)

Thermodynamic & Kinetic Data for Sustainable Energy. Summary: Industry needs thermodynamic and kinetic data for the ...

2012-10-05T23:59:59.000Z

413

Assessment of Corporate Sustainability via Fuzzy Logic  

Science Conference Proceedings (OSTI)

Corporations interact with society and the physical and biological environment in ways that affect both sides. In this capacity, corporations play an important role in the sustainability of a region or country. Symmetrically, a corporation's sustainability ... Keywords: Corporate sustainability, Corporation, Decision making, Sensitivity analysis, Sustainability

Yannis A. Phillis; Benjamin J. Davis

2009-06-01T23:59:59.000Z

414

About eseia eseia the European Sustainable Ener-  

E-Print Network (OSTI)

are a surprising sleeper · Measure `Vampire' energy drains #12;23 SustainableIT 13. AUDIT, ACT & MEASURE AGAINSaving Energy in the Office with IT Equipment Saving Energy in your Office with IT Equipment Joyce Dickerson, Director, Sustainable IT Department of Sustainability and Energy Management #12;2 Sustainable

Kemper, Gregor

415

Energy: Science, Policy, and the Pursuit of Sustainability  

E-Print Network (OSTI)

in developing a sustainable energy policy has been dealtcomprehensive, sustainable, and environment friendly energy

Mirza, Umar Karim

2004-01-01T23:59:59.000Z

416

Qualification Requirements of Guided Ultrasonic Waves for Inspection of Piping in Light Water Reactors  

Science Conference Proceedings (OSTI)

Guided ultrasonic waves (GUW) are being increasingly used for both NDT and monitoring of piping. GUW offers advantages over many conventional NDE technologies due to the ability to inspect large volumes of piping components without significant removal of thermal insulation or protective layers. In addition, regions rendered inaccessible to more conventional NDE technologies may be more accessible using GUW techniques. For these reasons, utilities are increasingly considering the use of GUWs for performing the inspection of piping components in nuclear power plants. GUW is a rapidly evolving technology and its usage for inspection of nuclear power plant components requires refinement and qualification to ensure it is able to achieve consistent and acceptable levels of performance. This paper will discuss potential requirements for qualification of GUW techniques for the inspection of piping components in light water reactors (LWRs). The Nuclear Regulatory Commission has adopted ASME Boiler and Pressure Vessel Code requirements in Sections V, III, and XI for nondestructive examination methods, fabrication inspections, and pre-service and in-service inspections. A Section V working group has been formed to place the methodology of GUW into the ASME Boiler and Pressure Vessel Code but no requirements for technique, equipment, or personnel exist in the Code at this time.

Meyer, Ryan M.; Ramuhalli, Pradeep; Doctor, Steven R.; Bond, Leonard J.

2013-08-01T23:59:59.000Z

417

Medium Power Lead Alloy Reactors: Missions for this Reactor Technology  

Science Conference Proceedings (OSTI)

A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [~100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant. These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO2 power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a long operating cycle length by enhancing in-core breeding. For the actinide-burning mission three design variants were produced: (1) a fertile-free actinide burner, i.e., a single-tier strategy, (2) a minor actinide burner with plutonium burned in the LWR fleet, i.e., a two-tier strategy, and (3) an actinide burner with characteristics balanced to also favor economic electricity production.

Neil E. Todreas; Philip E. MacDonald; Pavel Hejzlar; Jacopo Buongiorno; Eric Loewen

2004-09-01T23:59:59.000Z

418

Weatherization and Intergovernmental Program: Sustainable Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Resources for Consumers (SERC) Grants to someone by E-mail Share Weatherization and Intergovernmental Program: Sustainable Energy Resources for Consumers (SERC) Grants on Facebook Tweet about Weatherization and Intergovernmental Program: Sustainable Energy Resources for Consumers (SERC) Grants on Twitter Bookmark Weatherization and Intergovernmental Program: Sustainable Energy Resources for Consumers (SERC) Grants on Google Bookmark Weatherization and Intergovernmental Program: Sustainable Energy Resources for Consumers (SERC) Grants on Delicious Rank Weatherization and Intergovernmental Program: Sustainable Energy Resources for Consumers (SERC) Grants on Digg Find More places to share Weatherization and Intergovernmental Program: Sustainable Energy Resources for Consumers (SERC) Grants on

419

Sustainable Supply Chain | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Supply Chain Sustainable Supply Chain Sustainable Supply Chains Submissions Let's Talk About Sustainable Supply Chain Welcome to the Sustainable Supply Chain Community of Practice Bringing together government, industry, associations, non-profits and academic institutions to achieve more sustainable supply chains. Sustainable Supply Chain - New Updates New Updates View More Be a Champion Be a champion The Sustainable Supply Chain Community of Practice seeks champions from industry, academia and non-profits to lead each of the community market sectors. Do you know or are you a member of a leading edge organization that is implementing sustainable supply chain practices within one of the seven current community market sectors? If yes, nominate the organization as a Champion. Sustainable supply chain practices lead to cost savings,

420

Sustainable Building Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Sustainable Program Areas » Sustainable Buildings & Campuses » Sustainable Building Basics Sustainable Building Basics October 4, 2013 - 4:21pm Addthis Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Endurance Biofuel Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

A 2009 Army Environmental Policy Institute report, Sustain the Mission Project: Casualty Factors for Fuel and Water Resupply Convoys, stated there were more than 1000 Army...

422

PNNL-21731  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

731 731 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Light Water Reactor Sustainability (LWRS) Program - Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants KL Simmons HM Hashemian P Ramuhalli R Konnick DL Brenchley S Ray JB Coble September 2012 PNNL-21731 Light Water Reactor Sustainability (LWRS) Program - Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants KL Simmons HM Hashemian 1 P Ramuhalli R Konnick 2 DL Brenchley S Ray 3 JB Coble September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory

423

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

424

Sustained System Performance (SSP) Benchmark  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustained System Sustained System Performance (SSP) Benchmark Sustained System Performance (SSP) Benchmark William T.C. Kramer, John M. Shalf, and Erich Strohmaier Background The NERSC Approach to Procurement Benchmarks The NERSC-5 SSP The NERSC-6 SSP The Effective System Performance (ESP) Metric Conclusion Notes Formal description of SSP A formal description of the SSP, including detailed formulae, is now available. This is a portion of the soon-to-be-published Ph.D. dissertation, Kramer, W.T.C., 2008, "PERCU: A Holistic Method for Evaluating High End Computing Systems," Department of Electrical Engineering and Computer Science, University of California, Berkeley. Background Most plans and reports recently discuss only one of four distinct purposes benchmarks are used. The obvious purpose is selection of a system from

425

HORIZONTAL BOILING REACTOR SYSTEM  

DOE Patents (OSTI)

Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

Treshow, M.

1958-11-18T23:59:59.000Z

426

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

427

Sustainable Acquisition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acquisition Acquisition Sustainable Acquisition Mission The team establishes a national approach to expand purchases of environmentally sound goods and services, including biobased products in accordance with Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, as approved by LM. The team advocates the implementation of a "green" procurement process. Scope The team has established a process to evaluate the procurement of goods and services for LM using the acquisition of environmentally preferable products and services, including the acquisition of biobased, environmentally preferable, energy-efficient, water-efficient, and

428

Sustainable Electricity | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sustainable Electricity SHARE Sustainable Electricity Outdoor power line accelerated testing. Oak Ridge National Laboratory's Energy Efficiency and Electricity Technologies Program develops technologies to create a cleaner environment, a stronger economy, and a more secure future for our nation. The Program is committed to expanding energy resource options and to improving efficiency in every element of energy production and use, and to ensuring a reliable and secure grid that fully integrates central generation with distributed resources, manages power flows, facilitates recovery from disruptions to the energy supply, and meets the nation's need for increasing electric

429

NUCLEAR REACTORS AND EARTHQUAKES  

SciTech Connect

A book is presented which supplies pertinent seismological information to engineers in the nuclear reactor field. Data are presented on the occurrence, intensity, and wave shapes. Techniques are described for evaluating the response of structures to such events. Certain reactor types and their modes of operation are described briefly. Various protection systems are considered. Earthquake experience in industrial and reactor plants is described. (D.L.C.)

1961-01-01T23:59:59.000Z

430

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

431

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

432

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

433

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

434

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

435

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

436

HOMOGENEOUS NUCLEAR POWER REACTOR  

DOE Patents (OSTI)

A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

King, L.D.P.

1959-09-01T23:59:59.000Z

437

Interagency Sustainability Working Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Sustainable Buildings & Campuses » Interagency Program Areas » Sustainable Buildings & Campuses » Interagency Sustainability Working Group Interagency Sustainability Working Group October 4, 2013 - 5:00pm Addthis The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the Federal Government. The ISWG: Serves as a forum for information exchange and promotes agency implementation of goals for high-performance and sustainable buildings Develops policy and reporting guidance that fosters the widespread adoption of sustainable design and operations in the Federal sector Develops technical guidance and tools to support implementation of agency sustainability policies for Federally owned, operated, and leased buildings. The ISWG is also charged with providing assistance for implementing the

438

Sustainable Forward Operating Base Nuclear Power Evaluation (Relationship Mapping System) Users Manual  

SciTech Connect

The Sustainable Forward Operating Base (FOB) Nuclear Power Evaluation was developed by the Idaho National Laboratory Systems Engineering Department to support the Defense Advanced Research Projects Agency (DARPA) in assessing and demonstrating the viability of deploying small-scale reactors in support of military operations in theatre. This document provides a brief explanation of how to access and use the Sustainable FOB Nuclear Power Evaluation utility to view assessment results as input into developing and integrating the program elements needed to create a successful demonstration.

Not Listed

2012-01-01T23:59:59.000Z

439

Nondestructive Examination (NDE) Detection and Characterization of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nondestructive Examination (NDE) Detection and Characterization of Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors The U.S. Department of Energy's (DOE) Light Water Reactor Sustainability (LWRS) Program is developing the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components (SSCs) as they age in environments associated with long-term operations (LTO) of operating commercial nuclear power reactors. The push towards safe long-term operations of light-water reactor (LWR) nuclear power plants (NPPs) brings significant challenges because aging of components can limit the operating lifetime of critical systems (Bond 2010; Bond et al. 2011a). A key element of LTO of LWRs is therefore

440

data center energy sustainability metric  

E-Print Network (OSTI)

Data centers represent an increasingly popular construction project type, supported by the continued growth in internet-based services. These facilities can, however, consume large amounts of electricity andespecially if growth trends continueput strain on utility grids and energy resources. Many metrics have been proposed to evaluate and communicate energy use in data centers. In many cases, the goal is that these metrics will be used to develop energy conscious behavior and perhaps data center sustainability ratings or building codes to reduce average energy use. In this paper, we examine one of the more popular metrics, Power Usage Effectiveness (PUE), and discuss its shortcomings toward effectively communicating energy sustainability. Our inference is that PUE is an instantaneous representation of electrical energy consumption that encourages operators to report the minimum observed values of PUE. Hence, PUE only conveys an understanding of the minimum possible energy use. Instead we propose the use of energy-based metrics or average PUE over a significant time periode.g., a yearto better understand the energy efficiency of a data center and to develop sustainability rating/ranking systems and energy codes. Keywords-Data centers; energy efficiency metrics; sustainability standards; Power Usage Effectiveness

Jumie Yuventi; Roshan Mehdizadeh; Jumie Yuventi; Roshan Mehdizadeh

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Y-12 Site Sustainability Plan  

SciTech Connect

This plan addresses: Greenhouse Gas Reduction and Comprehensive Greenhouse Gas Inventory; Buildings, ESPC Initiative Schedule, and Regional and Local Planning; Fleet Management; Water Use Efficiency and Management; Pollution Prevention and Waste Reduction; Sustainable Acquisition; Electronic Stewardship and Data Centers; Renewable Energy; Climate Change; and Budget and Funding.

none,; Erhart, S C; Spencer, C G

2013-12-01T23:59:59.000Z

442

Teach sustainability in software engineering?  

Science Conference Proceedings (OSTI)

Sustainability is becoming an important topic in IT--as contribution of IT to safeguard our future, and as evolving market segment. IT's high productivity in combination with short life cycles and, on the other hand, growing resource problems of our ...

Birgit Penzenstadler; Andreas Fleischmann

2011-05-01T23:59:59.000Z

443

University of Saskatchewan Sustainability Assessment  

E-Print Network (OSTI)

Executive Summary 1 Introduction 4 Energy 9 Transportation 33 Waste 59 Management Tools and Recommendations · Management for Sustainability · Energy · Transportation · Waste #12;Executive Summary Page 2 of 90 U and participation. At the end of each section on Energy, Transportation and Waste specific recommendations

Peak, Derek

444

Biomass Energy and Agricultural Sustainability  

E-Print Network (OSTI)

Biomass Energy and Agricultural Sustainability Stephen Kaffka Department of Plant Sciences University of California, Davis & California Biomass Collaborative February 2008 #12;E x p e c t e d d u r 9 ) ---------Biomass era----------- --?????????? #12;By 2025, every source of energy

California at Davis, University of

445

A Sustainability Plan for Princeton  

E-Print Network (OSTI)

with sensors for control of dimmable lighting systems will allow optimal use of ambient daylight while high and alternative energy sources. The campus can serve as both a model for advanced sustainability practices system improvements 8% Plant efficiency improvement and runtime 14% Alternative fuels 9% Grid CO2

Rowley, Clarence W.

446

Security & Sustainability College of Charleston  

E-Print Network (OSTI)

Security & Sustainability POLI 399 College of Charleston Fall 2013 Day/Time: T/H; 10 we can think about generating greater security and prosperity through systemic change that arises, then providing security is paramount consideration along that path. Using frames of collective, national

Young, Paul Thomas

447

Renewables for Sustainable Village Power  

DOE Green Energy (OSTI)

This paper describes the efforts of NREL's Renewables for Sustainable Village Power team to match renewable energy technologies with rural energy needs in the international market. The paper describes the team's activities, updates the lessons learned, and proposes an integrated approach as a model for rural electrification with renewables.

Flowers, L.; Baring-Gould, I.; Bianchi, J.; Corbus, D.; Drouilhet, S.; Elliott, D.; Gevorgian, V.; Jimenez, A.; Lilienthal, P.; Newcomb, C.; Taylor, R.

2000-11-06T23:59:59.000Z

448

Sustainable Technology International STA | Open Energy Information  

Open Energy Info (EERE)

Technology International STA Technology International STA Jump to: navigation, search Name Sustainable Technology International (STA) Place Queanbeyan, Australia Sector Solar Product Sustainable Technologies International (STI) is the first company in the world to commercially manufacture Dye-sensitised Solar Cell (DSC) solar modules. References Sustainable Technology International (STA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Technology International (STA) is a company located in Queanbeyan, Australia . References ↑ "Sustainable Technology International (STA)" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Technology_International_STA&oldid=351923

449

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Image of the side of a sustainable building Sustainable building design results in energy savings and environment stewardship. Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs. Learn more about the: Benefits of sustainable building design

450

Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator...  

National Nuclear Security Administration (NNSA)

Research ReactorDomestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Our Mission Managing the Stockpile...

451

ADMINISTRATION OF ORNL RESEARCH REACTORS  

SciTech Connect

Organization of the ORNL Operations division for administration of the Oak Ridge Research Reactor, the Low Intensity Testing Reactor, and the Oak Ridge Graphite Reactor is described. (J.R.D.)

Casto, W.R.

1962-08-20T23:59:59.000Z

452

The first reactor [40th anniversary commemorative edition  

SciTech Connect

This updated and revised story of the first reactor, or 'pile,' commemorates the 40th anniversary of the first controlled, self-sustaining nuclear chain reaction created by mankind. Enrico Fermi and his team of scientists initiated the reaction on December 2, 1941, underneath the West Stands of Stagg Field at the University of Chicago. Firsthand accounts of the participants as well as postwar recollections by Enrico and Laura Fermi are included.

1982-12-01T23:59:59.000Z

453

Production reactor characteristics  

SciTech Connect

Reactors for the production of special nuclear materials share many similarities with commercial nuclear power plants. Each relies on nuclear fission, uses uranium fuel, and produces large quantities of thermal power. However, there are some important differences in production reactor characteristics that may best be discussed in terms of mission, role, and technology.

Thiessen, C.W.; Hootman, H.E.

1990-01-01T23:59:59.000Z

454

Advanced converter reactors  

SciTech Connect

Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U/sub 3/O/sub 8/ at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals.

Kasten, P.R.

1979-01-01T23:59:59.000Z

455

NEUTRONIC REACTOR SYSTEM  

DOE Patents (OSTI)

A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

Treshow, M.

1959-02-10T23:59:59.000Z

456

NEUTRONIC REACTOR BURIAL ASSEMBLY  

DOE Patents (OSTI)

A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

Treshow, M.

1961-05-01T23:59:59.000Z

457

The Integral Fast Reactor  

SciTech Connect

Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

Till, C.E.; Chang, Y.I. (Argonne National Lab., IL (USA)); Lineberry, M.J. (Argonne National Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

458

Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors  

SciTech Connect

This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

1993-06-01T23:59:59.000Z

459

Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability  

SciTech Connect

Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 C and the possible compatibility issues associated with the supercritical water environment. Reactor pressure vessel Pumps and piping

Philip E. MacDonald

2003-09-01T23:59:59.000Z

460

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT  

SciTech Connect

Progress on reactor programs and in general engineering research and development programs is summarized. Research and development are reported on water-cooled reactors including EBWR and Borax-V, sodium-cooled reactors including ZPR-III, IV, and IX, Juggernaut, and EBR-I and II. Other work included a review of fast reactor technology, and studies on nuclear superheat, thermal and fast reactor safety, and reactor physics. Effort was also devoted to reactor materials and fuels development, heat engineering, separation processes and advanced reactor concepts. (J.R.D.)

1961-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Clean Technology Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Sustainable Industries Organization Sustainable Industries Organization Jump to: navigation, search Name Clean Technology & Sustainable Industries Organization Place Royal Oak, Michigan Zip 48073 Product A non-profit membership industry organization formed to advance the global development and deployment of clean and sustainable technologies References Clean Technology & Sustainable Industries Organization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clean Technology & Sustainable Industries Organization is a company located in Royal Oak, Michigan . References ↑ "Clean Technology & Sustainable Industries Organization" Retrieved from "http://en.openei.org/w/index.php?title=Clean_Technology_Sustainable_Industries_Organization&oldid=343669"

462

Sustainable Forest Finance Toolkit | Open Energy Information  

Open Energy Info (EERE)

Sustainable Forest Finance Toolkit Sustainable Forest Finance Toolkit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Forest Finance Toolkit Agency/Company /Organization: World Business Council for Sustainable Development Sector: Land Focus Area: Forestry Topics: Finance Resource Type: Guide/manual Website: www.pwc.co.uk/pdf/forest_finance_toolkit.pdf Sustainable Forest Finance Toolkit Screenshot References: Sustainable Forest Finance Toolkit[1] Overview "This Toolkit has been developed jointly by PricewaterhouseCoopers (PwC) and the World Business Council for Sustainable Development (WBCSD). It is a globally applicable resource designed to help financial institutions support the management of forest resources through sustainable and legal timber production and processing, and markets for carbon and other

463

Sustainable Coal Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Coal Use Sustainable Coal Use Coal is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world....

464

City of Jacksonville- Sustainable Public Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2009, the Jacksonville City Office of Sustainability Initiatives announced the creation of the Sustainable Building Program. As part of the program, all new city-owned buildings must meet...

465

Sustainable Success | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Success Sustainable Success Posted: February 14, 2013 - 10:06am The new pervious pavement parking lot and solar crosswalk (across the road from the parking lot) are...

466

Megacities : sustainability, transport, and economic development  

E-Print Network (OSTI)

The connections between sustainability, transport, and economic development are and will remain essential in the governance of cities. Sustainability concepts include valuing and preserving the earth's resources so that ...

Tobias, Justin Charles, 1980-

2005-01-01T23:59:59.000Z

467

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor  

SciTech Connect

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

2010-09-01T23:59:59.000Z

468

Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing  

E-Print Network (OSTI)

of Manufacturing and Sustainability Improvement of Nano-Integrated Sustainability Analysis of Atomic Layergrowth at atomic scale. Sustainability of ALD technology

Yuan, Chris Yingchun; David Dornfeld

2010-01-01T23:59:59.000Z

469

Determinants of sustainability in urban and peri-urban agriculture  

E-Print Network (OSTI)

of Production and Sustainability in Sub-Saharan Africanof bio-physical sustainability of these mostly verydesirable to strengthen the sustainability of UPA. The site-

Buerkert, Andreas; Schlecht, Eva; Predotova, Martina; Diogo, Rodrigue V.C.; Kehlenbeck, Katja; Gebauer, Jens

2009-01-01T23:59:59.000Z

470

Software-based tool path evaluation for environmental sustainability  

E-Print Network (OSTI)

for environmental sustainability. J Manuf Syst (2011), doi:planning incorporating a sustainability concern. Fig. 2.rating impact or sustainability concerns is required to

KONG, DAEYOUNG; Seungchoun Choi; Yusuke Yasui; Sushrut Pavanaskar; Dornfeld, David; Wright, Paul

2011-01-01T23:59:59.000Z

471

Integrating Green and Sustainability Aspects into Life Cycle Performance Evaluation  

E-Print Network (OSTI)

Manufacturing and Sustainability, University of CaliforniaIntegrating Green and Sustainability Aspects into Life CycleManufacturing and Sustainability, University of California

Niggeschmidt, Stephan; Helu, Moneer; Diaz, Nancy; Behmann, Benjamin; Lanza, Gisela; Dornfeld, David

2010-01-01T23:59:59.000Z

472

Enhancing Resource Sustainability by Transforming Urban and Suburban Transportation  

E-Print Network (OSTI)

of such systems on sustainability. Dual-mode systems havequality of life and sustainability. This approach may thusbetween society and sustainability. From the Strngmann

Delucchi, Mark

2009-01-01T23:59:59.000Z

473

Energy: Science, Policy, and the Pursuit of Sustainability  

E-Print Network (OSTI)

and the Pursuit of Sustainability By Robert Bent, Lloyd Orrand the Pursuit of Sustainability. Washington, DC: IslandPolicy and the Pursuit of Sustainability is a primer that

Mirza, Umar Karim

2004-01-01T23:59:59.000Z

474

Sustainability in Water Resources Management: Changes in Meaning and Perception  

E-Print Network (OSTI)

Sustainability in Water Resources Management Changes inAbstract: The meaning of sustainability in the context ofwider water reuse, today sustainability must include a whole

Hermanowicz, S W

2005-01-01T23:59:59.000Z

475

Operationalizing Anticipatory Governance: Steering Emerging Technologies Towards Sustainability  

E-Print Network (OSTI)

2007). "Reconciling sustainability and discounting in Cost-Batie, S. S. (2008). "Sustainability Science: Statement ofthe Friibergh Workshop on Sustainability Science." American

Philbrick, Mark

2010-01-01T23:59:59.000Z

476

Ideology and Politics: Essential Factors in the Path Toward Sustainability  

E-Print Network (OSTI)

society: Alternatives for sustainability. London: Zed Books.with social capital and sustainability. In A. Dale & J.Social capital and sustainability within rural communities.

Coates, John; Leahy, Terry

2006-01-01T23:59:59.000Z

477

Achieving Sustainability inCalifornias CentralValley  

E-Print Network (OSTI)

of agricultural sustainability. Agriculture, Ecosystems &19, 2009. Achieving Sustainability in Californias Centralvariables. Achieving Sustainability in Californias Central

Lubell, Mark; Beheim, Bret; Hillis, Vicken; Handy, Susan L.

2009-01-01T23:59:59.000Z

478

Vehicle ownership and mode use: the challenge of sustainability  

E-Print Network (OSTI)

the challenge of sustainability Sivaramakrishnan SrinivasanUsethe Challenge of Sustainability. This topic was inspiredtravel behavior and sustainability, six behavioral modeling

Srinivasan, Sivaramakrishnan; Walker, Joan L.

2009-01-01T23:59:59.000Z

479

China Energy Group - Sustainable Growth Through Energy Efficiency  

E-Print Network (OSTI)

problems; the China Sustainable Energy Program (funded byFoundation's China Sustainable Energy Program commissionedFoundation (China Sustainable Energy Program) became major

2006-01-01T23:59:59.000Z

480

China's Approaches to Financing Sustainable Development: Policies, Practices, and Issues  

E-Print Network (OSTI)

Finance and Chinas Sustainable Energy Transition. http://was supported by the China Sustainable Energy Program of theexample is the Sustainable Energy Utility model pioneered in

Shen, Bo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor sustainability lwrs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Security, Innovation & Sustainability Initiative  

SciTech Connect

More than a dozen energy experts convened in Houston, Texas, on February 13, 2009, for the first in a series of four regionally-based energy summits being held by the Council on Competitiveness. The Southern Energy Summit was hosted by Marathon Oil Corporation, and participants explored the public policy, business and technological challenges to increasing the diversity and sustainability of U.S. energy supplies. There was strong consensus that no single form of energy can satisfy the projected doubling, if not tripling, of demand by the year 2050 while also meeting pressing environmental challenges, including climate change. Innovative technology such as carbon capture and storage, new mitigation techniques and alternative forms of energy must all be brought to bear. However, unlike breakthroughs in information technology, advancing broad-based energy innovation requires an enormous scale that must be factored into any equation that represents an energy solution. Further, the time frame for developing alternative forms of energy is much longer than many believe and is not understood by the general public, whose support for sustainability is critical. Some panelists estimated that it will take more than 50 years to achieve the vision of an energy system that is locally tailored and has tremendous diversity in generation. A long-term commitment to energy sustainability may also require some game-changing strategies that calm volatile energy markets and avoid political cycles. Taking a page from U.S. economic history, one panelist suggested the creation of an independent Federal Energy Reserve Board not unlike the Federal Reserve. The board would be independent and influence national decisions on energy supply, technology, infrastructure and the nation's carbon footprint to better calm the volatile energy market. Public-private efforts are critical. Energy sustainability will require partnerships with the federal government, such as the U.S. Department of Energy's National Laboratories, that can provide real-world improvements in both the short- and long-term. Indeed, the roles of government and the private sector in energy sustainability were brought into sharper focus by the pending American Recovery and Reinvestment Act of 2009, also known as the economic stimulus bill. There was cautious optimism that the bill was moving the nation in the right direction by way of focusing on greater energy efficiency, alternative forms of energy and improved infrastructure. Nevertheless, there was concern over Congress picking energy winners and losers. Instead, Congress should challenge industry to produce solutions that will create a clear path forward to energy sustainability that the American people can support.

2010-04-30T23:59:59.000Z

482

Materials Sustainability: Digital Resource Center - Aluminum ... - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... ENERGY AND SUSTAINABILITY are critical factors for economic development, and this comprehensive reference provides a detailed overview...

483

Materials Sustainability: Digital Resource Center - Center for ...  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... Focus on life cycle analyses for buildings, agriculture, transportation, renewable energy, and packaging. Source: Center for Sustainable...

484

Engineering Solutions for Sustainability: Materials & Resources  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Integrative Materials Design: Performance and Sustainability. Presentation...

485

Energy Sustainability Interest Group: 2011 Summary  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Energy Sustainability Interest Group was formed in 2008 to provide a collaborative forum where electric power companies could discuss sustainability issues and gain insights from other participants. With nearly 30 member companies, it is the largest sustainability-focused group of its kind in the electric power industry. This technical update summarizes the 2011 activities of the Energy Sustainability Interest Group. It provides overviews of key projects,...

2012-03-12T23:59:59.000Z

486

REWAS 2013: Enabling Materials Resource Sustainability  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, REWAS 2013: Enabling Materials Resource Sustainability. Sponsorship...

487

Office of National Infrastructure & Sustainability | National...  

National Nuclear Security Administration (NNSA)

of National Infrastructure & Sustainability Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material...

488

Sustainable Transportation Update Newsletters | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation...

489

Having Productive Conversations About Sustainability: Pitfalls and ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , REWAS 2013: Enabling Materials Resource Sustainability. Presentation Title...

490

NNSA Announces 2013 Sustainability Awards | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Sustainability Awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

491

Sustainable Energy Sources and Nanomaterials (+$5 million ...  

Science Conference Proceedings (OSTI)

Sustainable Energy Sources and Nanomaterials (+$5 million for Advanced Solar Technologies; +$4 million for Nanomaterial Environmental Health ...

2010-10-05T23:59:59.000Z

492

Project: Sustainability Characterization for Product Assembly ...  

Science Conference Proceedings (OSTI)

... optimization by the Sustainability Modeling and Optimization Project. ... mathematical formulation, computation methods, and the energy and material ...

2013-01-02T23:59:59.000Z

493

NIST Workshop on Sustainable Manufacturing: Metrics ...  

Science Conference Proceedings (OSTI)

... ICT for Design, Manufacturing and Supply chain Optimization for sustainable ... Lifecycle Management) and LCA tools to support energy and material ...

2011-10-11T23:59:59.000Z