Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Current Status and the Future of the Irradiation Services in the HANARO Reactor  

SciTech Connect

As a central plant of the Korea Atomic Energy Research Institute, Hi-flux Advanced Neutron Application Reactor, the HANARO, has been playing an important role in nuclear technology development and the utilization of radiation technology. HANARO's reputation such as a stable operation, build up of various research results and the support of the government picks up more research needs. Major utilizations of the HANARO reactor in Korea have focused on its irradiation service. It offers various types of irradiation tests for fuel and materials, which provides us with very useful information for designing and evaluating reactor materials. A number of irradiation capsules have been developed and installed in HANARO. Necessary technologies regarding HANARO are still being developed. The on-going and future researches, especially, about fuel and material irradiation including university programs and the current utilization statistics of the HANARO research reactor, are described in this article.

Kang, Y-H.; Kim, B-G.; Cho, M-S.; Choo, K-N.; Kim, Y-J.

2004-10-06T23:59:59.000Z

2

FOOD IRRADIATION REACTOR  

DOE Patents (OSTI)

An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.

Leyse, C.F.; Putnam, G.E.

1961-05-01T23:59:59.000Z

3

Microstructural Characterization of Test Reactor Irradiated RPV ...  

Science Conference Proceedings (OSTI)

Presentation Title, Microstructural Characterization of Test Reactor Irradiated RPV ... Evolution in High Purity Reference V-4Cr-4Ti Alloy for Fusion Reactor.

4

Characterization of Fast Reactor Irradiated Stainless Steels  

Science Conference Proceedings (OSTI)

As part of the overall effort to understand the role of different material and environmental variables on irradiation-assisted stress corrosion cracking (IASCC) in light water reactor (LWR) components, the Cooperative IASCC Research (CIR-II) Program has conducted irradiation experiments in the BOR-60 fast reactor near Dimitrovgrad, Russia. This project was a continuation of research on characterization of microstructure and microchemistry of stainless steel heats irradiated in the BOR-60 fast reactor, do...

2008-05-07T23:59:59.000Z

5

Mechanical Cutting of Irradiated Reactor Internal Components  

SciTech Connect

This paper discusses the use of mechanical cutting methods to volume reduce and package irradiated reactor internal components. The recent completion of the removal of the Reactor Vessel Internals (RVI) from within the Sacramento Municipal Utility District's (SMUD) Rancho Seco Nuclear Power Plant demonstrates that unlike previous methods used for similar projects, mechanical cutting minimizes exposure to workers, costly water cleanup, and excessive secondary waste generation. (authors)

Anderson, M.G.; Fennema, J.A. [MOTA Corporation, West Columbia, SC (United States)

2007-07-01T23:59:59.000Z

6

DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL  

DOE Patents (OSTI)

A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

Buyers, A.G.; Rosen, F.D.; Motta, E.E.

1959-12-22T23:59:59.000Z

7

Program for alloy development for irradiation performance in fusion reactors  

SciTech Connect

The use of fission reactors as irradiation test facilities for structural materials for a fusion environment is discussed. A comparison is made of displacement damage and helium production in fast fission and fusion reactors for stainless steel. (MOW)

Stiegler, J.O.; Reuther, T.C.

1977-01-01T23:59:59.000Z

8

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

9

Program for Irradiation of Reactor Structural Materials at the ATR ...  

Science Conference Proceedings (OSTI)

Presentation Title, Program for Irradiation of Reactor Structural Materials at the ATR-National Scientific User Facility. Author(s), Heather J. MacLean Chichester,  ...

10

Reactor vessel seal service fixture  

DOE Patents (OSTI)

An apparatus for the preparation of exposed sealing surfaces along the open rim of a nuclear reactor vessel comprised of a motorized mechanism for traveling along the rim and simultaneously brushing the exposed surfaces is described.

Ritz, W.C.

1975-12-01T23:59:59.000Z

11

Displacement Damage in Silicon Carbide Irradiated in Fission Reactors  

SciTech Connect

Calculations are performed for displacement damage in SiC due to irradiation in the neutron environments of various types of nuclear reactors using the best available models and nuclear data. The displacement damage calculations use recently developed damage functions for SiC that are based on extensive molecular dynamics simulations of displacement events1. Displacements per atom (DPA) cross sections for SiC have been calculated as a function of neutron energy, and they are presented here in tabular form to facilitate their use as the standard measure of displacement damage for irradiated SiC. DPA cross sections averaged over the neutron energy spectrum are calculated for neutron spectra in the cores of typical commercial reactors and in the test sample irradiation regions of several materials test reactors used in both past and present irradiation testing. Particular attention is focused on a next-generation high-temperature gas-cooled pebble bed reactor, for which the high-temperature properties of silicon carbide fiber-reinforced silicon carbide composites are well suited. Calculated transmutations and activation levels in a pebble bed reactor are compared to those in other reactors.

Heinisch, Howard L.; Greenwood, Lawrence R.; Weber, William J.; Williford, Rick E.

2004-04-05T23:59:59.000Z

12

Mechanical cutting of irradiated reactor internal components  

Science Conference Proceedings (OSTI)

Mechanical cutting methods to volume reduce and package reactor internal components are now a viable solution for stakeholders challenged with the retirement of first generation nuclear facilities. The recent completion of the removal of the Reactor Vessel Internals (RVI) from within the Sacramento Municipal Utility District's (SMUD) Rancho Seco Nuclear Power Plant demonstrates that unlike previous methods, inclusive of plasma arc and abrasive water-jet cutting, mechanical cutting minimizes exposure to workers, costly water cleanup, and excessive secondary waste generation. Reactor internal components were segmented, packaged, and removed from the reactor building for shipment or storage, allowing the reactor cavity to be drained and follow-on reactor segmentation activities to proceed in the dry state. Area exposure rates at the work positions during the segmentation process were generally 1 mR per hr. Radiological exposure documented for the underwater segmentation processes totaled 13 person rem. The reactor internals weighing 343,000 pounds were segmented into over 200 pieces for maximum shipping package efficiency and produced 5,600 lb of stainless steel chips and shavings which were packaged in void spaces of existing disposal containers, therefore creating no additional disposal volume. Because no secondary waste was driven into suspension in the reactor cavity water, the water was free released after one pass through a charcoal bed and ion exchange filter system. Mechanical cutting techniques are capable of underwater segmentation of highly radioactive components on a large scale. This method minimized radiological exposure and costly water cleanup while creating no secondary waste.

Anderson, Michael G. [MOTA Corporation: 3410 Sunset Boulevard, West Columbia, SC, 29169 (United States)

2008-01-15T23:59:59.000Z

13

Irradiation Effects on High-Temperature Gas-Cooled Reactor Structural Materials  

Science Conference Proceedings (OSTI)

G. Irradiation Behavior / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

James R. Lindgren

14

Light water reactor mixed-oxide fuel irradiation experiment  

SciTech Connect

The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

Hodge, S.A.; Cowell, B.S. [Oak Ridge National Lab., TN (United States); Chang, G.S.; Ryskamp, J.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-06-01T23:59:59.000Z

15

Gas-cooled fast breeder reactor steady-state irradiation testing program  

Science Conference Proceedings (OSTI)

The requirements for the gas-cooled fast breeder reactor irradiation program are specified, and an irradiation program plan which satisfies these requirements is presented. The irradiation program plan consists of three parts and includes a schedule and a preliminary cost estimate: (1) a steady-state irradiation program, (2) irradiations in support of the design basis transient test program, and (3) irradiations in support of the GRIST-2 safety test program. Data from the liquid metal fast breeder reactor program are considered, and available irradiation facilities are examined.

Acharya, R.T.; Campana, R.J.; Langer, S.

1980-08-01T23:59:59.000Z

16

Strategies for Studying High Dose Irradiation Effects in Reactor ...  

Science Conference Proceedings (OSTI)

Cladding and structural materials in fast reactors and fusion reactors will reach 200 dpa, and concepts such as the Traveling Wave Reactor could top 500 dpa.

17

Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

2006-10-01T23:59:59.000Z

18

Results and Analyses of Irradiation/Anneal Experiments Conducted on Yankee Rowe Reactor Pressure Vessel Surrogate Materials: Yankee Atomic Electric Company Test Reactor Program  

Science Conference Proceedings (OSTI)

Many variables influence the response of reactor vessel steels to neutron irradiation. This study looks at the influence of irradiation temperature, steel heat treatment and microstructure, and nickel and phosphorus content on the irradiation response of high-copper reactor vessel steel. Also addressed are several studies evaluating the potential of thermal annealing to restore the mechanical properties of the steels tested.

1996-03-22T23:59:59.000Z

19

The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

S. Blaine Grover

2009-09-01T23:59:59.000Z

20

PRELIMINARY DESIGN STUDY FOR A SODIUM-GRAPHITE-REACTOR IRRADIATION FACILITY  

SciTech Connect

The results of an investigation to integrate a Na/sup 24/ irradiation processing facility with an operating sodium graphite reactor are presented. An irradiation facility incorporated into a reference SGR (Hallam Nuclear Power Facility, Hallam, Nebraska) is described. Development of the facility application, preliminary design criteria and capital and operating costs are discussed. Recommendations for further development of the technology and economics of this type of irradiation facility are included. (auth)

Thompson, D.S.; Benaroya, V.

1959-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials  

SciTech Connect

This report contains a summary of progress made on the subtask area on phase field model development for microstructure evolution in irradiated materials, which was a part of the Computational Materials Science Network (CMSN) project entitled: Multiscale Simulation of Thermo-mechanical Processes in Irradiated Fission-reactor Materials. The model problem chosen has been that of void nucleation and growth under irradiation conditions in single component systems.

Anter El-Azab

2012-05-28T23:59:59.000Z

22

The second and third NGNP advanced gas reactor fuel irradiation experiments  

SciTech Connect

The United States Dept. of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is currently scheduled to irradiate a total of five low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The irradiations are being accomplished to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas cooled reactors. The experiments will each consist of at least six separate capsules, and will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The effluent sweep gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The second experiment (AGR-2) started irradiation in June 2010, and the third and fourth experiments have been combined into a single larger irradiation (AGR-3/4) that is currently being assembled. The design and status of the second through fourth experiments as well as the irradiation results of the second experiment to date are discussed. (authors)

Grover, S. B.; Petti, D. A. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

2012-07-01T23:59:59.000Z

23

Determination of Ion Bombardment, in Reactor Irradiation and Post ...  

Science Conference Proceedings (OSTI)

Any one of a number of material properties may limit the reactor performance and lifetime. ... behavior become one of the concerns for the designing of the fusion devices. ... Materials Selection and Qualification for Advanced Nuclear Reactors.

24

Diffraction Studies of Irradiated Cladding and Duct Reactor Materials  

Science Conference Proceedings (OSTI)

Symposium, Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation. Presentation Title, Diffraction Studies of ...

25

Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

26

Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens  

Science Conference Proceedings (OSTI)

Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO{sub 3} and H{sub 2}O{sub 2} solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area).

Baumann, E.W.; Caskey, G.R. Jr.

1993-07-01T23:59:59.000Z

27

Post Irradiation Evaluation of BWR Fuel From Hope Creek Reactor  

Science Conference Proceedings (OSTI)

Occasionally, in some BWRs, fuel pellet washout from a single degraded fuel rod has resulted in high offgas levels that were sufficient to impede the reactor operation. In addition, certain sound fuel rods have exhibited high eddy-current liftoff values during routine poolside measurements. Investigators pursued these two recent BWR fuel issues by performing detailed hotcell examinations on selected fuel rods from the Hope Creek reactor. The results provided insights into the mechanisms involved and poss...

1997-03-12T23:59:59.000Z

28

Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels  

E-Print Network (OSTI)

in this paper. Keywords: Remote inspection, Service robot, Non-destructive test, Nuclear, Climbing robotWalking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels B of Electronics and Computer Science, University of Southampton, Southampton, UK Abstract: Nuclear reactor

Chen, Sheng

29

Foreign research reactor irradiated nuclear fuel inventories containing HEU and LEU of United States origin  

SciTech Connect

This report provides estimates of foreign research reactor inventories of aluminum-based and TRIGA irradiated nuclear fuel elements containing highly enriched and low enriched uranium of United States origin that are anticipated in January 1996, January 2001, and January 2006. These fuels from 104 research reactors in 41 countries are the same aluminum-based and TRIGA fuels that were eligible for receipt under the Department of Energy`s Offsite Fuels Policy that was in effect in 1988. All fuel inventory and reactor data that were available as of December 1, 1994, have been included in the estimates of approximately 14,300 irradiated fuel elements in January 1996, 18,800 in January 2001, and 22,700 in January 2006.

Matos, J.E.

1994-12-01T23:59:59.000Z

30

Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor  

SciTech Connect

A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams.

Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon [Massachusetts Institute of Technology (United States)

2005-05-15T23:59:59.000Z

31

Safety Assurance for Irradiating Experiments in the Advanced Test Reactor  

SciTech Connect

The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

T. A. Tomberlin; S. B. Grover

2004-11-01T23:59:59.000Z

32

Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

33

Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors  

E-Print Network (OSTI)

A robust and reliable code to model the irradiation behavior of metal and oxide fuels in sodium cooled fast reactors is developed. Modeling capability was enhanced by adopting a non-empirical mechanistic approach to the ...

Karahan, Aydin

2009-01-01T23:59:59.000Z

34

Effect of Light Water Reactor Environments on Fracture Resistance in Irradiated Stainless Steel  

Science Conference Proceedings (OSTI)

Austenitic stainless steels are used extensively for the fabrication of reactor internal components due to their high strength and fracture toughness. However, the fracture properties of these materials degrade with exposure to neutron irradiation. The effects on the reduction of fracture properties may depend on neutron fluence, cold work, corrosion potential, water purity, temperature, and loading. The exact role of these environmental parameters remains unclear.Fracture toughness ...

2012-09-20T23:59:59.000Z

35

Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor  

Science Conference Proceedings (OSTI)

The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

Lahodova, Z.; Viererbl, L.; Klupak, V. [Research Centre Rez Ltd., Husinec-130, Rez 250 67 (Czech Republic); Srank, J. [Nuclear Physics Inst. of the Academy of Sciences, Husinec-130, Rez 250 67 (Czech Republic)

2012-07-01T23:59:59.000Z

36

Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information  

SciTech Connect

Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

M. Chen; CM Regan; D. Noe

2006-01-09T23:59:59.000Z

37

TECHNICAL SCOPE OF GAS-COOLED REACTOR FUEL ELEMENT IRRADIATION PROGRAM  

SciTech Connect

A set of 55 experiments hss been outiined to provide a minimum irradiation program for selection of UO/sub 2/, pellet geometry and fabricntion techniques, and canning technology. These experiments fall into three catagories: prototype: untts in which radial dimension and heat fluxes sre close to proposed design values, but irradiation times are long; reduced-size prototype for accelerated tests in which most variables will be studied; and miniaurized pellet irradiation to obtain high burnup for fission gas release studies. Reactor space has been found generally available and several installations are now examining their capabilities to participate in the program. A tentative schedule has been drawn to illustrate the feasibility of the program. (auth)

1958-08-01T23:59:59.000Z

38

Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test  

Science Conference Proceedings (OSTI)

This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy.

Cowell, B.S.

1997-06-01T23:59:59.000Z

39

Qualification of In-Service Examination of the Yankee Rowe Reactor Pressure Vessel  

Science Conference Proceedings (OSTI)

An effective in-service examination of the reactor pressure vessel was an essential part of the restart program for the Yankee Atomic Power Company plant in Rowe, Massachusetts. This report describes development of an effective examination strategy, demonstration of performance of the examination procedures, and development of data on the distribution of flaws in reactor pressure vessels.

1993-01-01T23:59:59.000Z

40

Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

S. Blaine Grover

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Reliability Program: Post-Irradiation Examination and Performance Assessment of ATRIUM-10 BWR Fuel from Browns Ferry-3 Reactor  

Science Conference Proceedings (OSTI)

ATRIUM-10 design (10x10 lattice) fuel was irradiated for one 24-month period during Cycle 12 to 25 MWd/kgU rod-average exposure at Tennessee Valley Authority's Browns Ferry Unit 3 reactor. The project goal was to characterize the behavior of modern boiling water reactor (BWR) fuel at low exposures to assess early-life performance in a well-documented reactor environment. This report includes results from hot cell post-irradiation examinations. In a future Electric Power Research Institute (EPRI) report, ...

2011-06-09T23:59:59.000Z

42

Short Term Irradiation Test of Fuel Containing Minor Actinides Using the Experimental Fast Reactor Joyo  

Science Conference Proceedings (OSTI)

A mixed oxide containing minor actinides (MA-MOX) fuel irradiation program is being conducted using the experimental fast rector Joyo of the Japan Atomic Energy Agency to research early thermal behavior of MA-MOX fuel. Two irradiation experiments were conducted as part of the short-term phase of this program in May and August 2006. Six prepared fuel pins included MOX fuel containing 3% or 5% americium (Am-MOX), and MOX fuel containing 2% americium and 2% neptunium (Np/Am-MOX). The first test was conducted with high linear heat rates of approximately 430 W/cm maintained during only 10 minutes. After 10 minutes irradiation test, the test subassembly was transferred to the hot cell facility and an Am-MOX pin and a Np/Am-MOX pin were replaced with dummy pins with neutron dosimeters. The test subassembly loaded with the remaining four fuel pins was re-irradiated in Joyo for 24-hours in August 2006 at nearly the same linear power to obtain re-distribution data on MA-MOX fuel. The linear heat rate for each MA-MOX test fuel pin was calculated using the Monte Carlo calculation code MCNP. The calculated fission rates were compared with the measured data based on the Nd-148 method. The maximum linear heat rate was approximately 444{+-}19 W/cm at the actual reactor power of 119.6 MWt. Post irradiation examination of these pins to confirm the absence of fuel melting and the local concentration under irradiation of NpO{sub 2-x} or AmO{sub 2-x}, in the (U,Pu)0{sub 2-x}, fuel are underway. The test results are expected to reduce uncertainties on the margin in the thermal design for MA-MOX fuel. (authors)

Sekine, Takashi; Soga, Tomonori; Koyama, Shin-ichi; Aoyama, Takafumi [Oarai Research and Development Center, Japan Atomic Energy Agency. 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Wootan, David [Pacific Northwest National Laboratoy, M/S K8-34, P.O. Box 999 Richland, WA 99352 (United States)

2007-07-01T23:59:59.000Z

43

Cracking behavior and microstructure of austenitic stainless steels and alloy 690 irradiated in BOR-60 reactor, phase I.  

SciTech Connect

Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier tests with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.

Chen, Y.; Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Yang, Y.; Allen, T. R.; Univ. of Wisconsin at Madison

2010-02-16T23:59:59.000Z

44

AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor  

SciTech Connect

AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the reference in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies performed by INL team, and preliminary thermal mechanical ATLAS calculations were carried out by CEA from this pre-design. Despite the mean burn-up achieved in approximately 600 EFPD being a little high (16.3% FIMA max. associated with a low fluence up to 2.85 × 1025 n/m2), this irradiation will nevertheless encompass the range of irradiation effects covered in our experimental objectives (maximum stress peak at start of irradiation then sign inversion of the stress in the SiC layer). In addition, the fluence and burn-up acceleration factors are very similar to those of the German reference experiments. This experimental irradiation began in July 2010 in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and first results have been acquired.

T. Lambert; B. Grover; P. Guillermier; D. Moulinier; F. Imbault Huart

2012-10-01T23:59:59.000Z

45

IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR  

SciTech Connect

Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

2010-10-01T23:59:59.000Z

46

Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are very similar. The purpose and design of this experiment will be discussed followed by its progress and status to date.

Blaine Grover

2012-10-01T23:59:59.000Z

47

High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors  

Science Conference Proceedings (OSTI)

In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200°C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.

2011-12-31T23:59:59.000Z

48

Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing  

Science Conference Proceedings (OSTI)

New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated in pressurized water reactor (PWR) coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL's High Temperature Test Laboratory (HTTL).

D. L. Knudson; J. L. Rempe

2012-02-01T23:59:59.000Z

49

Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing  

Science Conference Proceedings (OSTI)

New materials are being considered for fuel, cladding and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine and return irradiated samples for each measurement make this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated under pressurized water reactor coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory.

D. L. Knudson; J. L. Rempe

2012-02-01T23:59:59.000Z

50

Material Reliability Program Technical Basis Document Concerning Irradiation-Induced Stress Relaxation and Void Swelling in Pressuri zed Water Reactor Vessel Internals Components (MRP-50)  

Science Conference Proceedings (OSTI)

Irradiation-induced swelling and irradiation-enhanced stress relaxation are two potential degradation mechanisms that could affect reactor vessel (RV) core internals components in pressurized water reactors (PWRs). This report describes current knowledge of these two potential degradation mechanisms, available relevant data and known functional relationships, and a qualitative assessment of these two mechanisms' combined and separate effects on PWR internals components.

2001-10-18T23:59:59.000Z

51

The Fission Converter-Based Epithermal Neutron Irradiation Facility at the Massachusetts Institute of Technology Reactor  

SciTech Connect

A new type of epithermal neutron irradiation facility for use in neutron capture therapy has been designed, constructed, and put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). A fission converter, using plate-type fuel and driven by the MITR, is used as the source of neutrons. After partial moderation and filtration of the fission neutrons, a high-intensity forward directed beam is available with epithermal neutron flux [approximately equal to]10{sup 10} n/cm{sup 2}.s, 1 eV {<=} E {<=} 10 keV, at the entrance to the medical irradiation room, and epithermal neutron flux = 3 to 5 x 10{sup 9} n/cm{sup 2}.s at the end of the patient collimator. This is currently the highest-intensity epithermal neutron beam. Furthermore, the system is designed and licensed to operate at three times higher power and flux should this be desired. Beam contamination from unwanted fast neutrons and gamma rays in the aluminum, polytetrafluoroethylene, cadmium and lead-filtered beam is negligible with a specific fast neutron and gamma dose, D{sub {gamma}}{sub ,fn}/{phi}{sub epi} [less than or approximately equal] 2 x 10{sup -13} Gy cm{sup 2}/n{sub epi}. With a currently approved neutron capture compound, boronophenylalanine, the therapeutically advantageous depth of penetration is >9 cm for a unilateral beam placement. Single fraction irradiations to tolerance can be completed in 5 to 10 min. An irradiation control system based on beam monitors and redundant, high-reliability programmable logic controllers is used to control the three beam shutters and to ensure that the prescribed neutron fluence is accurately delivered to the patient. A patient collimator with variable beam sizes facilitates patient irradiations in any desired orientation. A shielded medical room with a large window provides direct viewing of the patient, as well as remote viewing by television. Rapid access through a shielded and automatically operated door is provided. The D{sub 2}O cooling system for the fuel has been conservatively designed with excess capacity and is fully instrumented to ensure detection and control of off-normal conditions. A wide range of possible abnormal events or accident scenarios has been analyzed to show that even in the worst cases, there should be no fission product release through fuel damage. This facility has been licensed to operate by the U.S. Nuclear Regulatory Commission, and initial operation commenced in June 2000.

Harling, O.K. [Massachusetts Institute of Technology (United States); Riley, K.J. [Massachusetts Institute of Technology (United States); Newton, T.H. [Massachusetts Institute of Technology (United States); Wilson, B.A. [Massachusetts Institute of Technology (United States); Bernard, J.A. [Massachusetts Institute of Technology (United States); Hu, L-W. [Massachusetts Institute of Technology (United States); Fonteneau, E.J. [Massachusetts Institute of Technology (United States); Menadier, P.T. [Massachusetts Institute of Technology (United States); Ali, S.J. [Massachusetts Institute of Technology (United States); Sutharshan, B. [Massachusetts Institute of Technology (United States); Kohse, G.E. [Massachusetts Institute of Technology (United States); Ostrovsky, Y. [Massachusetts Institute of Technology (United States); Stahle, P.W. [Massachusetts Institute of Technology (United States); Binns, P.J. [Massachusetts Institute of Technology (United States); Kiger, W.S. III [Massachusetts Institute of Technology (United States); Busse, P.M. [Beth-Israel Deaconess Medical Center (Israel)

2002-03-15T23:59:59.000Z

52

Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility  

SciTech Connect

Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to the disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)

Posivak, E.J.; Berger, S.R.; Freitag, A.A. [WMG, Inc., Peekskill, NY (United States)

2008-07-01T23:59:59.000Z

53

Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

J. L. Rempe; D. L. Knudson; J. E. Daw

2011-03-01T23:59:59.000Z

54

Startup of the Fission Converter Epithermal Neutron Irradiation Facility at the MIT Reactor  

Science Conference Proceedings (OSTI)

A new epithermal neutron irradiation facility, based on a fission converter assembly placed in the thermal column outside the reactor core, has been put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). This facility was constructed to provide a high-intensity, forward-directed beam for use in neutron capture therapy with an epithermal flux of [approximately equal to]10{sup 10} n/cm{sup 2}.s at the medical room entrance with negligible fast neutron and gamma-ray contamination. The fission converter assembly consists of 10 or 11 MITR fuel elements placed in an aluminum tank and cooled with D{sub 2}O. Thermal-hydraulic criteria were established based on heat deposition calculations. Various startup tests were performed to verify expected neutronic and thermal-hydraulic behavior. Flow testing showed an almost flat flow distribution across the fuel elements with <5% bypass flow. The total reactivity change caused by operation of the facility was measured at 0.014 {+-} 0.002% {delta}K/K. Thermal power produced by the facility was measured to be 83.1 {+-} 4.2 kW. All of these test results satisfied the thermal-hydraulic safety criteria. In addition, radiation shielding design measurements were made that verified design calculations for the neutronic performance.

Newton, Thomas H. Jr.; Riley, Kent J.; Binns, Peter J.; Kohse, Gordon E.; Hu Linwen; Harling, Otto K. [Massachusetts Institute of Technology (United States)

2002-08-15T23:59:59.000Z

55

Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor  

E-Print Network (OSTI)

A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast neutrons with the alloy. It is possible, therefore, by changing the alloy thickness, to produce distinctly different dose weighted neutron spectra inside the exposure cave of the FNIS. The calculated neutron spectra showed close agreement with the results of activation foil measurements, unfolded by SAND-II close to the cell window. However, there was a considerable less agreement for locations far away from the cell window. Even though the magnitude of values such as neutron flux and tissue kerma rates in air differed, the weighted average neutron energies showed close agreement between the MCNP and SAND-II since the normalized neutron spectra were in a good agreement each other. A paired ion chamber system was constructed, one with a tissue equivalent plastic (A-150) and propane gas for total dose monitoring, and another with graphite and argon for photon dose monitoring. Using the pair of detectors, the neutron to gamma ratio can be inferred. With the 20 cm-thick FNIS, the absorbed dose rates of neutrons measured with the paired ion chamber method and calculated with the SAND-II results were 13.7 ?? 0.02 Gy/min and 15.5 Gy/min, respectively. The absorbed dose rate of photons and the gamma contribution to total dose were 6.7??10-1 ?? 1.3??10-1 Gy/min and 4.7%, respectively. However, the estimated gamma contribution to total dose varied between 3.6 % to 6.6 % as the assumed neutron sensitivity to the graphite detector was changed from 0.01 to 0.03.

Jang, Si Young

2004-08-01T23:59:59.000Z

56

Experimental and Computational Study of the Flux Spectrum in Materials Irradiation Facilities of the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This report compares the available experimental neutron flux data in the High Flux Isotope Reactor (HFIR) to computational models of the HFIR loosely based on the experimental loading of cycle 400. Over the last several decades, many materials irradiation experiments have included fluence monitors which were subsequently used to reconstruct a coarse-group energy-dependent flux spectrum. Experimental values for thermal and fast neutron flux in the flux trap about the midplane are found to be 1.78 0.27 and 1.05 0:06 1E15 n/cm sec, respectively. The reactor physics code MCNP is used to calculate neutron flux in the HFIR at irradiation locations. The computational results are shown to correspond to closely to experimental data for thermal and fast neutron flux with calculated percent differences ranging from 0:55 13.20%.

McDuffee, Joel Lee [ORNL; Daly, Thomas F [ORNL

2012-01-01T23:59:59.000Z

57

Void Swelling Of Aisi 321 Analog Stainless Steel Irradiated At Low Dpa Rates In The Bn-350 Reactor  

Science Conference Proceedings (OSTI)

In several recently published studies conducted on a Soviet analog of AISI 321 stainless steel irradiated in either fast reactors or light water reactors, it was shown that the void swelling phenomenon extended to temperatures as low as ~300ºC or less, when produced by neutron irradiation at dpa rates in the range 10-7 to 10-8 dpa/sec. Other studies yielded similar results for AISI 316 and the Russian analog of AISI 316. In the current study a blanket duct assembly from BN-350, constructed from the Soviet analog of AISI 321, also exhibits swelling at dpa rates on the order of 10-8 dpa/sec, with voids seen as low as 281oC and only 0.65 dpa. It appears that low-temperature swelling occurs at low dpa rates in 300 series stainless steels in general, and also occurs during irradiations conducted in either fast or mixed spectrum reactors. Therefore it is expected that a similar behavior will be observed in fusion devices as well.

Maksimkin, O. P.; Tsai, K. V.; Turubarova, L. G.; Doronina, T. A.; Garner, Francis A.

2006-03-01T23:59:59.000Z

58

Effects of fabrication and irradiation on the dissolution of (U,Pu)O$sub 2$ reactor fuels  

SciTech Connect

From American Ceramics Society nuclear division meeting; San Francisco, California, USA (29 Oct 1973). LMFBR-type reactors will be fueled with stainless- steel-clad MFBR fuel cycle are the recovery of uranium and plutonium and the refabrication of the fuel elements in the minimum practicable time at lowest cost. Effect of fabrication method and irradiation conditions on recovery of the fuel is discussed. The Purex process is used to prepare the feed solutions. Test specimens contained fuels derived from sol-gel, coprecipitated, and mechanically blended oxides. Irradiation levels varied from unirradiated to 100,000 MWd/ton. Solubility of the fuels in terms of the fabrication method is coprecipitated> sol- gel > mechanically blended. Irradiation tends to increase the fuel solubility. (LK)

Goode, J.H.; Fitzgerald, C.L.; Vaughen, V.C.A.

1973-01-01T23:59:59.000Z

59

Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

Timothy A. Hyde

2012-06-01T23:59:59.000Z

60

Irradiation Studies  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Materials and Fuels for the Current and Advanced Nuclear Reactors II: Irradiation Studies Sponsored by: TMS Structural Materials Division, ...

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups  

Science Conference Proceedings (OSTI)

The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39 × 1026 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

Tomoyuki Uwaba; Masahiro Ito; Kozo Katsuyama; Bruce J. Makenas; David W. Wootan; Jon Carmack

2011-05-01T23:59:59.000Z

62

Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups  

Science Conference Proceedings (OSTI)

The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39E26 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

Uwaba, Tomoyuki; Ito, Masahiro; Mizuno, Tomoyasu; Katsuyama, Kozo; Makenas, Bruce J.; Wootan, David W.; Carmack, Jon

2011-06-16T23:59:59.000Z

63

Feasibility of underwater welding of highly irradiated in-vessel components of boiling-water reactors: A literature review  

SciTech Connect

In February 1997, the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), initiated a literature review to assess the state of underwater welding technology. In particular, the objective of this literature review was to evaluate the viability of underwater welding in-vessel components of boiling water reactor (BWR) in-vessel components, especially those components fabricated from stainless steels that are subjected to high neutron fluences. This assessment was requested because of the recent increased level of activity in the commercial nuclear industry to address generic issues concerning the reactor vessel and internals, especially those issues related to repair options. This literature review revealed a preponderance of general information about underwater welding technology, as a result of the active research in this field sponsored by the U.S. Navy and offshore oil and gas industry concerns. However, the literature search yielded only a limited amount of information about underwater welding of components in low-fluence areas of BWR in-vessel environments, and no information at all concerning underwater welding experiences in high-fluence environments. Research reported by the staff of the U.S. Department of Energy (DOE) Savannah River Site and researchers from the DOE fusion reactor program proved more fruitful. This research documented relevant experience concerning welding of stainless steel materials in air environments exposed to high neutron fluences. It also addressed problems with welding highly irradiated materials, and primarily attributed those problems to helium-induced cracking in the material. (Helium is produced from the neutron irradiation of boron, an impurity, and nickel.) The researchers found that the amount of helium-induced cracking could be controlled, or even eliminated, by reducing the heat input into the weld and applying a compressive stress perpendicular to the weld path.

Lund, A.L.

1997-11-01T23:59:59.000Z

64

Fission neutron/gamma irradiation of Bacillus thuringiensis bacteria at the Texas A&M University Nuclear Science Center Reactor  

E-Print Network (OSTI)

The objective of this research is to fully characterize the effectiveness of the Texas A&M University Nuclear Science Center Reactor (TAMU NSCR) neutrons for bacterial sterilization, and to assess the secondary gamma flux produced when neutrons collide with nuclei in biological materials. Sterilization of bacteria by exposure to gamma rays and charged particles is fairly well understood. Exposure to neutrons and gamma rays from fission as a means of sterilization has not to date been adequately characterized. The lack of data on the relationship between biological detriment resulting from thermal or fast neutron exposures and absorbed doses as applied in countermeasures to weapons of mass destruction (WMD) is the primary motivation for this investigation of neutron doses to endospores. Bacillus thuringiensis (Bt) spores were irradiated after producing and sampling them using standard microbiological procedures. Irradiation was accomplished using neutrons and gamma rays from the 1-MW TRIGA reactor at the TAMU NSCR using a reactor power of 100 kilowatts (kW). The combination of neutron and gamma-ray absorbed dose provided an effective means of sterilization of these types of spores; it yielded a 100-percent kill for the first study. Survival curves have been developed, from subsequent experiments, for these energy dependent neutron interactions with biological materials using a combination of radiation dosimetry, microbiological culture techniques, and computer modeling (Monte Carlo Neutral Particle history modeling - MCNP). Survival curves indicate a D?? value of 321.08 Gy. Additional work is needed to investigate the specific bacteria used in biological weapons in order to understand agent-specific radiation sensitivity. Once this is done, more effective and meaningful experiments can be conducted in order to tailor the neutron source strength to the robustness of the threat.

Hearnsberger, David Wayne

2001-01-01T23:59:59.000Z

65

Comparison of HEU and LEU neutron spectra in irradiation facilities at the Oregon State TRIGA® reactor.  

E-Print Network (OSTI)

??In 2008, the Oregon State TRIGA® Reactor (OSTR) was converted from highly-enriched uranium (HEU) fuel lifetime improvement plan (FLIP) fuel to low-enriched uranium (LEU) fuel.… (more)

[No author

2012-01-01T23:59:59.000Z

66

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

Freels, James D [ORNL; Jain, Prashant K [ORNL; Hobbs, Randy W [ORNL

2012-01-01T23:59:59.000Z

67

Multiscale Simulation of Thermo-mechancial Processes in Irradiated Fission-reactor Materials.  

SciTech Connect

The work funded from this project has been published in six papers, with two more in draft form, with submission planned for the near future. The papers are: (1) Kinetically-Evolving Irradiation-Induced Point-Defect Clusters in UO{sub 2} by Molecular-Dynamics Simulation; (2) Kinetically driven point-defect clustering in irradiated MgO by molecular-dynamics simulation; (3) Grain-Boundary Source/Sink Behavior for Point Defect: An Atomistic Simulation Study; (4) Energetics of intrinsic point defects in uranium dioxide from electronic structure calculations; (5) Thermodynamics of fission products in UO{sub 2{+-}x}; and (6) Atomistic study of grain boundary sink strength under prolonged electron irradiation. The other two pieces of work that are currently being written-up for publication are: (1) Effect of Pores and He Bubbles on the Thermal Transport Properties of UO2 by Molecular Dynamics Simulation; and (2) Segregation of Ruthenium to Edge Dislocations in Uranium Dioxide.

Simon R. Phillpot

2012-06-08T23:59:59.000Z

68

Validation of a Monte Carlo based depletion methodology via High Flux Isotope Reactor HEU post-irradiation examination measurements  

Science Conference Proceedings (OSTI)

The purpose of this study is to validate a Monte Carlo based depletion methodology by comparing calculated post-irradiation uranium isotopic compositions in the fuel elements of the High Flux Isotope Reactor (HFIR) core to values measured using uranium mass-spectrographic analysis. Three fuel plates were analyzed: two from the outer fuel element (OFE) and one from the inner fuel element (IFE). Fuel plates O-111-8, O-350-1, and I-417-24 from outer fuel elements 5-O and 21-O and inner fuel element 49-I, respectively, were selected for examination. Fuel elements 5-O, 21-O, and 49-1 were loaded into HFIR during cycles 4, 16, and 35, respectively (mid to late 1960s). Approximately one year after each of these elements were irradiated, they were transferred to the High Radiation Level Examination Laboratory (HRLEL) where samples from these fuel plates were sectioned and examined via uranium mass-spectrographic analysis. The isotopic composition of each of the samples was used to determine the atomic percent of the uranium isotopes. A Monte Carlo based depletion computer program, ALEPH, which couples the MCNP and ORIGEN codes, was utilized to calculate the nuclide inventory at the end-of-cycle (EOC). A current ALEPH/MCNP input for HFIR fuel cycle 400 was modified to replicate cycles 4, 16, and 35. The control element withdrawal curves and flux trap loadings were revised, as well as the radial zone boundaries and nuclide concentrations in the MCNP model. The calculated EOC uranium isotopic compositions for the analyzed plates were found to be in good agreement with measurements, which reveals that ALEPH/MCNP can accurately calculate burn-up dependent uranium isotopic concentrations for the HFIR core. The spatial power distribution in HFIR changes significantly as irradiation time increases due to control element movement. Accurate calculation of the end-of-life uranium isotopic inventory is a good indicator that the power distribution variation as a function of space and time is accurately calculated, i.e. an integral check. Hence, the time dependent heat generation source terms needed for reactor core thermal hydraulic analysis, if derived from this methodology, have been shown to be accurate for highly enriched uranium (HEU) fuel.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

69

REACTOR  

DOE Patents (OSTI)

A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

Roman, W.G.

1961-06-27T23:59:59.000Z

70

Application of optical instrumentations to reactor dosimetry for material irradiation study  

Science Conference Proceedings (OSTI)

Optical dosimetry, utilizing the radioluminescence, the Cerenkov radiation, and the radiation induced optical absorption, has attractive features. However, it has a serious setback, namely, the optical signal changes in the course of irradiation and complicated calibration would be needed. Also, the intensity of radioluminescence would depend complicatedly on energy and kind of incident ions and quanta. Here, optical dosimetry, which could measure the electronic excitation dose rate, the atomic displacement, and the thermal neutron flux, separately and in-situ, is proposed, by analyzing behaviors of radioluminescence peaks in the fused silica (SiO{sub 2}), the chromium doped alumina (Al{sub 2}O{sub 3}-Cr{sub 2}O{sub 3}) and the Li{sub 2}ZrO{sub 3}). (authors)

Shikama, T.; Nagata, S.; Tsuchiya, B.; Zhao, M.; Katsui, H.; Narui, M. [Inst. for Materials Research, Tohoku Univ., 2-1-1 Katahira, Aobaku, Sendai, 980-8577 (Japan)

2011-07-01T23:59:59.000Z

71

Summary report on the HFED (High-Uranium-Loaded Fuel Element Development) miniplate irradiations for the RERTR (Reduced Enrichment Research and Test Reactor) Program  

SciTech Connect

An experiment to evaluate the irradiation characteristics of various candidate low-enriched, high-uranium content fuels for research and test reactors was performed for the US Department of Energy Reduced Enrichment Research and Test Reactor Program. The experiment included the irradiation of 244 miniature fuel plates (miniplates) in a core position in the Oak Ridge Research Reactor. The miniplates were aluminum-based, dispersion-type plates 114.3 mm long by 50.8 mm wide with overall plate thicknesses of 1.27 or 1.52 mm. Fuel core dimensions varied according to the overall plate thicknesses with a minimum clad thickness of 0.20 mm. Tested fuels included UAl/sub x/, UAl/sub 2/, U/sub 3/O/sub 8/, U/sub 3/SiAl, U/sub 3/Si, U/sub 3/Si/sub 1.5/, U/sub 3/Si/sub 2/, U/sub 3/SiCu, USi, U/sub 6/Fe, and U/sub 6/Mn/sub 1.3/ materials. Although most miniplates were made with low-enriched uranium (19.9%), some with medium-enriched uranium (40 to 45%), a few with high-enriched uranium (93%), and a few with depleted uranium (0.2 to 0.4%) were tested for comparison. These fuel materials were irradiated to burnups ranging from /approximately/27 to 98 at. % /sup 235/U depletion. Operation of the experiment, measurement of miniplate thickness as the irradiation progressed, ultimate shipment of the irradiated miniplates to various hot cells, and preliminary results are reported here. 18 refs., 12 figs., 7 tabs.

Senn, R.L.

1989-04-01T23:59:59.000Z

72

Nuclear reactor and materials science research: Final technical report, May 1, 1985-September 30, 1986. [Academic and research utilization of reactor  

SciTech Connect

Throughout the 17-month period of the grant, May 1, 1985 - September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The period encompassed MIT's fiscal year utilization of the reactor during that period may be classified as follows: neutron beam tube research, nuclear materials research and development, radiochemistry and trace analysis, nuclear medicine, radiation health physics, computer control of reactors, dose reduction in nuclear power reactors, reactor irradiations and services for groups outside MIT, and MIT research reactor. This paper provides detailed information on this research academic utilization.

Harling, O.K.

1987-05-11T23:59:59.000Z

73

Directly-irradiated Two-zone Solar Thermochemical Reactor for H2O/CO2 Splitting  

other fossil fuels, as well as the emission of greenhouse gases. Current solar thermochemical approaches are greatly restricted by the efficiency of the reactor, which is less than one percent. This solar thermochemical reactor has the potential ...

74

Assessment of Initial Test Conditions for Experiments to Assess Irradiation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of Initial Test Conditions for Experiments to Assess Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today's nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. Despite 30 years of experience, the underlying mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) are unknown. Extended service conditions will increase the exposure

75

Method for improving performance of irradiated structural materials  

DOE Patents (OSTI)

Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.

Megusar, Janez (Belmont, MA); Harling, Otto K. (Hingham, MA); Grant, Nicholas J. (Winchester, MA)

1989-01-01T23:59:59.000Z

76

The influence of helium on mechanical properties of model austenitic alloys, determined using sup 59 Ni isotopic tailoring and fast reactor irradiation  

Science Conference Proceedings (OSTI)

The objective of this effort is to study the separate and synergistic effects of helium and other important variables on the evolution of microstructure and macroscopic properties during irradiation of structural metals. The alloys employed in this study were nominally Fe-15Cr-25Ni, Fe-15Cr-25Ni-0.04P and Fe-15Cr-45Ni (wt %) in both the cold worked and annealed conditions. Tensile testing and microscopy continue on specimens removed from the first, second and third discharges of the {sup 59}Ni isotopic doping experiment. The results to date indicate that helium/dpa ratios typical of fusion reactors (4 to 19 appm/dpa) do not lead to significant changes in the yield strength of model Fe-Cr-Ni alloys. Measurements of helium generated in undoped specimens from the second and third discharges show that the helium/dpa ratio increases during irradiation in FFTF due to the production of {sup 59}Ni. In specimens doped with {sup 59}Ni prior to irradiation, the helium/dpa ratio can increase, decrease or remain the same during the second irradiation interval. This behavior occurs because the cross sections for the production and burnout of {sup 59}Ni are very sensitive to core location and the nature of neighboring components. 14 refs., 5 figs., 3 tabs.

Hamilton, M.L.; Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA)); Oliver, B.M. (Rockwell International Corp., Canoga Park, CA (USA))

1990-11-01T23:59:59.000Z

77

Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.  

Science Conference Proceedings (OSTI)

The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decide to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.

Garner, P. L.; Hanan, N. A. (Nuclear Engineering Division)

2011-06-07T23:59:59.000Z

78

Safeguards and security considerations associated with the use of mixed-oxide fuel in U.S. commercial reactors  

Science Conference Proceedings (OSTI)

The US Department of Energy`s overall plutonium disposition strategy includes irradiation of mixed-oxide (MOX) fuel derived from surplus weapons-usable plutonium via domestic, commercial reactors. The storage, handling, and irradiation of weapons-usable plutonium-derived MOX fuel will increase the requirements for safeguards and security at commercial light-water reactor sites, which presently only use low-enriched uranium fuel. Applicable safeguards and security regulations and requirements for the reactor irradiation services portion of the project are discussed in this topical report. Requirements for the MOX fuel fabrication portion of the project are discussed in a separate report.

Ehinger, M.E. [Oak Ridge Y-12 Plant, TN (United States). National Security Program Office

1997-04-01T23:59:59.000Z

79

Irradiation Embritlement in Alloy HT-­9  

Science Conference Proceedings (OSTI)

HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures ( 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

Serrano De Caro, Magdalena [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

80

Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Services ESnet provides interoperable, effective, reliable, and high performance network communications infrastructure, and certain collaboration services, in support of the Office of Science (SC)'s large-scale, collaborative science programs. ESnet provides users with high bandwidth access to DOE sites and DOE's primary science collaborators including Research and

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Services  

Energy.gov (U.S. Department of Energy (DOE))

The Human Capital Office offers benefit, new employee orientation and some learning & development related services to all DOE employees. Additionally the Office supplies employee and labor...

82

Spectral Emissivity Measurements of High Temperature Reactor ...  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

83

Materials Degradation Issues in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

84

Irradiation Performance of Advanced and Model Alloys  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Mechanical Performance of Materials for Current and Advanced Nuclear Reactors: Irradiation Performance of Advanced and Model Alloys

85

Batch slurry photocatalytic reactors for the generation of hydrogen from sulfide and sulfite waste streams under solar irradiation  

SciTech Connect

In this study, two solar slurry photocatalytic reactors i.e., batch reactor (BR) and batch recycle reactor with continuous supply of inert gas (BRRwCG) were developed for comparing their performance. The performance of the photocatalytic reactors were evaluated based on the generation of hydrogen (H{sub 2}) from water containing sodium sulfide (Na{sub 2}S) and sodium sulfite (Na{sub 2}SO{sub 3}) ions. The photoreactor of capacity 300 mL was developed with UV-vis transparent walls. The catalytic powders ((CdS/ZnS)/Ag{sub 2}S + (RuO{sub 2}/TiO{sub 2})) were kept suspended by means of magnetic stirrer in the BR and gas bubbling and recycling of the suspension in the BRRwCG. The rate constant was found to be 120.86 (einstein{sup -1}) for the BRRwCG whereas, for the BR it was found to be only 10.92 (einstein{sup -1}). The higher rate constant was due to the fast desorption of products and suppression of e{sup -}/h{sup +} recombination. (author)

Priya, R.; Kanmani, S. [Centre for Environmental Studies, Anna University, Chennai (India)

2009-10-15T23:59:59.000Z

86

High temperature post-irradiation performance of spent pressurized-water-reactor fuel rods under dry-storage conditions  

Science Conference Proceedings (OSTI)

Post-irradiation studies on failure mechanisms of well characterized PWR rods were conducted for up to a year at 482, 510 and 571/sup 0/C in unlimited air and inert gas atmospheres. No cladding breaches occurred even though the tests operated many orders of magnitude longer in time than the lifetime predicted by Blackburn's analyses. The extended lifetime is due to significant creep strain of the Zircaloy cladding which decreases the internal rod pressures. The cladding creep also contributes to radial cracks, through the external oxide and internal FCCI layers, which propagated into and arrested in an oxygen stabilized ..cap alpha..-Zircaloy layer. There were no signs of either additional cladding hydriding, stress-corrosion cracking or fuel pellet degradation. Using the Larson-Miller formulization, a conservative maximum storage temperature of 400/sup 0/C is recommended to ensure a 1000-year cladding lifetime. This accounts for crack propagation and assumes annealing of the irradiation-hardened cladding.

Einziger, R.E.; Atkin, S.D.; Stellrecht, D.E.; Pasupathi, V.

1981-06-01T23:59:59.000Z

87

Structural Materials - Irradiation Studies II  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... Materials and Fuels for the Current and Advanced Nuclear Reactors: Structural Materials - Irradiation Studies II Sponsored by: The Minerals, ...

88

Fossil-fuel processing technical/professional services: comparison of Fischer-Tropsch reactor systems. Phase I, final report  

DOE Green Energy (OSTI)

The Fischer-Tropsch reaction was commercialized in Germany and used to produce military fuels in fixed bed reactors. It was recognized from the start that this reactor system had severe operating and yield limitations and alternative reactor systems were sought. In 1955 the Sasol I complex, using an entrained bed (Synthol) reactor system, was started up in South Africa. Although this reactor was a definite improvement and is still operating, the literature is filled with proponents of other reactor systems, each claiming its own advantages. This report provides a summary of the results of a study to compare the development potential of three of these reactor systems with the commercially operating Synthol-entrained bed reactor system. The commercial Synthol reactor is used as a benchmark against which the development potential of the other three reactors can be compared. Most of the information on which this study is based was supplied by the M.W. Kellogg Co. No information beyond that in the literature on the operation of the Synthol reactor system was available for consideration in preparing this study, nor were any details of the changes made to the original Synthol system to overcome the operating problems reported in the literature. Because of conflicting claims and results found in the literature, it was decided to concentrate a large part of this study on a kinetic analysis of the reactor systems, in order to provide a theoretical analysis of intrinsic strengths and weaknesses of the reactors unclouded by different catalysts, operating conditions and feed compositions. The remainder of the study considers the physical attributes of the four reactor systems and compares their respective investment costs, yields, catalyst requirements and thermal efficiencies from simplified conceptual designs.

Thompson, G.J.; Riekena, M.L.; Vickers, A.G.

1981-09-01T23:59:59.000Z

89

Heavy-section steel irradiation program. Progress report, October 1994--March 1995  

SciTech Connect

This document is the October 1994-March 1995 Progress Report for the Heavy Section Steel Irradiation Program. The report contains a summary of activities in each of the 14 tasks of the HSSI Program, including: (1) Program management, (2) Fracture toughness shifts in high-copper weldments, (3) Fracture toughness shifts in low upper-shelf welds, (4) Irradiation effects in a commercial low upper-shelf weld, (5) Irradiation effects on weld heat-affected zone and plate materials, (6) Annealing effects in low upper-shelf welds, (7) Microstructural analysis of radiation effects, (8) In-service irradiated and aged material evaluations, (9) Japanese power development reactor vessel steel examination, (10) fracture toughness curve shift method, (11) Special technical assistance, (12) Technical assistance for JCCCNRS, (13) Correlation monitor materials, and (14) Test reactor irradiation coordination. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Corwin, W.R. [Oak Ridge National Lab., TN (United States)

1995-10-01T23:59:59.000Z

90

Radiation effects in materials for fusion reactors  

DOE Green Energy (OSTI)

The 14-MeV neutrons produced in a fusion reactor result in different irradiation damage than the equivalent fluence in a fast breeded reactor, not only because of the higher defect generation rate, but because of the production of significant concentrations of helium and hydrogen. Although no fusion test reactor exists, the effects of combined displacement damage plus helium can be studied in mixed-spectrum fission reactors for alloys containing nickel (e.g., austenitic stainless steels). The presence of helium appears to modify vacancy and interstitial recombination such that microstructural development in alloys differs between the fusion and fission reactor environments. Since mechanical properties of alloys are related to the microstructure, the simultaneous production of helium and displacement damage impacts upon key design properties such as tensile, fatigue, creep, an crack growth. Through an understanding of the basic phenomena occurring during irradiation and the relationships between microstructure and properties, alloys can be tailored to minimize radiation-induced swelling and improve mechanical properties in fusion reactor service.

Scott, J.L.; Grossbeck, M.L.; Maziasz, P.J.

1981-01-01T23:59:59.000Z

91

STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR  

Science Conference Proceedings (OSTI)

The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

92

Irradiation subassembly  

DOE Patents (OSTI)

An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

Seim, O.S.; Filewicz, E.C.; Hutter, E.

1973-10-23T23:59:59.000Z

93

Microstructure Stability in Irradiated Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

94

The design of a functionally graded composite for service in high temperature lead and lead-bismuth cooled nuclear reactors  

E-Print Network (OSTI)

A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required ...

Short, Michael Philip

2010-01-01T23:59:59.000Z

95

NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

1958-09-01T23:59:59.000Z

96

Irradiation Embritlement in Alloy HT-­9  

SciTech Connect

HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures (< 200 C) and very high radiation exposure (> 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

Serrano De Caro, Magdalena [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

97

BIOLOGICAL IRRADIATION FACILITY  

DOE Patents (OSTI)

A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)

McCorkle, W.H.; Cern, H.S.

1962-04-24T23:59:59.000Z

98

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

99

Production capabilities in US nuclear reactors for medical radioisotopes  

SciTech Connect

The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

1992-11-01T23:59:59.000Z

100

Correlation between Irradiation Hardening and Microstructural ...  

Science Conference Proceedings (OSTI)

Presentation Title, Correlation between Irradiation Hardening and Microstructural Evolution in High Purity Reference V-4Cr-4Ti Alloy for Fusion Reactor.

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Results of charpy V-notch impact testing of structural steel specimens irradiated at {approximately}30{degrees}C to 1 x 10{sup 16} neutrons/cm{sup 2} in a commercial reactor cavity  

SciTech Connect

A capsule containing Charpy V-notch (CVN) and mini-tensile specimens was irradiated at {approximately} 30{degrees}C ({approximately} 85{degrees}F) in the cavity of a commercial nuclear power plant to a fluence of 1 x 10{sup 16} neutrons/cm{sup 2} (> 1MeV). The capsule included six CVN impact specimens of archival High Flux Isotope Reactor A212 grade B ferritic steel and five CVN impact specimens of a well-studied A36 structural steel. This irradiation was part of the ongoing study of neutron-induced damage effects at the low temperature and flux experienced by reactor supports. The plant operators shut down the plant before the planned exposure was reached. The exposure of these specimens produced no significant irradiation-induced embrittlement. Of interest were the data on unirradiated specimens in the L-T orientation machined from a single plate of A36 structural steel, which is the same specification for the structural steel used in some reactor supports. The average CVN energy of five unirradiated specimens obtained from one region of the plate and tested at room temperature was {approximately} 99 J, while the energy of 11 unirradiated specimens from other locations of the same plate was 45 J, a difference of {approximately} 220%. The CVN impact energies for all 18 specimens ranged from a low of 32 J to a high of 111 J. Moreover, it appears that the University of Kansas CVN impact energy data of the unirradiated specimens at the 100-J level are shifted toward higher temperatures by about 20 K. The results were an example of the extent of scatter possible in CVN impact testing. Generic values for the CVN impact energy of A36 should be used with caution in critical applications.

Iskander, S.K.; Stoller, R.E.

1997-04-01T23:59:59.000Z

102

Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report  

SciTech Connect

This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.

Hauptman, H.M.; Petro, J.N.; Jacobi, O. [and others

1995-04-01T23:59:59.000Z

103

Reactor Operations informal monthly report September 1994  

SciTech Connect

This paper presents operations at the MRR and HFBR reactors at Brookhaven National Laboratory for September 1994. Reactor run-times, instrumentation, mechanical maintenance, occurrence reports and safety information are listed. Irradiation summaries are included.

Junker, L.

1994-09-01T23:59:59.000Z

104

Constitutive Model for Irradiation Creep of HT9 to High Doses  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

105

The Effect of Self-Ion Irradiation on the Indentation Response of Iron ...  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

106

Fuel Reliability Program: Post-Irradiation Examination and Testing of High-Fluence Control Rod Silver-Indium-Cadmium Absorber from t he Kernkraftwerk Obrigheim Reactor  

Science Conference Proceedings (OSTI)

Within a project sponsored by the Electric Power Research Institute (EPRI), one control rod absorber silver-indium-cadmium (AgInCd) specimen, KWO395, irradiated in Kernkraftwerk Obrigheim (KWO) and one control rod absorber specimen, R035/F9, irradiated in Ringhals 2 have been examined in the hot cell laboratory at Studsvik. The objective of the examinations was to characterize the absorber material and investigate its physical, chemical, and microstructural changes due to high neutron fluence/exposure us...

2011-09-16T23:59:59.000Z

107

PROCEEDINGS OF THE AEC SYMPOSIUM FOR CHEMICAL PROCESSING OF IRRADIATED FUELS FROM POWER, TEST, AND RESEARCH REACTORS, RICHLAND, WASHINGTON, OCTOBER 20 AND 21, 1959  

SciTech Connect

A review is presented in this symposium of the technology currently available for processing spent fuels from research, test, and power reactors. Twenty-one papers are included. Separate abstracts have been prepared for each paper. (W.L.H.)

1960-01-01T23:59:59.000Z

108

Light Water Reactor Sustainability Program: Materials Aging and Degradation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Aging and Materials Aging and Degradation Technical Program Plan Light Water Reactor Sustainability Program: Materials Aging and Degradation Technical Program Plan Components serving in a nuclear reactor plant must withstand a very harsh environment including extended time at temperature, neutron irradiation, stress, and/or corrosive media. The many modes of degradation are complex and vary depending on location and material. However, understanding and managing materials degradation is a key for the continued safe and reliable operation of nuclear power plants. Extending reactor service to beyond 60 years will increase the demands on materials and components. Therefore, an early evaluation of the possible effects of extended lifetime is critical. The recent NUREG/CR-6923 gives a

109

AFIP-4 Irradiation Summary Report  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE). The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

2011-09-01T23:59:59.000Z

110

AFIP-4 Irradiation Summary Report  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE)1,2. The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs

2012-01-01T23:59:59.000Z

111

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion  

SciTech Connect

The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

2012-05-01T23:59:59.000Z

112

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-06-01T23:59:59.000Z

113

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, July 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-07-01T23:59:59.000Z

114

Fission reactors and materials  

SciTech Connect

The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

Frost, B.R.T.

1981-12-01T23:59:59.000Z

115

Influence of Irradiation and Stress/Strain on the In-Reactor Behavior of High-Purity Stainless Steels and Ni-Base Alloys -- Task B.  

Science Conference Proceedings (OSTI)

Annealed austenitic stainless steels and nickel-base alloys that are stressed close to or above their yield strength at significant neutron fluence can become susceptible to irradiation assisted stress corrosion cracking (IASCC). This report continues an earlier study examining the effect of coolant chemistry and high fluence on the susceptibility of several heats of austenitic materials in both the PWR and BWR environments.

1998-05-26T23:59:59.000Z

116

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

117

Heavy-section steel irradiation program. Progress report, October 1992--March 1993  

Science Conference Proceedings (OSTI)

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is one of only two more safety-related components of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established at Oak Ridge National Laboratory (ORNL) under sponsorship of the Nuclear Regulatory Commission (NRC). The primary goal of this major safety program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior (in particular, the fracture toughness properties) of typical pressure-vessel steels as they relate to light-water-reactor pressure-vessel integrity. The program centers on experimental assessments of irradiation-induced embrittlement (including the completion of certain irradiation studies previously conducted by the Heavy-Section Steel Technology Program) augmented by detailed examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties.

Corwin, W.R.

1998-04-01T23:59:59.000Z

118

INEEL/EXT-01-01623 MODULAR PEBBLE-BED REACTOR PROJECT  

E-Print Network (OSTI)

in the early 1990s. Fuel compacts were irradiated at the High Flux Isotope Reactor (HFIR) and the Advanced Test

119

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

120

International Fuel Services and Commercial Engagement | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Fuel Services and Commercial Engagement Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Bilateral...

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reactor Safety Research Programs Quarterly Report October - December 1980  

SciTech Connect

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S K

1981-04-01T23:59:59.000Z

122

Reactor Safety Research Programs Quarterly Report July - September 1981  

SciTech Connect

This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1982-01-01T23:59:59.000Z

123

Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms  

SciTech Connect

Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required

Busby, Jeremy T [ORNL; Gussev, Maxim N [ORNL

2011-04-01T23:59:59.000Z

124

Reactor and Nuclear Systems Division (RNSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

125

Materials Reliability Program: Testing and Evaluation of Two Reactor Pressure Vessel Steels Irradiated to Assess Through-Wall Attenu ation of Radiation Embrittlement (MRP-203)  

Science Conference Proceedings (OSTI)

The change in neutron energy spectrum through the wall of a reactor pressure vessel (RPV) requires the use of an exposure parameter or metric for assessing radiation embrittlement. This report looks at experimental fracture toughness and Charpy V-notch data generated in a special International Atomic Energy Agency (IAEA) experiment designed to simulate an RPV wall of 180-mm thickness. These experimental data are compared with the current exposure metric of displacements per atom (dpa) coupled with an emb...

2006-10-04T23:59:59.000Z

126

Irradiation and Testing of Fuels and Cladding Materials  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Mechanical Performance of Materials for Current and Advanced Nuclear Reactors: Irradiation and Testing of Fuels and Cladding Materials

127

Development of Microstructure and Irradiation Hardening of Zircaloy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 300C in the High Flux Isotope Reactor (HFIR) at relatively low neutron  ...

128

A Rate-Theory Approach to Irradiation Damage Modeling with ...  

Science Conference Proceedings (OSTI)

Symposium, Materials and Fuels for the Current and Advanced Nuclear Reactors II. Presentation Title, A Rate-Theory Approach to Irradiation Damage Modeling ...

129

Conducting Well-Controlled Ion Irradiations To Understand Neutron Irradiation Effects In Materials  

Science Conference Proceedings (OSTI)

A firm understanding of the effect of radiation on materials is required to develop predictive models of materials behavior in-reactor and provide a foundation for creating new, more radiation-tolerant materials. Ion irradiation can serve this purpose for nuclear reactor components and is becoming a key element of materials development for advanced nuclear reactors. Ion irradiations can be conducted quickly, at low cost, and with precise control over irradiation temperature, temperature uniformity, dose rate, dose uniformity and total dose. During proton irradiations the 2{sigma}(twice the standard deviation) of the sample temperature is generally below {approx}7 deg. C, the dose rate variation {approx}3%, the dose uncertainty {approx}3%, and there is an excellent temperature and dose uniformity across the irradiated area. In this article, we describe the experimental setup and irradiation procedure used to conduct well-controlled ion irradiations at the University of Michigan.

Naab, F. U.; West, E. A.; Toader, O. F.; Was, G. S. [Department of Engineering and Radiological Sciences, College of Engineering, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104 (United States)

2011-06-01T23:59:59.000Z

130

Metal fuel manufacturing and irradiation performance  

SciTech Connect

The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed.

Pedersen, D.R.; Walters, L.C.

1992-01-01T23:59:59.000Z

131

Metal fuel manufacturing and irradiation performance  

SciTech Connect

The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed.

Pedersen, D.R.; Walters, L.C.

1992-06-01T23:59:59.000Z

132

Solids irradiator  

DOE Patents (OSTI)

A novel facility for irradiation of solids embodying pathogens wherein solids are conveyed through an irradiation chamber in individual containers of an endless conveyor.

Morris, Marvin E. (Albuquerque, NM); Pierce, Jim D. (Albuquerque, NM); Whitfield, Willis J. (Albuquerque, NM)

1979-01-01T23:59:59.000Z

133

Heavy-section steel irradiation program. Volume 4, No. 2. Semiannual progress report, April 1993--September 1993  

SciTech Connect

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents which have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance which occurs during service, since without that radiation damage, it is virtually impossible to postulate a realistic scenario that would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established to provide a quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into 14 tasks: (1) program management, (2) fracture toughness (K{sub lc}) curve shift in high-copper welds, (3) crack-arrest toughness (K{sub la}) curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K{sub lc} and K{sub la} curve shifts in low upper-shelf (LUS) welds, (6) annealing effects in LUS welds, (7) irradiation effects in a commercial LUS weld, (8) microstructural analysis of irradiation effects, (9) in-service aged material evaluations, (10) correlation monitor materials, (11) special technical assistance, (12) Japan Power Development Reactor steel examination, (13) technical assistance for Joint Coordinating Committee on Civilian Nuclear Reactor Safety (JCCCNRS) Working Groups 3 and 12, and (14) additional requirements for materials.

Corwin, W.R. [Oak Ridge National Lab., TN (United States)

1995-03-01T23:59:59.000Z

134

Fuel or irradiation subassembly  

DOE Patents (OSTI)

A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

Seim, O.S.; Hutter, E.

1975-12-23T23:59:59.000Z

135

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

136

Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals.

Not Available

1987-05-11T23:59:59.000Z

137

Generation and Retention of Helium and Hydrogen in Austenitic Steels Irradiated in a Variety of LWR and Test Reactor Spectral Environments  

DOE Green Energy (OSTI)

In fission and fusion reactor environments stainless steels generate significant amounts of helium and hydrogen by transmutation. The primary sources of helium are boron and nickel, interacting with both fast and especially thermal neutrons. Hydrogen arises primarily from fast neutron reactions, but is also introduced into steels at often much higher levels by other environmental processes. Although essentially all of the helium is retained in the steel, it is commonly assumed that most of the hydrogen is not retained. It now appears that under some circumstances, significant levels of hydrogen can be retained, especially when helium-nucleated cavities become a significant part of the microstructure. A variety of stainless steel specimens have been examined from various test reactors, PWRs and BWRs. These specimens were exposed to a wide range of neutron spectra with different thermal/fast neutron ratios. Pure nickel and pure iron have also been examined. It is shown that all major features of the retention of helium and hydrogen can be explained in terms of the composition, thermal/fast neutron ratio and the presence or absence of helium-nucleated cavities. In some cases, the hydrogen retention is very large and can exceed that generated by transmutation, with the additional hydrogen arising from either environmental sources and/or previously unidentified radioisotope sources that may come into operation at high neutron exposures.

Garner, Francis A.; Oliver, Brian M.; Greenwood, Lawrence R.; Edwards, Danny J.; Bruemmer, Stephen M.; Grossbeck, Martin L.

2002-03-31T23:59:59.000Z

138

Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors  

Science Conference Proceedings (OSTI)

A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

Dawn Scates

2010-10-01T23:59:59.000Z

139

RADIATION FACILITY FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1961-12-12T23:59:59.000Z

140

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

Science Conference Proceedings (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

HAPO GRAPHITE IRRADIATION CAPSULES  

SciTech Connect

A summary is presented of the broad field of graphite irradiation capsules. The various capsule designs are considered; they include temperature- controlled and temperature-monitored capsules. The components and materials of the capsules are described. Finally, methods are given for carrying out heat trandsfer calculations in capsule design and neutron spectra calculations for correlation of radiation data from different reactors. (D.L.C.)

Helm, J.W.

1963-09-18T23:59:59.000Z

142

Heat pipe thermal control of irradiation capsules  

SciTech Connect

From 1st international heat pipe conference; Stuttgart, F.R. Germany (15 Oct 1973). The use of heat pipes to control the temperature of irradiation capsules containing fast breeder reactor structural materials is discussed. (TFD)

Deverall, J.E.

1974-04-30T23:59:59.000Z

143

FUNDAMENTALS IN THE OPERATION OF NUCLEAR TEST REACTORS. VOLUME 1. REACTOR SCIENCE AND TECHNOLOGY  

SciTech Connect

A resume of nuclear physics basic to reactor operation precedes discussion of aspects of reactor physics, engineering, chemistry, metallurgy, instrumentation, control, kinetics, and safety. The object is to provide an approach to and understanding of problems in irradiation test programs in the Materials Testing and Engineering Test Reactors. (D.C.W.)

1963-06-01T23:59:59.000Z

144

Irradiation Performance - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Testing > Materials Testing > Irradiation Performance Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Irradiated Materials Overview Light Water Reactor Materials Other Current Activities Future Directions Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Irradiation Performance Bookmark and Share The activities of the Irradiation Performance Section (IPS) are aimed at determining and assessing normal-operation and accident behavior of neutron-irradiated material throughout the life cycle of the materials. The conditions of interest are normal in-reactor operation, design-basis accidents, intermediate storage in pools and dry casks, and ultimate

145

System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2  

Science Conference Proceedings (OSTI)

The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors.

Ellis, R.J.

2000-11-01T23:59:59.000Z

146

PROPERTY CHANGES OF CYANATE ESTER/EPOXY INSULATION SYSTEMS CAUSED BY AN ITER-LIKE DOUBLE IMPREGNATION AND BY REACTOR IRRADIATION  

Science Conference Proceedings (OSTI)

Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2x10{sup 22} m{sup -2}(E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W. [Atominstitut, Vienna University of Technology, 1020 Wien (Austria)

2010-04-08T23:59:59.000Z

147

Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports  

Science Conference Proceedings (OSTI)

A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

Not Available

1993-11-01T23:59:59.000Z

148

United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support  

SciTech Connect

The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

Douglas Morrell

2011-03-01T23:59:59.000Z

149

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

150

RERTR-12 Insertion 2 Irradiation Summary Report  

SciTech Connect

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

151

Thermal Reactor Safety  

Science Conference Proceedings (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

152

A CONCEPTUAL DESIGN OF A SHIELD TESTING AND MATERIALS IRRADIATION FACILITY  

SciTech Connect

A conceptual design is presented for a test reactor facility to be used for shielding experiments and component irradintions necessary for airframe development for the nuclear airplane program. To meet both requirements a modified swimming-pool reactor is used, with a dry irradintion cell of 320 cu ft of useful volume provided for component testing, while shielding experiments are performed in the pool in the usual manner. A BSR-type core is operated at 1 MW to provide a fest neutron flux in the irradiation cell of 10/sup 12/n/cm/sup 2/ sec at the core face and 10/sup 11/at a distance of 4 feet. The irradiation-cell facility is designed to avoid the need of remote operations in making up service connections to the experimental piece. The reactor is contained in a cylindrical building designed for 6 psi internal pressure to meet the conditions of the maximum credible accident. The estimated cost of the facility, including the reactor and the fabrication cost for an initial fuel charge, is 874,000. (auth)

Frankfort, J.H.

1956-11-20T23:59:59.000Z

153

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of High Value Surveillance Materials Assessment of High Value Surveillance Materials Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely

154

Modeling of Irradiation Hardening of Polycrystalline Materials  

Science Conference Proceedings (OSTI)

High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

2011-09-14T23:59:59.000Z

155

Irradiation Effects  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... Fuel performance in nuclear reactors is highly dependent on ... National Laboratory; 2Y-12 National Security Complex; 3University of Idaho

156

Electrorefining {open_quotes}N{close_quotes} reactor fuel  

SciTech Connect

Principles of purifying of uranium metal by electrorefining are reviewed. Metal reactor fuel after irradiation is a form of impure uranium. Dissolution and deposition electrorefining processes were developed for spent metal fuel under the Integral Fast Reactor Program. Application of these processes to the conditioning of spent N-reactor fuel slugs is examined.

Gay, E.C.; Miller, W.E.

1995-02-01T23:59:59.000Z

157

Effects of Neutron Irradiation on Positron Lifetime and Micro-Vicker ...  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Effects of Neutron Irradiation on Positron Lifetime and Micro-Vicker Hardness of Fe-Cu Model Alloys and Reactor Pressure Vessel Steel

158

Neutron Flux Measurements and Calculations in the Gamma Irradiation Facility Using MCNPX.  

E-Print Network (OSTI)

??The gamma irradiation facility at the High Flux Isotope Reactor (HFIR)is used to deliver a pure gamma dose to any target of interest. in addition… (more)

Giuliano, Dominic Richard

2010-01-01T23:59:59.000Z

159

NUCLEAR REACTOR  

DOE Patents (OSTI)

A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

Treshow, M.

1961-09-01T23:59:59.000Z

160

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

Daniels, F.

1959-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NSLS Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services NSLS Services Computing Services Lab Space Libraries Postal Services Procurement Repair & Equipment Services Shipping Procedures Storage User Accounts Workshop Procedures...

162

AGC-1 Post Irradiation Examination Status  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

David Swank

2011-09-01T23:59:59.000Z

163

Light Water Reactor Materials [Irradiation Performance] - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Zircaloy-2 and -4 fuel and cladding have been characterized by the IPS in the Alpha-Gamma Hot-Cell Facility (AGHCF). The high-burnup BWR rod segments were received at Argonne in...

164

CONVECTION REACTOR  

DOE Patents (OSTI)

An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

Hammond, R.P.; King, L.D.P.

1960-03-22T23:59:59.000Z

165

Reactor Core Assembly - HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Facilities › HFIR › Reactor Core Assembly Home › Facilities › HFIR › Reactor Core Assembly Reactor Core Assembly The reactor core assembly is contained in an 8-ft (2.44-m)-diameter pressure vessel located in a pool of water. The top of the pressure vessel is 17 ft (5.18 m) below the pool surface, and the reactor horizontal mid-plane is 27.5 ft (8.38 m) below the pool surface. The control plate drive mechanisms are located in a subpile room beneath the pressure vessel. These features provide the necessary shielding for working above the reactor core and greatly facilitate access to the pressure vessel, core, and reflector regions. In-core irradiation and experiment locations (cross section at horizontal midplane) Reactor core assembly Reactor core assembly: (1) in-core irradiation and experiment locations,

166

Synergetic Effect of Ni and Cu in French Reactor Pressure Vessel ...  

Science Conference Proceedings (OSTI)

Symposium, Materials and Fuels for the Current and Advanced Nuclear Reactors II ... A Rate-Theory Approach to Irradiation Damage Modeling with Random ...

167

Gas-Cooled Fast Reactor Program. Annual progress report for period ending December 31, 1979  

SciTech Connect

Information on the GCFR reactor is presented concerning the Core Flow Test Loop; shielding and physics; pressure vessel and closure studies; and irradiation program.

Gat, U.; Kasten, P.R.

1980-11-01T23:59:59.000Z

168

Materials and Fuels for the Current and Advanced Nuclear Reactors II  

Science Conference Proceedings (OSTI)

Lifetime extension of reactors - nuclear materials aging, degradation and others ... A Rate-Theory Approach to Irradiation Damage Modeling with Random ...

169

Investigation of Freeze-Cast Scaffolds as an Advanced Reactor Fuel ...  

Science Conference Proceedings (OSTI)

Symposium, Materials and Fuels for the Current and Advanced Nuclear Reactors II ... A Rate-Theory Approach to Irradiation Damage Modeling with Random ...

170

Advances in reactor physics education: Visualization of reactor parameters  

Science Conference Proceedings (OSTI)

Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

Snoj, L.; Kromar, M.; Zerovnik, G. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

2012-07-01T23:59:59.000Z

171

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Assessment of Thermal Annealing Needs and Challenges Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from 40y to 80y implies a doubling of the neutron exposure for the RPV. Thus,

172

REACTOR CONTROL DEVICE  

DOE Patents (OSTI)

A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)

Graham, R.H.

1962-09-01T23:59:59.000Z

173

RERTR-13 Irradiation Summary Report  

Science Conference Proceedings (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

174

FFTF utilization for irradiation testing  

SciTech Connect

FFTF utilization for irradiation testing is beginning. Two Fuels Open Test Assemblies and one Vibration Open Test Assembly, both containing in-core contact instrumentation, are installed in the reactor. These assemblies will be used to confirm plant design performance predictions. Some 100 additional experiments are currently planned to follow these three. This will result in an average core loading of about 50 test assemblies throughout the early FFTF operating cycles.

Corrigan, D.C.; Julyk, L.J.; Hoth, C.W.; McGuire, J.C.; Sloan, W.R.

1980-01-01T23:59:59.000Z

175

Irradiation test program for FFTF  

SciTech Connect

Four unique deisgn features are described which make the Fast Flux Test Facility eminently suitable for irradiation test programs. These features are a fast flux level of 7 x 10/sup 15/ neutrons/cm/sup 2//sec, a 36-inch reference (breeder reactor) core height, test volumes suitable for testing of statistical quantities of materials, and the capability for direct (contact) or indirect (proximity) instrumentation of active core experiments.

Corrigan, D.C.; Last, G.A.

1978-06-18T23:59:59.000Z

176

Reactor technology: power conversion systems and reactor operation and maintenance  

SciTech Connect

The use of advanced fuels permits the use of coolants (organic, high pressure helium) that result in power conversion systems with good thermal efficiency and relatively low cost. Water coolant would significantly reduce thermal efficiency, while lithium and salt coolants, which have been proposed for DT reactors, will have comparable power conversion efficiencies, but will probably be significantly more expensive. Helium cooled blankets with direct gas turbine power conversion cycles can also be used with DT reactors, but activation problems will be more severe, and the portion of blanket power in the metallic structure will probably not be available for the direct cycle, because of temperature limitations. A very important potential advantage of advanced fuel reactors over DT fusion reactors is the possibility of easier blanket maintenance and reduced down time for replacement. If unexpected leaks occur, in most cases the leaking circuit can be shut off and a redundant cooling curcuit will take over the thermal load. With the D-He/sup 3/ reactor, it appears practical to do this while the reactor is operating, as long as the leak is small enough not to shut down the reactor. Redundancy for Cat-D reactors has not been explored in detail, but appears feasible in principle. The idea of mobile units operating in the reactor chamber for service and maintenance of radioactive elements is explored.

Powell, J.R.

1977-01-01T23:59:59.000Z

177

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Light Water Reactor Initiatives » Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents September 30, 2011 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement

178

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

Fraas, A.P.; Mills, C.B.

1961-11-21T23:59:59.000Z

179

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

180

U.S. commercial nuclear capacity comes from reactors built ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... The last new reactor to enter commercial service was the Tennessee Valley Authority's ...

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Neural Network Model for the Tomographic Analysis of Irradiated Nuclear Fuel Rods  

SciTech Connect

A tomographic method based on a multilayer feed-forward artificial neural network is proposed for the reconstruction of gamma-radioactive fission product distribution in irradiated nuclear fuel rods. The quality of the method is investigated as compared to a conventional technique on experimental results concerning a Canada deuterium uranium reactor (CANDU)-type fuel rod irradiated in a TRIGA reactor.

Craciunescu, Teddy [National Institute of Nuclear Physics and Engineering (Romania)

2004-04-15T23:59:59.000Z

182

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

Wigner, E.P.

1958-04-22T23:59:59.000Z

183

AGR-1 Irradiation Experiment Test Plan  

DOE Green Energy (OSTI)

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

184

PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL  

DOE Patents (OSTI)

A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

Buyers, A.G.

1959-06-30T23:59:59.000Z

185

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding). This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation. Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

186

NSLS Services | Postal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Postal Services Postal Services U.S. Postal Service BNL has a full-service U.S. Postal Service Office (Upton branch) located in Staff Services, Building 179, x2539. BNL Mail Service Mail is delivered and picked up twice a day from each building on site. Users should leave internal lab mail (brown envelopes, no stamps needed) and U.S. Mail (regular envelopes, stamps required) in the outgoing mail boxes at NSLS mail stop 725A, located in the lobby by the elevator. Receiving Mail During regular working hours, packages and other special deliveries are brought to the Stockroom while regular mail is taken to the mailstops around the building. Each beam port is assigned a mail slot at NSLS mail stop 725A near the elevator in the lobby. The beamline number should be on all mail addressed to users. Mail to users should be addressed as follows

187

Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

188

Californium Neutron Irradiation Facility  

Science Conference Proceedings (OSTI)

Californium Neutron Irradiation Facility. Summary: ... Cf irradiation facility (Photograph by: Neutron Physics Group). Lead Organizational Unit: pml. Staff: ...

2013-07-23T23:59:59.000Z

189

NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS  

Science Conference Proceedings (OSTI)

This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

Hakan Ozaltun & Herman Shen

2011-11-01T23:59:59.000Z

190

Irradiation Processing Department monthly report, October 1961  

SciTech Connect

This document details activities of the irradiation processing department during the month of October, 1961. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

1961-11-17T23:59:59.000Z

191

Irradiation Processing Department monthly report, June 1962  

SciTech Connect

This document details activities of the Irradiation Processing Department during the month of June, 1962. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and NPR Project.

1992-07-13T23:59:59.000Z

192

Irradiation Processing Department monthly report, November 1964  

SciTech Connect

This document details activities of the irradiation processing department during the month of November, 1964. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and Financial Operation.

1964-12-14T23:59:59.000Z

193

Irradiation Processing Department monthly report, November 1962  

SciTech Connect

This document details activities of the Irradiation Processing Department during the month of November, 1962. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

1962-12-14T23:59:59.000Z

194

NUCLEAR REACTOR  

DOE Patents (OSTI)

A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

Moore, R.V.; Bowen, J.H.; Dent, K.H.

1958-12-01T23:59:59.000Z

195

Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

S. T. Khericha; R. C. Pedersen

2003-09-01T23:59:59.000Z

196

Design of a low enrichment, enhanced fast flux core for the Massachusetts Institute of Technology Research Reactor  

E-Print Network (OSTI)

Worldwide, there is limited test reactor capacity to perform the required irradiation experiments on advanced fast reactor materials and fuel designs. This is particularly true in the U.S., which no longer has an operating ...

Ellis, Tyler Shawn

2009-01-01T23:59:59.000Z

197

Heavy-section steel irradiation program. Semiannual progress report, September 1993--March 1994  

SciTech Connect

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only component in the primary pressure boundary for which, if it should rupture, the engineering safety systems cannot assure protection from core damage. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, ft is vital to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance that occurs during service. The Heavy-Section Steel (HSS) Irradiation Program has been established; its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties of typical pressure-vessel steels, as they relate to light-water RPV integrity. The program includes the direct continuation of irradiation studies previously conducted within the HSS Technology Program augmented by enhanced examinations of the accompanying microstructural changes. During this period, the report on the duplex-type crack-arrest specimen tests from Phase 11 of the K{sub la} program was issued, and final preparations for testing the large, irradiated crack-arrest specimens from the Italian Committee for Research and Development of Nuclear Energy and Alternative Energies were completed. Tests on undersize Charpy V-notch (CVN) energy specimens in the irradiated and annealed weld 73W were completed. The results are described in detail in a draft NUREG report. In addition, the ORNL investigation of the embrittlement of the High Flux Isotope RPV indicated that an unusually large ratio of the high-energy gamma-ray flux to fast-neutron flux is most likely responsible for the apparently accelerated embrittlement.

Corwin, W.R. [Oak Ridge National Lab., TN (United States)

1995-04-01T23:59:59.000Z

198

Irradiation Environment of the Materials Test Station  

SciTech Connect

Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

Pitcher, Eric John [Los Alamos National Laboratory

2012-06-21T23:59:59.000Z

199

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

200

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

Wigner, E.P.

1960-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

REACTOR SHIELD  

DOE Patents (OSTI)

Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

1959-02-17T23:59:59.000Z

202

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

1962-10-23T23:59:59.000Z

203

Irradiated Fuels Examination Laboratory (IFEL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Fuels Examination Laboratory Irradiated Fuels Examination Laboratory May 30, 2013 The Irradiated Fuels Examination Laboratory (IFEL) was initially designed and constructed to permit the safe handling of increasing levels of radiation in the chemical, physical, and metallurgical examination of nuclear reactor fuel elements and reactor parts. The IFEL was constructed in 1963 and is a two-story brick building with a partial basement. The front or northern-most section is a single-story office area. The two story area to the immediate rear houses the cell complex, the operating areas, and other supporting activities. The office area is isolated from the main part of the building, so the office area can be excluded from the secondary containment zone. The facility has a gross floor area of about 27,000 ft2.

204

NUCLEAR REACTOR  

DOE Patents (OSTI)

High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

Grebe, J.J.

1959-07-14T23:59:59.000Z

205

Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents  

Science Conference Proceedings (OSTI)

The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

Not Available

1993-11-01T23:59:59.000Z

206

NRC proposes new reactor embrittlement regulations  

SciTech Connect

The Nuclear Regulatory Commission has proposed amending its regulations regarding embrittlement of pressure vessels in commercial nuclear power reactors. The amendments, which include clarifying the pressurized thermal shock requirements, changing the fracture toughness requirements and establishing new requirements for thermal annealing of a reactor pressure vessel, were prompted in part by NRC`s 1990 inspection of the reactor pressure vessel at the Yankee Rowe nuclear plant in Massachusetts. NRC`s proposed changes would establish a screening criterion for both the rate of irradiation embrittlement or RPV materials and fracture toughness, above which a plant cannot continue to be operated safely.

Newman, P.

1994-10-13T23:59:59.000Z

207

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

208

Engineering activities at the MIT research reactor in support of power reactor technology  

SciTech Connect

The Massachusetts Institute of Technology (MIT) research reactor (MITR-II) is a 5-MW(thermal) light-water-cooled and-moderated reactor (LWR) with in-core neutron and gamma dose rates that closely approximate those in current LWRs. Compact in-pile loops that simulate pressurized water reactor (PWR) and boiling water reactor (BWR) thermal hydraulics and coolant chemistry have been designed for installation in the MITR-II. A PWR loop has been completed and is currently operating in the reactor. A BWR loop is under construction, and an in-pile facility for irradiation-assisted stress corrosion crack (IASCC) testing is being designed. Another major area of research and on-line testing is the closed-loop, nonlinear, digital control of various reactor parameters, including the power level, temperature, and net energy production.

Harling, O.K.; Bernard, J.A.; Driscoll, M.J.; Kohse, G.E.; Ballinger, R.G.

1989-01-01T23:59:59.000Z

209

Spent nuclear fuel discharges from U.S. reactors 1994  

Science Conference Proceedings (OSTI)

Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

NONE

1996-02-01T23:59:59.000Z

210

Brookhaven Medical Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Research Reactor BMRR The last of the Lab's reactors, the Brookhaven Medical Research Reactor (BMRR), was shut down in December 2000. The BMRR was a three megawatt...

211

Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Inbestigation  

Science Conference Proceedings (OSTI)

The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.

Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur

2013-12-01T23:59:59.000Z

212

Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Inbestigation  

SciTech Connect

The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.

Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur

2013-12-01T23:59:59.000Z

213

REACTOR CONTROL  

DOE Patents (OSTI)

A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

Fortescue, P.; Nicoll, D.

1962-04-24T23:59:59.000Z

214

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

Christy, R.F.

1958-07-15T23:59:59.000Z

215

POWER REACTOR  

DOE Patents (OSTI)

A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

Zinn, W.H.

1958-07-01T23:59:59.000Z

216

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

217

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

Wigner, E.P.; Young, G.J.

1958-10-14T23:59:59.000Z

218

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

Khericha, Soli T

2002-06-01T23:59:59.000Z

219

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

Khericha, S.T.

2002-06-30T23:59:59.000Z

220

Sandia National Laboratories Medical Isotope Reactor concept.  

SciTech Connect

This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

Young, G.

1963-01-01T23:59:59.000Z

222

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

Wigner, E.P.; Weinberg, A.W.; Young, G.J.

1958-04-15T23:59:59.000Z

223

Program on Technology Innovation: A Mechanistic Basis for Irradiation Assisted Stress Corrosion Cracking  

Science Conference Proceedings (OSTI)

Irradiation-assisted stress corrosion cracking (IASCC) refers to intergranular stress corrosion cracking that is accelerated under the action of irradiation in light water reactor core components. It is referred to as “assisted” because irradiation enhances, or accelerates, the IGSCC process over the non-irradiated state. IASCC has been a problem in the nuclear industry for the last 40 years and continues to occur due to a lack of understanding of its underlying mechanism. It is the single most important...

2009-09-08T23:59:59.000Z

224

Code qualification of structural materials for AFCI advanced recycling reactors.  

Science Conference Proceedings (OSTI)

This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded

Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

2012-05-31T23:59:59.000Z

225

Power Burst Facility (PBF) Reactor Reactor Decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Decommissioning Click here to view Click here to view Reactor Decommissioning Click on an image to enlarge A crane removes the reactor vessel from the Power Burst Facility...

226

Solid State Reactor Final Report  

DOE Green Energy (OSTI)

The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas of research were undertaken: (1) establishing the design and safety-related basis via neutronic and reactor control assessments with the graphite foam as heat transfer medium; (2) evaluating the thermal performance of the graphite foam for heat removal, reactor stability, reactor operations, and overall core thermal characteristics; (3) characterizing the physical properties of the graphite foam under normal and irradiated conditions to determine any effects on structure, dimensional stability, thermal conductivity, and thermal expansion; and (4) developing a power conversion system design to match the reactor operating parameters.

Mays, G.T.

2004-03-10T23:59:59.000Z

227

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)

Wigner, E.P.

1962-12-25T23:59:59.000Z

228

Neutronic reactor  

DOE Patents (OSTI)

A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

Wende, Charles W. J. (West Chester, PA)

1976-08-17T23:59:59.000Z

229

NEUTRONIC REACTOR  

DOE Patents (OSTI)

BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

1959-10-27T23:59:59.000Z

230

NEUTRONIC REACTORS  

DOE Patents (OSTI)

The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

Anderson, H.L.

1958-10-01T23:59:59.000Z

231

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described that includes spaced vertical fuel elements centrally disposed in a pressure vessel, a mass of graphite particles in the pressure vessel, means for fluidizing the graphite particles, and coolant tubes in the pressure vessel laterally spaced from the fuel elements. (AEC)

Post, R.G.

1963-05-01T23:59:59.000Z

232

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

Starr, C.

1963-01-01T23:59:59.000Z

233

Final Review of the Cooperative Irradiation-Assisted Stress Corrosion Cracking Research Program  

Science Conference Proceedings (OSTI)

Irradiation-assisted stress corrosion cracking (IASCC) has affected reactor core internal structures fabricated from austenitic stainless steels in both pressurized water reactors (PWRs) and boiling water reactors (BWRs). This report presents the final review of work sponsored by the Cooperative IASCC Research (CIR) program. The CIR program is an international research effort designed to address IASCC in light water reactor (LWR) components. The program's goal is to develop a mechanistically based predic...

2010-06-03T23:59:59.000Z

234

Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term Irradiation at Elevated Temperature: Critical Experiments  

SciTech Connect

The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by microchemistry changes due to radiation-induced segregation, dislocation loop formation and growth, radiation induced precipitation, destabilization of the existing precipitate structure, as well as the possibility for void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiation-induced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses to 200 dpa and beyond). Further, predictive modeling is not yet possible, as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. This project builds upon joint work at the proposing institutions, under a NERI-C program that is scheduled to end in September, to understand the effects of radiation on these important materials. The objective of this project is to conduct critical experiments to understand the evolution of microstructural and microchemical features (loops, voids, precipitates, and segregation) and mechanical properties (hardening and creep) under high temperature and full dose range radiation, including the effect of differences in the initial material composition and microstructure on the microstructural response, including key questions related to saturation of the microstructure at high doses and temperatures.

Was, Gary; Jiao, Zhijie; Allen, Todd; Yang, Yong

2013-12-20T23:59:59.000Z

235

Program on Technology Innovation: A Preliminary Hybrid Model of Irradiation-Assisted Stress Corrosion Cracking of 300-Series Stainle ss Steels in Low-Electrochemical Potential Light Water Reactor Environments  

Science Conference Proceedings (OSTI)

The primary contribution of the preliminary low-potential Hybrid model is to include, in a single model of crack growth rate, the known effects of dose, temperature, yield strength, and increase in local strain rate caused by the moving crack. The new empirical dose model that is a part of the Hybrid and simplified models is an important contribution in its own right. This study suggests that the new models offer the potential to reduce the uncertainty in predicting irradiation-assisted stress corrosion ...

2012-02-28T23:59:59.000Z

236

Transportation Services | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Services Transportation Services The BNL Transportation Office, located at 20 Brookhaven Avenue, Building 400A, is available to assist BNL employees, guests and visitors with transportation needs in support of Laboratory programs. The hours of operation are 8:30 AM - 5:00 PM Monday through Friday. To contact the Transportation Office call (631) 344-2535. Stony Brook Parking Passes The Transportation Office has a limited number of parking passes for the three (3) parking garages at Stony Brook University. The passes are available to and are intended for use by BNL employees/scientific staff on official business only. Passes may be used at the Administration, University Hospital and Health Services Center garages on the Stony Brook campus when visiting SBU on official business.

237

A Novel Approach to Material Development for Advanced Reactor Systems  

SciTech Connect

OAK B188 A Novel Approach to Material Development for Advanced Reactor Systems. Year one of this project had three major goals. First, to specify, order and install a new high current ion source for more rapid and stable proton irradiation. Second, to assess the use of low temperature irradiation and chromium pre-enrichment in an effort to isolate a radiation damage microstructure in stainless steel without the effects of RIS. Third, to initiate irradiation of reactor pressure vessel steel and Zircaloy. In year 1 quarter 3, the project goal was to complete irradiation of model alloys of RPV steels for a range of doses and begin sample characterization. We also planned to prepare samples for microstructure isolation in stainless steels, and to identify sources of Zircaloy for irradiation and characterization.

Was, G.S.; Atzmon, M.; Wang, L.

2000-06-27T23:59:59.000Z

238

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance November 16, 2009 - 1:12pm Addthis As part of the Office of Nuclear Energy's Next Generation Nuclear Plant (NGNP) Program, the Advanced Gas Reactor (AGR) Fuel Development Program has achieved a new international record for irradiation testing of next-generation particle fuel for use in high temperature gas reactors (HTGRs). The AGR Fuel Development Program was initiated by the Department of Energy in 2002 to develop the advanced fabrication and characterization technologies, and provide irradiation and safety performance data required to license TRISO particle fuel for the NGNP and future HTGRs. The AGR

239

Light Water Reactors [Corrosion and Mechanics of Materials] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share To continue safe operation of current LWRs, the aging degradation of the

240

High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

High Flux Isotope Reactor High Flux Isotope Reactor May 30, 2013 The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include Flux trap positions: Peak thermal flux of 2.5X1015 n/cm2/s with similar epithermal and fast fluxes (Highest thermal flux available in the

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Design and optimization of a high thermal flux research reactor via Kriging-based algorithm  

E-Print Network (OSTI)

In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

Kempf, Stephanie Anne

2011-01-01T23:59:59.000Z

242

REACTOR UNLOADING  

DOE Patents (OSTI)

This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

Leverett, M.C.

1958-02-18T23:59:59.000Z

243

NUCLEAR REACTOR  

DOE Patents (OSTI)

A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

Treshow, M.

1958-08-19T23:59:59.000Z

244

Brookhaven Graphite Research Reactor Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Brookhaven Graphite Research Reactor Workshop Brookhaven Graphite Research Reactor Workshop The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II. Construction began in 1947 and the reactor started operating in August 1950. In the next 18 years, an estimated 25,000 scientific experiments were carried out at the BGRR using neutrons produced in the facility's 700-ton graphite core, made up of more than 60,000 individual graphite blocks. The BGRR was placed on standby in 1968 and then permanently shut down as the next-generation reactor, the High Flux Beam Reactor (HFBR), was

245

Neutronic reactor  

DOE Patents (OSTI)

A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

Lewis, Warren R. (Richland, WA)

1978-05-30T23:59:59.000Z

246

NUCLEAR REACTORS  

DOE Patents (OSTI)

An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

1961-12-01T23:59:59.000Z

247

REACTOR CONTROL  

DOE Patents (OSTI)

This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

Ruano, W.J.

1957-12-10T23:59:59.000Z

248

ORR irradiation experiment OF-1: accelerated testing of HTGR fuel  

SciTech Connect

The OF-1 capsule, the first in a series of High-Temperature Gas-Cooled Reactor fuel irradiations in the Oak Ridge Research Reactor, was irradiated for more than 9300 hr at full reactor power (30 MW). Peak fluences of 1.08 x 10/sup 22/ neutrons/cm/sup 2/ (> 0.18 MeV) were achieved. General Atomic Company's magazine P13Q occupied the upper two-thirds of the test space and the ORNL magazine OF-1 the lower one-third. The ORNL portion tested various HTGR recycle particles and fuel bonding matrices at accelerated flux levels under reference HTGR irradiation conditions of temperature, temperature gradient, and fast fluence exposure (> 0.18 MeV).

Tiegs, T.N.; Long, E.L. Jr.; Kania, M.J.; Thoms, K.R.; Allen, E.J.

1977-08-01T23:59:59.000Z

249

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

250

Hot Fuel Examination Facility's neutron radiography reactor  

SciTech Connect

Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell.

Pruett, D.P.; Richards, W.J.; Heidel, C.C.

1983-01-01T23:59:59.000Z

251

Materials Reliability Program: A Review of the Cooperative Irradiation Assisted Stress Corrosion Cracking Research Program (MRP-98)  

Science Conference Proceedings (OSTI)

Irradiation-assisted stress corrosion cracking (IASCC) has been observed in reactor core internal structures fabricated from austenitic stainless steels in both pressurized water reactors (PWRs) and boiling water reactors (BWRs). This report reviews EPRI's Cooperative IASCC Research (CIR) Program data and findings relevant to materials aging and degradation of PWR vessel internals components.

2003-12-04T23:59:59.000Z

252

Recruitment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

IAEA Recruitment Services Personal History Form (PHF) and Job Opportunities IAEA Employment Benefits Relevant Publications and Brochures Interview Process This service is provided...

253

Copy Service, Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Copy Service Copy Service Copying in color or black-and-white from hard copy or electronic files. Paper size up to 13" x 19" in a variety of stocks and colors. Larger Documents (up to 36" wide and 100" long) can be reproduced in Black & White from prints or files and can be saved in a variety of electronic format Variable Data Printing - personalized document production Tab Printing Forms CD/DVD Duplication CD/DVD direct printing Binding Collate documents, insert tab dividers, punch holes for binding Stapling documents up to 1 inch thick Spiral, adhesive and perfect binding. Hard covers also available upon request Folding & Mailing Print and apply mailing addresses and labels Machine fold documents and insert into envelopes for mailing Laminate printed items up to 35" wide.

254

Carbon-14 in Irradiated Graphite Waste  

Science Conference Proceedings (OSTI)

This report examines the international data on the formation and distribution of 14C in graphite moderators in the context of the treatment and/or disposal of the material upon reactor decommissioning. International organizations from the United States, France, Germany, Italy, Lithuania, and the United Kingdom collaborated in this program. This report provides an informed and improved understanding of the formation and behavior of 14C in irradiated graphite to determine where agreement or residual differ...

2010-12-20T23:59:59.000Z

255

Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

Douglas M. Gerstner

2009-05-01T23:59:59.000Z

256

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

257

The Recovery of Irradiation Damage for Zircaloy-2 and Zircaloy-4 ...  

Science Conference Proceedings (OSTI)

The materials had been irradiated at nominally 358C in the High Flux Isotope Reactor (HFIR) to relatively neutron fluences between 5.8X1022 to 3.0X1025 n/ m2 ...

258

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

Pennell, William E. (Greensburg, PA); Rowan, William J. (Monroeville, PA)

1977-01-01T23:59:59.000Z

259

ELECTRONUCLEAR REACTOR  

DOE Patents (OSTI)

An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

1960-04-19T23:59:59.000Z

260

Photocatalytic reactor  

DOE Patents (OSTI)

A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

Bischoff, Brian L. (Knoxville, TN); Fain, Douglas E. (Oak Ridge, TN); Stockdale, John A. D. (Knoxville, TN)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Irradiated fuel monitoring by Cerenkov glow intensity measurements  

SciTech Connect

Attribute measurement techniques for confirmation of declared irradiated fuel inventories at nuclear installations under safeguards surveillance are being investigated. High-gain measurements of the intensity of the Cerenkov glow from exposed assemblies in water-filled storage ponds are promising for this purpose. Such measurements have been made of Materials Testing Reactor plate-type fuel assemblies and Pressurized Water Reactor pin-type fuel assemblies. The measured intensities depend on cooling times as calculations predict.

Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

1979-09-01T23:59:59.000Z

262

Update; Sodium advanced fast reactor (SAFR) concept  

SciTech Connect

This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

Oldenkamp, R.D.; Brunings, J.E. (Rockwell International Corp., Canoga Park, CA (USA)); Guenther, E. (Combustion Engineering, Windsor, CT (US)); Hren, R. (Bechtel National Inc., San Francisco, CA (US))

1988-01-01T23:59:59.000Z

263

Ground test facility for nuclear testing of space reactor subsystems  

SciTech Connect

Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs.

Quapp, W.J.; Watts, K.D.

1985-01-01T23:59:59.000Z

264

Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites  

SciTech Connect

The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

2007-03-26T23:59:59.000Z

265

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

266

The DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification Program  

SciTech Connect

The Department of Energy has established the Advanced Gas Reactor Fuel Development and Qualification Program to address the following overall goals: Provide a baseline fuel qualification data set in support of the licensing and operation of the Next Generation Nuclear Plant (NGNP). Gas-reactor fuel performance demonstration and qualification comprise the longest duration research and development (R&D) task for the NGNP feasibility. The baseline fuel form is to be demonstrated and qualified for a peak fuel centerline temperature of 1250°C. Support near-term deployment of an NGNP by reducing market entry risks posed by technical uncertainties associated with fuel production and qualification. Utilize international collaboration mechanisms to extend the value of DOE resources. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, postirradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete fundamental understanding of the relationship between the fuel fabrication process, key fuel properties, the irradiation performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. Fuel performance modeling and analysis of the fission product behavior in the primary circuit are important aspects of this work. The performance models are considered essential for several reasons, including guidance for the plant designer in establishing the core design and operating limits, and demonstration to the licensing authority that the applicant has a thorough understanding of the in-service behavior of the fuel system. The fission product behavior task will also provide primary source term data needed for licensing. An overview of the program and recent progress will be presented.

David Petti; Hans Gougar; Gary Bell

2005-05-01T23:59:59.000Z

267

Post-irradiation-examination of irradiated fuel outside the hot cell  

Science Conference Proceedings (OSTI)

Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran; R. Paul Lind; Marc Babcock; Laurence C. Brower; Julie Jacobs; Pamela K. Hoggan

2007-09-01T23:59:59.000Z

268

CONTROL MEANS FOR REACTOR  

DOE Patents (OSTI)

An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

Manley, J.H.

1961-06-27T23:59:59.000Z

269

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

270

Principles of Reactor Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Physics M A Smith Argonne National Laboratory Nuclear Engineering Division Phone: 630-252-9747, Email: masmith@anl.gov Abstract: Nuclear reactor physics deals with...

271

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

Daniels, F.

1962-12-18T23:59:59.000Z

272

TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR  

DOE Patents (OSTI)

Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.

Ohlinger, L.A.; Seitz, F.; Young, G.J.

1959-02-17T23:59:59.000Z

273

The Application of Structural Materials Data From the BN-350 Fast Reactor to Life Extension of Light Water Reactors  

SciTech Connect

This paper describes the results of investigations of 08Cr16Ni11Mo3 (AISI 316 steel analogue) austenitic stainless steel irradiated in BN-350 breeder reactor at irradiation conditions close to that for Light Water Reactor (LWR) Internals. The pores were found in 08Cr16Ni11Mo3 steel irradiated at temperature 280 deg. C up to rather low damage 1.3 dpa and with dose rate 3.9 x 10{sup -9} dpa/s. There were obtained dose rate dependencies of yield strength, ultimate strength and ductility for 08Cr16Ni11Mo3 steel irradiated up to 7-13 dpa at 302-311 deg. C. These dependencies show a decrease in both yield strength and ultimate strength when dose rate decreases. There was observed an apparent decrease in total elongation when dose rate decreases, which was presumably connected with the pores formation in the steel at low dose rates. (authors)

Romanenko, O.G. [Nuclear Technology Safety Center, Liza Chaikina 4, Almaty 050020 (Kazakhstan); Kislitsin, S.B.; Maksimkin, O.P. [Institute of Nuclear Physics, 1 Ibragimova St., Almaty, 050032 (Kazakhstan); Shiganakov, Sh.B.; Chumakov, Ye.V. [Kazakhstan Atomic Energy Committee, Liza Chaikina 4, Almaty (Kazakhstan); Dumchev, I.V. [MAEC Kazatomprom, Aktau, 130000 (Kazakhstan)

2006-07-01T23:59:59.000Z

274

Electrical conductivity and current-voltage characteristics of alumina with or without neutron and electron irradiation  

E-Print Network (OSTI)

prompted a reassessment of this picture. First, the accelerated embrittlement of the HFIR reactor pressure irradiation #12;embrittlement mechanisms. Analysis showed that the special characteristics of the HFIR reactor of pressure vessel steels in HFIR [4], and in which the gamma contribution was explained on a straight

Howlader, Matiar R

275

Materials Reliability Program: A Review of Void Swelling Prediction in Irradiated Austenitic Stainless Steels (MRP-257)  

Science Conference Proceedings (OSTI)

Void swelling is a potential concern for Pressurized Water Reactors (PWRs) and other reactor types operating at elevated temperatures. This report summarizes the available empirical equations and physical models for the prediction of void swelling in neutron irradiated austenitic stainless steels.

2009-12-07T23:59:59.000Z

276

Reactor and method of operation  

DOE Patents (OSTI)

A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

Wheeler, John A. (Princeton, NJ)

1976-08-10T23:59:59.000Z

277

REACTOR DEVELOPMENT QUARTERLY PROGRESS REPORT  

DOE Green Energy (OSTI)

The design and construction program of the Bolling Experimental Reactor is reviewed. A number of preliminary experinnents were performed with Borax-II at pressures between 75 and 300 psi. The most corrosion-resistant U-Zr--Nb alloy developed so far is produced by heating in a vacuum to the gamma phase, quenching, and aging for 2 hr at 400 deg C. Special attention is given to the removal of H/sub 2/ from the material. Unclad and unirradiated samples of U--Nb and U--Nb--Zr alloys were corrosion tested in H/sub 2/O. Corrosion rates were also measured under irradiation conditions in CP-5. Elongation measurements of irradiated wrought and cast U--Zr material suggested no way for treating the wrought fuel so that stability comparable to the cast material could be obtained. Natural circulation boiling density tests at 600 psia were made in order to determine the effects of channel cross section and subcooling on the steam void fraction. Results of autoclave and dynamic corrosion studies of 2-S Al in H/sub 2/O are reported. These results include the testing of Ni-clad samples. A large number of criticality calculations were performed for the EBR-Il and the PBR. The solubility of ThO/sub 2/ pellets containing various concentrations of U/sub 3/ O/sub 8/ was tested in water at 316 deg C for periods of 672 to 744 hr. None of the samples disintegrated, although at least one sample developed cracks. Solutions of reactor kinetic equations were attempted for the purpose of studying transients in reactors with lifetimes of 7 x 10/sup -9/ 10/sup -7/, and 6 x 10/ sup -5/ sec. Ignition experiments were performed on Th, Cu, Al, Fe, Mg, Zr, and fluorothene when contacted with fluorides. Except for Zr and fluorothene, the materials did not ignite. (C.H.)

None

1955-01-31T23:59:59.000Z

278

Mailing Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Mailing Services Mailing Services Use the form below to add your name to the Depleted UF6 Mailing List. First Name: Last Name: Organization: Address: City: State: Postal Code:...

279

RERTR-7 Irradiation Summary Report  

Science Conference Proceedings (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

280

Calibration Services  

Science Conference Proceedings (OSTI)

... of these applications, the Optoelectronics Division provides measurement services at laser power levels from nanowatts to kilowatts and pulse ...

2012-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Irradiation Processing Department monthly record report, November 1956  

SciTech Connect

This document details activities of the irradiation processing department during the month of November 1956. A general summary is included at the start of the report, after which the report is divided into the following sections: research and engineering operations; production and reactor operations; facilities engineering operation; employee relations operation; and financial operation.

1956-12-20T23:59:59.000Z

282

Irradiation Processing Department monthly record report, September 1959  

SciTech Connect

This document details activities of the irradiation processing department during the month of September, 1959. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

Greninger, A.B.

1959-10-22T23:59:59.000Z

283

Reactor safety method  

DOE Patents (OSTI)

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

284

NEUTRONIC REACTOR MANIPULATING DEVICE  

DOE Patents (OSTI)

A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

Ohlinger, L.A.

1962-08-01T23:59:59.000Z

285

CERAMIC COMPOSITES FOR NEAR TERM REACTOR APPLICATION  

SciTech Connect

Currently, two composites types are being developed for incore application: carbon fiber carbon composite (CFC), and silicon carbide fiber composite (SiC/SiC.) Irradiation effects studies have been carried out over the past few decades yielding radiation-tolerant CFC's and a composite of SiC/SiC with no apparent degradation in mechanical properties to very high neutron exposure. While CFC's can be engineered with significantly higher thermal conductivity, and a slight advantage in manufacturability than SiC/SiC, they do have a neutron irradiation-limited lifetime. The SiC composite, while possessing lower thermal conductivity (especially following irradiation), appears to have mechanical properties insensitive to irradiation. Both materials are currently being produced to sizes much larger than that considered for nuclear application. In addition to materials aspects, results of programs focusing on practical aspects of deploying composites for near-term reactors will be discussed. In particular, significant progress has been made in the fabrication, testing, and qualification of composite gas-cooled reactor control rod sheaths and the ASTM standardization required for eventual qualification.

Snead, Lance Lewis [ORNL; Burchell, Timothy D [ORNL; Windes, Will [Idaho National Laboratory (INL); Katoh, Yutai [ORNL

2010-01-01T23:59:59.000Z

286

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

287

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

288

Experimental plan for irradiation experiment HRB-21  

SciTech Connect

Irradiation experiment HRB-21 is the first in a series of test capsules that are designed to provide a fuel-performance data base to be used for the validation of modular high-temperature gas-cooled reactor (MHTGR) coated-particle fuel performance models under MHTGR normal operating conditions and specific licensing basis events. Capsule HRB-21 will contain an advanced TRISO-P UCO/ThO{sub 2} - coated-particle fuel system with demonstrated low defective-particle fraction ({le}5 {times} 10{sup {minus}5}) and a heavy metal-contamination fraction ({le}1 {times} 10{sup {minus}5}) that meets MHTGR quality specifications. The coated particles and fuel compacts were fabricated in laboratory-scale facilities using MHTGR reference procedures at General Atomics (GA). Nearly 150,000 fissile and fertile particles will be irradiated in capsule HRB-21 at a mean volumetric fuel temperature of 975{degree}C and will achieve a peak fissile burnup of 26% fissions per initial metal atom (FIMA) while accumulating a fast neutron fluence of about 4.5 {times} 10{sup 25} neutrons/m{sup 2}. This experiment is a cooperative effort between the US Department of Energy (DOE) and the Japan Atomic Energy Research Institute (JAERI). The participants are the Oak Ridge National Laboratory (ORNL), GA, and the Tokai Research Establishment. Capsule HRB-21 will contain the US MHTGR fuel specimens, and a companion capsule, HRB-22, will contain the JAERI fuel. The irradiation will take place in the removable beryllium reflector facility of the High Flux Isotope Reactor (HFIR) at ORNL. The performance of the fuel during irradiation will be closely monitored through on-line fission gas release measurements. Detailed postirradiation examination and conduction cooldown simulation testing will be performed on the irradiated fuel compacts from both the HRB-21 and HRB-22 capsules. 5 refs., 9 figs., 6 tabs.

Goodin, D. T. [General Atomics, San Diego, CA (United States); Kania, M. J.; Patton, B. W. [Oak Ridge National Lab., TN (United States)

1989-04-01T23:59:59.000Z

289

Reactor pressure vessel with forged nozzles  

DOE Patents (OSTI)

Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

Desai, Dilip R. (Fremont, CA)

1993-01-01T23:59:59.000Z

290

Biometric Web Services  

Science Conference Proceedings (OSTI)

Biometric Web Services. The biometric web services project combines biometrics and web services to. ... What are Web services? ...

2012-08-15T23:59:59.000Z

291

Global estimation of potential unreported plutonium in thermal research reactors  

SciTech Connect

As of November, 1993, 303 research reactors (research, test, training, prototype, and electricity producing) were operational worldwide; 155 of these were in non-nuclear weapon states. Of these 155 research reactors, 80 are thermal reactors that have a power rating of 1 MW(th) or greater and could be utilized to produce plutonium. A previously published study on the unreported plutonium production of six research reactors indicates that a minimum reactor power of 40 MW (th) is required to make a significant quantity (SQ), 8 kg, of fissile plutonium per year by unreported irradiations. As part of the Global Nuclear Material Control Model effort, we determined an upper bound on the maximum possible quantity of plutonium that could be produced by the 80 thermal research reactors in the non-nuclear weapon states (NNWS). We estimate that in one year a maximum of roughly one quarter of a metric ton (250 kg) of plutonium could be produced in these 80 NNWS thermal research reactors based on their reported power output. We have calculated the quantity of plutonium and the number of years that would be required to produce an SQ of plutonium in the 80 thermal research reactors and aggregated by NNWS. A safeguards approach for multiple thermal research reactors that can produce less than 1 SQ per year should be conducted in association with further developing a safeguards and design information reverification approach for states that have multiple research reactors.

Dreicer, J.S.; Rutherford, D.A.

1996-09-01T23:59:59.000Z

292

Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome The Production Services site contains links to each of the division's groups with descriptions of their services. Our goal is to update this website frequently to reflect ongoing service upgrades which, by planning and design, are added so that we can continue to meet your needs in a constantly changing work environment. Note: The Graphic Design Studio has been relocated to the second floor in the north wing of the Research Support Building 400. The telephone number remains the same, X7288. If you have any questions, please call supervisor, Rick Backofen, X6183. Photography Photography services are available at no charge to BNL and Guest users. See a list of the complete range of photography services available. Video Video services are available at no charge to BNL and Guest users. See a list of the complete range of video services available.

293

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

J. K. Wright; R. N. Wright

2010-07-01T23:59:59.000Z

294

Final Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is responsible for providing the nation with nuclear weapons and ensuring that these weapons remain safe and reliable. Tritium, a radioactive isotope of hydrogen, is an essential component of every weapon in the current and projected U.S. nuclear weapons stockpile. Unlike other materials utilized in nuclear weapons, tritium decays at a rate of 5.5 percent per year. Accordingly, as long as the nation relies on a nuclear deterrent, the tritium in each nuclear weapon must be replenished periodically. Currently the U.S. nuclear weapons complex does not have the capability to produce the amounts of tritium that will be required to continue supporting the nation's stockpile. The ''Final Programmatic Environmental Impact Statement for Tritium Supply and Recycling'' (Final Programmatic EIS), DOE/EIS-0161, issued in October 1995, evaluated the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at five DOE sites for four different production technologies. This Programmatic EIS also evaluated the impacts of using a commercial light water reactor (CLWR) without specifying a reactor location. In the Record of Decision for the Final Programmatic EIS (60 FR 63878), issued December 12, 1995, DOE decided to pursue a dual-track approach on the two most promising tritium supply alternatives: (1) to initiate purchase of an existing commercial reactor (operating or partially complete) or reactor irradiation services; and (2) to design, build, and test critical components of an accelerator system for tritium production. At that time, DOE announced that the final decision would be made by the Secretary of Energy at the end of 1998.

N /A

1999-03-12T23:59:59.000Z

295

An Engineering Test Reactor  

SciTech Connect

A relatively inexpensive reactor for the specific purpose of testing a sub-critical portion of another reactor under conditions that would exist during actual operation is discussed. It is concluded that an engineering tool for reactor development work that bridges the present gap between exponential and criticality experiments and the actual full scale operating reactor is feasible. An example of such a test reactor which would not entail development effort to ut into operation is depicted.

Fahrner, T.; Stoker, R.L.; Thomson, A.S.

1951-03-16T23:59:59.000Z

296

HEAVY WATER MODERATED POWER REACTORS. Progress Report for October 1959  

SciTech Connect

Continued progress is reported on the design and construction of the Heavy Water Components Test Reactor; 78% of the firm design and 17% of the construction were complete at the end of October 1959. Approximateiy 15% of the firm design for the isolated coolant loops of the HWCTR was also complete. The results of further fabrication tests and irradiation tests of fuel tubes of natural uranium metal are reported. One of the metal tubes failed under irradiation, while other irradiations of metal fuels progressed satisfactorily. (auth)

Hood, R.R.; Isakoff, L. comps.

1959-11-01T23:59:59.000Z

297

Radiation Damage Study in Natural Zircon Using Neutrons Irradiation  

Science Conference Proceedings (OSTI)

Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mohamed, Abdul Aziz [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia); Karim, Julia Abdul [Reactor Physics Section, Nuclear Power Division, Malaysian Nuclear Agency Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia)

2011-03-30T23:59:59.000Z

298

The removal and segmentation of the Yankee Rowe reactor vessel internals  

Science Conference Proceedings (OSTI)

A major element of the reactor decommissioning of the Rowe Yankee reactor was the segmentation and packaging of the reactor internals. PCI Energy Services, specializing in remote cutting, machining, and welding, performed this work under contract to Yankee Atomic Electric Company. Removal techniques are described.

Child, C.; McGough, M.; Smith, G. [Power Cutting Inc., Lake Bluff, IL (United States)

1995-12-31T23:59:59.000Z

299

Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmentally Assisted Environmentally Assisted Cracking of Ni-Base Alloys Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

300

Irradiation Induced Dimensional Changes in Bulk Graphite; The theory  

E-Print Network (OSTI)

Basing on experimental data on irradiation-induced deformation of graphite we introduced a concept of diffuse domain structure developed in reactor graphite produced by extrusion. Such domains are considered as random continuous deviations of local graphite texture from the global one. We elucidate the origin of domain structure and estimate the size and the degree of orientational ordering of its domains. Using this concept we explain the well known radiation-induced size effect observed in reactor graphite. We also propose a method for converting the experimental data on shape-change of finite-size samples to bulk graphite. This method gives a more accurate evaluation of corresponding data used in estimations of reactor graphite components lifetime under irradiation.

Panyukov, S V; Arjakov, M V

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Irradiation Induced Dimensional Changes in Bulk Graphite; The theory  

E-Print Network (OSTI)

Basing on experimental data on irradiation-induced deformation of graphite we introduced a concept of diffuse domain structure developed in reactor graphite produced by extrusion. Such domains are considered as random continuous deviations of local graphite texture from the global one. We elucidate the origin of domain structure and estimate the size and the degree of orientational ordering of its domains. Using this concept we explain the well known radiation-induced size effect observed in reactor graphite. We also propose a method for converting the experimental data on shape-change of finite-size samples to bulk graphite. This method gives a more accurate evaluation of corresponding data used in estimations of reactor graphite components lifetime under irradiation.

S. V. Panyukov; A. V. Subbotin; M. V. Arjakov

2012-10-14T23:59:59.000Z

302

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

303

Manhattan Project: F Reactor Plutonium Production Complex  

Office of Scientific and Technical Information (OSTI)

F REACTOR PLUTONIUM PRODUCTION COMPLEX F REACTOR PLUTONIUM PRODUCTION COMPLEX Hanford Engineer Works, 1945 Resources > Photo Gallery Plutonium production area, Hanford, ca. 1945 The F Reactor plutonium production complex at Hanford. The "boxy" building between the two water towers on the right is the plutonium production reactor; the long building in the center of the photograph is the water treatment plant. The photograph was reproduced from Henry DeWolf Smyth, Atomic Energy for Military Purposes: The Official Report on the Development of the Atomic Bomb under the Auspices of the United States Government, 1940-1945 (Princeton, NJ: Princeton University Press, 1945). The Smyth Report was commissioned by Leslie Groves and originally issued by the Manhattan Engineer District. Princeton University Press reprinted it in book form as a "public service" with "reproduction in whole or in part authorized and permitted."

304

Application of the LEPRICON Methodology to the Arkansas Nuclear One, Unit 1 Reactor  

Science Conference Proceedings (OSTI)

Applying the new LEPRICON dosimetry methodology to irradiation data from the ANO-1 reactor greatly reduced uncertainties in pressure vessel fluence estimates. Accurate estimates will enable safety engineers to better predict reactor lifetimes and will eliminate the need for overly conservative safety margins.

1986-02-19T23:59:59.000Z

305

The Integral Fast Reactor: A practical approach to waste management  

SciTech Connect

This report discusses development of the method for pyroprocessing of spent fuel from the Integral Fast Reactor (or Advanced Liquid Metal Reactor). The technology demonstration phase, in which recycle will be demonstrated with irradiated fuel from the EBR-II reactor has been reached. Methods for recovering actinides from spent LWR fuel are at an earlier stage of development but appear to be technically feasible at this time, and a large-scale demonstration of this process has begun. The utilization of fully compatible processes for recycling valuable spent fuel materials promises to provide substantial economic incentives for future applications of the pyroprocessing technology.

Laidler, J.J.

1993-12-31T23:59:59.000Z

306

Reactor Pressure Vessel Task of Light Water Reactor Sustainability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure...

307

JOYO-1 Irradiation Test Campaign Technical Close-out, For Information  

Science Conference Proceedings (OSTI)

The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long term microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.

G. Borges

2006-01-31T23:59:59.000Z

308

Memorandum on Chemical Reactors and Reactor Hazards  

SciTech Connect

Two important problems in the investigation of reactor hazards are the chemical reactivity of various materials employed in reactor construction and the chracteristics of heat transfer under transient conditions, specifically heat transfer when driven by an exponentially increasing heat source (exp t/T). Although these problems are independent of each other, when studied in relation to reactor hazards they may occur in a closely coupled sequence. For example the onset of a dangerous chemical reactor may be due to structural failure of various reactor components under an exponentially rising heat source originating with a runaway nuclear reactor. For this reason, these two problems should eventually be studied together after an exploratory experimental survey has been made in which they are considered separately.

Mills, M.M.; Pearlman, H.; Ruebsamen, W.; Steele, G., Chrisney, J.

1951-07-05T23:59:59.000Z

309

In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements  

SciTech Connect

Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.

Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

2012-09-17T23:59:59.000Z

310

Delayed neutrons from the neutron irradiation of ²³?U  

E-Print Network (OSTI)

A series of experiments was performed with the Texas A&M University Nuclear Science Center Reactor (NSCR) to verify ²³?U delayed neutron emission rates. A custom device was created to accurately measure a sample's pneumatic flight time and the Nuclear Science Center's (NSC's) pneumatic transfer system (PTS) was redesigned to reduce a sample's pneumatic flight time from over 1,600 milliseconds to less than 450 milliseconds. Four saturation irradiations were performed at reactor powers of 100 and 200 kW for 300 seconds and one burst irradiation was performed using a $1.61 pulse producing 19.11 MW-s of energy. Experimental results agreed extremely well with those of Keepin. By comparing the first ten seconds of collected data, the first saturation irradiation deviated ~1.869% with a dead time of 2 microseconds, while the burst irradiation deviated ~0.303% with a dead time of 5 microseconds. Saturation irradiations one, three and four were normalized to the initial count rate of saturation irradiation two to determine the system reproducibility, and deviated ~0.449%, ~0.343% and ~0.389%, respectively.

Heinrich, Aaron David

2008-05-01T23:59:59.000Z

311

Advanced LWR Fuel Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

A new test capability for the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is being developed that will allow testing of advanced nuclear fuels and cladding materials under prototypic light-water reactor (LWR) operating conditions in less time than it takes in other research reactors. This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiments currently planned to start in late 2008.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL

2008-01-01T23:59:59.000Z

312

Corrosion-product release in light water reactors  

SciTech Connect

This research project is aimed at studying corrosion-product release from a range of reactor alloys under both PWR and BWR coolant chemistry conditions. The results of such a study will be ued to recommend ways by which corrosion-product release, and subsequent radiation fields, can be minimized in reactors. The investigation of corrosion-product release has so far employed three main techniques: in-reactor loop experiments to provide data on the effects of coolant chemistry and reactor irradiation; out-reactor loop experiments to provide kinetics data on release; and a combined radiotracer-surface analytical study of oxide films to provide mechanistic information on release. The results of the first year of the program are presented and discussed.

Lister, D.H.

1984-03-01T23:59:59.000Z

313

Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel  

E-Print Network (OSTI)

The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

Hayes, A C

2012-01-01T23:59:59.000Z

314

Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel  

E-Print Network (OSTI)

The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

A. C. Hayes; Gerard Jungman

2012-05-30T23:59:59.000Z

315

Translation Services  

Science Conference Proceedings (OSTI)

... As a courtesy, the National Center for Standards ... companies may be located by entering the term ... translation services" in any Internet search engine. ...

316

Natural circulating passive cooling system for nuclear reactor containment structure  

DOE Patents (OSTI)

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

317

Passive cooling system for nuclear reactor containment structure  

DOE Patents (OSTI)

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1989-01-01T23:59:59.000Z

318

FUEL CYCLE PROGRAM, A BOILING WATER REACTOR RESEARCH DEVELOPMENT PROGRAM. First Summary Report for March 1959-July 1960  

SciTech Connect

The Fuel Cycle Development Program is a basic development program for boiling and other water technology. It covers the areas of oxide fuel fabrication. irradiation. and examination; the physics of water-moderated reactore; and boiling-water heat transfer and stability. Schedules for the fuel- cycle program were examined. and it was concluded that portions of the Task A program should be conducted during the period May to Dec. 1959 in order to keep costs of the work as low as possible and to allow initiation of the fuel-cycle program at the earliest possible date after the Vallecitos BWR was returned to service. The basis for the scheduling of the work is discussed. and a chronological summary describing the content of the work is given. Technical progress is outlined and details are summarized. Subsequent reports issued monthly and quarterly will summarize the progress of the prognam. (W.D.M.)

Cook, W.H.

1961-10-31T23:59:59.000Z

319

Ion Irradiation Effects  

Science Conference Proceedings (OSTI)

Oct 17, 2011 ... Materials Science Challenges for Nuclear Applications: Ion Irradiation Effects Sponsored by: MS&T Organization Program Organizers: Ram ...

320

Irradiation Damage Processes  

Science Conference Proceedings (OSTI)

...R.L. Klueh, Effect of Neutron Irradiation on Properties of Steels, Properties and Selection: Irons, Steels, and High-Performance Alloys,

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Basic and Applied Science Research Reactors - Reactors designed...  

NLE Websites -- All DOE Office Websites (Extended Search)

BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th...

322

MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)  

SciTech Connect

The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

GERBER MS

2009-04-28T23:59:59.000Z

323

Defects in Irradiated Alloys  

Science Conference Proceedings (OSTI)

Oct 17, 2011... the macroscale properties of metals in a reactor environment. ... and by ORNL's Shared Research Equipment (SHaRE) User Facility, which is ...

324

Level 1 transient model for a molybdenum-99 producing aqueous homogeneous reactor and its applicability to the tracy reactor  

SciTech Connect

Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' A 'Level 1' model representing B and W's proposed Medical Isotope Production System (MIPS) reactor has been developed. The Level 1 model couples a series of differential equations representing neutronics, temperature, and voiding. Neutronics are represented by point reactor kinetics while temperature and voiding terms are axially varying (one-dimensional). While this model was developed specifically for the MIPS reactor, its applicability to the Japanese TRACY reactor was assessed. The results from the Level 1 model were in good agreement with TRACY experimental data and found to be conservative over most of the time domains considered. The Level 1 model was used to study the MIPS reactor. An analysis showed the Level 1 model agreed well with a more complex computational model of the MIPS reactor (a FETCH model). Finally, a significant reactivity insertion was simulated with the Level 1 model to study the MIPS reactor's time-dependent response. (authors)

Nygaard, E. T. [Babcock and Wilcox Technical Services Group, 800 Main Street, Lynchburg, VA 24504 (United States); Williams, M. M. R. [Imperial College London, SW7 2AZ (United Kingdom); Angelo, P. L. [Y-12 National Security Complex, Oak Ridge, TN 37831 (United States)

2012-07-01T23:59:59.000Z

325

Service Contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidelines for Obtaining Guidelines for Obtaining Best-Practice Contracts for Commercial Buildings Operation and Maintenance Service Contracts Prepared with funding from the U.S. EPA December 1997 PECI Acknowledgements Special thanks to the following people for their ongoing contributions and careful review of the document: Byron Courts, Director of Engineering Services, and Dave Rabon, Chief Engineer, Melvin Mark Pete Degan, Director of Customer Marketing, Landis/Staefa David Fanning, HVAC Coordinator, EXPRESS Bil Pletz, Facility Manager, Intel Mike Sanislow, Service Channel Development Leader, Honeywell Home and Building Karl Stum, Director of Technical Services, PECI Tom Walton, President, United Service Alliance For additional copies of this guidebook, contact: Portland Energy Conservation Inc. (PECI)

326

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial light water reactor to produce tritium. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1997 EA-1210: Finding of No Significant Impact Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington July 22, 1997 EA-1210: Final Environmental Assessment

327

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

1993-01-01T23:59:59.000Z

328

Reactor Sharing Program  

Science Conference Proceedings (OSTI)

Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

Vernetson, W.G.

1993-01-01T23:59:59.000Z

329

Guidebook to nuclear reactors  

SciTech Connect

A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

Nero, A.V. Jr.

1976-05-01T23:59:59.000Z

330

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

331

Irradiation hardening in F82H irradiated at 573 K in the HFIR  

Science Conference Proceedings (OSTI)

Post-irradiation tensile tests were conducted on alloy F82H and variants of this steels irradiated at 573 K up to 19 dpa in the High Flux Isotope Reactor (HFIR) in Oak Ridge National Laboratory. Post-irradiation tensile and hardness tests revealed that the strength of F82H steeply increased below 5 dpa, and the total elongation decreased. The ductility of the variants, which showed more ductility in the unirradiated condition was the same as irradiated F82H, even though the magnitude of irradiation hardening is smaller than F82H. This suggests that the softened parts of the blanket, such as heat affected zones, could show more ductility loss at this temperature. The hardening behavior of F82H with 0.09% additional tantalum (mod3), which demonstrated microstructural stability under high temperature processing, was very similar to that of F82H. Therefore mod3 can be an attractive alternate structural material for a blanket when processed above 1373 K.

Stoller, Roger E [ORNL; Sokolov, Mikhail A [ORNL; Hirose, Takanori [Japan Atomic Energy Agency (JAEA); Okubo, N. [Japan Atomic Energy Agency (JAEA); Tanigawa, Hiroyasu [ORNL; Odette, G.R. [University of California, Santa Barbara; Ando, M. [Japan Atomic Energy Agency (JAEA)

2011-01-01T23:59:59.000Z

332

Materials Reliability Program: Characterizations of Type 316 Cold-Worked Stainless Steel Highly Irradiated Under PWR Operating Condi tions (MRP-73)  

Science Conference Proceedings (OSTI)

Irradiation-induced material degradations such as irradiation-assisted stress corrosion cracking (IASCC), irradiation-induced void swelling, and irradiation-caused embrittlement have been observed in core internals components in pressurized water reactors (PWRs). This report describes hot cell testing and characterization of a bottom-mounted instrument tube (flux thimble) that was exposed in an operating PWR for about 23 years, providing valuable data for assessing radiation effects in PWRs.

2002-08-26T23:59:59.000Z

333

Materials Reliability Program: Characterization of Type 316 Cold Worked Stainless Steel Highly Irradiated Under PWR Operating Conditions (International IASCC Advisory Committee Phase 3 Program Final Report) (MRP-214)  

Science Conference Proceedings (OSTI)

Various types of irradiation-induced material degradation such as irradiation-assisted stress corrosion cracking (IASCC), irradiation-induced void swelling, and irradiation-caused embrittlement have been observed in core internals components in pressurized water reactors (PWR). This report describes hot cell testing and characterization of bottom-mounted instrument tubes (flux thimble) that were exposed in operating PWRs for about 10 to 20 effective full power years (EFPY), providing valuable data for as...

2007-09-06T23:59:59.000Z

334

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

335

Understanding the Irradiation Behavior of Zirconium Carbide  

SciTech Connect

Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.

Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

2013-10-11T23:59:59.000Z

336

Use of MCNP for characterization of reactor vessel internals waste from decommissioned nuclear reactors  

SciTech Connect

This study describes the use of the Monte Carlo Neutron-Photon (MCNP) code for determining activation levels of irradiated reactor vessel internals hardware. The purpose of the analysis is to produce data for the Department of Energy`s Greater-Than-Class C Low-Level Radioactive Waste Program. An MCNP model was developed to analyze the Yankee Rowe reactor facility. The model incorporates reactor geometry, material compositions, and operating history data acquired from Yankee Atomic Electric Company. In addition to the base activation analysis, parametric studies were performed to determine the sensitivity of activation to specific parameters. A component sampling plan was also developed to validate the model results, although the plan was not implemented. The calculations for the Yankee Rowe reactor predict that only the core baffle and the core support plates will be activated to levels above the Class C limits. The parametric calculations show, however, that the large uncertainties in the material compositions could cause errors in the estimates that could also increase the estimated activation level of the core barrel to above the Class C limits. Extrapolation of the results to other reactor facilities indicates that in addition to the baffle and support plates, core barrels may also be activated to above Class C limits; however the classification will depend on the specific operating conditions of the reactor and the specific material compositions of the metal, as well as the use of allowable concentration averaging practices in packaging and classifying the waste.

Love, E.F.; Pauley, K.A.; Reid, B.D.

1995-09-01T23:59:59.000Z

337

Comminuting irradiated ferritic steel  

DOE Patents (OSTI)

Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

1985-01-01T23:59:59.000Z

338

High solids fermentation reactor  

DOE Patents (OSTI)

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

339

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

340

FAST NEUTRON REACTOR  

DOE Patents (OSTI)

A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

Soodak, H.; Wigner, E.P.

1961-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NUCLEAR REACTOR CONTROL SYSTEM  

DOE Patents (OSTI)

A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

1959-11-01T23:59:59.000Z

342

Nuclear Archeology for CANDU Power Reactors  

SciTech Connect

The goal of this work is the development of so-called 'nuclear archeology' techniques to predict the irradiation history of both fuel-related and non-fuel-related materials irradiated in the CANDU (CANada Deuterium Uranium) family of nuclear reactors. In this application to CANDU-type reactors, two different scenarios for the collection of the appropriate data for use in these procedures will be assumed: the first scenario is the removal of the pressure tubes, calandria tubes, or fuel cladding and destructive analysis of the activation products contained in these structural materials; the second scenario is the nondestructive analysis (NDA) of the same hardware items via high-resolution gamma ray scans. There are obvious advantages and disadvantages for each approach; however, the NDA approach is the central focus of this work because of its simplicity and lack of invasiveness. The use of these techniques along with a previously developed inverse capability is expected to allow for the prediction of average flux levels and irradiation time, and the total fluence for samples where the values of selected isotopes can be measured.

Broadhead, Bryan L [ORNL

2011-01-01T23:59:59.000Z

343

EBR-2 (Experimental Breeder Reactor-2), IFR (Integral Fast Reactor) prototype testing programs  

SciTech Connect

The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs.

Lehto, W.K.; Sackett, J.I.; Lindsay, R.W. (Argonne National Lab., Idaho Falls, ID (USA). EBR-II Div. Argonne National Lab., IL (USA)); Planchon, H.P.; Lambert, J.D.B. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

344

Liquid uranium alloy-helium fission reactor  

SciTech Connect

This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

Minkov, Vladimir (Skokie, IL)

1986-01-01T23:59:59.000Z

345

Investigation of the Thermal Stability of Irradiation and Cold Work Defects in Zirconium-based Model Alloys: 2011 Progress Report  

Science Conference Proceedings (OSTI)

This report covers the work performed in 2011 on the thermal stability of irradiation and strain hardening defects in several zirconium-based model alloys with low niobium content. The work involves various tests and measurements on tubular or plate specimens irradiated in the Russian BOR-60 reactor.

2012-06-06T23:59:59.000Z

346

Investigation of the Thermal Stability of Irradiation and Cold Work Defects in Zirconium-based Model Alloys  

Science Conference Proceedings (OSTI)

This report covers the work performed in 2010 on the thermal stability of irradiation and strain hardening defects in zirconium-based model alloys with low niobium content. The work involves various tests and measurements on tubular or plate specimens irradiated in the Russian BOR-60 reactor.

2011-07-13T23:59:59.000Z

347

Investigation of the Thermal Stability of Irradiation and Cold Work Defects in Zirconium-based Model Alloys  

Science Conference Proceedings (OSTI)

This report describes the work performed in 2009 on the thermal stability of irradiation and strain hardening defects in zirconium-based model alloys with low niobium content. The work involves various tests and measurements on tubular or plate specimens irradiated in the Russian BOR-60 reactor.

2010-05-17T23:59:59.000Z

348

The Effects of Ionizing Irradiation  

Science Conference Proceedings (OSTI)

Page 1. The Effects of Ionizing Irradiation on Liquid, Dried, and Absorbed DNA Extracts ... Page 12. Study Shipped Land Carrier Irradiation ? ...

2012-02-29T23:59:59.000Z

349

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

350

Nuclear reactor overflow line  

DOE Patents (OSTI)

The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

Severson, Wayne J. (Pittsburgh, PA)

1976-01-01T23:59:59.000Z

351

Reactor vessel support system  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

352

Novell Services  

NLE Websites -- All DOE Office Websites (Extended Search)

CIS Department CIS Department Novell Services If you don't see the answer to your question here, contact the help desk at 486-HELP or submit a Help Request. Novell Netware is the labs main method of providing file and print services for the PC and Macintosh platforms. Novell end user services are free and include a backed up home directory and access to all distributed printers at LBL. Request a Novell account Request a new Novell printer Request a Novell file restore (choose PC for platform and Backups/Restores for problem) Novell iPrint Accessing Novell File Services Download the LBL Netware client Novell Server Information Novell Departmental Administrative Contacts Novell FAQ: How do I login to the Novell network? 9x | NT4/2000/XP Do I have the Netware client installed? 9x | NT4/2000/XP

353

Activation Foil Irradiation by Reactor Cavity Fission Sources  

Science Conference Proceedings (OSTI)

Page 1. Page 2. Page 3. Page 4. Page 5. Page 6. Page 7. Page 8. Page 9. Page 10. Page 11. Page 12. Page 13. Page 14. Page 15. Page 16. Page ...

2012-10-23T23:59:59.000Z

354

Post Irradiation Evaluation of BWR Fuel From Hatch-1 Reactor  

Science Conference Proceedings (OSTI)

Operating BWR fuel uncommonly exhibits extensive secondary degradation following a small breach in its cladding wall. Ensuing high offgas levels are due to fuel washout from a single fuel rod with one or more long axial cracks. Investigators have completed detailed hotcell examinations on such failed and sibling sound fuel rods to understand the phenomenon. The results have helped gain insight into the mechanisms of such failures, and have been used to validate and verify EPRI's fuel degradation code, DE...

1996-05-03T23:59:59.000Z

355

Spinning fluids reactor  

SciTech Connect

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

356

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Cao, Jun

2011-01-01T23:59:59.000Z

357

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

358

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2011-01-12T23:59:59.000Z

359

Test plan for the Parallex CANDU-MOX irradiation  

Science Conference Proceedings (OSTI)

One of several options being considered by the United States and the Russian Federation for the disposition of excess plutonium from dismantled weapons is to convert it to mixed-oxide (MOX) fuel for use in Canadian uranium-deuterium (CANDU) reactors. This report describes an irradiation test demonstrating the feasibility of this concept with laboratory quantities of MOX fuel placed in the pressurized loops of the National Research Universal test reactor at the Atomic Energy of Canada, Ltd., Chalk River Laboratories. The objective of the Parallex (for parallel experiment) test is to simultaneously test laboratory-produced quantities of US and R.F. MOX fuel in a test reactor under heat generation rates representing those expected in the CANDU reactors. The MOX fuel will be produced with plutonium from disassembled weapons at the Los Alamos National Laboratory in the United States and at the Bochvar Institute in the Russian Federation. Thus, the test will serve to demonstrate the accomplishment of many parts of the disposition mission: disassembly of weapons, conversion of the plutonium to oxide, fabrication of MOX fuel, assembly of fuel elements and bundles, shipment to a reactor, irradiation, and finally, storage of the spent fuel elements awaiting eventual disposition in a geologic repository in Canada.

Copeland, G.L.

1997-06-01T23:59:59.000Z

360

Decommissioning of the high flux beam reactor at Brookhaven Lab  

Science Conference Proceedings (OSTI)

The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

Hu, J.P. [National Synchrotron Light Source, Brookhaven Laboratory, Upton, NY 11973 (United States); Reciniello, R.N. [Radiological Control Div., Brookhaven Laboratory, Upton, NY 11973 (United States); Holden, N.E. [National Nuclear Data Center, Brookhaven Laboratory, Upton, NY 11973 (United States)

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges  

Science Conference Proceedings (OSTI)

The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2012-07-01T23:59:59.000Z

362

Irradiated Materials and Technique Development  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... The U.S. Reduced Enrichment for Research and Test Reactors program converts research reactors which utilize highly enriched uranium fuel ...

363

Irradiation performance of low-enriched uranium fuel elements  

SciTech Connect

The status of the testing and evaluation of full-sized experimental low- and medium-enriched uranium fuel elements in the Oak Ridge Research Reactor is presented. Medium-enriched elements containing oxide and aluminide have been completely evaluated at burnups up to 75%. A low-enriched U/sub 3/Si/sub 2/ element has been evaluated at 41% burnup. Other silicide and oxide elements have completed irradiation satisfactorily to burnups of 75% and are now being evaluated. All results to date confirm the expected good performance of these elements in the medium power research reactor environment.

Copeland, G.L.; Hofman, G.L.; Snelgrove, J.L.

1984-10-14T23:59:59.000Z

364

Austenitic alloy and reactor components made thereof  

DOE Patents (OSTI)

An austenitic stainless steel alloy is disclosed, having excellent fast neutron irradiation swelling resistance and good post irradiation ductility, making it especially useful for liquid metal fast breeder reactor applications. The alloy contains: about 0.04 to 0.09 wt. % carbon; about 1.5 to 2.5 wt. % manganese; about 0.5 to 1.6 wt. % silicon; about 0.030 to 0.08 wt. % phosphorus; about 13.3 to 16.5 wt. % chromium; about 13.7 to 16.0 wt. % nickel; about 1.0 to 3.0 wt. % molybdenum; and about 0.10 to 0.35 wt. % titanium.

Bates, John F. (Ogden, UT); Brager, Howard R. (Richland, WA); Korenko, Michael K. (Wexford, PA)

1986-01-01T23:59:59.000Z

365

Lifetime embrittlement of reactor core materials  

DOE Green Energy (OSTI)

Over a core lifetime, the reactor materials Zircaloy-2, Zircaloy-4, and hafnium may become embrittled due to the absorption of corrosion- generated hydrogen and to neutron irradiation damage. Results are presented on the effects of fast fluence on the fracture toughness of wrought Zircaloy-2, Zircaloy-4, and hafnium; Zircaloy-4 to hafnium butt welds; and hydrogen precharged beta treated and weld metal Zircaloy-4 for fluences up to a maximum of approximately 150 x 10{sup 24} n/M{sup 2} (> 1 Mev). While Zircaloy-4 did not exhibit a decrement in K{sub IC} due to irradiation, hafnium and butt welds between hafnium and Zircaloy-4 are susceptible to embrittlement with irradiation. The embrittlement can be attributed to irradiation strengthening, which promotes cleavage fracture in hafnium and hafnium-Zircaloy welds, and, in part, to the lower chemical potential of hydrogen in Zircaloy-4 compared to hafnium, which causes hydrogen, over time, to drift from the hafnium end toward the Zircaloy-4 end and to precipitate at the interface between the weld and base-metal interface. Neutron radiation apparently affects the fracture toughness of Zircaloy-2, Zircaloy-4, and hafnium in different ways. Possible explanations for these differences are suggested. It was found that Zircaloy-4 is preferred over Zircaloy-2 in hafnium-to- Zircaloy butt-weld applications due to its absence of a radiation- induced reduction in K{sub IC} plus its lower hydrogen absorption characteristics compared with Zircaloy-2.

Kreyns, P.H..; Bourgeois, W.F.; Charpentier, P.L.; Kammenzind, B.F.; Franklin, D.G. [Bettis Atomic Power Lab., West Mifflin, PA (United States); White, C.J. [Knolls Atomic Power Lab., Schenectady, NY (United States)

1994-08-01T23:59:59.000Z

366

Fuel qualification issues and strategies for reactor-based surplus plutonium disposition  

SciTech Connect

The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

Cowell, B.S.; Copeland, G.L.; Moses, D.L.

1997-08-01T23:59:59.000Z

367

irradiance | OpenEI  

Open Energy Info (EERE)

irradiance irradiance Dataset Summary Description (Abstract): Latitude Tilt Irradiance NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Latitude Tilt Radiation (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords GIS global irradiance latitude mapping NASA renewable energy solar solar PV SWERA TILT UNEP Data text/csv icon Latitude Tilt Radiation (kWh/m^2/day) (csv, 11.8 MiB) application/zip icon Download Shapefile (zip, 5 MiB)

368

Neutron damage reduction in a traveling wave reactor  

Science Conference Proceedings (OSTI)

Traveling wave reactors are envisioned to run on depleted or natural uranium with no need for enrichment or reprocessing, and in a manner which requires little to no operator intervention. If feasible, this type of reactor has significant advantages over conventional nuclear power systems. However, a practical implementation of this concept is challenging as neutron irradiation levels many times greater than those in conventional reactors appear to be required for a fission wave to propagate. Radiation damage to the fuel and cladding materials presents a significant obstacle to a practical design. One possibility for reducing damage is to soften the neutron energy spectrum. Here we show that using a uranium oxide fuel form will allow a shift in the neutron spectrum that can result in at least a three fold decrease in dpa levels for fuel cladding and structural steels within the reactor compared with the dpa levels expected when using a uranium metal fuel. (authors)

Osborne, A. G.; Deinert, M. R. [Dept. of Mechanical Engineering, Univ. of Texas at Austin, Austin, TX (United States)

2012-07-01T23:59:59.000Z

369

Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database  

SciTech Connect

Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

Wang, Jy-An John [ORNL

2010-08-01T23:59:59.000Z

370

The DOE Advanced Gas Reactor Fuel Development and Qualification Program  

Science Conference Proceedings (OSTI)

The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300°C and 900°C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

David Petti

2010-09-01T23:59:59.000Z

371

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts for Users Contacts for Users User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m.

372

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Contact Home Contact User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m.

373

Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules  

SciTech Connect

The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL’s Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

J M Harp; P D Demkowicz; S A Ploger

2012-10-01T23:59:59.000Z

374

Generation -IV Reactor Concepts  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

375

HORIZONTAL BOILING REACTOR SYSTEM  

DOE Patents (OSTI)

Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

Treshow, M.

1958-11-18T23:59:59.000Z

376

Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system  

Science Conference Proceedings (OSTI)

The Deparunent of Energy is currently engaged in a dual-track strategy to develop an accelerator and a conunercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle`costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Departinent`s purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work toge ther 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay aftei 2005.

Dautel, W.A.

1996-10-01T23:59:59.000Z

377

Brookhaven Reactor Experiment Control Facility, a distributed function computer network  

SciTech Connect

A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented. (auth)

Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

1975-11-01T23:59:59.000Z

378

Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation  

SciTech Connect

The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

Isabella J van Rooyen

2012-09-01T23:59:59.000Z

379

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

380

NUCLEAR REACTORS AND EARTHQUAKES  

SciTech Connect

A book is presented which supplies pertinent seismological information to engineers in the nuclear reactor field. Data are presented on the occurrence, intensity, and wave shapes. Techniques are described for evaluating the response of structures to such events. Certain reactor types and their modes of operation are described briefly. Various protection systems are considered. Earthquake experience in industrial and reactor plants is described. (D.L.C.)

1961-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

382

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

383

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

384

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

385

HOMOGENEOUS NUCLEAR POWER REACTOR  

DOE Patents (OSTI)

A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

King, L.D.P.

1959-09-01T23:59:59.000Z

386

Characterization of Neutron-Irradiated 300-Series Stainless Steels to Assess Mechanisms of Irradiation-Assisted Stress Corrosion Cra cking: Volume 1: LWR-Irradiated Type 304 and 316SS Heats with Established IASCC Susceptibility  

Science Conference Proceedings (OSTI)

This work was sponsored by the Cooperative IASCC Research (CIR) Program, which is an international research effort designed to address irradiation-assisted stress corrosion cracking (IASCC) in LWR (light water reactor) components. The program's goal is to develop a mechanistically based predictive methodology for IASCC and to identify potential countermeasures to mitigate IASCC.

2001-04-17T23:59:59.000Z

387

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

User Services Print User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m. New user registration: Monday-Friday 8.00 a.m. - 12.00 p.m. and

388

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

User Services Print User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m. New user registration: Monday-Friday 8.00 a.m. - 12.00 p.m. and

389

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

User Services Print User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m. New user registration: Monday-Friday 8.00 a.m. - 12.00 p.m. and

390

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Print Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m. New user registration: Monday-Friday 8.00 a.m. - 12.00 p.m. and

391

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Print Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m. New user registration: Monday-Friday 8.00 a.m. - 12.00 p.m. and

392

User Services  

NLE Websites -- All DOE Office Websites (Extended Search)

User Services Print User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment Coordination Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users Tel: 510-486-7727 ALS User Office The User Office is located on the mezzanine of Building 6 (the ALS), Room 2212. Contact Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Tel: 510-486-7745 Fax: 510-486-4773 Address: Advanced Light Source, Berkeley Lab, MS 6-2100, Berkeley, CA 94720 Hours User Office: Monday-Friday 8.00 a.m. - 12.00 p.m. and 1.00 p.m. - 5.00 p.m. New user registration: Monday-Friday 8.00 a.m. - 12.00 p.m. and

393

Principles and practices of irradiation creep experiment using pressurized mini-bellows  

Science Conference Proceedings (OSTI)

This article is to describe the key design principles and application practices of the newly developed in-reactor irradiation creep testing technology using pressurized mini-bellows. Miniature creep test frames were designed to fit into the high flux isotope reactor (HFIR) rabbit capsule whose internal diameter is slightly less than 10 mm. The most important consideration for this in-reactor creep testing technology was the ability of the small pressurized metallic bellows to survive irradiation at elevated temperatures while maintaining applied load to the specimen. Conceptual designs have been developed for inducing tension and compression stresses in specimens. Both the theoretical model and the in-furnace test confirmed that a gas-pressurized bellows can produce high enough stress to induce irradiation creep in subsize specimens. Discussion focuses on the possible stress range in specimens induced by the miniature gas-pressurized bellows and the limitations imposed by the size and structure of thin-walled bellows. A brief introduction to the in-reactor creep experiment for graphite is provided to connect to the companion paper describing the application practices and irradiation creep data. An experimental and calculation procedure to obtain in-situ applied stress values from post irradiation in-furnace force measurements is also presented.

Byun, Thak Sang [ORNL; Li, Meimei [Argonne National Laboratory (ANL); Snead, Lance Lewis [ORNL; Katoh, Yutai [ORNL; Burchell, Timothy D [ORNL; McDuffee, Joel Lee [ORNL

2013-01-01T23:59:59.000Z

394

Micro-bulge testing applied to neutron irradiated materials  

SciTech Connect

Micro-bulge testing was conducted on several Fe--Ni--Cr alloys irradiated as 0.3 mm thick disks to 10 dpa at 603 and 773 K in the Oak Ridge Research Reactor. Miniature tensile tests were performed on specimens of the same alloys irradiated concurrently. Good correlation between the tensile yield strength and the bulge yield load was observed in unirradiated specimens, however, the correlation was not simple for irradiated specimens. Good correlation was also observed between the ultimate tensile strength and the maximum bulge load. While irradiation produced a significant reduction in total elongation in the tensile test, irradiation caused only a small decrease in the deflection corresponding to the maximum bulge load compared to that observed on thinner disks used in earlier experiments. The results suggest that the thinner disk is better suited for ductility evaluations than the thicker disk. The area bounded by the load-deflection traces of the bulge tests shows a systematic variation with both alloy composition and irradiation condition which is not observed in the tensile data. It is anticipated that this parameter may prove useful in the evaluation of material toughness.

Okada, A. (Hokkaido Univ., Sapporo (Japan)); Hamilton, M.L.; Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA))

1990-06-01T23:59:59.000Z

395

USE OF SILICON CARBIDE MONITORS IN ATR IRRADIATION TESTING  

Science Conference Proceedings (OSTI)

In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. For example, silicon carbide (SiC) monitors are now available to detect peak irradiation temperatures between 200°C and 800°C. Using a resistance measurement approach, specialized equipment installed at INL's High Temperature Test Laboratory (HTTL) and specialized procedures were developed to ensure that accurate peak irradiation temperature measurements are inferred from SiC monitors irradiated at the ATR. Comparison examinations were completed by INL to demonstrate this capability, and several programs currently rely on SiC monitors for peak temperature detection. This paper discusses the use of SiC monitors at the ATR, the process used to evaluate them at the HTTL, and presents representative measurements taken using SiC monitors.

K. L. Davis; B. Chase; T. Unruh; D. Knudson; J. L. Rempe

2012-07-01T23:59:59.000Z

396

First Results of Scanning Thermal Diffusivity Microscope (STDM) Measurements on Irradiated Monolithic and Dispersion Fuel  

SciTech Connect

The thermal conductivity of the fuel material in a reactor before and during irradiation is a sensitive and fundamental parameter for thermal hydraulic calculations that are useds to correctly determine fuel heat fluxes and meat temperatures and to simulate performance of the fuel elements during operation. Several techniques have been developed to measure the thermal properties of fresh fuel to support these calculations, but it is crucial to also investigate the change of thermal properties during irradiation.

T. K. Huber; M. K. Figg; J. R. Kennedy; A. B. Robinson; D. M. Wachs

2012-07-01T23:59:59.000Z

397

Validation of a Monte Carlo Based Depletion Methodology Using HFIR Post-Irradiation Measurements  

Science Conference Proceedings (OSTI)

Post-irradiation uranium isotopic atomic densities within the core of the High Flux Isotope Reactor (HFIR) were calculated and compared to uranium mass spectrographic data measured in the late 1960s and early 70s [1]. This study was performed in order to validate a Monte Carlo based depletion methodology for calculating the burn-up dependent nuclide inventory, specifically the post-irradiation uranium

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

398

Optical dynamic circuit services  

Science Conference Proceedings (OSTI)

IP service, leased-line service and POTS service have been the three long-standing communication service offerings of providers. Recently, both commercial and research-andeducation network providers have started offering optical dynamic circuit services. ...

Malathi Veeraraghavan; Mark Karol; George Clapp

2010-11-01T23:59:59.000Z

399

Spent nuclear fuel discharges from US reactors 1992  

SciTech Connect

This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

Not Available

1994-05-05T23:59:59.000Z

400

Liquid Metal Fast Breeder Reactor plant maintenance and equipment design  

Science Conference Proceedings (OSTI)

This paper provides a summary of maintenance equipment considerations and actual plant handling experiences from operation of a sodium-cooled reactor, the Fast Flux Test Facility (FFTF). Equipment areas relating to design, repair techniques, in-cell handling, logistics and facility services are discussed. Plant design must make provisions for handling and replacement of components within containment or allow for transport to an ex-containment area for repair. The modular cask assemblies and transporter systems developed for FFTF can service major plant components as well as smaller units. The plant and equipment designs for the Clinch River Breeder Reactor (CRBR) plant have been patterned after successful FFTF equipment.

Swannack, D.L.

1982-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Effect of Neutron Irradiation on the Fracture Toughness of Graphite  

SciTech Connect

As part of our irradiated graphite recycle program a small quantity of PCEA grade graphite was irradiated in the High Flux Isotope Reactor (HFIR) at ORNL. The graphite will provide the raw material for future recycle experiments. The geometry of the irradiated graphite allowed us to study the effects of neutron irradiation on the Critical Stress Intensity Factor, KIc, of graphite. The specimens where irradiated in two groups of 6 at an irradiation temperature of 900 C in rabbit capsules to doses of 6.6 and 10.2 DPA, respectively. Following a full suite of pre-and post-irradiation examination, which included dimensions, mass, electrical resistivity, elastic constants, and thermal expansion (to 800 C) the samples were notched and tested to determine their KIc using the newly approved ATSM test method for SENB fracture toughness of graphite. Here we report the irradiation induced changes in the dimensions, elastic constants, resistivity, and coefficient of thermal expansion of PCEA graphite. Moreover, irradiation induced changes in the Critical Stress Intensity Factor, KIc, or fracture toughness, are reported and discussed. Very little work on the effect of neutron irradiation on the fracture toughness of graphite has previously be performed or reported.

Burchell, Timothy D [ORNL; Strizak, Joe P [ORNL

2012-01-01T23:59:59.000Z

402

Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator...  

National Nuclear Security Administration (NNSA)

Research ReactorDomestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Our Mission Managing the Stockpile...

403

ADMINISTRATION OF ORNL RESEARCH REACTORS  

SciTech Connect

Organization of the ORNL Operations division for administration of the Oak Ridge Research Reactor, the Low Intensity Testing Reactor, and the Oak Ridge Graphite Reactor is described. (J.R.D.)

Casto, W.R.

1962-08-20T23:59:59.000Z

404

Production reactor characteristics  

SciTech Connect

Reactors for the production of special nuclear materials share many similarities with commercial nuclear power plants. Each relies on nuclear fission, uses uranium fuel, and produces large quantities of thermal power. However, there are some important differences in production reactor characteristics that may best be discussed in terms of mission, role, and technology.

Thiessen, C.W.; Hootman, H.E.

1990-01-01T23:59:59.000Z

405

Advanced converter reactors  

SciTech Connect

Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U/sub 3/O/sub 8/ at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals.

Kasten, P.R.

1979-01-01T23:59:59.000Z

406

NEUTRONIC REACTOR SYSTEM  

DOE Patents (OSTI)

A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

Treshow, M.

1959-02-10T23:59:59.000Z

407

NEUTRONIC REACTOR BURIAL ASSEMBLY  

DOE Patents (OSTI)

A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

Treshow, M.

1961-05-01T23:59:59.000Z

408

The Integral Fast Reactor  

SciTech Connect

Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

Till, C.E.; Chang, Y.I. (Argonne National Lab., IL (USA)); Lineberry, M.J. (Argonne National Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

409

SERVICES Purpose  

E-Print Network (OSTI)

This Management Memo calls on all state agencies operating state motor vehicles to make every effort to “Flex Your Power at the Pump, ” and lower fuel costs for the State of California through vigorous compliance with the preventative maintenance standards identified in this management memo and in the Automobile Record, Standard (STD.) 271. Background Public Resources Code 25722 mandates the state reduce petroleum consumption of its vehicle fleet to the maximum extent practicable including improved preventative maintenance. State Administrative Manual Section (SAM) 4101 establishes the need to comply with minimum preventative maintenance standards listed in the Automobile Maintenance Record, STD. 271. This includes prescribed services and mechanical inspections that promote state vehicle efficiency and achieve optimum fuel mileage. SAM Section 3687.1 prohibits the purchase of premium grade gasoline for state vehicles. And, directs state drivers to make fuel purchases at lower priced self-service pumps whenever possible.

Manual Sections

2005-01-01T23:59:59.000Z

410

AQUEOUS PROCESSES FOR SEPARATION AND DECONTAMINATION OF IRRADIATED FUELS  

SciTech Connect

. A review of recent dcvelopments and improvements in aqueous processes for accomplishing separation and decontamination of irradiated fuels from power reactors is presented Research and development is currently being pursued in tbe United States on three distinct types of fuel processing methods; pyrometallurgical processes, fluoride volatility processes, and aqueous processes. Although the ultimate role of these processing methods in a nuclear power economy cannot be accurately assessed at the present time, it is felt that the proven reliabilita and versatility of aqueous processes guarantees them a prominent role in power reactor fuel reprocessing. Aqueous solvent extraction processes, for example, are ideally suited for installation in central processing plants which are designed to handle fuels from a number of power reactors generating a total of several thousand megawatts or more of power. Under these circumstances, nuclear fuels can be processed by continuous processes at high throughputs and at high on-stream efficiency and therefore at low unit cost. (auth)

Cooper, V.R.; Walling, M.T. Jr.

1958-10-31T23:59:59.000Z

411

Hanford Railcars Make Final Stop at B Reactor: Move Enhances Visitor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Railcars Make Final Stop at B Reactor: Move Enhances Hanford Railcars Make Final Stop at B Reactor: Move Enhances Visitor Experience at Historic Reactor Hanford Railcars Make Final Stop at B Reactor: Move Enhances Visitor Experience at Historic Reactor May 10, 2011 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov Andre Armstrong, CH2M HILL (509) 376-6773 Andre_l_Armstrong@rl.gov RICHLAND, WASH. - Two locomotives that hauled irradiated fuel around the Hanford Site for a half-century will reach their final stop this week when they are delivered to the Historic B Reactor for preservation and public display. The two locomotives are among 16 railcars from Hanford's 200 North Area being removed by Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CH2M HILL).

412

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT  

SciTech Connect

Progress on reactor programs and in general engineering research and development programs is summarized. Research and development are reported on water-cooled reactors including EBWR and Borax-V, sodium-cooled reactors including ZPR-III, IV, and IX, Juggernaut, and EBR-I and II. Other work included a review of fast reactor technology, and studies on nuclear superheat, thermal and fast reactor safety, and reactor physics. Effort was also devoted to reactor materials and fuels development, heat engineering, separation processes and advanced reactor concepts. (J.R.D.)

1961-04-01T23:59:59.000Z

413

Microstructural evolution in fast-neutron-irradiated austenitic stainless steels  

SciTech Connect

The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

Stoller, R.E.

1987-12-01T23:59:59.000Z

414

HEAVY WATER MODERATED POWER REACTORS PROGRESS REPORT, SEPTEMBER 1961  

DOE Green Energy (OSTI)

At the end of September l961, construction of the Heavy Water Components Test Reactor was about 90% complete. Thirty-two compacted tubes of crushed, fused uranium oxide in Zircaloy sheaths were fabricated for irradiation tests and destructive evaluation. lrradiation tests of the tubes were started in the Vallecitos Boiling Water Reactor and at Savannah River. The fabrication process for the tubes included steps designed to exclude hydrogenous material from the oxide cores, thereby eliminating the probable cause of sheath failures in previous irradiations. Additional experimental data on heat transfer burnout of tubes in subcooled water at pressures of about 100 to 1000 psi showed that the burnout heat flux is not affected significantiy by pressure in this range. The data were correlated in terms of water velocity and subcooling. (auth)

Hood, R.R. comp.

1961-11-01T23:59:59.000Z

415

FAST FUEL TEST REACTOR-FFTR CONCEPTUAL DESIGN STUDY  

SciTech Connect

The Fast Fuel Test Reactor (FFTR) is a nuclear facility for the purpose of irradiating samples of fuels and structural components for use in fast reactors. The core consisis of a plate type element in a square configuration. Beryllium metal between the fuel elements is used to obtain a neutron energy spectrum in the hard intermediate region. Cooling of the core and test specimens is accomplished by means of liquid sodium. The design concept was carried through in sufficient degree in the following areas of preliminary concern: number and size of irradiation facilities, sample power requirements, plant layout to evaluate site requirements, plant and nuclear design parameters to evaluate essential equipment requirements. plant-capital-cost estimate, annual- operating-cost estimate, and estimate of construction time schedule. (W.D.M.)

Brubaker, R.; Hummel, H.H.; McArthy, A.; Smaardyk, A.; Kittel, J.H.

1960-08-01T23:59:59.000Z

416

HIGH FLUX ISOTOPE REACTOR PRELIMINARY DESIGN STUDY  

SciTech Connect

A comparison of possible types of research reactors for the production of transplutonium elements and other isotopes indicates that a flux-trap reactor consisting of a beryllium-reflecteds light-water-cooled annular fuel region surrounding a light-water island provides the required thermal neutron fluxes at minimum cost. The preliminary desigu of such a reactor was carried out on the basis of a parametric study of the effect of dimensions of the island and fuel regions heat removal rates, and fuel loading on the achievable thermal neutmn fluxes in the island and reflector. The results indicate that a 12- to 14-cm- diam. island provides the maximum flux for a given power density. This is in good agreement with the US8R critical experiments. Heat removal calculations indicate that average power densities up to 3.9 Mw/liter are achievable with H/ sub 2/O-cooled, platetype fuel elements if the system is pressurized to 650 psi to prevent surface boiling. On this basis, 100 Mw of heat can be removed from a 14-cm-ID x 36-cm-OD x 30.5-cm-long fuel regions resulting in a thermal neutron flux of 3 x 10/sup 15/ in the island after insertion of 100 g of Cm/sup 244/ or equivalent. The resulting production of Cf/sup 252/ amounts to 65 mg for a 1 1/2- year irradiation. Operation of the reactor at the more conservative level of 67 Mw, providing an irradiation flux of 2 x 10/sup 15/ in the islands will result in the production of 35 mg of Cf/sup 252/ per 18 months from 100 g of Cm/sup 244/. A development program is proposed to answer the question of the feasibility of the higher power operation. In addition to the central irradiation facility for heavyelement productions the HFIR contains ten hydraulic rabbit tubes passing through the beryllium reflector for isotope production and four beam holes for basic research, Preliminary estimates indicate that the cost of the facility, designed for an operating power level of 100 Mw, will be approximately 2 million. (auth)

Lane, J.A.; Cheverton, R.D.; Claiborne, G.C.; Cole, T.E.; Gambill, W.R.; Gill, J.P.; Hilvety, N.; McWherther, J.R.; Vroom, D.W.

1959-03-20T23:59:59.000Z

417

Fused Fluoride--Inconel System Under Cyclotron Irradiation--Preliminary Results  

SciTech Connect

The fused fluoride-Inconel reactor system was studied under irradiation with nominal 19 Mev deuterons as supplied by the Berkeley 60-inch cyclotron. Chemical, metallographic, magnetic susceptibility, electron diffraction and X-ray diffraction studies were made on the as-received materials, one control run and two irradiated runs. No changes in the fused fluoride fuel were noted. Accelerated intergranular corrosion and increased grain size were observed in the irradiated Inconel specimens. This report is based upon studies conducted for the Atomic Energy Commission under Contract AT-40-1-GEN-1064.

Goeddel, W.V.; Epp, Jr., A.A.

1951-12-17T23:59:59.000Z

418

Evaluation of irradiation facility options for fusion materials research and development  

SciTech Connect

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Zinkle, Steven J [ORNL; Möslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany

2013-01-01T23:59:59.000Z

419

What's in a Service?  

Science Conference Proceedings (OSTI)

A proper understanding of the general nature, potential and obligations of electronic services may be achieved by examining existing commercial services in detail. The everyday services that surround us, and the ways in which we engage with them, are ... Keywords: electronic services, service description, service properties, service substitution

Justin O'Sullivan; David Edmond; Arthur Ter Hofstede

2002-09-01T23:59:59.000Z

420

Nuclear reactor control column  

DOE Patents (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor irradiation services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Slurry reactor design studies  

SciTech Connect

The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

1990-06-01T23:59:59.000Z

422

AGC-2 Irradiation Data Qualification Final Report  

SciTech Connect

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf, 491 lbf, or 589 lbf. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.5 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams are used to raise the stacks of graphite creep specimens to ensure the specimens have not become stuck within the test train. This stack raising was performed after all cycles when the capsule was in the reactor. All stacks were raised successfully after each cycle. The load and displacement data are Qualified

Laurence C. Hull

2012-07-01T23:59:59.000Z

423

U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

2004-10-03T23:59:59.000Z

424

Solar Irradiance Variability  

E-Print Network (OSTI)

The Sun has long been considered a constant star, to the extent that its total irradiance was termed the solar constant. It required radiometers in space to detect the small variations in solar irradiance on timescales of the solar rotation and the solar cycle. A part of the difficulty is that there are no other constant natural daytime sources to which the Sun's brightness can be compared. The discovery of solar irradiance variability rekindled a long-running discussion on how strongly the Sun affects our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations that fits the observations best is that magnetic features at the solar surface, i.e. sunspots, faculae and the magnetic network, are responsible for almost all variations (although on short timescales convection and p-mode oscillations also contribute). In spite of significant progress important questions are still open. Thus there is a debat...

Solanki, Sami K

2012-01-01T23:59:59.000Z

425

Services | Open Energy Information  

Open Energy Info (EERE)

Services Jump to: navigation, search TODO: Add description Related Links List of Companies in Services Sector Retrieved from "http:en.openei.orgwindex.php?titleServices&oldid...

426

METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR  

DOE Patents (OSTI)

A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

Sturm, W.J.

1958-12-01T23:59:59.000Z

427

Service Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASSIGNMENTS ASSIGNMENTS Pamela Arias-Ortega - Administrative and judicial litigation; and personnel law and workforce discipline mailto:parias-ortega@doeal.gov Celina Baca - Research and special projects for litigation and general law group mailto:cbaca@doeal.gov Dick Blakely - Designated Agency Ethics Advisor - Administrative litigation and mediation services; and ethics mailto:rblakely@doeal.gov Jonathan Buckner - Administrative review hearings; and administrative hearings before EEOC and MSPB mailto:jbuckner@doeal.gov Sean Counce - Administrative review hearings; and administrative hearings before EEOC and MSPB mailto:scounce@doeal.gov Diana Cruz - Copyright program; intellectual property databases; support for IP issues; and time and attendance mailto:dcruz@doeal.gov

428

Recycle of LWR (Light Water Reactor) actinides to an IFR (Integral Fast Reactor)  

SciTech Connect

A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs.

Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

1991-01-01T23:59:59.000Z

429

Benchmark Evaluation of the NRAD Reactor LEU Core Startup Measurements  

Science Conference Proceedings (OSTI)

The Neutron Radiography (NRAD) reactor is a 250-kW TRIGA-(Training, Research, Isotope Production, General Atomics)-conversion-type reactor at the Idaho National Laboratory; it is primarily used for neutron radiography analysis of irradiated and unirradiated fuels and materials. The NRAD reactor was converted from HEU to LEU fuel with 60 fuel elements and brought critical on March 31, 2010. This configuration of the NRAD reactor has been evaluated as an acceptable benchmark experiment and is available in the 2011 editions of the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) and the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook). Significant effort went into precisely characterizing all aspects of the reactor core dimensions and material properties; detailed analyses of reactor parameters minimized experimental uncertainties. The largest contributors to the total benchmark uncertainty were the 234U, 236U, Er, and Hf content in the fuel; the manganese content in the stainless steel cladding; and the unknown level of water saturation in the graphite reflector blocks. A simplified benchmark model of the NRAD reactor was prepared with a keff of 1.0012 {+-} 0.0029 (1s). Monte Carlo calculations with MCNP5 and KENO-VI and various neutron cross section libraries were performed and compared with the benchmark eigenvalue for the 60-fuel-element core configuration; all calculated eigenvalues are between 0.3 and 0.8% greater than the benchmark value. Benchmark evaluations of the NRAD reactor are beneficial in understanding biases and uncertainties affecting criticality safety analyses of storage, handling, or transportation applications with LEU-Er-Zr-H fuel.

J. D. Bess; T. L. Maddock; M. A. Marshall

2011-09-01T23:59:59.000Z

430

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

431

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

Hopkins, R.J.; Land, J.T.; Misvel, M.C.

1994-06-07T23:59:59.000Z

432

Microfluidic electrochemical reactors  

DOE Patents (OSTI)

A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

2011-03-22T23:59:59.000Z

433

Fast Breeder Reactor studies  

Science Conference Proceedings (OSTI)

This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

1980-07-01T23:59:59.000Z

434

NUCLEAR REACTOR FUEL SYSTEMS  

DOE Patents (OSTI)

Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

1959-09-15T23:59:59.000Z

435

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

436

CONTROL FOR NEUTRONIC REACTOR  

DOE Patents (OSTI)

S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

Lichtenberger, H.V.; Cameron, R.A.

1959-03-31T23:59:59.000Z

437

Definition: Global horizontal irradiance | Open Energy Information  

Open Energy Info (EERE)

Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DIF).1 Related Terms DNI, Solar radiation, Concentrating solar power, Photovoltaics References http:...

438

Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor  

SciTech Connect

The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

Bsebsu, F.M.; Abotweirat, F. [Reactor Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: Bsebso@yahoo.com, E-mail: abutweirat@yahoo.com; Elwaer, S. [Radiochemistry Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: samiwer@yahoo.com

2008-07-15T23:59:59.000Z

439

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents (OSTI)

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

1990-04-10T23:59:59.000Z

440

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z