Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HFIR | High Flux Isotope Reactor | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Working with HFIR Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE The High...

2

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

12 Managed by UT-Battelle for the U.S. Department of Energy Visits and Tours FBI Tours HFIR The group toured Spallation Neutron Source and the High Flux Isotope Reactor. After...

3

07-G00050D/gim SpallationNeutronSource  

E-Print Network (OSTI)

-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation of these instruments. HFIR SNS These facilities are funded by the U.S. Department of Energy. 08-G00986I

4

High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

High Flux Isotope Reactor High Flux Isotope Reactor May 30, 2013 The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include Flux trap positions: Peak thermal flux of 2.5X1015 n/cm2/s with similar epithermal and fast fluxes (Highest thermal flux available in the

5

Reactor Core Assembly - HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Facilities › HFIRReactor Core Assembly Home › Facilities › HFIRReactor Core Assembly Reactor Core Assembly The reactor core assembly is contained in an 8-ft (2.44-m)-diameter pressure vessel located in a pool of water. The top of the pressure vessel is 17 ft (5.18 m) below the pool surface, and the reactor horizontal mid-plane is 27.5 ft (8.38 m) below the pool surface. The control plate drive mechanisms are located in a subpile room beneath the pressure vessel. These features provide the necessary shielding for working above the reactor core and greatly facilitate access to the pressure vessel, core, and reflector regions. In-core irradiation and experiment locations (cross section at horizontal midplane) Reactor core assembly Reactor core assembly: (1) in-core irradiation and experiment locations,

6

COMSOL-based Nuclear Reactor Kinetics Studies at the HFIR  

Science Conference Proceedings (OSTI)

The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the High Flux Isotope Reactor s (HFIR) compact core. The space-time simulations employed the three-energy-group neutron diffusion equations, and transients initiated by control cylinder and hydraulic tube rabbit ejections were studied. The work presented here is the first step towards creating a comprehensive multiphysics methodology for studying the dynamic behavior of the HFIR core during reactivity perturbations. The results of these studies show that point kinetics is adequate for small perturbations in which the power distribution is assumed to be time-independent, but space-time methods must be utilized to determine localized effects.

Chandler, David [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2011-01-01T23:59:59.000Z

7

Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews and traditional and online focus groups with scientists. The latter include SNS, HFIR, and APS users as well as scientists at ORNL, some of whom had not yet used HFIR and/or SNS. These approaches informed development of the second phase, a quantitative online survey. The survey consisted of 16 questions and 7 demographic categorizations, 9 open-ended queries, and 153 pre-coded variables and took an average time of 18 minutes to complete. The survey was sent to 589 SNS/HFIR users, 1,819 NSLS users, and 2,587 APS users. A total of 899 individuals provided responses for this study: 240 from NSLS; 136 from SNS/HFIR; and 523 from APS. The overall response rate was 18%.

Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

2011-03-01T23:59:59.000Z

8

High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management  

SciTech Connect

This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste, except for the asbestos, was volume reduced via a private contract mechanism established by BJC. After volume reduction, the waste was packaged for rail shipment. This large waste management project successfully met cost and schedule goals.

Pudelek, R. E.; Gilbert, W. C.

2002-02-26T23:59:59.000Z

9

Reference (Axially Graded) Low Enriched Uranium Fuel Design for the High Flux Isotope Reactor (HFIR)  

Science Conference Proceedings (OSTI)

During the past five years, staff at the Oak Ridge National Laboratory (ORNL) have studied the issue of whether the HFIR could be converted to low enriched uranium (LEU) fuel without degrading the performance of the reactor. Using state-of-the-art reactor physics methods and behind-the-state-of-the-art thermal hydraulics methods, the staff have developed fuel plate designs (HFIR uses two types of fuel plates) that are believed to meet physics and thermal hydraulic criteria provided the reactor power is increased from 85 to 100 MW. The paper will present a defense of the results by explaining the design and validation process. A discussion of the requirements for showing applicability of analyses to approval for loading the fuel to HFIR lead test core irradiation currently scheduled for 2016 will be provided. Finally, the potential benefits of upgrading thermal hydraulics methods will be discussed.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

10

A neutronic feasibility study for LEU conversion of the high flux isotope reactor (HFIR).  

SciTech Connect

A neutronic feasibility study was performed to determine the uranium densities that would be required to convert the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) from HEU (93%) to LEU (<20%)fuel. The LEU core that was studied is the same as the current HEU core, except for potential changes in the design of the fuel plates. The study concludes that conversion of HFIR from HEU to LEU fuel would require an advanced fuel with a uranium density of 6-7 gU/cm{sup 3} in the inner fuel element and 9-10 gU/cm{sup 3} in the outer fuel element to match the cycle length of the HEU core. LEU fuel with uranium density up to 4.8 gU/cm{sup 3} is currently qualified for research reactor use. Modifications in fuel grading and burnable poison distribution are needed to produce an acceptable power distribution.

Mo, S. C.

1998-01-14T23:59:59.000Z

11

External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)  

SciTech Connect

The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 {times} 10{sup {minus}4}. In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events.

Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

12

HFIR Operating Status | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Operating Status of HFIR HFIR reactor building with sun and sky in background As of 13:19:50 10192013, Reactor Power is at 84 MW The reactor is currently operating at...

13

A Proposal: Reliability Centered Maintenance (RCM) for the High Flux Isotope Reactor (HFIR)  

E-Print Network (OSTI)

#12;User Program and Community ­ User Statistics HFIR FY 2009HFIR FY 2009 Goal 300Goal 300SNS FY 2009SNS FY 2009 Goal 260Goal 260 358358 307307 250 300 350 400 queUsers 09 50 100 150 200 HFIR SNS 200 250 HFIR SNS niqueUsers 009 6060 3232 44 3030 11 6767 3737 11 2727 11 50 100 NumberofUn FY20 2

14

Validation of KENO V.a Code for High Flux Isotope Reactor (HFIR)  

Science Conference Proceedings (OSTI)

The core of the High Flux Isotope Reactor (HFIR) is composed of two concentric annular elements, inner and outer, each containing highly enriched uranium fuel as a mixture of triuranium octoxide (U3O8) and aluminum encapsulated within aluminum alloy plates. The fuel plates are of involute shape and the fuel within the plates has a distribution across the plate width. Previous KENO code validation efforts have used a relatively simple single region homogeneous fuel model for each of the two annular regions by assuming that the materials in each were homogenized within the total volume of the fueled region. The computed results have tended to be about 2 to 3% greater than experimentally measured results. To improve computed results, a multi-zone fuel model was developed and used to validate the KENO code.

Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

15

Management of HFIR spent fuel  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel off-site for reprocessing since 1985. The HFIR storage pools are expected to fill up by the end of 1994. If a management alternative to existing HFIR pool storage is not identified and implemented by that time, the HFIR will be forced to shut down. This study identified and investigated five alternatives to managing the HFIR spent fuel, to determine the feasibility of implementing each in time to prevent shutdown of the HFIR: (1) increasing HFIR pool storage capacity, (2) storing the spent fuel at another ORNL pool, (3) storing the spent fuel in one or more hot cells at ORNL, (4) shipping the spent fuel off-site for reprocessing or storage elsewhere, and (5) installing a dedicated dry storage facility at ORNL. Of the alternatives investigated, only two could prevent the shutdown of the HFIR in the near term: increasing HFIR pool storage capacity or shipping the spent fuel off-site. Both options have been vigorously pursued because neither is assured of success, and at least one of the options must be successfully implemented if the HFIR is to continue operation. In addition, a third option was selected for implementation as an intermediate-term storage solution: installing a dedicated dry storage facility for the HFIR. An intermediate-term storage solution is needed because neither of the short-term solutions could ensure long-term continued operation of the HFIR.

Green, V.M.; Begovich, J.M.; Flanagan, G.F. [Oak Ridge National Lab., TN (United States); Lotts, A.L.

1994-09-01T23:59:59.000Z

16

Meeting notes of the High Flux Isotope Reactor (HFIR) futures group  

SciTech Connect

This report is a compilation of the notes from the ten meetings. The group charter is: (1) to identify and characterize the range of possibilities and necessities for keeping the HFIR operating for at least the next 15 years; (2) to identify and characterize the range of possibilities for enhancing the scientific and technical utility of the HFIR; (3) to evaluate the benefits or impacts of these possibilities on the various scientific fields that use the HFIR or its products; (4) to evaluate the benefits or impacts on the operation and maintenance of the HFIR facility and the regulatory requirements; (5) to estimate the costs, including operating costs, and the schedules, including downtime, for these various possibilities; and one possible impact of proposed changes may be to stimulate increased pressure for a reduced enrichment fuel for HFIR.

Houser, M.M. [comp.

1995-08-01T23:59:59.000Z

17

The High Flux Isotope Reactor (HFIR) cold source project at ORNL  

DOE Green Energy (OSTI)

Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL> The preliminary design of this system has been completed and an approval in principal of the design has been obtained from the internal ORNL safety review committees and the US Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP. A 3D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. The present schedule shows the assembling of the cold source loop on side during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000.

Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D.

1998-06-01T23:59:59.000Z

18

Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal  

SciTech Connect

The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL; Proctor, Larry Duane [ORNL

2012-01-01T23:59:59.000Z

19

HFIR History - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Facilities › HFIR › History Home › Facilities › HFIR › History History of HFIR HFIR was constructed in the mid-1960s to fulfill a need for the production of transuranic isotopes (i.e., "heavy" elements such as plutonium and curium). Since then its mission has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its 40-year history. During a shutdown of more than a year, the facility was refurbished and a number of new instruments were installed, as well as a cold neutron source. The reactor was restarted in mid-May; it attained its full power of 85 MW within a couple of days, and experiments resumed within a week. Improvements and upgrades to HFIR include an overhaul of the

20

Diffraction at HFIR  

Science Conference Proceedings (OSTI)

Of the planned suite of powder and single-crystal diffractometers for the HFIR, only two are currently operating, the Neutron Residual Stress Mapping Facility (NRSF2) diffractometer, and the Wide Angle Neutron Diffractometer (WAND). The NSRF2 was recently upgraded and is available to external users via the High Temperature Materials Laboratory (HTML) User Program for studies of stress, texture and phase mapping. The WAND is a flat-cone geometry diffractometer equipped with a curve 1-D PSD, suitable for high intensity powder diffraction (e.g., kinetics, high pressure) and diffuse scattering studies of single-crystals. A rebuild of the old HFIR powder diffractometer, originally located at HB-4 station is now underway, and is expected to begin commissioning by summer 2008. This instrument has a Debye-Scherrer geometry, with a detector bank consisting of 44 3He tubes each with 6' Soller collimators. A four-circle single-crystal diffractometer is located at the HB-3A station, and is slowly being brought back to life after the long hiatus connected to the reactor upgrade. A Letter of Intent to build a quasi-Laue diffractometer, called IMAGINE, in the HFIR Cold Guide Hall has been presented to and endorsed by the Neutron Scattering Science Advisory Committee.

Chakoumakos, Bryan C [ORNL; Fernandez-Baca, Jaime A [ORNL; Garlea, Vasile O [ORNL; Hubbard, Camden R [ORNL; Wang, Xun-Li [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

HFIR Instrument Systems | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Click for more information about the HFIR beamline Experiment Hall Click for more information about the HFIR beamline Experiment Hall HFIR instrument layout. Click for details. Instruments at the High Flux Isotope Reactor The instrument suite at HFIR is supported by a variety of sample environments and on-site laboratories for user convenience. If you're unsure which instrument(s) would most benefit your research, or if you would like to request capabilities that you don't see here, please contact our user office. All HFIR Instrument fact sheets are also available in this single PDF document. Available to Users Beam Line Fact Sheet Instrument Name Contact CG-1 Development Beam Line Lee Robertson CG-1D PDF IMAGING - Neutron Imaging Prototype Facility Hassina Bilheux CG-2 PDF GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer Ken Littrell

22

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure Successful HFIR M&S outcomes * RNSD supported HFIR's long-term materials surveillance program by...

23

HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Technical Parameters Reactor Technical Parameters Overview HFIR Pool Layout HFIR pool layout. HFIR is a beryllium-reflected, light-water-cooled and -moderated, flux-trap type reactor that uses highly enriched uranium-235 as the fuel. The image on the right is a cutaway of the reactor which shows the pressure vessel, its location in the reactor pool, and some of the experiment facilities. The preliminary conceptual design of the reactor was based on the "flux trap" principle, in which the reactor core consists of four annular regions of fuel surrounding an unfueled moderating region or "island" (see cross section view). Such a configuration permits fast neutrons leaking from the fuel to be moderated in the island and thus produces a region of very high thermal-neutron flux at the center of the island. This reservoir of

24

Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility  

Science Conference Proceedings (OSTI)

This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

Rothrock, Benjamin G [ORNL; Farrar, Mike B [ORNL

2009-01-01T23:59:59.000Z

25

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Scattering Neutron Scattering Facilities at HFIR The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor building. The currently available instruments and the status of new instruments can be found on the HFIR Instrument Systems pages. Particularly prominent in the cold neutron guide hall are the two small-angle neutron scattering (SANS) instruments, each terminating in a 70-ft-long evacuated cylinder containing a large moveable neutron detector. In addition to the instruments, laboratories are equipped for users to prepare samples. Perhaps the most exciting development at HFIR is the successfully

26

Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL  

Science Conference Proceedings (OSTI)

Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched uranium (HEU) fuel to a low enriched uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC), which adds much conservatism to the safety analysis. The multi-dimensional multi-physics capabilities of the COMSOL environment allow the analyst to relax the number and magnitude of conservatisms, imposed by the SSHTC, to present a more physical model of the TH aspect of the HFIR.

Bodey, Isaac T [ORNL; Arimilli, Rao V [ORNL; Freels, James D [ORNL

2010-01-01T23:59:59.000Z

27

Upgraded HFIR Fuel Element Welding System  

Science Conference Proceedings (OSTI)

The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

Sease, John D [ORNL

2010-02-01T23:59:59.000Z

28

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistant to U.S. Senator Rob Portman of Ohio, visited ORNL and toured CASL VOCC, HFIR and REDC 9 Managed by UT-Battelle for the U.S. Department of Energy Intern activities -...

29

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Society meetings. While visiting the area, she was given a tour of the REDC and HFIR and met with Jeff Binder. 9 Managed by UT-Battelle for the U.S. Department of Energy...

30

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrostatic compression using surrogate materials. * Placed six tensile targets into HFIR Pu-238 Operations * Shipments: Two Ac-225 Shipments with a total of 14.5 mCi shipped *...

31

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

Managed by UT-Battelle for the U.S. Department of Energy 25 new publications that cite HFIR in February * 24 from Neutron scattering research * 1 from Materials Irradiation...

32

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Facilities Experiment Facilities HFIR Experiment Facilities Neutron Scattering Facilities Target Positions Experiment Facilities in the Beryllium Reflector Large Removable Beryllium Facilities Small Removable Beryllium Facilities Control-Rod Access Plug Facilities Small Vertical Experiment Facilities Large Vertical Experiment Facilities Hydraulic Tube Facility Peripheral Target Positions Neutron Activation Analysis (NAA) Laboratory and Pneumatic Tube Facilities Slant Engineering Facilities Gamma Irradiation Facility Quality Assurance Requirements Contact Information Neutron Scattering Facilities The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor

33

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding). This UFD study examines the behavior and performance of unirradiated cladding and actual irradiated cladding through testing and simulation. Three capsules containing hydrogen-charged Zircaloy-4 cladding material have been placed in the High Flux Isotope Reactor (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

34

The High Flux Isotope Reactor at Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites

The High Flux Isotope Reactor at ORNL The High Flux Isotope Reactor at ORNL Aerial of the High Flux Isotope Reactor Site The High Flux Isotope Reactor site is located on the south side of the ORNL campus and is about a three-minute drive from her sister neutron facility, the Spallation Neutron Source. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into

35

HFIR Downloadable Data - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Downloadable Data Downloadable Data HFIR Downloadable Data The following data are provided to allow potential users of HFIR to perform analyses that will improve quality assurance and speed the review process prior to performing irradiation experiments. Monte Carlo N-Particle (MCNP) Transport Code Models Beginning of Cycle 400 data End of Cycle 400 data Accompanying Descriptions Modeling of the High Flux Isotope Reactor Cycle 400 Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008 MCNP Transport Code programs and libraries are distributed separately and might be subject to export controls. Please check MCNP for more information. Standardized Analysis for Licensing Evaluations (SCALE) Model Cycle 408 model Accompanying Description

36

Opportunities for the Precision Study of Reactor Antineutrinos at Very Short Baselines at US Research Reactors  

E-Print Network (OSTI)

: pieter.mumm@nist.gov #12;2 past reactor experiments HFIR, ORNL NBSR, NIST ATR, INL available baselines at US research reactors 3 neutrino fit 3+1 neutrino fit Tuesday, August 7, 12 NIST ILL HFIR ATR SONGSNIST ILL HFIR ATR SONGS 10. 100 1000 core size reactor power reactorpower(MWth) 1meter ILL HFIR NBSR

37

08-G00333B_SNS_HFIR  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron S ource SNS User Office: 865-574-4600 08-G00333Bgim TO MELTON VALLEY DRIVE HFIR PARKING WALK-IN ENTRY 7900 7964K - HFIR USER OFFICE RM 18 7972 HFIR H igh Flux Isotope...

38

Research Reactors Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Division (RRD) is responsible for operation of the High Flux Isotope Reactor (HFIR). Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for...

39

Hf-Ir (Hafnium - Iridium)  

Science Conference Proceedings (OSTI)

Hf-Ir crystallographic data...Hf-Ir crystallographic data Phase Composition, wt% Ir Pearson symbol Space group (βHf) 0 to ~10.5 cI 2 Im m (αHf) 0 to ~1.5 hP 2 P 6 3 / mmc Hf 2 Ir ~28 to 35.0 cF 96 Fd m Hf 5 Ir 3 39.3 hP 16 P 6 3 / mcm HfIr 51.9 to 59 o ** ? HfIr 3 76 to 82 cP 4 Pm m (Ir) ~91 to 100 cF 4 Fm m...

40

SNS - HFIR Users Meeting 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Ken Herwig, SNS Jason Hodges, SNS Michael Kent, Sandia Frank Klose, SNS Tonya Kuhl, UC Davis Young Lee, MIT Hanno zur Loye, South Carolina Gary Lynn, HFIR Charles Majkrzak, NIST...

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. Mark Williams to the grade of fellow. Williams is a member of the Reactor and Nuclear Systems Division. He was recognized for "his extensive work in sensitivity...

42

Evaluation of HFIR LEU Fuel Using the COMSOL Multiphysics Platform  

Science Conference Proceedings (OSTI)

A finite element computational approach to simulation of the High Flux Isotope Reactor (HFIR) Core Thermal-Fluid behavior is developed. These models were developed to facilitate design of a low enriched core for the HFIR, which will have different axial and radial flux profiles from the current HEU core and thus will require fuel and poison load optimization. This report outlines a stepwise implementation of this modeling approach using the commercial finite element code, COMSOL, with initial assessment of fuel, poison and clad conduction modeling capability, followed by assessment of mating of the fuel conduction models to a one dimensional fluid model typical of legacy simulation techniques for the HFIR core. The model is then extended to fully couple 2-dimensional conduction in the fuel to a 2-dimensional thermo-fluid model of the coolant for a HFIR core cooling sub-channel with additional assessment of simulation outcomes. Finally, 3-dimensional simulations of a fuel plate and cooling channel are presented.

Primm, Trent [ORNL; Ruggles, Arthur [ORNL; Freels, James D [ORNL

2009-03-01T23:59:59.000Z

43

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 April 2012 2 Managed by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure Public Release of CASL Infrastructure Software The Lightweight Integrating Multiphysics Environment (LIME), which has formed the infrastructure for the simulation tools being developed within the Consortium for Advanced Simulation of Light-Water Reactors (CASL), has been publicly-released under an open-source license: * http://sourceforge.net/projects/lime1/ 3 Managed by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure Key Highlights and Activities * Jess Gehin and Syd Ball participated in the Subgroup Technical Meeting under the US- Russia Civil NE Cooperation Action Plan as the respective US Leads for Small Modular Reactors and High-Temperature Gas Reactors.

44

HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

a thorough understanding of how elements react to neutron bombardment. Facilities at HFIR Two Pneumatic Tubes: PT-1: Thermal Neutron Flux: 4 1014 n cm-2 s-1...

45

HFIR In-Vessel Irradiation Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Facilities HFIR In-Vessel Irradiation In-Vessel Irradiation Experiment Facilities The HFIR provides a variety of in-core irradiation facilities, allowing for a...

46

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2012 July 2012 2 Managed by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure DataTransferKit Public release of CASL infra- structure software TriBITS Three key components of the VERA (Virtual Environment for Reactor Applications) infrastructure have been released and made publicly-available. Lightweight Integrating Multiphysics Environment (LIME) * The Tribal Build, Integrate, and Test System is built on the open-source Kitware CMake, CTest, CDash tools and provides a solution for very large scale projects, especially meta- projects resulting from the integration of many different (but interrelated) projects. * Available at: http://code.google.com/p/tribits/ * DataTransferKit (DTK) is being developed to implement the rendezvous algorithm and the

47

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2012 October 2012 2 Managed by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure Description * Submission is to support first formal "Beta" release of selected components of CASL's Virtual Environment for Reactor Applications (VERA) * Currently limited to CASL partners * Precursor to deployment for partner Test Stands and more broad releases in FY13 * Completes L2 Milestone VRI.P5.02 First Submission of CASL Software to the Radiation Safety Information Computational Center (RSICC) Science Highlight Physics Area Application Area(s) VERA Component(s) Simulation Capability Supported Coupling All LIME + DAKOTA coupling software infrastructure + uncertainty quantification (UQ) Neutronics Multiple Denovo pin-homogenized transport

48

Structural Materials Development for MFE and IFE  

E-Print Network (OSTI)

's Spallation Neutron Source/High Flux Isotope Reactor (SNS/HFIR), National Center for Computational Sciences

49

Neutron Fluences and Radiation Damage Parameters for the HFIR-MFE-RB-17J Experiment  

Science Conference Proceedings (OSTI)

The HFIR-MFE-RB-17J experiment was conducted in the removable beryllium (RB) position of HFIR with a Eu2O2 shield. The irradiation was conducted from April 27, 2004, to May 18, 2005. The total exposure was for 353.6 FPD (full power days). Reactor dosimetry capsules were analyzed and the activation data were used to provide the best estimates of the neutron fluences and radiation damage parameters as a function of height relative to midplane of the reactor.

Greenwood, Lawrence R.; Glasgow, David C.; Baldwin, Charles A.

2010-06-30T23:59:59.000Z

50

Neutron Fluences and Radiation Damage Parameters for the HFIR-MFE-RB-14J Experiment  

Science Conference Proceedings (OSTI)

The HFIR-MFE-RB-14J experiment was conducted in the unshielded removable beryllium (RB) position of HFIR. The irradiation of the assembly occurred for two separated time periods. The first irradiation was from June 3, 1999 to August 27, 1999. The second irradiation period was from January 27, 2000 until June 6, 2000. The total exposure was for 14293 FPD (full power days). Reactor dosimetry capsules were analyzed and the activation data were used to provide the best estimates of the neutron fluences and radiation damage parameters as a function of height relative to midplane of the reactor.

Greenwood, Lawrence R.; Glasgow, David C.; Baldwin, Charles A.

2010-08-23T23:59:59.000Z

51

Neutron Fluences and Radiation Damage Parameters for the HFIR-MFE-RB-17J Experiment  

Science Conference Proceedings (OSTI)

The HFIR-MFE-RB-17J experiment was conducted in the removable beryllium (RB) position of HFIR with a Eu2O2 shield. The irradiation was conducted from April 27, 2004, to May 18, 2005. The total exposure was for 353.6 FPD (full power days). Reactor dosimetry capsules were analyzed and the activation data were used to provide the best estimates of the neutron fluences and radiation damage parameters as a function of height relative to midplane of the reactor.

Greenwood, Lawrence R.; Glasgow, David C.; Baldwin, Charles A.

2010-08-23T23:59:59.000Z

52

Neutron Fluences and Radiation Damage Parameters for the HFIR-MFE-RB-14J Experiment  

Science Conference Proceedings (OSTI)

The HFIR-MFE-RB-14J experiment was conducted in the unshielded removable beryllium (RB) position of HFIR. The irradiation of the assembly occurred for two separated time periods. The first irradiation was from June 3, 1999 to August 27, 1999. The second irradiation was from January 27, 2000 until June 6, 2000. The total exposure was for 14293 FPD (full power days). Reactor dosimetry capsules were analyzed and the activation data were used to provide the best estimates of the neutron fluences and radiation damage parameters as a function of height relative to midplane of the reactor.

Greenwood, Lawrence R.; Glasgow, David C.; Baldwin, Charles A.

2010-06-30T23:59:59.000Z

53

HFIR Sample Environment | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Sample Environment HFIR Sample Environment The Sample Environment Group provides equipment and support for studying materials under controlled conditions (temperature, pressure, magnetic field, chemical environment, etc.). When you come to HFIR to conduct an experiment, our front-line teams are there to support you. Although we currently offer a wide range of capabilities, we realize that these capabilities must continually grow. Therefore, we also have a busy research and development team, and we encourage you to partner with them to develop new equipment and techniques. The online Sample Environment Equipment Database allows you to search for information about the sample environment equipment available for HFIR instruments. Contact HFIR Team Leader Chris Redmon Resources Sample Environment Equipment Database

54

INEEL/EXT-01-01623 MODULAR PEBBLE-BED REACTOR PROJECT  

E-Print Network (OSTI)

in the early 1990s. Fuel compacts were irradiated at the High Flux Isotope Reactor (HFIR) and the Advanced Test

55

The HIgh Flux Isotope Reactor: Past, Present, and Future  

Science Conference Proceedings (OSTI)

HFIR construction began in 1965 and completed in 1966. During the first 15 years of operation, the heavy actinide isotope production mission was dominant. HFIR is now positioned as one of the most versataile research reactors in the world.

Beierschmitt, Kelly J [ORNL; Farrar, Mike B [ORNL

2009-01-01T23:59:59.000Z

56

Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments  

Science Conference Proceedings (OSTI)

Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L. [Neutron Sciences Directorate, Oak Ridge National Laboratory (United States)

2011-07-01T23:59:59.000Z

57

A Brief History i-l Research Reactors  

E-Print Network (OSTI)

stainless steel sam- ples in the High Flux Isotope Reactor (HFIR) at tem- peratures of 380 to 680" with up/cm' to balance the gas pressure were used m their calculation. A comparison of the results with HFIR and the HFIR ex- perimental data is presented in section 5. Applications of the model to various fusion designs

58

Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

59

Horizontal Beam Tubes - HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizontal Beam Tubes Horizontal Beam Tubes The reactor has four horizontal beam tubes that supply the neutrons to the neutron scattering instruments. Details for each beam tube and instrument can be found on the HFIR instrument page. Each of the beam tubes that supply these instruments with neutrons is described subsequently. HB-1 and HB-3 The HB-1 and HB-3 thermal neutron beam tube designs are identical except for the length. Both are situated tangential to the reactor core so that the tubes point at reflector material and do not point directly at the fuel. An internal collimator is installed at the outboard end. This collimator is fabricated out of carbon steel and is plated with nickel. The collimator provides a 2.75-in by 5.5-in. rectangular aperture. A rotary shutter is located outboard of each of these beam tubes. The

60

Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results  

SciTech Connect

The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.

Ruggles, A.E.; Morris, D.G.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The SpallaTion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SpallaTion neuTron Source projecT When the Department of Energy (DOE) set out in the 1990s to develop a neutron scattering research facility that was ten times more powerful than the state of the art, the concept for the project that it chose was as ambitious as the scientific capability it sought to deliver. The Spallation Neutron Source (SNS) Project called for unprecedented collaboration among six national laboratories as well as significant

62

Analysis of HFIR Dosimetry Experiments Performed in Cycles 400 and 401  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) has been in operation at Oak Ridge National Laboratory since 1966. To upgrade and enhance capabilities for neutron science research at the reactor, a larger HB-2 beam tube was installed in April of 2002. To assess, experimentally, the impact of this larger beam tube on radiation damage rates [i.e., displacement-per-atom (dpa) rates] used in vessel life extension studies, dosimetry experiments were performed from April to August 2004 during fuel cycles 400 and 401. This report documents the analysis of the dosimetry experiments and the determination of best-estimate dpa rates. These dpa rates are obtained by performing a least-squares adjustment of calculated neutron and gamma-ray fluxes and the measured responses of radiometric monitors and beryllium helium accumulation fluence monitors. The best-estimate dpa rates provided here will be used to update HFIR pressure vessel life extension studies, which determine the pressure/temperature limits for reactor operation and the HFIR pressure vessel's remaining life. All irradiation parameters given in this report correspond to a reactor power of 85 MW.

Remec, Igor [ORNL; Baldwin, Charles A [ORNL

2008-09-01T23:59:59.000Z

63

Radiation effects concerns at a spallation source  

SciTech Connect

Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab.

Sommer, W.F.

1990-01-01T23:59:59.000Z

64

Justification for an Increase in Authorized Operating Power at HFIR  

Science Conference Proceedings (OSTI)

1)Using verified and validated reactor physics methods coupled to a currently accepted thermal hydraulic analysis methodology, onset of incipient boiling power agrees well with the currently-accepted safety basis value. The MCNP-based methodology is acceptable for scoping studies of LEU fuel conversion. 2)A balance-of-plant assessment would have to be conducted to determine if the power up-rate to 100 MW could be supported for LEU fuel. 3)While analyses performed 45 years ago have been shown to be in agreement with today s methods, there is an advantage to the current methodology in that people working at HFIR today can explain/justify/defend the safety analyses rather than relying solely on documentation.

Primm, Trent [ORNL; Ilas, Germina [ORNL

2011-01-01T23:59:59.000Z

65

Validation of a Monte Carlo Based Depletion Methodology Using HFIR Post-Irradiation Measurements  

Science Conference Proceedings (OSTI)

Post-irradiation uranium isotopic atomic densities within the core of the High Flux Isotope Reactor (HFIR) were calculated and compared to uranium mass spectrographic data measured in the late 1960s and early 70s [1]. This study was performed in order to validate a Monte Carlo based depletion methodology for calculating the burn-up dependent nuclide inventory, specifically the post-irradiation uranium

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

66

Proposed Program: Reliability-Centered Maintenance (RCM) for the High Flux Isotope Reactor  

E-Print Network (OSTI)

There is a desire to implement a reliability-centered maintenance at the High Flux Isotope Reactor (HFIR) at the Oak-Centered Maintenance (RCM) structure is proposed for implementation at the HFIR. This proposed RCM structure is based on widely used and accepted industry practices. The HFIR primary cleanup system is used to provide specific

67

Biology and Soft Matter | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source (SNS) and the reactor-based High Flux Isotope Reactor (HFIR), at Oak Ridge National Laboratory (ORNL). Researchers have access to new...

68

3D COMSOL Simulations for Thermal Deflection of HFIR Fuel Plate in the "Cheverton-Kelley" Experiments  

SciTech Connect

Three dimensional simulation capabilities are currently being developed at Oak Ridge National Laboratory using COMSOL Multiphysics, a finite element modeling software, to investigate thermal expansion of High Flux Isotope Reactor (HFIR) s low enriched uranium fuel plates. To validate simulations, 3D models have also been developed for the experimental setup used by Cheverton and Kelley in 1968 to investigate the buckling and thermal deflections of HFIR s highly enriched uranium fuel plates. Results for several simulations are presented in this report, and comparisons with the experimental data are provided when data are available. A close agreement between the simulation results and experimental findings demonstrates that the COMSOL simulations are able to capture the thermal expansion physics accurately and that COMSOL could be deployed as a predictive tool for more advanced computations at realistic HFIR conditions to study temperature-induced fuel plate deflection behavior.

Jain, Prashant K [ORNL; Freels, James D [ORNL; Cook, David Howard [ORNL

2012-08-01T23:59:59.000Z

69

Materials Selection for the HFIR Cold Neutron Source  

DOE Green Energy (OSTI)

In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.

Farrell, K.

2001-08-24T23:59:59.000Z

70

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

71

IMAGINE: the Laue Diffractometer at HFIR | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

The Laue Diffractometer at HFIR IMAGINE IMAGINE IMAGINE is a state-of-the-art neutron image-plate single crystal diffractometer. It provides atomic resolution information on...

72

New detector array improves neutron count capability at HFIR...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Ron Maples. Bio-SANS, the Biological Small-Angle Neutron Scattering Instrument at HFIR recently had a detector upgrade that will provide significantly improved performance...

73

SNS-HFIR User Group Meeting - Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee and Local Contacts Important Dates Weather Attractions logos for SNS, HFIR, SHaRe, and CNMS IMPORTANT INFORMATION: Location of Sessions has changed because of the...

74

SNAP: the Spallation Neutrons and Pressure Diffractometer at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutrons and Pressure Diffractometer at SNS Spallation Neutrons and Pressure Diffractometer. Spallation Neutrons and Pressure Diffractometer. The SNAP Diffractometer...

75

Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube  

SciTech Connect

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

Bucholz, J.A.

2000-07-01T23:59:59.000Z

76

Research Reactors Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

is responsible for operation of the High Flux Isotope Reactor. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States,...

77

Spallation Neutron Source  

NLE Websites -- All DOE Office Websites (Extended Search)

D/gim D/gim Spallation Neutron Source SNS is an accelerator-based neutron source. This one-of-a-kind facility pro- vides the most intense pulsed neutron beams in the world. When ramped up to its full beam power of 1.4 MW, SNS will be eight times more powerful than today's best facility. It will give researchers more detailed snapshots of the smallest samples of physical and biological materials than ever before

78

For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.  

E-Print Network (OSTI)

-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation of these instruments. HFIR SNS These facilities are funded by the U.S. Department of Energy. 08-G00986H

79

Jose March-Leuba Ph.D. in Nuclear Engineering: University of Tennessee, 1984  

E-Print Network (OSTI)

-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation of these instruments. HFIR SNS These facilities are funded by the U.S. Department of Energy. 08-G00986J

80

OSP WEEKLY FUNDING BULLETIN Volume 5, Issue 06 February 7, 2011  

E-Print Network (OSTI)

. 16 in a one-day symposium on Neutrons in Structural Biology and will tour the SNS and HFIR facilities) and Oak Ridge's Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to provide

Alabama in Huntsville, University of

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES neutrons.ornl.gov  

E-Print Network (OSTI)

of the campus, High Flux Isotope Reactor (HFIR), Conference Center and short walk to the Spallation Neutron nearby Reservations can be made 24/7 by calling 865-576-8101 Map of ORNL Campus #12;Maps of SNS, HFIR

82

Neutron Characterization for Additive Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manu- facturing (AM)....

83

Top neutron scientists named to positions at ORNL | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR), has filled two high-level administrative positions with leaders in the neutron...

84

Data Management Practices | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

to data generated from neutron scattering experiments at the High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS). Any changes to these guidelines will be...

85

Center for Nanophase Materials Sciences (CNMS) - General Characterizat...  

NLE Websites -- All DOE Office Websites (Extended Search)

neutron scattering facilities that are available at ORNL's High-Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS). Beamlines of particular relevance to CNMS...

86

What Can You Do With Neutrons?  

NLE Websites -- All DOE Office Websites (Extended Search)

the globe, including the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Today the number of active neutron users in...

87

Facilities and Capabilities | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Reactor and the Spallation Neutron Source. The continuous neutron source at HFIR and the pulsed neutron source at SNS complement each other well and, along with their...

88

Educational Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Source (APS). The Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory are used to generate neutrons. These facilities are...

89

The Neutron Residual Stress Mapping Facility at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Residual Stress Mapping Facility at HFIR Neutron Residual Stress Mapping Facility (HB-2B) Neutron Residual Stress Mapping Facility (HB-2B). The HB-2B beam port is optimized...

90

IMAGINE beam line at HFIR welcomes first external user | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

IMAGINE beam line at HFIR welcomes first external user Neutrons help visiting scientist study ways to stay 'two steps ahead' of bacteria Alice Vrielink (right) of the University of...

91

HFIR Instrument System Beam Lines | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Clicking anywhere else on the image will open a full-size, printable PDF file. HFIR Instrument Layout HB-1A Ames Lab Triple-Axis Spectrometer CG-2 SANS CG-3 BioSANS CG-4C...

92

Getting Beam Time at HFIR and SNS | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Apply for Beam Time at HFIR and SNS Apply for Beam Time at HFIR and SNS Apply for Beam Time at HFIR and SNS 2014B Call for Proposals Proposal call 2014B All available beam lines will accept proposals through February 26, 2014 Beam time is granted through our general user program, which is open to all. In addition, we have opportunities for extended collaboration through programs such as internships and postdoctoral programs. The instruments at HFIR and SNS can be used free of charge with the understanding that researchers will publish their results, making them available to the scientific community. Our facilities are also available for proprietary research for a fee. ORNL User Portal The ORNL User Portal gives you access to all the resources you need as a new or returning user, such as the proposal system, data access and

93

Comparison of Calculated and Measured Neutron Fluence in Fuel/Cladding Irradiation Experiments in HFIR  

Science Conference Proceedings (OSTI)

A recently-designed thermal neutron irradiation facility has been used for a first series of irradiations of PWR fuel pellets in the high flux isotope reactor (HFIR) at Oak Ridge National Laboratory. Since June 2010, irradiations of PWR fuel pellets made of UN or UO{sub 2}, clad in SiC, have been ongoing in the outer small VXF sites in the beryllium reflector region of the HFIR, as seen in Fig. 1. HFIR is a versatile, 85 MW isotope production and test reactor with the capability and facilities for performing a wide variety of irradiation experiments. HFIR is a beryllium-reflected, light-water-cooled and -moderated, flux-trap type reactor that uses highly enriched (in {sup 235}U) uranium (HEU) as the fuel. The reactor core consists of a series of concentric annular regions, each about 2 ft (0.61 m) high. A 5-in. (12.70-cm)-diam hole, referred to as the flux trap, forms the center of the core. The fuel region is composed of two concentric fuel elements made up of many involute-shaped fuel plates: an inner element that contains 171 fuel plates, and an outer element that contains 369 fuel plates. The fuel plates are curved in the shape of an involute, which provides constant coolant channel width between plates. The fuel (U{sub 3}O{sub 8}-Al cermet) is nonuniformly distributed along the arc of the involute to minimize the radial peak-to-average power density ratio. A burnable poison (B{sub 4}C) is included in the inner fuel element primarily to reduce the negative reactivity requirements of the reactor control plates. A typical HEU core loading in HFIR is 9.4 kg of {sup 235}U and 2.8 g of {sup 10}B. The thermal neutron flux in the flux trap region can exceed 2.5 x 10{sup 15} n/cm{sup 2} {center_dot} s while the fast flux in this region exceeds 1 x 10{sup 15} n/cm{sup 2} {center_dot} s. The inner and outer fuel elements are in turn surrounded by a concentric ring of beryllium reflector approximately 1 ft (0.30 m) thick. The beryllium reflector consists of three regions: the removable reflector, the semi-permanent reflector, and the permanent reflector. It is surrounded by a water reflector of effectively infinite thickness. In the axial direction, the reactor is reflected by water above and below the reactor. The irradiation facilities, one for UN and the other for UO{sub 2} pellets, utilize a thin cylindrical hafnium shield approximately 4 cm in diameter surrounding the facility basket to reduce the thermal neutron flux sufficiently such that the linear power rating in the irradiated fuel pins will be similar to PWR operating conditions. The facilities each contain nine fuel pins, each comprising 10 fuel pellets, arranged as if three fuel rods.

Ellis, Ronald James [ORNL

2011-01-01T23:59:59.000Z

94

FISSION AND SPALLATION EXCITATION FUNCTIONS OF U238  

E-Print Network (OSTI)

Spallation Cro ss Sections Fission Product Cross Sections V.B. Spallation Reactions Fission Yields Acknowledgme nts . .UNIVERSITY OF CALIFORNIA ;"~I FISSION SPALLATION EXCITATION

Ritsema, Susanne Elaine

2010-01-01T23:59:59.000Z

95

PROGRESS OF THE SPALLATION NEUTRON SOURCE PROJECT, IG-0532 |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROGRESS OF THE SPALLATION NEUTRON SOURCE PROJECT, IG-0532 PROGRESS OF THE SPALLATION NEUTRON SOURCE PROJECT, IG-0532 When completed, the Spallation Neutron Source (SNS) will be...

96

Irradiation of SiC Clad Fuel Rods in the HFIR  

Science Conference Proceedings (OSTI)

During 2009 and- 2010, new test capability for the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) was developed that allows testing of advanced nuclear fuels and cladding under prototypic light-water-reactor (LWR) operating conditions (i.e., cladding and fuel temperatures, fuel average linear heat generation rates, and cladding fluence). For the initial experiments for this test program, ORNL teamed with commercial fuel/cladding vendors who have developed an advanced composite-wound SiC cladding material for possible use in LWRs. The first experiment, containing SiC-clad UN fuel, was inserted in HFIR in June 2010, and the second experiment, containing SiC-clad UO2 fuel, was inserted in October 2010. Two capsules (one containing UN fuel and the other UO2) were withdrawn from their respective assemblies in November 2011 at an estimated fuel burnup of approximately 10 GWd/MTHM; and two capsules (one containing UN fuel and the other UO2) were withdrawn from their respective assemblies in February 2013 at an estimated fuel burnup of approximately 20 GWd/MTHM. These capsules are currently awaiting PIE. This paper will describe the experiment, as-run operating conditions for these capsules, and current PIE plans and status.

Ott, Larry J [ORNL; Bell, Gary L [ORNL; Ellis, Ronald James [ORNL; McDuffee, Joel Lee [ORNL; Morris, Robert Noel [ORNL

2013-01-01T23:59:59.000Z

97

Performance and safety parameters for the high flux isotope reactor  

Science Conference Proceedings (OSTI)

A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

2012-07-01T23:59:59.000Z

98

Performance and Safety Parameters for the High Flux Isotope Reactor  

SciTech Connect

A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

2012-01-01T23:59:59.000Z

99

PTAX: the Polarized Triple-Axis Spectrometer at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Polarized Triple-Axis Spectrometer at HFIR HB-1 photo Polarized Triple-Axis Spectrometer (HB-1). Of the four triple-axis spectrometers installed at HFIR, the HB-1 instrument is...

100

CG-1: The Instrument Development Beam Line at HFIR | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrument Development Beam Line at HFIR Four instrument development beam lines are in varying stages of development or completion at the Cold Guide 1 (CG-1) position at HFIR. CG1...

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL  

Science Conference Proceedings (OSTI)

The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.

Freels, James D [ORNL; Bodey, Isaac T [ORNL; Lowe, Kirk T [ORNL; Arimilli, Rao V [ORNL

2010-09-01T23:59:59.000Z

102

2009-01-0657 Nestor Oliverio and Anna Stefanopoulou  

E-Print Network (OSTI)

Materials Sciences (CNMS), High Flux Isotope Reactor (HFIR), Shared Research Equipment User Facility (Sha performed at HFIR and/or SNS, the following provisions shall apply. Where the following provisions) for use at the Spallation Neutron Source (SNS) or the High Flux Isotope Reactor (HFIR). CONTRACTOR

Stefanopoulou, Anna

103

APPENDIX A-BES-0 to User Agreement No. NP-09-  

E-Print Network (OSTI)

Materials Sciences (CNMS), High Flux Isotope Reactor (HFIR), Shared Research Equipment User Facility (Sha performed at HFIR and/or SNS, the following provisions shall apply. Where the following provisions) for use at the Spallation Neutron Source (SNS) or the High Flux Isotope Reactor (HFIR). CONTRACTOR

104

1 WASHINGTON UNIVERSITY  

E-Print Network (OSTI)

Materials Sciences (CNMS), High Flux Isotope Reactor (HFIR), Shared Research Equipment User Facility (Sha performed at HFIR and/or SNS, the following provisions shall apply. Where the following provisions) for use at the Spallation Neutron Source (SNS) or the High Flux Isotope Reactor (HFIR). CONTRACTOR

Garrigós Aniorte, Gustavo

105

Institute of Informatics, Warsaw University A Fixpoint Semantics and an SLD-Resolution Calculus  

E-Print Network (OSTI)

Materials Sciences (CNMS), High Flux Isotope Reactor (HFIR), Shared Research Equipment User Facility (Sha performed at HFIR and/or SNS, the following provisions shall apply. Where the following provisions) for use at the Spallation Neutron Source (SNS) or the High Flux Isotope Reactor (HFIR). CONTRACTOR

Linh, Nguyen Anh

106

MATERIALS FOR SPALLATION NEUTRON SOURCES: II: Radiation ...  

Science Conference Proceedings (OSTI)

MATERIALS FOR SPALLATION NEUTRON SOURCES: Session II: Radiation Effects, B. Sponsored by: Jt. SMD/MSD Nuclear Materials Committee Program...

107

MATERIALS FOR SPALLATION NEUTRON SOURCES: I: Radiation ...  

Science Conference Proceedings (OSTI)

MATERIALS FOR SPALLATION NEUTRON SOURCES: Session I: Radiation Effects, A. Sponsored by: Jt. SMD/MSD Nuclear Materials Committee Program...

108

High Flux Isotope Reactor | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Facilities HFIR How to Work with HFIR How to Work with HFIR HFIR Workflow Please contact the experiment interface or coordinator for additional information and...

109

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling  

SciTech Connect

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

Travis, Adam R [ORNL] ORNL; Freels, James D [ORNL] ORNL; Ekici, Kivanc [ORNL] ORNL

2013-01-01T23:59:59.000Z

110

Spallation Neutron Source The Spallation Neutron Source (SNS)  

NLE Websites -- All DOE Office Websites (Extended Search)

F/gim F/gim Spallation Neutron Source The Spallation Neutron Source (SNS) gives researchers more detailed informa- tion on the structure and dynamics of physical and biological materials than ever before possible. This accelerator- based facility provides the most intense pulsed neutron beams in the world. Scien- tists are able to count scattered neutrons, measure their energies and the angles at which they scatter, and map their final positions. SNS enables measurements of greater sensitivity, higher speed, higher resolution, and in more complex sample environments than have been possible at existing neutron facilities. Future Growth SNS was designed from the outset to accommodate a second target station, effectively doubling the capacity of the

111

Calibration of NRSF2 Instrument at HFIR  

SciTech Connect

The Neutron Residual Stress Mapping Facility (NRSF2) at HB-2B is a new generation-diffraction instrument, adding many new Second Generation features, such as larger beam tube, large sample XYZ goniometer, and KAPPA orienter for a broad range of materials behavior studies. One key feature is the NRSF2 monochromator, which is a double focusing, double crystal monochromator system consisting of two sets of stacked Si crystal wafers. One set of wafers has Si[400] plane normal to the surface while the other set of wafers has the Si[500] normal to the surface. The monochromator crystal diffracts at a fixed diffraction angle of 88{sup o} selecting a neutron wavelength determined by the monochromator d{sub hkl}-spacing. This 'Missouri' monochromator system has two independent monochromators, which enable diffraction from the following set of six diffraction planes: Si(511), Si(422), Si(331)AF (Anti-Fankuchen geometry), Si(400), Si(311), and Si(220). These diffraction planes can provide 6 different neutron wavelengths: approximately 1.45, 1.54, 1.73, 1.89 {angstrom}, 2.27, and 2.66 also incorporate seven position sensitive detectors located in a detector shield box. To use this advanced instrument for scientific and engineering measurements, careful calibration needs to be performed to accurately calibrate the seven position sensitive detectors, neutron wavelength, and 2{theta}{sub 0}. Just as in the X-ray diffraction technique, neutron diffraction directly measures the diffraction angle (2{theta}) or diffraction peak position, then based on Bragg's law and a strain free lattice spacing, the strain can be calculated. Therefore anything that can affect the diffracting angle measurement can influence the accuracy of the strain measurements. The sources of difficulties in achieving accurate neutron diffraction peak positions can be classified into three categories. (1) Instrument - These difficulties come from alignment of the monochromator, alignment of the incident and detector slits, leveling of the sample table, 2{theta}{sub 0} offset, and response of the position sensitive detector; (2) Counting statistics - if the peak profile count is too low, then the peak position derived from fitting a profile and background will have larger error. Therefore, adequate counting statistics and well-defined peaks are always good for precise peak position determination; and (3) Sample - Large grain size materials make it difficult to get enough diffracting grains, contributing to the different profile. With a low number the peak becomes 'spot' and results in inaccuracy in peak position. Texture in the sample can change the effective elastic constants and also affect the peak intensity. Phase and composition inhomogeneity can make it difficult to determine an accurate stress-free d{sub 0} for strain calculation. A partially buried gauge volume due to proximity to the sample surface or buried interface can also shift the peak position. The calibration method presented in this report will address the first two categories of difficulties listed above. The FWHM can be minimized for each sample d-spacing by adjusting the horizontal bending of the monochromator crystal. For the monochromator, the optimum FWHM lies between 70 and 110 degree. This range is selected in order to maintain an approximately equiaxed gauge volume and avoid significant increases in peak breadth for the detectors above and below the horizontal plane. To adequately calibrate the position sensitive detectors, 2{theta}{sub 0}, and wavelength, a set of high purity reference powders were selected. Since the selected reference powders have define grain size is, the measurement errors from sample grain size and texture can be excluded, although there may still be micro-strain in the powders, which can broaden the reference peak. In this report, the calibration procedure for the NRSF2 instrument will be presented and calibration results for five monochromator settings from HFIR cycle 403 will be presented. The monochromator settings calibrated include Si(331)AF (Anti-Fankuche n geomet

Tang, Fei [ORNL; Hubbard, Camden R [ORNL

2006-08-01T23:59:59.000Z

112

1 Managed by UT-Battelle for the Department of Energy  

E-Print Network (OSTI)

#12;#12;1 1. PREAMBLE The High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS and procedures. This document describes the overarching policies on the use of the HFIR and SNS as science of HFIR and SNS users and visitors, ORNL personnel, and the public, and to prevent accidental damage

113

Pour obtenir le grade de DOCTEUR DE L'UNIVERSIT DE GRENOBLE  

E-Print Network (OSTI)

#12;#12;1 1. PREAMBLE The High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS and procedures. This document describes the overarching policies on the use of the HFIR and SNS as science of HFIR and SNS users and visitors, ORNL personnel, and the public, and to prevent accidental damage

114

SNS | Spallation Neutron Source | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS SNS Instruments Working with SNS Contact Us User Program Manager Laura Morris Edwards 865.574.2966 Spallation Neutron Source Home | User Facilities | SNS SNS | Spallation Neutron Source SHARE SNS is an accelerator-based neutron source in Oak Ridge, Tennessee, USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located on Chestnut Ridge and is part of Oak Ridge National Laboratory. Although most people don't know it, neutron scattering research has a lot to do with our everyday lives. For example, things like medicine, food, electronics, and cars and airplanes have all been improved by neutron scattering research. Neutron research also helps scientists improve materials used in a

115

Preliminary Multiphysics Analyses of HFIR LEU Fuel Conversion using COMSOL  

SciTech Connect

The research documented herein was performed by several individuals across multiple organizations. We have previously acknowledged our funding for the project, but another common thread among the authors of this document, and hence the research performed, is the analysis tool COMSOL. The research has been divided into categories to allow the COMSOL analysis to be performed independently to the extent possible. As will be seen herein, the research has progressed to the point where it is expected that next year (2011) a large fraction of the research will require collaboration of our efforts as we progress almost exclusively into three-dimensional (3D) analysis. To the extent possible, we have tried to segregate the development effort into two-dimensional (2D) analysis in order to arrive at techniques and methodology that can be extended to 3D models in a timely manner. The Research Reactors Division (RRD) of ORNL has contracted with the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE) to perform a significant fraction of this research. This group has been chosen due to their expertise and long-term commitment in using COMSOL and also because the participating students are able to work onsite on a part-time basis due to the close proximity of UTK with the ORNL campus. The UTK research has been governed by a statement of work (SOW) which clearly defines the specific tasks reported herein on the perspective areas of research. Ph.D. student Isaac T. Bodey has focused on heat transfer, fluid flow, modeling, and meshing issues and has been aided by his major professor Dr. Rao V. Arimilli and is the primary contributor to Section 2 of this report. Ph.D student Franklin G. Curtis has been focusing exclusively on fluid-structure interaction (FSI) due to the mechanical forces acting on the plate caused by the flow and has also been aided by his major professor Dr. Kivanc Ekici and is the primary contributor to Section 4 of this report. The HFIR LEU conversion project has also obtained the services of Dr. Prashant K. Jain of the Reactor & Nuclear Systems Division (RNSD) of ORNL. Prashant has quickly adapted to the COMSOL tools and has been focusing on thermal-structure interaction (TSI) issues and development of alternative 3D model approaches that could yield faster-running solutions. Prashant is the primary contributor to Section 5 of the report. And finally, while incorporating findings from all members of the COMSOL team (i.e., the team) and contributing as the senior COMSOL leader and advocate, Dr. James D. Freels has focused on the 3D model development, cluster deployment, and has contributed primarily to Section 3 and overall integration of this report. The team has migrated to the current release of COMSOL at version 4.1 for all the work described in this report, except where stated otherwise. Just as in the performance of the research, each of the respective sections has been originally authored by the respective authors. Therefore, the reader will observe a contrast in writing style throughout this document.

Freels, James D [ORNL; Bodey, Isaac T [ORNL; Arimilli, Rao V [ORNL; Curtis, Franklin G [ORNL; Ekici, Kivanc [ORNL; Jain, Prashant K [ORNL

2011-06-01T23:59:59.000Z

116

Advanced LWR Fuel Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

A new test capability for the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is being developed that will allow testing of advanced nuclear fuels and cladding materials under prototypic light-water reactor (LWR) operating conditions in less time than it takes in other research reactors. This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiments currently planned to start in late 2008.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL

2008-01-01T23:59:59.000Z

117

Tips for Writing Good Proposals for HFIR and SNS | ORNL Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tips for Writing Good Proposals for HFIR and SNS Contact instrument staff before writing and ask them about opportunities for collaboration. Staff are available to: Contact...

118

Studies of Past Operations at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

119

MATERIALS FOR SPALLATION NEUTRON SOURCES: III: Corrosion  

Science Conference Proceedings (OSTI)

Both liquid mercury and liquid lead-bismuth eutectic have been proposed as possible target materials for spallation neutron sources. During the 1950's and...

120

MATERIALS FOR SPALLATION NEUTRON SOURCES: IV: Neutronics  

Science Conference Proceedings (OSTI)

The Department of Energy has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the...

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Calculation of heating values for the high flux isotope reactor  

Science Conference Proceedings (OSTI)

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments. (authors)

Peterson, J.; Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States)

2012-07-01T23:59:59.000Z

122

Calculation of Heating Values for the High Flux Isotope Reactor  

SciTech Connect

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

Peterson, Joshua L [ORNL; Ilas, Germina [ORNL

2012-01-01T23:59:59.000Z

123

Development of a Scale Model for High Flux Isotope Reactor Cycle 400  

Science Conference Proceedings (OSTI)

The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

Ilas, Dan [ORNL

2012-03-01T23:59:59.000Z

124

Spallation Neutron Source | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source SNS site, Spring 2012 The 80-acre SNS site is located on the east end of the ORNL campus and is about a three-minute drive from her sister neutron...

125

Recent Studies Related to Past Operations at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

126

Irradiation hardening in F82H irradiated at 573 K in the HFIR  

Science Conference Proceedings (OSTI)

Post-irradiation tensile tests were conducted on alloy F82H and variants of this steels irradiated at 573 K up to 19 dpa in the High Flux Isotope Reactor (HFIR) in Oak Ridge National Laboratory. Post-irradiation tensile and hardness tests revealed that the strength of F82H steeply increased below 5 dpa, and the total elongation decreased. The ductility of the variants, which showed more ductility in the unirradiated condition was the same as irradiated F82H, even though the magnitude of irradiation hardening is smaller than F82H. This suggests that the softened parts of the blanket, such as heat affected zones, could show more ductility loss at this temperature. The hardening behavior of F82H with 0.09% additional tantalum (mod3), which demonstrated microstructural stability under high temperature processing, was very similar to that of F82H. Therefore mod3 can be an attractive alternate structural material for a blanket when processed above 1373 K.

Stoller, Roger E [ORNL; Sokolov, Mikhail A [ORNL; Hirose, Takanori [Japan Atomic Energy Agency (JAEA); Okubo, N. [Japan Atomic Energy Agency (JAEA); Tanigawa, Hiroyasu [ORNL; Odette, G.R. [University of California, Santa Barbara; Ando, M. [Japan Atomic Energy Agency (JAEA)

2011-01-01T23:59:59.000Z

127

COMSOL-based Multiphysics Simulations to Support HFIR s Conversion to LEU Fuel  

Science Conference Proceedings (OSTI)

In this paper, development of at least one form of the COMSOL-based modeling framework for the HFIR is presented, key simulation steps are identified and several milestones achieved towards a coupled multi-physics capability are highlighted. COMSOL-based multi-physics simulation capability is able to answer the need for predictive 3D simulations of HFIR s involute plate and channels. Step-by-step development and analyses of the COMSOL models for the single and multi-channels will lead towards the desired full-core simulation capability for the HFIR. With very few experiments planned to support the conversion process, these 3D simulations will become the basis for the nuclear safety analysis of the HFIR s LEU fuel core.

Jain, Prashant K [ORNL; Freels, James D [ORNL; Cook, David Howard [ORNL

2011-01-01T23:59:59.000Z

128

Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site  

SciTech Connect

The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

2010-10-01T23:59:59.000Z

129

Neutron Scattering Science User ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS) will be accepted via the web-based proposal system...

130

SHUG Chairman's Message | ORNL Neutron Sciences Users  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR) User Group, "SHUG." II. PURPOSE The purpose of the SHUG is to: Provide a formal and...

131

Supporting Organizations | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL. ORNL is home to the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR), and our materials program works with the Neutron Sciences staff at these...

132

1 Managed by UT-Battelle for the U.S. Department of Energy  

E-Print Network (OSTI)

, as we now have 14 instruments at sNs and 14 at hFir either available to users or in commission- ingNs reliability for FY 2010 was 88% at power levels of 1 mw; to date in FY 2011, we are achieving 92%! hFir analy- sis tools at high Flux isotope reactor (hFir) and spallation Neutron source (sNs) have grown over

133

The European Spallation Source Getting the "Green" Light  

Science Conference Proceedings (OSTI)

The European Spallation Source Getting the "Green" Light. ... Location: 10:30 am, Green Auditorium, Gaithersburg, VTC to Boulder in Room 4511. ...

2010-10-05T23:59:59.000Z

134

Accumulator Ring Commissioning Latest Step for Spallation Neutron...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accumulator Ring Commissioning Latest Step for Spallation Neutron Source BNL SNS Homepage The following is from a press release issued by Oak Ridge National Laboratory. OAK RIDGE,...

135

SELECTED STUDIES OF PAST OPERATIONS AT THE ORNL HIGH FLUX ISOTOPE REACTOR  

Science Conference Proceedings (OSTI)

In response to on-going programs at Oak Ridge National Laboratory, two topics related to past operations of the High Flux Isotope Reactor (HFIR) are being reviewed and include determining whether HFIR fuel can be converted from high enriched uranium (HEU) to low enriched uranium (LEU) and determining whether HFIR beryllium reflectors are discharged as transuranic (TRU) waste. The LEU conversion and TRU waste studies are being performed in accordance with the Reduced Enrichment for Research and Test Reactors program and the Integrated Facility Disposition Project, respectively. While assessing data/analysis needs for LEU conversion such as the fuel cycle length and power needed to maintain the current level of reactor performance, a reduction of about 8% (~200 MWD) in the end-of-cycle exposure for HFIR fuel was observed over the lifetime of the reactor (43 years). The SCALE 6.0 computational system was used to evaluate discharged beryllium reflectors and it was discovered if the reflectors are procured according to the current HFIR standard, discharged reflectors would not be TRU waste, but the removable reflector (closest to core) would become TRU waste approximately 40 years after discharge. However, beryllium reflectors have been fabricated with a greater uranium content than that stipulated in the standard and these reflectors would be discharged as TRU waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

136

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL s High Flux Isotope Reactor  

SciTech Connect

Simulation models for steady state thermal hydraulics analyses of Oak Ridge National Laboratory s High Flux Isotope Reactor (HFIR) have been developed using the COMSOL Multiphysics simulation software. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions; coupling to adjacent plates and channels was accounted for by using periodic boundary conditions. The standard k- turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow assessing impacts of fuel fabrication tolerances and uncertainties related to low enriched uranium (LEU) fuel design and reactor operating parameters. Heat source input for the simulations was obtained from separate Monte Carlo N Particle calculations for the axially non-contoured LEU fuel designs at the beginning of the reactor cycle. Mesh refinement studies have been performed to calibrate the models against the pressure drop measured across the HFIR core.

Khane, Vaibhav B [ORNL; Jain, Prashant K [ORNL; Freels, James D [ORNL

2012-01-01T23:59:59.000Z

137

Surface modification to prevent oxide scale spallation  

SciTech Connect

A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

2013-07-16T23:59:59.000Z

138

NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS  

Science Conference Proceedings (OSTI)

Calculations for predicting the distribution of the products of spallation reactions between high energy protons and target materials are well developed and are used for design and operational applications in many projects both within DOE and in other arenas. These calculations are based on theory and limited experimental data that verifies rates of production of some spallation products exist. At the Spallation Neutron Source, a helium stream from the mercury target flows through a system to remove radioactivity from this mercury target offgas. The operation of this system offers a window through which the production of noble gases from mercury spallation by protons may be observed. This paper describes studies designed to measure the production rates of twelve noble gas isotopes within the Spallation Neutron Source mercury target.

DeVore, Joe R [ORNL; Lu, Wei [ORNL; Schwahn, Scott O [ORNL

2013-01-01T23:59:59.000Z

139

TWO-DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS  

NLE Websites -- All DOE Office Websites (Extended Search)

DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS P532 Zhiyue Xu, Yuichiro Yamashita 1 , and Claude B. Reed Argonne National Laboratory, Argonne, IL 60439, USA 1 Now with Kyushu University, Japan Abstract High power lasers can weaken, spall, melt and vaporize natural earth materials with thermal spallation being the most energy efficient rock removal mechanism. Laser rock spallation is a very complex phenomenon that depends on many factors. Computer numerical modeling would provides great tool to understand the fundamental of this complex phenomenon, which is crucial to the success of its applications. Complexity of modeling laser rock spallation is due to: 1) rock is a porous media, to which traditional theories of heat transfer and rock mechanics can not be directly

140

PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? EXTENDING CYCLE BURNUP  

Science Conference Proceedings (OSTI)

Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting HFIR from high enriched to low enriched uranium (20 wt % 235U) fuel requires extending the end-of-life burnup value for HFIR fuel from the current nominal value of 2200 MWD to 2600 MWD. The current fuel fabrication procedure is discussed and changes that would be required to this procedure are identified. Design and safety related analyses that are required for the certification of a new fuel are identified. Qualification tests and comments regarding the regulatory approval process are provided along with a conceptual schedule.

Primm, Trent [ORNL; Chandler, David [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New detector array improves neutron count capability at HFIR's Bio-SANS |  

NLE Websites -- All DOE Office Websites (Extended Search)

Bio-SANS neutron count capability improves Bio-SANS neutron count capability improves New detector array improves neutron count capability at HFIR's Bio-SANS Agatha Bardoel - June 29, 2012 Bio-SANS team that worked on installation of the new detector system. Front row, left to right: Doug Selby, Steve Hicks, Shuo Qian, Sai Venkatesh Pingali, Kathy Bailey, Amy Black Jones, and Derrick Williams. Back row, left to right: Ed Blackburn, John Palatinus, William Brad O'Dell, Mike Humphreys, Justin Beal, Ken Littrell, Greg Jones, Kevin Berry, Volker Urban, Randy Summers, and Ron Maples. Bio-SANS, the Biological Small-Angle Neutron Scattering Instrument at HFIR recently had a detector upgrade that will provide significantly improved performance that is more in line with the instrument's capability. Shorter experiment times are expected, which means more experiments can be

142

REACTOR  

DOE Patents (OSTI)

A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

Roman, W.G.

1961-06-27T23:59:59.000Z

143

Proceedings of the international workshop on spallation materials technology  

SciTech Connect

This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

Mansur, L.K.; Ullmaier, H. [comps.] [comps.

1996-10-01T23:59:59.000Z

144

January 16, 2009: Expansion of Spallation Neutron Source  

Energy.gov (U.S. Department of Energy (DOE))

January 16, 2009The Department gives its initial approval to begin plans for the Oak Ridge National Laboratory (ORNL) to build a second target station for the Spallation Neutron Source, expanding...

145

Laser Spallation of Rocks for Oil Well Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

LASER SPALLATION OF ROCKS FOR OIL WELL DRILLING Zhiyue Xu 1 , Claude B. Reed 1 , Richard Parker 2 , Ramona Graves 3 1 Argonne National Laboratory, Argonne, IL 60439, USA 2 Parker...

146

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

147

A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source  

E-Print Network (OSTI)

The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

M. Heil; R. Reifarth; M. M. Fowler; R. C. Haight; F. Kppeler; R. S. Rundberg; E. H. Seabury; J. L. Ullmann; J. B. Wilhelmy; K. Wisshak

2013-10-16T23:59:59.000Z

148

A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.

Nagler, Stephen E [ORNL; Mook Jr, Herbert A [ORNL

2008-01-01T23:59:59.000Z

149

DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

2011-02-01T23:59:59.000Z

150

Experimental and Computational Study of the Flux Spectrum in Materials Irradiation Facilities of the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This report compares the available experimental neutron flux data in the High Flux Isotope Reactor (HFIR) to computational models of the HFIR loosely based on the experimental loading of cycle 400. Over the last several decades, many materials irradiation experiments have included fluence monitors which were subsequently used to reconstruct a coarse-group energy-dependent flux spectrum. Experimental values for thermal and fast neutron flux in the flux trap about the midplane are found to be 1.78 0.27 and 1.05 0:06 1E15 n/cm sec, respectively. The reactor physics code MCNP is used to calculate neutron flux in the HFIR at irradiation locations. The computational results are shown to correspond to closely to experimental data for thermal and fast neutron flux with calculated percent differences ranging from 0:55 13.20%.

McDuffee, Joel Lee [ORNL; Daly, Thomas F [ORNL

2012-01-01T23:59:59.000Z

151

An Account of Oak Ridge National Laboratory's Thirteen Research Reactors  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

Rosenthal, Murray Wilford [ORNL

2009-08-01T23:59:59.000Z

152

Impact induced response spectrum for the safety evaluation of the high flux isotope reactor  

Science Conference Proceedings (OSTI)

The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.

Chang, S.J.

1997-05-01T23:59:59.000Z

153

Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

Ott, Larry J [ORNL; Ellis, Ronald James [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL; Bevard, Bruce Balkcom [ORNL

2009-01-01T23:59:59.000Z

154

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL PROTECTION (RP) RADIOLOGICAL PROTECTION (RP) OBJECTIVE RP-1: The RRD radiological protection program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified radiological protection personnel are provided, and adequate radiological protection facilities and equipment are available to ensure that services are adequate to conduct and support HFIR operation. The radiological protection functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. Radiological protection personnel exhibit awareness of the applicable radiological protection requirements pertaining to HFIR operation and the associated hazards.

155

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SAFETY (NS) NUCLEAR SAFETY (NS) OBJECTIVE NS-1: The nuclear safety program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified nuclear safety personnel are provided, and adequate facilities and equipment are available to ensure that nuclear safety services are adequate to support HFIR operation with the CS. The nuclear safety functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. The level of knowledge of nuclear safety personnel with respect to operation of HFIR with the CS is adequate. (Core Requirements 1, 2, 4, and 6) Criteria * The nuclear safety program is established and functioning to support HFIR

156

The General-Purpose Small-Angle Neutron Scattering Diffractometer at HFIR -  

NLE Websites -- All DOE Office Websites (Extended Search)

General-Purpose Small-Angle Neutron Scattering Diffractometer at HFIR General-Purpose Small-Angle Neutron Scattering Diffractometer at HFIR Instrument scientist Ken Littrell at GP-SANS. Instrument scientist Ken Littrell at GP-SANS. The General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) instrument is optimized for providing information about structure and interactions in materials in the size range of 0.5 - 200 nm. It has a cold neutron flux on sample and capabilities comparable to those of the best SANS instruments worldwide, including a wide range of neutron wavelengths λ 5 - 30 Å, resolution Δλ ⁄ λ 9=45%, and a 1m2 area detector with 5 × 5mm2 pixel resolution with a maximum counting capability of up to 2.5 kHz. The sample-to-detector distance can be varied from 1 to 20 m, and the detector can be offset horizontally by up to 45 cm, allowing

157

EIS-0247: Construction and Operation of the Spallation Neutron Source |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

247: Construction and Operation of the Spallation Neutron 247: Construction and Operation of the Spallation Neutron Source EIS-0247: Construction and Operation of the Spallation Neutron Source SUMMARY The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron scattering research than is currently available. This source would assure the availability of a state-of-the-art neutron research facility in the United States in the decades ahead. This facility would be used to conduct research in areas such as materials science, condensed matter physics, the molecular structure of biological materials, properties of polymers and complex fluids, and magnetism. In addition to creating new scientific and

158

GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING  

DOE Green Energy (OSTI)

Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

Walsh, S C; Lomov, I; Roberts, J J

2012-01-19T23:59:59.000Z

159

BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE  

Science Conference Proceedings (OSTI)

The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

Plum, Michael A [ORNL

2012-01-01T23:59:59.000Z

160

Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)  

E-Print Network (OSTI)

In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

Yu Efremenko; W R Hix

2008-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WAND: Wide-Angle Neutron Diffractometer at HFIR | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

US/Japan Wide-Angle Neutron Diffractometer US/Japan Wide-Angle Neutron Diffractometer WAND Instrument scientist Jaime Fernandez-Baca (left) with a visiting researcher at WAND. The Wide-Angle Neutron Diffractometer (WAND) at the HFIR HB-2C beam tube was designed to provide two specialized data-collection capabilities: (1) fast measurements of medium-resolution powder-diffraction patterns and (2) measurements of diffuse scattering in single crystals using flat-cone geometry. For these purposes, this instrument is equipped with a curved, one-dimensional 3He position-sensitive detector covering 125º of the scattering angle with the focal distance of 71 cm. The sample and detector can be tilted in the flat-cone geometry mode. These features enable measurement of single-crystal diffraction patterns in a short time over a

162

Fabrication of control rods for the High Flux Isotope Reactor  

SciTech Connect

The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

Sease, J.D.

1998-03-01T23:59:59.000Z

163

Supercool Neutrons (Ultracold Neutrons)  

E-Print Network (OSTI)

in the USA. Why neutrons? Neutrons possess physical properties that make them valuable investigative tools Spallation Neutron Source (SNS) The world's most intense pulsed accelerator-based neutron source. High Flux Isotope Reactor (HFIR) The highest flux reactor-based neutron source for condensed matter research

Martin, Jeff

164

23 August 2004 A Reexamination of the Velocity of Light, Dark Mass, and the  

E-Print Network (OSTI)

in the USA. Why neutrons? Neutrons possess physical properties that make them valuable investigative tools Spallation Neutron Source (SNS) The world's most intense pulsed accelerator-based neutron source. High Flux Isotope Reactor (HFIR) The highest flux reactor-based neutron source for condensed matter research

Tesfatsion, Leigh

165

Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011  

SciTech Connect

This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

2012-03-01T23:59:59.000Z

166

Next Generation Reactors  

Science Conference Proceedings (OSTI)

Mar 1, 2011... event of cracking or spallation due to thermo-mechanical stresses in .... and reliable machines can be used for neutron spallation sources.

167

Characterization of the Neutron Detector Upgrade to the GP-SANS and BIO-SANS Instruments at HFIR  

Science Conference Proceedings (OSTI)

Over the past year, new 1 m x 1 m neutron detectors have been installed at both the General Purpose SANS (GP-SANS) and the Bio-SANS instruments at HFIR, each intended as an upgrade to provide improved high rate capability. This paper presents the results of characterization studies performed in the detector test laboratory, including position resolution, linearity and background, as well as a preliminary look at high count rate performance.

Berry, Kevin D [ORNL; Bailey, Katherine M [ORNL; Beal, Justin D [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hicks, J Steve [ORNL; Jones, Amy Black [ORNL; Littrell, Ken [ORNL; Summers, Randy [ORNL; Urban, Volker S [ORNL; Vandergriff, David H [ORNL; Johnson, Nathan [GE Energy Services; Bradley, Brandon [GE Energy Services

2012-01-01T23:59:59.000Z

168

The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL

2011-01-01T23:59:59.000Z

169

Materials for spallation sources topics from IWSMTtopics from IWSMT  

E-Print Network (OSTI)

surface investigation were performed on Au and Pt alloys irradiated on STIP-II in order to know designThermal desorption behavior of light gases from STIP samples Hydrogen isotpoes He4~375 °C He4 ~1100°C Oliver, Dai at lower temperature compared EC316LN STIP I i di d l 9th International Workshop on Spallation Materials

McDonald, Kirk

170

Control System Availability for the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) is continuing its ramp up of beam power, while simultaneously increasing production hours and striving for reduced unplanned downtime. For the large, highly-distributed EPICS-based control system of the SNS, this demand for increased availability is combined with the need for ongoing system maintenance, upgrades and improvements. Causes of recent control system related downtime will be reviewed along with experiences in addressing the competing needs of availability and system improvements.

Hartman, Steven M [ORNL

2009-01-01T23:59:59.000Z

171

SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

Galambos, John D [ORNL

2011-01-01T23:59:59.000Z

172

Rationale for a spallation neutron source target system test facility at the 1-MW Long-Pulse Spallation Source  

Science Conference Proceedings (OSTI)

The conceptual design study for a 1-MW Long-Pulse Spallation Source at the Los Alamos Neutron Science Center has shown the feasibility of including a spallation neutron test facility at a relatively low cost. This document presents a rationale for developing such a test bed. Currently, neutron scattering facilities operate at a maximum power of 0.2 MW. Proposed new designs call for power levels as high as 10 MW, and future transmutation activities may require as much as 200 MW. A test bed will allow assessment of target neutronics; thermal hydraulics; remote handling; mechanical structure; corrosion in aqueous, non-aqueous, liquid metal, and molten salt systems; thermal shock on systems and system components; and materials for target systems. Reliable data in these areas are crucial to the safe and reliable operation of new high-power facilities. These tests will provide data useful not only to spallation neutron sources proposed or under development, but also to other projects in accelerator-driven transmutation technologies such as the production of tritium.

Sommer, W.F.

1995-12-01T23:59:59.000Z

173

Development of CFD models to support LEU Conversion of ORNL s High Flux Isotope Reactor  

SciTech Connect

The US Department of Energy s National Nuclear Security Administration (NNSA) is participating in the Global Threat Reduction Initiative to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. As an integral part of one of NNSA s subprograms, Reduced Enrichment for Research and Test Reactors, HFIR is being converted from the present HEU core to a low enriched uranium (LEU) core with less than 20% of U-235 by weight. Because of HFIR s importance for condensed matter research in the United States, its conversion to a high-density, U-Mo-based, LEU fuel should not significantly impact its existing performance. Furthermore, cost and availability considerations suggest making only minimal changes to the overall HFIR facility. Therefore, the goal of this conversion program is only to substitute LEU for the fuel type in the existing fuel plate design, retaining the same number of fuel plates, with the same physical dimensions, as in the current HFIR HEU core. Because LEU-specific testing and experiments will be limited, COMSOL Multiphysics was chosen to provide the needed simulation capability to validate against the HEU design data and previous calculations, and predict the performance of the proposed LEU fuel for design and safety analyses. To achieve it, advanced COMSOL-based multiphysics simulations, including computational fluid dynamics (CFD), are being developed to capture the turbulent flows and associated heat transfer in fine detail and to improve predictive accuracy [2].

Khane, Vaibhav B [ORNL; Jain, Prashant K [ORNL; Freels, James D [ORNL

2012-01-01T23:59:59.000Z

174

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

2010-02-01T23:59:59.000Z

175

Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2011-05-01T23:59:59.000Z

176

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

2009-03-01T23:59:59.000Z

177

Neutronics Modeling of the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

Chandler, David [ORNL; Primm, Trent [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL

2011-01-01T23:59:59.000Z

178

The use of PRA (Probabilistic Risk Assessment) in the management of safety issues at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The High Flux Isotope reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988, a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 {times} 10{sup {minus}4}. In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 138% of the internal event initiated contribution and is dominated by wind initiators. The PRA has provided a basis for the management of a wide range of safety and operation issues at the HFIR. 3 refs., 4 figs., 2 tabs.

Flanagan, G.F.

1990-01-01T23:59:59.000Z

179

Production capabilities in US nuclear reactors for medical radioisotopes  

SciTech Connect

The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

1992-11-01T23:59:59.000Z

180

Unified description of fission in fusion and spallation reactions  

E-Print Network (OSTI)

We present a statistical-model description of fission, in the framework of compound-nucleus decay, which is found to simultaneously reproduce data from both heavy-ion-induced fusion reactions and proton-induced spallation reactions at around 1 GeV. For the spallation reactions, the initial compound-nucleus population is predicted by the Li\\`{e}ge Intranuclear Cascade Model. We are able to reproduce experimental fission probabilities and fission-fragment mass distributions in both reactions types with the same parameter sets. However, no unique parameter set was obtained for the fission probability. The introduction of fission transients can be offset by an increase of the ratio of level-density parameters for the saddle-point and ground-state configurations. Changes to the finite-range fission barriers could be offset by a scaling of the Bohr-Wheeler decay width as predicted by Kramers. The parameter sets presented allow accurate prediction of fission probabilities for excitation energies up to 300 MeV and spins up to 60 \\hbar.

Davide Mancusi; Robert J. Charity; Joseph Cugnon

2010-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

2012-07-01T23:59:59.000Z

182

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMERGENCY PREPAREDNESS (EP) EMERGENCY PREPAREDNESS (EP) OBJECTIVE EP-1: A routine drill program and emergency operations drill program, including program records, have been established and implemented. (Core Requirement 11) Criteria * Reactor operation with the CS has been appropriately incorporated into the emergency preparedness hazards analysis and emergency response procedures. * The implemented routine and emergency operations drill program, including program records, have incorporated the CS SSCs and the CS's operation, hazards, and reactor interface. * Proficiency to appropriately respond to incidents and accidents associated with reactor operation has been demonstrated through the implemented routine and emergency operations drill program. Approach Record Review: Examine ORNL/RRD/INT-114, HFIR Emergency Planning Hazards

183

High Flux Isotope Reactor cold neutron source reference design concept  

SciTech Connect

In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

1998-05-01T23:59:59.000Z

184

Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel  

Science Conference Proceedings (OSTI)

Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

Primm, Trent [ORNL; Guida, Tracey [University of Pittsburgh

2010-02-01T23:59:59.000Z

185

Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

186

Core Vessel Insert Handling Robot for the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction, four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.

Graves, Van B [ORNL; Dayton, Michael J [ORNL

2011-01-01T23:59:59.000Z

187

The Spallation Neutron Source: A powerful tool for materials research  

SciTech Connect

When completed in 2006, the Spallation Neutron Source (SNS) will use an accelerator to produce the most intense beams of pulsed neutrons in the world. This unique facility is being built by a collaboration of six US Department of Energy laboratories and will serve a diverse community of users drawn from academia, industry, and government labs. The project continues on schedule and within budget, with commissioning and installation of all systems going well. Installation of 14 state-of-the-art instruments is under way, and design work is being completed for several others. These new instruments will enable inelastic and elastic-scattering measurements across a broad range of science such as condensed-matter physics, chemistry, engineering materials, biology, and beyond. Neutron Science at SNS will be complemented by research opportunities at several other facilities under way at Oak Ridge National Laboratory.

Mason, Thom [ORNL; Anderson, Ian S [ORNL; Ankner, John Francis [ORNL; Egami, Takeshi [ORNL; Ekkebus, Allen E [ORNL; Herwig, Kenneth W [ORNL; Hodges, Jason P [ORNL; Horak, Charlie M [ORNL; Horton, Linda L [ORNL; Klose, Frank Richard [ORNL; Mesecar, Andrew D. [University of Illinois, Chicago; Myles, Dean A A [ORNL; Ohl, M. [Forschungszentrum Julich, Julich, Germany; Zhao, Jinkui [ORNL

2006-01-01T23:59:59.000Z

188

Shielding Design of the Spallation Neutron Source (SNS)  

Science Conference Proceedings (OSTI)

The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements, calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented.

Johnson, J.O.

1998-09-17T23:59:59.000Z

189

The Spallation Neutron Source (SNS) conceptual design shielding analysis  

SciTech Connect

The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented.

Johnson, J.O.; Odano, N.; Lillie, R.A.

1998-03-01T23:59:59.000Z

190

Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

McClintock, David A [ORNL; Riemer, Bernie [ORNL; Ferguson, Phillip D [ORNL; Carroll, Adam J [ORNL; Dayton, Michael J [ORNL

2012-01-01T23:59:59.000Z

191

Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-12-01T23:59:59.000Z

192

SNS/BNL Diagnostics System Group, Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

SNS/BNL Diagnostics System Group SNS/BNL Diagnostics System Group Homepage The Spallation Neutron Source project is a collaboration between six national laboratories of the United states to build a Mega Watt neutrons source driven by a proton accelerator. The complex is going to be build in Oak Ridge (Tennessee) and consists of a full energy (1 Gev) linac, an accumulator ring and a mercury target with several instruments for neutron scattering. Information on the project can be found at http://www.sns.gov. At Brookhaven National Laboratory we work mainly on the accumulator ring and transfer lines diagnostics (HEBT, Ring, RTBT). Some of the systems are SNS-wide ie: the Beam Loss Monitor system and Beam Current Monitor system. In addition our group provides parts of other systems to our partner laboratories. Our group is part or the Collider Accelerator Division that is also in charge of RHIC and the AGS complex. If you are looking for information on a particular topic you can contact the persons working on it.

193

Neutron Cross Section Measurements at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

With the prospect of construction of the Spallation Neutron Source (SNS) at ORNL, and the fantastic high neutron flux, new, up to now impossible, experiments seem to be feasible in the fields of applied nuclear physics and astrophysics. These experiments will supply crucial neutron-induced cross section data for radionuclides, which are badly needed by many applied physics programs. The SNS will be uniquely suited for measuring the cross sections of interest to nuclear criticality safety, accelerator transmutation of nuclear waste (ATW), and heavy element nucleosynthesis for astrophysics. Because the sample sizes required at current facilities are usually too large for practical measurements, scarce information of these cross sections is available. Using the high neutron flux at the SNS will allow these measurements to be made with samples about 40 times smaller than at the next best facility. The large reduction in sample size at the SNS will result in orders of magnitude reduction in background from the radioactive samples and make them much easier to produce; hence, a much wider range of samples will be accessible for measurement at the SNS than at any other facility.

Guber, K.H.

2001-08-24T23:59:59.000Z

194

The status of the spallation neutron source ion source  

SciTech Connect

The ion source for the spallation neutron source (SNS) is a radio-frequency, multicusp source designed to deliver 45 mA of H2 to the SNS accelerator with a pulse length of 1 ms and repetition rate of 60 Hz. A total of three ion sources have been fabricated and commissioned at Lawrence Berkeley National Laboratory and subsequently delivered to the SNS at the Oak Ridge National Laboratory. The ion sources are currently being rotated between operation on the SNS accelerator, where they are involved in ongoing efforts to commission the SNS LINAC, and the hot spare stand (HSS), where high-current tests are in progress. Commissioning work involves operating the source in a low duty-factor mode (pulse width {approx}200 ms and repetition rate {approx}5 Hz) for extended periods of time while the high-current tests involve source operation at full duty-factor of 6 percent (1 ms/60 Hz). This report discusses routine performance of the source employed in the commissioning role as well as the initial results o f high-current tests performed on the HSS.

Welton, R.F.; Stockli, M.P.; Murray, S.N.; Keller, R.

2003-09-11T23:59:59.000Z

195

rf improvements for Spallation Neutron Source H ion source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering 38 mA H beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride AlN plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. 2010 American Institute of Physics.

Kang, Yoon W [ORNL; Fuja, Raymond E [ORNL; Goulding, Richard Howell [ORNL; Hardek, Thomas W [ORNL; Lee, Sung-Woo [ORNL; McCarthy, Mike [ORNL; Piller, Chip [ORNL; Shin, Ki [ORNL; Stockli, Martin P [ORNL; Welton, Robert F [ORNL

2010-01-01T23:59:59.000Z

196

Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor using RELAP5 and TEMPEST: Part 1, Models and simulation results  

Science Conference Proceedings (OSTI)

A study was conducted to examine decay heat removal requirements in the High Flux Isotope Reactor (HFIR) following shutdown from 85 MW. The objective of the study was to determine when forced flow through the core could be terminated without causing the fuel to melt. This question is particularly relevant when a station blackout caused by an external event is considered. Analysis of natural circulation in the core, vessel upper plenum, and reactor pool indicates that 12 h of forced flow will permit a safe shutdown with some margin. However, uncertainties in the analysis preclude conclusive proof that 12 h is sufficient. As a result of the study, two seismically qualified diesel generators were installed in HFIR. 9 refs., 4 figs.

Morris, D.G.; Wendel, M.W.; Chen, N.C.J.; Ruggles, A.E.; Cook, D.H.

1989-01-01T23:59:59.000Z

197

The use of automation with the new pneumatic irradiation facility of the ORNL HFIR  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor at Oak Ridge National Laboratory has two pneumatic irradiation systems: PT-1 installed in 1970 and PT-2 installed in 1987, which are used for neutron activation analysis. Both systems have been described in the literature. By means of a Gould programmable controller, considerable progress has been made in a cost-effective manner to operate and automate the features of the new facility. A neutron counter is an integral part of the new pneumatic tube, and all of the hardware is present to enable automated delayed neutron counting. Some automation of the old system has also been accomplished by the use of a Zymark general purpose programmable robot. This paper describes the automated features of both systems. The reactor has been shut down for safety evaluation since November 1986, so that no irradiations have been made in the new pneumatic tube.

Dyer, F.F.; Robinson, L.; Emery, J.F. (Oak Ridge National Lab., TN (USA))

1988-01-01T23:59:59.000Z

198

5 MW pulsed spallation neutron source, Preconceptual design study  

Science Conference Proceedings (OSTI)

This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

Not Available

1994-06-01T23:59:59.000Z

199

H- radio frequency source development at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

Welton, Robert F [ORNL; Pennisi, Terry R [ORNL; Roseberry, Ron T [ORNL; Stockli, Martin P [ORNL

2012-01-01T23:59:59.000Z

200

STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR  

Science Conference Proceedings (OSTI)

The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007  

SciTech Connect

This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology, several engineering proof-of-principle tests would be required. The RERTR program is currently conducting a series of generic fuel qualification tests at the Advanced Test Reactor. A review of these tests and a review of the safety basis for the current, HEU fuel cycle led to the identification of a set of HFIR-specific fuel qualification tests. Much additional study is required to formulate a HFIR-specific fuel qualification plan from this set. However, one such test - creating a graded fuel profile across a flat foil - has been initiated with promising results.

Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

2007-11-01T23:59:59.000Z

202

NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944  

E-Print Network (OSTI)

trash bags) of having been at the HFIR facility, which is surrounded by woods. Bears had also been by TWRA officials near ORNL's HFIR and moved to a wildlife management area in Scott County. (Photo: Jason

203

A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS  

Science Conference Proceedings (OSTI)

We describe the design and current performance of the backscattering silicon spectrometer (BASIS), a time-of-flight backscattering spectrometer built at the spallation neutron source (SNS) of the Oak Ridge National Laboratory (ORNL). BASIS is the first silicon-based backscattering spectrometer installed at a spallation neutron source. In addition to high intensity, it offers a high-energy resolution of about 3.5 {mu}eV and a large and variable energy transfer range. These ensure an excellent overlap with the dynamic ranges accessible at other inelastic spectrometers at the SNS.

Mamontov, E.; Herwig, K. W. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2011-08-15T23:59:59.000Z

204

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.)

2011-08-03T23:59:59.000Z

205

Effect of Substrate Thickness on Oxide Scale Spallation for Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

In this paper, the effect of the ferritic substrate's thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the high-temperature oxidation environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The growth stress is induced by the growth of the oxide scale on the scale/substrate interface, and thermal stress is induced by a mismatch of the coefficient of thermal expansion between the oxide scale and the substrate. The numerical results show that the interfacial shear stresses, which are the driving force of scale delamination between the oxide scale and the ferritic substrate, increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. Experimental observation confirmed the predicted results of the delamination and spallation of the oxide scale on the ferritic substrate.

Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2011-07-01T23:59:59.000Z

206

Heat Treatment Effect on Fracture Toughness of F82H Irradiated in HFIR  

Science Conference Proceedings (OSTI)

Irradiation hardening and fracture toughness of reduced-activation ferritic/martensitic steel F82H after irradiation were investigated with a focus on changing the fracture toughness transition temperature as a result of several heat treatments. The specimens were standard F82H-IEA (IEA), F82H-IEA with several heat treatments (Mod1 series) and a heat of F82H (Mod3) containing 0.1 % tantalum. The specimens were irradiated up to 20 dpa at 300oC in the High Flux Isotope Reactor under a collaborative research program between JAEA/US-DOE. The results of hardness tests showed that irradiation hardening of IEA was comparable with that of Mod3. However, the fracture toughness-transition temperature of Mod3 was lower than that of IEA. The transition temperature of Mod1 was also lower than that of the IEA heat. These results suggest that optimization of specifications on the heat treatment condition and modification of the minor alloying elements seem to be effective to reduce the fracture toughness-transition temperature after irradiation.

Stoller, Roger E [ORNL; Sokolov, Mikhail A [ORNL; Tanigawa, Hiroyasu [ORNL; Hirose, Takanori [Japan Atomic Energy Agency (JAEA); Odette, G.R. [University of California, Santa Barbara; Okubo, N. [Japan Atomic Energy Agency (JAEA); Jitsukawa, Shiro [Japan Atomic Energy Agency (JAEA); Sawai, T. [Japan Atomic Energy Agency (JAEA)

2011-01-01T23:59:59.000Z

207

Glossary of Terms (1mb)  

Science Conference Proceedings (OSTI)

High Flux Isotope Reactor (HFIR) Oak Ridge National Laboratory. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in ...

208

Multiphysics Simulations of the Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements Using COMSOL  

Science Conference Proceedings (OSTI)

A research and development project is ongoing to convert the currently operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched Uranium (HEU U3O8) fuel to low-enriched Uranium (LEU U-10Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, COMSOL is chosen to provide the needed multiphysics simulation capability to validate against the HEU design data and calculations, and predict the performance of the LEU fuel for design and safety analyses. The focus of this paper is on the unique issues associated with COMSOL modeling of the 3D geometry, meshing, and solution of the HFIR fuel plate and assembled fuel elements. Two parallel paths of 3D model development are underway. The first path follows the traditional route through examination of all flow and heat transfer details using the Low-Reynolds number k-e turbulence model provided by COMSOL v4.2. The second path simplifies the fluid channel modeling by taking advantage of the wealth of knowledge provided by decades of design and safety analyses, data from experiments and tests, and HFIR operation. By simplifying the fluid channel, a significant level of complexity and computer resource requirements are reduced, while also expanding the level and type of analysis that can be performed with COMSOL. Comparison and confirmation of validity of the first (detailed) and second (simplified) 3D modeling paths with each other, and with available data, will enable an expanded level of analysis. The detailed model will be used to analyze hot-spots and other micro fuel behavior events. The simplified model will be used to analyze events such as routine heat-up and expansion of the entire fuel element, and flow blockage. Preliminary, coarse-mesh model results of the detailed individual fuel plate are presented. Examples of the solution for an entire fuel element consisting of multiple individual fuel plates produced by the simplified model are also presented.

Freels, James D [ORNL; Jain, Prashant K [ORNL

2011-01-01T23:59:59.000Z

209

Validation of a Monte Carlo based depletion methodology via High Flux Isotope Reactor HEU post-irradiation examination measurements  

Science Conference Proceedings (OSTI)

The purpose of this study is to validate a Monte Carlo based depletion methodology by comparing calculated post-irradiation uranium isotopic compositions in the fuel elements of the High Flux Isotope Reactor (HFIR) core to values measured using uranium mass-spectrographic analysis. Three fuel plates were analyzed: two from the outer fuel element (OFE) and one from the inner fuel element (IFE). Fuel plates O-111-8, O-350-1, and I-417-24 from outer fuel elements 5-O and 21-O and inner fuel element 49-I, respectively, were selected for examination. Fuel elements 5-O, 21-O, and 49-1 were loaded into HFIR during cycles 4, 16, and 35, respectively (mid to late 1960s). Approximately one year after each of these elements were irradiated, they were transferred to the High Radiation Level Examination Laboratory (HRLEL) where samples from these fuel plates were sectioned and examined via uranium mass-spectrographic analysis. The isotopic composition of each of the samples was used to determine the atomic percent of the uranium isotopes. A Monte Carlo based depletion computer program, ALEPH, which couples the MCNP and ORIGEN codes, was utilized to calculate the nuclide inventory at the end-of-cycle (EOC). A current ALEPH/MCNP input for HFIR fuel cycle 400 was modified to replicate cycles 4, 16, and 35. The control element withdrawal curves and flux trap loadings were revised, as well as the radial zone boundaries and nuclide concentrations in the MCNP model. The calculated EOC uranium isotopic compositions for the analyzed plates were found to be in good agreement with measurements, which reveals that ALEPH/MCNP can accurately calculate burn-up dependent uranium isotopic concentrations for the HFIR core. The spatial power distribution in HFIR changes significantly as irradiation time increases due to control element movement. Accurate calculation of the end-of-life uranium isotopic inventory is a good indicator that the power distribution variation as a function of space and time is accurately calculated, i.e. an integral check. Hence, the time dependent heat generation source terms needed for reactor core thermal hydraulic analysis, if derived from this methodology, have been shown to be accurate for highly enriched uranium (HEU) fuel.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

210

Risk management at the Oak Ridge National Laboratory research reactors  

SciTech Connect

In November of 1986, the High Flux Isotope Reactor (HFIR) was shut down by Oak Ridge National Laboratory (ORNL) due to a concern regarding embrittlement of the reactor vessel. A massive review effort was undertaken by ORNL and the Department of Energy (DOE). This review resulted in an extensive list of analyses and design modifications to be completed before restart could take place. The review also focused on the improvement of management practices including implementation of several of the Institute of Nuclear Power Operations (INPO) requirements. One of the early items identified was the need to perform a Probabilistic Risk Assessment (PRA) on the reactor. It was decided by ORNL management that this PRA would not be just an exercise to assess the ``bottom`` line in order to restart, but would be used to improve the overall safety of the reactor, especially since resources (both manpower and dollars) were severely limited. The PRA would become a basic safety tool to be used instead of a more standard deterministic approach to safety used in commercial reactor power plants. This approach was further reinforced, because the reactor was nearly 25 years old at this time, and the design standards and regulations had changed significantly since the original design, and many of the safety issues could not be addressed by compliance to codes and standards.

Flanagan, G.F.; Linn, M.A.; Proctor, L.D.; Cook, D.H.

1994-12-31T23:59:59.000Z

211

Clean air. Safe, congestion-free highways and transit systems.  

E-Print Network (OSTI)

. #12;55 Sustainable Transportation Program High Flux Isotope Reactor (HFIR) HFIR is one of the world's most powerful research reactors. HTML manages a beam- line at HFIR dedicated to the determination

212

Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the bounds of known technology and are adaptable to the high-volume production required to process {approx} 2.5 to 4 tons of U/Mo and produce {approx}16,000 flat plates for U.S. reactors annually ({approx}10,000 of which are needed for HFIR operations). The reference flow sheet is not intended to necessarily represent the best or the most economical way to manufacture a LEU foil fuel for HFIR but simply represents a 'snapshot' in time of technology and is intended to identify the process steps that will likely be required to manufacture a foil fuel. Changes in some of the process steps selected for the reference flow sheet are inevitable; however, no one step or series of steps dominates the overall flow sheet requirements. A result of conceptualizing a reference flow sheet was the identification of the greater number of steps required for a foil process when compared to the dispersion fuel process. Additionally, in most of the foil processing steps, bare uranium must be handled, increasing the complexity of these processing areas relative to current operations. Based on a likely total cost of a few hundred million dollars for a new facility, it is apparent that line item funding will be necessary and could take as much as 8 to 10 years to complete. The infrastructure cost could exceed $100M.

Sease, J.D.; Primm, R.T. III; Miller, J.H.

2007-09-30T23:59:59.000Z

213

THERMAL HYDRAULIC ANALYSIS OF A LIQUID-METAL-COOLED NEUTRON SPALLATION TARGET  

Science Conference Proceedings (OSTI)

We have carried out numerical simulations of the thermal hydraulic behavior of a neutron spallation target where liquid metal lead-bismuth serves as both coolant and as a neutron spallation source. The target is one of three designs provided by the Institute of Physics and Power Engineering (IPPE) in Russia. This type of target is proposed for Accelerator-driven Transmutation of Waste (ATW) to eliminate plutonium from hazardous fission products. The thermal hydraulic behavior was simulated by use of a commercial CFD computer code called CFX. Maximum temperatures in the diaphragm window and in the liquid lead were determined. In addition the total pressure drop through the target was predicted. The results of the CFX analysis were close to those results predicted by IPPE in their preliminary analysis.

W. GREGORY; R. MARTIN; T. VALACHOVIC

2000-07-01T23:59:59.000Z

214

An apparatus for studying spallation neutrons in the Aberdeen Tunnel laboratory  

E-Print Network (OSTI)

In this paper, we describe the design, construction and performance of an apparatus installed in the Aberdeen Tunnel laboratory in Hong Kong for studying spallation neutrons induced by cosmic-ray muons under a vertical rock overburden of 611 meter water equivalent (m.w.e.). The apparatus comprises of six horizontal layers of plastic-scintillator hodoscopes for determining the direction and position of the incident cosmic-ray muons. Sandwiched between the hodoscope planes is a neutron detector filled with 650 kg of liquid scintillator doped with about 0.06% of Gadolinium by weight for improving the e?ciency of detecting the spallation neutrons. Performance of the apparatus is also presented.

S. C. Blyth; Y. L. Chan; X. C. Chen; M. C. Chu; R. L. Hahn; T. H. Ho; Y. B. Hsiung; B. Z. Hu; K. K. Kwan; M. W. Kwok; T. Kwok; Y. P. Lau; K. P. Lee; J. K. C. Leung; K. Y. Leung; G. L. Lin; Y. C. Lin; K. B. Luk; W. H. Luk; H. Y. Ngai; S. Y. Ngan; C. S. J. Pun; K. Shih; Y. H. Tam; R. H. M. Tsang; C. H. Wang; C. M. Wong; H. L. Wong; H. H. C. Wong; K. K. Wong; M. Yeh

2013-08-13T23:59:59.000Z

215

Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)  

DOE Green Energy (OSTI)

The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power ({approximately}1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy (<2-eV) neutrons in moderators located close to the target. Current plans are to have two liquid-hydrogen (20-K) moderators and two room-temperature H{sub 2}O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques.

Murphy, D.B.

1999-11-14T23:59:59.000Z

216

Reactor Physics Studies of Reduced-Tantaulum-Content Control and Safety Elements for the High Flux Isotope Reactor  

DOE Green Energy (OSTI)

Some of the unirradiated High Flux Isotope Reactor (HFIR) control elements discharged during the late 1990s were observed to have cladding damage--local swelling or blistering. The cladding damage was limited to the tantalum/europium interface of the element and is thought to result from interaction of hydrogen and europium to form a compound of lower density than europium oxide, thus leading to a ''blistering'' of the control plate cladding. Reducing the tantalum loading in the control plates should help preclude this phenomena. The impact of the change to the control plates on the operation of the reactor was assessed. Regarding nominal, steady-state reactor operation, the impact of the change in the power distribution in the core due to reduced tantalum content was calculated and found to be insignificant. The magnitude and impact of the change in differential control element worth was calculated, and the differential worths of reduced tantalum elements vs the current elements from equivalent-burnup critical configurations were determined to be unchanged within the accuracy of the computational method and relevant experimental measurements. The location of the critical control elements symmetric positions for reduced tantalum elements was found to be 1/3 in. less withdrawn relative to existing control elements regardless of the value of fuel cycle burnup (time in the fuel cycle). The magnitude and impact of the change in the shutdown margin (integral rod worth) was assessed and found to be unchanged. Differential safety element worth values for the reduced-tantalum-content elements were calculated for postulated accident conditions and were found to be greater than values currently assumed in HFIR safety analyses.

Primm, R.T., III

2003-11-01T23:59:59.000Z

217

RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS  

Science Conference Proceedings (OSTI)

Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

Pogge, James R [ORNL; Zhukov, Alexander P [ORNL

2010-01-01T23:59:59.000Z

218

Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper  

E-Print Network (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

D. Akimov; A. Bernstein; P. Barbeau; P. Barton; A. Bolozdynya; B. Cabrera-Palmer; F. Cavanna; V. Cianciolo; J. Collar; R. J. Cooper; D. Dean; Y. Efremenko; A. Etenko; N. Fields; M. Foxe; E. Figueroa-Feliciano; N. Fomin; F. Gallmeier; I. Garishvili; M. Gerling; M. Green; G. Greene; A. Hatzikoutelis; R. Henning; R. Hix; D. Hogan; D. Hornback; I. Jovanovic; T. Hossbach; E. Iverson; S. R. Klein; A. Khromov; J. Link; W. Louis; W. Lu; C. Mauger; P. Marleau; D. Markoff; R. D. Martin; P. Mueller; J. Newby; J. Orrell; C. O'Shaughnessy; S. Pentilla; K. Patton; A. W. Poon; D. Radford; D. Reyna; H. Ray; K. Scholberg; V. Sosnovtsev; R. Tayloe; K. Vetter; C. Virtue; J. Wilkerson; J. Yoo; C. H. Yu

2013-10-01T23:59:59.000Z

219

Behavior of structural and target materials irradiated in spallation neutron environments  

SciTech Connect

This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear Engineering; Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Borden, M.; Sommer, W.F. [Los Alamos National Lab., NM (United States)

1995-05-01T23:59:59.000Z

220

Strains and Dislocations  

Science Conference Proceedings (OSTI)

Mar 7, 2013... and by the ORNL ShaRE User Facility (APT), HFIR, and Spallation Neutron Source, Basic Energy Science, US Department of Energy.

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nanoscale Precipitation in a Nanostructured Ferritic Alloy by Small ...  

Science Conference Proceedings (OSTI)

... Department of Energy, and by the ORNL ShaRE User Facility (APT), HFIR, and Spallation Neutron Source, Basic Energy Science, US Department of Energy.

222

Use of a cryogenic sampler to measure radioactive gas concentrations in the main off-gas system at a high-flux isotope reactor  

Science Conference Proceedings (OSTI)

A method for measuring gamma-emitting radioactive gases in air has been developed at Oak Ridge National Laboratory (ORNL). This method combines a cryogenic air-sample collector with a high-purity germanium (HPGe) gamma spectroscopy system. This methodology was developed to overcome the inherently difficult collection and detection of radioactive noble gases. The cryogenic air-sampling system and associated HPGe detector has been used to measure the concentration of radioactive gases in the primary coolant main off-gas system at ONRL's High-Flux Isotope Reactor (HFIR). This paper provides: (1) a description of the cryogenic sampler, the radionuclide detection technique, and a discussion of the effectiveness of sampling and detection of gamma-emitting noble gases; (2) a brief description of HFIR and its associated closed high off-gas system; and (3) quantification of gamma-emitting gases present in the off-gas of the HFIR primary core coolant (e.g. radioisotopes of argon, xenon, and krypton).

Berven, B.A.; Perdue, P.T.; Kark, J.B.; Gibson, M.O.

1982-01-01T23:59:59.000Z

223

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2012 June 2012 2 Managed by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure helicon launcher whistler wave launcher EBW launcher moveable diagnostic disk-target ballast tank magnetic field lines magnets Physics Integration eXperiment (PhIX) helicon plasma electron heating flow back neutral & plasma density control plasma heat flux * PhIX investigates the addition of electron heating to helicon plasma - the first building blocks of the new high-intensity plasma source needed by a powerful plasma materials test station. - Heating of helicon plasma electrons - Effects back on helicon plasma production - Neutral and plasma density control - RF power-to-plasma heat flux efficiency - Effects of plasma and impurity flow-back

224

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2012 November 2012 2 Managed by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure Description * CFD boiling/multiphase models rely on tunable parameters * We study sensitivities of key outputs of a CFD benchmark problem using two codes: Star-CD and NPhase-CMFD. * We present validation of boiling models in Star-CD and Star- CCM+ for DEBORA and PSBT benchmark problems Sensitivity, verification, and validation studies of CFD boiling models (L3 milestone - THM.CFD.P5.03) Approach Results * Nphase will require wall boiling models in order to faithfully simulate CASL-relevant applications * We observed the largest sensitivities to the bubble diameter, the lift coefficient, and the turbulence dispersion model * For current boiling models, a systematic overestimation of

225

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting CASL Board of Directors Meeting, May 8, 2012 (ORNL) Attendees: * Ernest J. Moniz (Chair), MIT * Ron Gilgenbach, UM * Thomas Zacharia, ORNL * Alan Bishop, LANL *...

226

HFIR Plant Maintenance - August  

NLE Websites -- All DOE Office Websites (Extended Search)

that tracks the many properties of each Transportation Security Project (TSP) asset was recently deployed as part of the International Material Protection and Cooperation...

227

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crone, Director Crone, Director Research Reactors Division Oak Ridge National Laboratory UT-Battelle, LLC September 20, 2012 - Bethesda, MD High Flux Isotope Reactor Spallation Neutron Source Oak Ridge National Laboratory - Main Campus Materials Irradiation Testing * Fusion Energy - provides best available neutron spectrum for radiation damage testing on fusion components; collaboration between U.S. and Japan for over thirty years * Fission Energy - research supporting next-generation commercial power reactors including accident tolerant fuel and reactor materials * National Security - Neutron Activation Analysis supporting IAEA non-proliferation monitoring 1,021 Materials and NAA Irradiations in FY2011 Reliable Source of Unique Isotopes * Californium-252 - HFIR supplies 80% of the world

228

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

229

Advanced Materials for Fusion S.J. Zinkle1 and A. Kohyama2  

E-Print Network (OSTI)

conductivity measurements in the HFIR reactor [6], which may show improved thermal conductivity compared

230

Observations of Space Charge effects in the Spallation Neutron Source Accumulator Ring  

SciTech Connect

The Spallation Neutron Source accumulator ring was designed to allow independent control of the transverse beam distribution in each plane. However, at high beam intensities, nonlinear space charge forces can strongly influence the final beam distribution and compromise our ability to independently control the transverse distributions. In this study we investigate the evolution of the beam at intensities of up to ~8x10^13 ppp through both simulation and experiment. Specifically, we analyze the evolution of the beam distribution for beams with different transverse aspect ratios and tune splits. We present preliminary results of simulations of our experiments.

Potts III, Robert E [ORNL; Cousineau, Sarah M [ORNL; Holmes, Jeffrey A [ORNL

2012-01-01T23:59:59.000Z

231

Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper  

E-Print Network (OSTI)

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

A. Bolozdynya; F. Cavanna; Y. Efremenko; G. T. Garvey; V. Gudkov; A. Hatzikoutelis; W. R. Hix; W. C. Louis; J. M. Link; D. M. Markoff; G. B. Mills; K. Patton; H. Ray; K. Scholberg; R. G. Van de Water; C. Virtue; D. H. White; S. Yen; J. Yoo

2012-11-22T23:59:59.000Z

232

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

his colleagues are credited with designing the core of the High Flux Isotope Reactor (HFIR). The primary purpose of the HFIR is to produce transplutonium isotopes such as...

233

Gaining Access Unique Opportunities  

E-Print Network (OSTI)

Reactor (HFIR) User Facilities High Temperature Materials Laboratory (HTML) Holifield Radioactive Ion Beam such as physics, chemistry, materials science, engineering, and biology. HFIR also provides capabilities

Oak Ridge National Laboratory

234

Antiferromagnetism in Pr3In: Singlet/triplet physics with frustration  

E-Print Network (OSTI)

82. Work performed at the HFIR Center for Neutron ScatteringHigh Flux Isotope Reactor (HFIR) at the Oak Ridge National

2004-01-01T23:59:59.000Z

235

Big-bang nucleosynthesis with a long-lived charged massive particle including {sup 4}He spallation processes in a bound state  

SciTech Connect

We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.

Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yamanaka, Masato; Yazaki, Koichi [Department of Physics, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570 (Japan); Theory Center, Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba 305-0801 (Japan); Maskawa Institute for Science and Culture, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Hashimoto Mathematical Physics Laboratory, Nishina Accelerator Research Center, RIKEN, Wako, Saitama 351-0198 and Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2012-07-27T23:59:59.000Z

236

Preliminary Notice of Violation - High Flux Isotope Reactor, November 18, 2003  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy Washington, DC 20585 November 18, 2003 Dr. Jeffrey Wadsworth [ ] UT-Battelle P.O. Box 2008 Oak Ridge, TN 37831-6255 EA 2003-10 Subject: Preliminary Notice of Violation and Proposed Imposition of Civil Penalty $151,250 Dear Dr. Wadsworth: This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances surrounding nuclear safety work control issues at the High Flux Isotope Reactor (HFIR) and the Radiochemical Engineering Development Center (REDC). Our office initiated this investigation in response to a manual reactor shutdown due to a control cylinder maintenance safety deficiency and operation of a radiological [ ] without required containment, as

237

Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.

Curtis, Franklin G [ORNL; Ekici, Kivanc [ORNL; Freels, James D [ORNL

2011-01-01T23:59:59.000Z

238

CHESTNUT RIDGE RD VALLEY ROAD  

E-Print Network (OSTI)

.1 Miles 0.20 N Miles 0.20 TO MELTON VALLEY DRIVE HFIR PARKING WALK-IN ENTRY 7900 7964K - HFIR USER OFFICE RM 18 7972 HFIR High Flux Isotope Reactor 7962 HFIR User Office: 865-574-4523 BETHEL VALLEY RD BETHEL VALLEY RD BETHEL VALLEY RD RAMSEY DRIVE EGERACCESSROAD MELTON VALLEY DRIVE MELTON VALLEY ACCESS ROAD HFIR

239

Expanding Our Horizons The University of Tennessee College of Engineering  

E-Print Network (OSTI)

.1 Miles 0.20 N Miles 0.20 TO MELTON VALLEY DRIVE HFIR PARKING WALK-IN ENTRY 7900 7964K - HFIR USER OFFICE RM 18 7972 HFIR High Flux Isotope Reactor 7962 HFIR User Office: 865-574-4523 BETHEL VALLEY RD BETHEL VALLEY RD BETHEL VALLEY RD RAMSEY DRIVE EGERACCESSROAD MELTON VALLEY DRIVE MELTON VALLEY ACCESS ROAD HFIR

Tennessee, University of

240

Graduate student and Associate Professor, respectively, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA, 16802  

E-Print Network (OSTI)

.1 Miles 0.20 N Miles 0.20 TO MELTON VALLEY DRIVE HFIR PARKING WALK-IN ENTRY 7900 7964K - HFIR USER OFFICE RM 18 7972 HFIR High Flux Isotope Reactor 7962 HFIR User Office: 865-574-4523 BETHEL VALLEY RD BETHEL VALLEY RD BETHEL VALLEY RD RAMSEY DRIVE EGERACCESSROAD MELTON VALLEY DRIVE MELTON VALLEY ACCESS ROAD HFIR

Motta, Arthur T.

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

BES Science Network Requirements  

E-Print Network (OSTI)

High Flux Isotope Reactor (HFIR) are both DOE experimentalof the two facilities SNS and HFIR, SNS has the ability toand Facilities As SNS and HFIR facility users come from

Dart, Eli

2011-01-01T23:59:59.000Z

242

PROCEEDINGS OF THE SYMPOSIUM COMMEMORATING THE 25th ANNIVERSARY OF ELEMENTS 97 and 98 HELD ON JAN. 20, 1975  

E-Print Network (OSTI)

I SS I ON PROPERTI ES OF IN HFIR IRRADIAHONS 252 CF NuclideFlux Isotope Reactor, or HFIR, then under design, and instartup targets for the HFIR. However, before that startup

Seaborg, Glenn T.

2011-01-01T23:59:59.000Z

243

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

Freels, James D [ORNL; Jain, Prashant K [ORNL; Hobbs, Randy W [ORNL

2012-01-01T23:59:59.000Z

244

RESULTS FROM CAVITATION DAMAGE EXPERIMENTS WITH MERCURY SPALLATION TARGETS AT THE LANSCE WNR IN 2008  

Science Conference Proceedings (OSTI)

Damage assessment from proton beam induced cavitation experiments on mercury spallation targets done at the LANSCE WNR facility has been completed. The experiments investigated two key questions for the Spallation Neutron Source target, namely, how damage is affected by flow velocity in the SNS coolant channel geometry, and how damage scales with proton beam intensity at a given constant charge per pulse. With regard to the former question, prior in-beam experiments indicated that the coolant channel geometry with stagnant mercury was especially vulnerable to damage which might warrant a design change. Yet other results indicated a reduction in damage with the introduction of flow. Using more prototypic to the SNS, the 2008 experiment damage results show the channel is less vulnerable than the bulk mercury side of the vessel wall. They also show no benefit from increasing channel flow velocity beyond nominal SNS speeds. The second question probed a consensus belief that damage scales with beam intensity (protons per unit area) by a power law dependence with exponent of around 4. Results from a 2005 experiment did not support this power law dependence but some observations were inconsistent and unexplained. These latest results show weaker damage dependence.

Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL; Felde, David K [ORNL; Sangrey, Robert L [ORNL; Wendel, Mark W [ORNL

2010-01-01T23:59:59.000Z

245

Computational Benchmark Calculations Relevant to the Neutronic Design of the Spallation Neutron Source (SNS)  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) will provide an intense source of low-energy neutrons for experimental use. The low-energy neutrons are produced by the interaction of a high-energy (1.0 GeV) proton beam on a mercury (Hg) target and slowed down in liquid hydrogen or light water moderators. Computer codes and computational techniques are being benchmarked against relevant experimental data to validate and verify the tools being used to predict the performance of the SNS. The LAHET Code System (LCS), which includes LAHET, HTAPE ad HMCNP (a modified version of MCNP version 3b), have been applied to the analysis of experiments that were conducted in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). In the AGS experiments, foils of various materials were placed around a mercury-filled stainless steel cylinder, which was bombarded with protons at 1.6 GeV. Neutrons created in the mercury target, activated the foils. Activities of the relevant isotopes were accurately measured and compared with calculated predictions. Measurements at BNL were provided in part by collaborating scientists from JAERI as part of the AGS Spallation Target Experiment (ASTE) collaboration. To date, calculations have shown good agreement with measurements.

Gallmeier, F.X.; Glasgow, D.C.; Jerde, E.A.; Johnson, J.O.; Yugo, J.J.

1999-11-14T23:59:59.000Z

246

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

247

Preliminary Notice of Violation - High Flux Isotope Reactor,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

work processes involving HFIR maintenance planning, implementation and post maintenance testing; (2) work processes involving REDC operations; (3) quality improvement and...

248

The Rational Function Analogue of a Question of Schur and Exceptionality of Permutation  

E-Print Network (OSTI)

: pieter.mumm@nist.gov #12;2 past reactor experiments HFIR, ORNL NBSR, NIST ATR, INL available baselines at US research reactors 3 neutrino fit 3+1 neutrino fit Tuesday, August 7, 12 NIST ILL HFIR ATR SONGSNIST ILL HFIR ATR SONGS 10. 100 1000 core size reactor power reactorpower(MWth) 1meter ILL HFIR NBSR

Mueller, Peter

249

For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.  

E-Print Network (OSTI)

(HFIR). The Research Reactors Division has seen many exciting developments and events over the past 50 and dosimetry applications. The HFIR, one of the world's most powerful research reactors, began full the HFIR, ORR, BSR/PCA, TSR-II, and HPRR. These reactors could be classified into two groups. The HFIR, ORR

250

Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor  

SciTech Connect

A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

Primm, Trent [ORNL; Gehin, Jess C [ORNL

2009-04-01T23:59:59.000Z

251

NUCLEAR REACTOR  

DOE Patents (OSTI)

A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

Treshow, M.

1961-09-01T23:59:59.000Z

252

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

Daniels, F.

1959-10-27T23:59:59.000Z

253

DOE/EIS0247; Final Environmental Impact Statement Construction and Operation of the Spallation Neutron Source  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SNS FEIS SNS FEIS Cover Sheet COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement (FEIS), Construction and Operation of the Spallation Neutron Source (DOE/EIS-0247) LOCATIONS OF ALTERNATIVE SITES: Illinois, New Mexico, New York, and Tennessee. CONTACT: For further information on this document, write or call: Mr. David Wilfert, EIS Document Manager Oak Ridge Operations Office U.S. Department of Energy 200 Administration Road, 146/FEDC Oak Ridge, TN 37831 Telephone: (800) 927-9964 Facsimile: (423) 576-4542 E-mail: NSNSEIS@ornl.gov Mr. Jeff Hoy, SNS Program Manager Office of Basic Energy Research U.S. Department of Energy (ER-10) Germantown, MD 20874 Telephone: (301) 903-4924 Facsimile: (301) 903-9513 E-mail: Jeff.Hoy@mailgw.er.doe.gov

254

Record of Decision for the Construction and Operation of the Spallation Neutron Source  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

140 140 Federal Register / Vol. 64, No. 125 / Wednesday, June 30, 1999 / Notices or minimize environmental harm that may result from implementing the Redevelopment Plan. Accordingly, Navy will dispose of the surplus Federal property at Naval Air Station Barbers Point in a manner that is consistent with the State of Hawaii's Redevelopment Plan for the property. Dated: June 17, 1999. William J. Cassidy, Jr., Deputy Assistant Secretary of the Navy (Conversion And Redevelopment). Dated: June 25, 1999. Ralph W. Corey, CDR, JAGC, USN, Alternate Federal Register Liaison Officer. [FR Doc. 99-16691 Filed 6-29-99; 8:45 am] BILLING CODE 3810-FF-M DEPARTMENT OF ENERGY Record of Decision for the Construction and Operation of the Spallation Neutron Source AGENCY: Department of Energy. ACTION: Record of decision.

255

Spallation Neutron Source Availability Top-Down Apportionment Using Characteristic Factors and Expert Opinion  

SciTech Connect

Apportionment is the assignment of top-level requirements to lower tier elements of the overall facility. A method for apportioning overall facility availability requirements among systems and subsystems is presented. Characteristics that influence equipment reliability and maintainability are discussed. Experts, using engineering judgment, scored each characteristic for each system whose availability design goal is to be established. The Analytic Hierarchy Process (AHP) method is used to produce a set of weighted rankings for each characteristic for each alternative system. A mathematical model is derived which incorporates these weighting factors. The method imposes higher availability requirements on those systems in which an incremental increase in availability is easier to achieve, and lower availability requirements where greater availability is more difficult and costly. An example is given of applying this top-down apportionment methodology to the Spallation Neutron Source (SNS) facility.

Haire, M.J.; Schryver, J.C.

1999-10-01T23:59:59.000Z

256

Spallation process with simultaneous multi-particle emission in nuclear evaporation  

SciTech Connect

High energy probes have been used currently to explore nuclear reaction mechanism and nuclear structure. The spallation process governs the reaction process around 1 GeV energy regime. A new aspect introduced here to describe the nuclear reaction is the in-medium nucleonnucleon collision framework. The nucleon-nucleon scattering is kinematically treated by using an effective mass to represent the nuclear binding. In respect to the evaporation phase of the reaction, we introduce the simultaneous particles emission decay. This process becomes important due to the rise of new channels at high excitation energy regime of the compound nucleus. As results, the particles yields in the rapid and evaporation phases are obtained and compared to experimental data. The effect and relevance of these simultaneous emission processes in the evaporation chain is also discussed.

Santos, B. M. [Instituto de Fisica/UFF - Av. Gal. Milton Tavares de Souza, Praia Vermelha, Niteroi - RJ (Brazil); Goncalves, M. [Comissao Nacional de Energia Nuclear/CNEN - Rua Gal Severiano, nr. 90, Botafogo - RJ (Brazil); Assis, L. P. G. de; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas/CBPF - Rua Dr. Xavier Sigaud, nr.150, Urca - RJ (Brazil)

2013-05-06T23:59:59.000Z

257

EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.  

SciTech Connect

Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

HOFF, L.T.

2005-10-10T23:59:59.000Z

258

A feasibility study for a one-megawatt pulsed spallation source at Los Alamos National Laboratory  

SciTech Connect

Over the past two decades, high-intensity proton accelerators have been designed and developed to support nuclear physics research and defense applications. This technology has now matured to the point where it can support simultaneous and cost-effective exploitation of a number of important areas of both basic and applied science. Examples include neutron scattering, the production of radioisotopes, tests of technologies to transmute nuclear waste, radiation damage studies, nuclear physics, and muon spin research. As part of a larger program involving these and other areas, a team at Los Alamos National Laboratory has undertaken a feasibility study for a 1-MW pulsed spallation neutron source (PSS) based on the use of an 800-MeV proton linac and an accumulator ring. In January 1994, the feasibility study was reviewed by a large, international group of experts in the design of accelerators and neutron spallation targets. This group confirmed the viability of the proposed neutron source. In this paper, I describe the approach Los Alamos has taken to the feasibility study, which has involved a synergistic application of the Laboratory`s expertise in nuclear science and technology, computation, and particle-beam technologies. Several examples of problems resolved by the study are described, including chopping of low-energy proton beam, interactions between H{sup {minus}} particles and the stripper foil used to produce protons for injection into an accumulator ring, and the inclusion of engineering realities into the design of a neutron production target. These examples are chosen to illustrate the breadth of the expertise that has been brought to bear on the feasibility study and to demonstrate that there are real R&D issues that need to be resolved before a next-generation spoliation source can be built.

Pynn, R.

1994-07-01T23:59:59.000Z

259

Design of an Aluminum Proton Beam Window for the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

Janney, Jim G [ORNL; McClintock, David A [ORNL

2012-01-01T23:59:59.000Z

260

CONVECTION REACTOR  

DOE Patents (OSTI)

An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

Hammond, R.P.; King, L.D.P.

1960-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE  

SciTech Connect

The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

Slater, Charles O [ORNL; Primm, Trent [ORNL; Pinkston, Daniel [ORNL; Cook, David Howard [ORNL; Selby, Douglas L [ORNL; Ferguson, Phillip D [ORNL; Bucholz, James A [ORNL; Popov, Emilian L [ORNL

2009-03-01T23:59:59.000Z

262

SCALE Newsletter (Spring 2012) 1 NewsletterNumber 44 Spring 2012  

E-Print Network (OSTI)

-pile instrumentation · ATR (INL) · HFIR (ORNL) · Halden Boiling Water Reactor (Norway) · Jules Horowitz reactor (France

263

Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993  

SciTech Connect

On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

Not Available

1994-03-01T23:59:59.000Z

264

On quotients of Hom-functors and representations of finite general linear groups II  

E-Print Network (OSTI)

for the HFIR reactor, and a computer simulation of VVER-type reactors for safety analysis of reactivity transients. He has developed two software packages as well; the HFIR network display system (HNDS) and the HFIR alarm monitoring system (HAM), which are used to monitor HFIR status remotely via network

Dipper, Richard

265

Language-Independent Class Instance Extraction Using the Web  

E-Print Network (OSTI)

for the HFIR reactor, and a computer simulation of VVER-type reactors for safety analysis of reactivity transients. He has developed two software packages as well; the HFIR network display system (HNDS) and the HFIR alarm monitoring system (HAM), which are used to monitor HFIR status remotely via network

Reddy, Raj

266

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

Fraas, A.P.; Mills, C.B.

1961-11-21T23:59:59.000Z

267

DOE/EIS-0247; Draft Environmental Impact Statement Construction and Operation of the Spallation Neutron Source, December 1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 1998 December 1998 Construction and Operation of the S PALLATION N EUTRON S OURCE DRAFT ENVIRONMENTAL IMPACT STATEMENT U.S. Department of Energy Office of Science DOE/EIS-0247 Construction and Operation of the Spallation Neutron Source Facility Draft Environmental Impact Statement U.S. Department of Energy Office of Science December 1998 DOE/EIS-0247 Draft, December 1998 Cover Sheet COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS), Construction and Operation of the Spallation Neutron Source (DOE/EIS-0247) LOCATIONS OF ALTERNATIVE SITES: Illinois, New Mexico, New York, and Tennessee. CONTACT: For further information on this document, write or call: Mr. David Wilfert, EIS Document Manager U.S. Department of Energy Oak Ridge Operations Office

268

Decommissioning and safety issues of liquid-mercury waste generated from high power spallation sources with particle accelerators  

E-Print Network (OSTI)

Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and ESS-European Spallation Source). These facilities accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg-conversion. Embedding HgS in a cementitious matrix increases its stability.

Chiriki, S; Odoj, R; Moormann, R; Hinssen, H. K; Bukaemskiy, A

2009-01-01T23:59:59.000Z

269

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

270

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

Wigner, E.P.

1958-04-22T23:59:59.000Z

271

1 Managed by UT-Battelle for the U.S. Department of Energy  

E-Print Network (OSTI)

Reactor (HFIR) will make ORNL the world's foremost center for neutron scattering. The Leadership Computing source. High Flux Isotope Reactor (HFIR): world's highest-flux reactor based neutron source. Leadership

272

rf improvements for Spallation Neutron Source H{sup -} ion source  

SciTech Connect

The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering {approx}38 mA H{sup -} beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

Kang, Y. W.; Fuja, R.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Goulding, R. H. [Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2010-02-15T23:59:59.000Z

273

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

274

Plans for an Integrated Front-End Test Stand at the Spallation Neutron Source  

SciTech Connect

A spare Radio-Frequency Quadrupole (RFQ) is presently being fabricated by industry with delivery to Oak Ridge National Laboratory planned in late 2012. The establishment of a test stand at the Spallation Neutron Source site is underway so that complete acceptance testing can be performed during the winter of 2012-2013. This activity is the first step in the establishment of an integrated front-end test stand that will include an ion source, low-energy beam transport (LEBT), RFQ, medium-energy beam transport, diagnostics, and a beam dump. The test stand will be capable of delivering an H- ion beam of up to 50 mA with a pulse length of 1 ms and a repetition rate of 60 Hz or a proton beam of up to 50 mA, 100us, 1Hz. The test stand will enable the following activities: complete ion source characterization; development of a magnetic LEBT chopper; development of a two-source layout; development of beam diagnostics; and study of beam dynamics of high intensity beam.

Champion, Mark S [ORNL; Aleksandrov, Alexander V [ORNL; Crofford, Mark T [ORNL; Heidenreich, Dale A [ORNL; Kang, Yoon W [ORNL; Moss, John [ORNL; Roseberry, Jr., R Tom [ORNL; Schubert, James Phillip [ORNL

2012-01-01T23:59:59.000Z

275

Control system for the Spallation Neutron Source H{sup -} source test facility Allison scanner  

Science Conference Proceedings (OSTI)

Spallation Neutron Source is currently in progress of a multiyear plan to ramp ion beam power to the initial design power of 1.4 MW. Key to reaching this goal is understanding and improving the operation of the H{sup -} ion source. An Allison scanner was installed on the ion source in the test facility to support this improvement. This paper will discuss the hardware and the software control system of the installed Allison scanner. The hardware for the system consists of several parts. The heart of the system is the scanner head, complete with associated bias plates, slits, and signal detector. There are two analog controlled high voltage power supplies to bias the plates in the head, and a motor with associated controller to position the head in the beam. A multifunction data acquisition card reads the signals from the signal detector, as well as supplies the analog voltage control for the power supplies. To synchronize data acquisition with the source, the same timing signal that is used to trigger the source itself is used to trigger data acquisition. Finally, there is an industrial personal computer to control the rest of the hardware. Control software was developed using National Instruments LABVIEW, and consists of two parts: a data acquisition program to control the hardware and a stand alone application for offline user data analysis.

Long, C. D.; Stockli, M. P.; Gorlov, T. V.; Han, B.; Murray, S. N.; Pennisi, T. R. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

2010-02-15T23:59:59.000Z

276

Separation of beam and electrons in the spallation neutron source H{sup -} ion source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

Whealton, J.H.; Raridon, R.J. [Oak Ridge National Lab., TN (United States); Leung, K.N. [Lawrence Berkeley National Lab., CA (United States)

1997-12-01T23:59:59.000Z

277

Crossover from a fission-evaporation scenario towards multifragmentation in spallation reactions  

E-Print Network (OSTI)

Mostly for the purpose of applications for the energy and the environment and for the design of sources of neutrons or exotic nuclides, intense research has been dedicated to spallation, induced by protons or light projectiles at incident energies of around 1 GeV. In this energy range, while multifragmentation has still a minor share in the total reaction cross section, it was observed to have, together with fission, a prominent role in the production and the kinematics of intermediate-mass fragments, so as to condition the whole production of light and heavy nuclides. The experimental observables we dispose of attribute rather elusive properties to the intermediate-mass fragments and do not allow to classify them within one exclusive picture which is either multifragmentation or fission. Indeed, these two decay mechanisms, driven by different kinds of instabilities, exhibit behaviours which are closely comparable. High-resolution measurements of the reaction kinematics trace the way for probing finer features of the reaction kinematics.

P. Napolitani

2006-10-26T23:59:59.000Z

278

The continued development of the Spallation Neutron Source external antenna H{sup -} ion source  

Science Conference Proceedings (OSTI)

The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H{sup -} ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to {approx}100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced {approx}35 mA (beam current required by the ramp up plan) with availability of {approx}97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.

Welton, R. F.; Carmichael, J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37830-6471 (United States); Desai, N. J. [Worcester Polytechnic Institute, Worcester, Massachusetts 01609 (United States)

2010-02-15T23:59:59.000Z

279

The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS  

Science Conference Proceedings (OSTI)

The Nanoscale Ordered Materials Diffractometer (NOMAD) is neutron time-of-flight diffractometer designed to determine pair dist ribution functions of a wide range of materials ranging from short range ordered liquids to long range ordered crystals. Due to a large neutron flux provided by the Spallation Neutron Source SNS and a large detector coverage neutron count-rates exceed comparable instruments by one to two orders of magnitude. This is achieved while maintaining a relatively high momentum transfer resolution of a $\\delta Q/Q \\sim 0.8\\%$ FWHM (typical), and an achievable $\\delta Q/Q$ of 0.24\\% FWHM (best). The real space resolution is related to the maximum momentum transfer; A maximum momentum transfer of 50\\AA$^{-1}$ can be achieved routinely and the maximum momentum transfer given by the detector configuration and the incident neutron spectrum is 125 \\AA$^{-1}$. High stability of the source and the detector allow small contrast isotope experiments to be performed. A detailed description of the instrument is given and the results of experiments with standard samples are discussed.

Feygenson, Mikhail [ORNL; Carruth, John William [ORNL; Hoffmann, Ron [ORNL; Chipley, Kenneth King [ORNL; Neuefeind, Joerg C [ORNL

2012-01-01T23:59:59.000Z

280

A graphite-moderated pulsed spallation ultra-cold neutron source  

E-Print Network (OSTI)

Proposals exist and efforts are under way to construct pulsed spallation ultra-cold neutron (UCN) sources at accelerator laboratories around the world. At the Paul Scherrer Institut (PSI), Switzerland, and at the Los Alamos National Laboratory (LANL), U.S.A., it is planned to use solid deuterium (SD_2) for the UCN production from cold neutrons. The philosophies about how the cold neutrons are obtained are quite different, though. The present proposal describes a third approach which applies a temperature optimized graphite moderator in combination with the SD_2 and qualitatively combines advantages of the different schemes. The scheme described here allows to build a powerful UCN source. Assuming a pulsed 2 mA, 590 MeV proton beam with an average current of 10 microA, one obtains UCN densities in excess of 2000 cm^{-3}, UCN fluxes of about 10^6 cm^{-2} s^{-1}, and total numbers of UCN in excess of 2*10^9 every 800 s.

Klaus Kirch

2001-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HIGH FLUX ISOTOPE REACTOR PRELIMINARY DESIGN STUDY  

SciTech Connect

A comparison of possible types of research reactors for the production of transplutonium elements and other isotopes indicates that a flux-trap reactor consisting of a beryllium-reflecteds light-water-cooled annular fuel region surrounding a light-water island provides the required thermal neutron fluxes at minimum cost. The preliminary desigu of such a reactor was carried out on the basis of a parametric study of the effect of dimensions of the island and fuel regions heat removal rates, and fuel loading on the achievable thermal neutmn fluxes in the island and reflector. The results indicate that a 12- to 14-cm- diam. island provides the maximum flux for a given power density. This is in good agreement with the US8R critical experiments. Heat removal calculations indicate that average power densities up to 3.9 Mw/liter are achievable with H/ sub 2/O-cooled, platetype fuel elements if the system is pressurized to 650 psi to prevent surface boiling. On this basis, 100 Mw of heat can be removed from a 14-cm-ID x 36-cm-OD x 30.5-cm-long fuel regions resulting in a thermal neutron flux of 3 x 10/sup 15/ in the island after insertion of 100 g of Cm/sup 244/ or equivalent. The resulting production of Cf/sup 252/ amounts to 65 mg for a 1 1/2- year irradiation. Operation of the reactor at the more conservative level of 67 Mw, providing an irradiation flux of 2 x 10/sup 15/ in the islands will result in the production of 35 mg of Cf/sup 252/ per 18 months from 100 g of Cm/sup 244/. A development program is proposed to answer the question of the feasibility of the higher power operation. In addition to the central irradiation facility for heavyelement productions the HFIR contains ten hydraulic rabbit tubes passing through the beryllium reflector for isotope production and four beam holes for basic research, Preliminary estimates indicate that the cost of the facility, designed for an operating power level of 100 Mw, will be approximately 2 million. (auth)

Lane, J.A.; Cheverton, R.D.; Claiborne, G.C.; Cole, T.E.; Gambill, W.R.; Gill, J.P.; Hilvety, N.; McWherther, J.R.; Vroom, D.W.

1959-03-20T23:59:59.000Z

282

The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)  

SciTech Connect

Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure, and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.

Gray, George T [Los Alamos National Laboratory

2010-12-14T23:59:59.000Z

283

NUCLEAR REACTOR  

DOE Patents (OSTI)

A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

Moore, R.V.; Bowen, J.H.; Dent, K.H.

1958-12-01T23:59:59.000Z

284

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

285

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

1962-10-23T23:59:59.000Z

286

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

Wigner, E.P.

1960-11-22T23:59:59.000Z

287

REACTOR SHIELD  

DOE Patents (OSTI)

Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

1959-02-17T23:59:59.000Z

288

NUCLEAR REACTOR  

DOE Patents (OSTI)

High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

Grebe, J.J.

1959-07-14T23:59:59.000Z

289

H{sup -} radio frequency source development at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

Welton, R. F.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37830-6471 (United States); Dudnikov, V. G. [Muons, Inc., 552 N. Batavia Avenue, Batavia, Illinois 60510 (United States); Turvey, M. W. [Villanova University, 800E. Lancaster Ave, Villanova, Pennsylvania 19085 (United States)

2012-02-15T23:59:59.000Z

290

Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system  

DOE Green Energy (OSTI)

The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

Reass, W. A. (William A.); Apgar, S. E. (Sean E.); Baca, D. M. (David M.); Doss, James D.; Gonzales, J. (Jacqueline); Gribble, R. F. (Robert F.); Hardek, T. W. (Thomas W.); Lynch, M. T. (Michael T.); Rees, D. E. (Daniel E.); Tallerico, P. J. (Paul J.); Trujillo, P. B. (Pete B.); Anderson, D. E. (David E.); Heidenreich, D. A. (Dale A.); Hicks, J. D. (Jim D.); Leontiev, V. N.

2003-01-01T23:59:59.000Z

291

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

292

Brookhaven Medical Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Research Reactor BMRR The last of the Lab's reactors, the Brookhaven Medical Research Reactor (BMRR), was shut down in December 2000. The BMRR was a three megawatt...

293

NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

1958-09-01T23:59:59.000Z

294

Science Opportunities at ORNL's Neutron Sources  

Science Conference Proceedings (OSTI)

The Neutron Sciences Directorate at Oak Ridge National Laboratory (ORNL) operates two of the world's most advanced neutron scattering research facilities: the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). Our vision is to provide unprecedented capabilities for understanding structure and properties across the spectrum of biology, chemistry, physics, and engineering, and to stay at the leading edge of neutron science by developing new instruments, tools, and services. This talk will provide an update on the operations of the two research facilities and highlight the significant research that is emerging. For example, scientists from ORNL are at the forefront of research on a new class of iron-based superconductors based on experiments performed at the Triple-Axis Spectrometer at HFIR and ARCS at SNS. The complementary nature of neutron and x-ray techniques will be discussed to spark discussion among attendees.

Anderson, Ian [ORNL, SNS

2010-02-03T23:59:59.000Z

295

Recent CFD-Related Activities at the High  

E-Print Network (OSTI)

· early CFD activities at HFIR · cold-source (and other upgrades)CFD activities at HFIR · LEU Conversion this then at a research reactor ? · 1991 started at HFIR · 1992 graduation · ~ 2003 COMSOL becomes the tool of choice (Freels) Early CFD Activities at HFIR #12;Freels ,CFD Colloquium at UTK,in honor of A, J. Baker, 05

Tennessee, University of

296

ITER UltraScaleScientific Joint Dark Energy Mission ComputingCapability  

E-Print Network (OSTI)

for SNS. Similarly, the High Flux Isotope Reactor10 (HFIR) also at ORNL has beamlines suitable isotopes is another important HFIR function. These user facilities have been intended to facilitate basic://www-als.lbl.gov/ 8 APS: http://www.aps.anl.gov/ 9 SNS: http://neutrons.ornl.gov/facilities/SNS/ 10 HFIR: http://neutrons.ornl.gov/facilities/HFIR

297

Wedge: Splitting Applications into Reduced-Privilege Compartments Andrea Bittau Petr Marchenko Mark Handley Brad Karp  

E-Print Network (OSTI)

· early CFD activities at HFIR · cold-source (and other upgrades)CFD activities at HFIR · LEU Conversion this then at a research reactor ? · 1991 started at HFIR · 1992 graduation · ~ 2003 COMSOL becomes the tool of choice (Freels) Early CFD Activities at HFIR #12;Freels ,CFD Colloquium at UTK,in honor of A, J. Baker, 05

Karp, Brad

298

DISCRETE VERSION OF THE SHE ASYMPTOTICS: MULTIGROUP NEUTRON TRANSPORT EQUATIONS  

E-Print Network (OSTI)

· early CFD activities at HFIR · cold-source (and other upgrades)CFD activities at HFIR · LEU Conversion this then at a research reactor ? · 1991 started at HFIR · 1992 graduation · ~ 2003 COMSOL becomes the tool of choice (Freels) Early CFD Activities at HFIR #12;Freels ,CFD Colloquium at UTK,in honor of A, J. Baker, 05

Goudon, Thierry

299

Creating Sustainable Partnerships  

E-Print Network (OSTI)

was in operation, and to this day, some of HFIR's research capabilities are unique in the world. "HFIR and other isotopes requires neutrons with various energy levels. hFIR is one of two facilities in the world capabilities of the high Flux Isotope Reactor. Since its construction in the mid-1960s, researchers have used hFIR

300

POWER REACTOR  

DOE Patents (OSTI)

A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

Zinn, W.H.

1958-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

REACTOR CONTROL  

DOE Patents (OSTI)

A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

Fortescue, P.; Nicoll, D.

1962-04-24T23:59:59.000Z

302

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

Christy, R.F.

1958-07-15T23:59:59.000Z

303

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

304

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

Wigner, E.P.; Young, G.J.

1958-10-14T23:59:59.000Z

305

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

Young, G.

1963-01-01T23:59:59.000Z

306

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

Wigner, E.P.; Weinberg, A.W.; Young, G.J.

1958-04-15T23:59:59.000Z

307

Instrument and Source Design Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Crone, RRD Director Ron Crone, RRD Director ISDD Director Ron Crone. Instrument and Source Design Division The Instrument and Source Design Division (ISDD) supports the engineering and development of scientific instruments at the High Flux Isotope Reactor and the Spallation Neutron Source. ISDD continuously develops facilities and capabilities associated with neutron science through research and development. Organization Chart A PDF version of the ISDD Organization Chart is available. Key Division Contacts Director Ron Crone Administrative Assistant Wendy Brooks HFIR Instrument Engineering Doug Selby SNS Instrument Engineering David Vandergriff Instrumentation Projects and Development Ken Herwig Project Management/Operations and Analysis Barbara Thibadeau Source Development and Engineering Analysis Phil Ferguson

308

Advanced Materials Facilities & Capabilites | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Facilities and Capabilities ORNL has resources that together provide a unique environment for Advanced Materials Researchers. ORNL hosts two of the most advanced neutron research facilities in the world, the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). In addition, the Center for Nanophase Materials Sciences offers world-class capabilities and expertise for nanofabrication, scanning probe microscopy, chemical and laser synthesis, spectroscopy, and computational modeling and their. The ORNL

309

Neutron Instruments Added at Oak Ridge  

Science Conference Proceedings (OSTI)

The neutron scattering facilities at Oak Ridge National Laboratory continue their development as new instruments are commissioned and join the user program at the Spallation Neutron Source and High Flux Isotope Reactor. More than 640 proposals were received for beam time during the January-May 2011 period on SNS and HFIR instruments with about half either being accepted or identified as alternates. The proposal call for the period June-December 2011, announced at http://neutrons.ornl.gov, will close February 23, 2011.

Ekkebus, Allen E [ORNL

2011-01-01T23:59:59.000Z

310

Power Burst Facility (PBF) Reactor Reactor Decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Decommissioning Click here to view Click here to view Reactor Decommissioning Click on an image to enlarge A crane removes the reactor vessel from the Power Burst Facility...

311

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)

Wigner, E.P.

1962-12-25T23:59:59.000Z

312

Neutronic reactor  

DOE Patents (OSTI)

A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

Wende, Charles W. J. (West Chester, PA)

1976-08-17T23:59:59.000Z

313

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described that includes spaced vertical fuel elements centrally disposed in a pressure vessel, a mass of graphite particles in the pressure vessel, means for fluidizing the graphite particles, and coolant tubes in the pressure vessel laterally spaced from the fuel elements. (AEC)

Post, R.G.

1963-05-01T23:59:59.000Z

314

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

Starr, C.

1963-01-01T23:59:59.000Z

315

NEUTRONIC REACTOR  

DOE Patents (OSTI)

BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

1959-10-27T23:59:59.000Z

316

NEUTRONIC REACTORS  

DOE Patents (OSTI)

The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

Anderson, H.L.

1958-10-01T23:59:59.000Z

317

Multidisciplinary multi-physics simulation and  

E-Print Network (OSTI)

to accept and process proposals submitted by users for beam time at the High Flux Isotope Reactor (HFIR

318

Karsten Heeger, Univ. of Wisconsin NSAC, September 7, 2012 Karsten M. Heeger  

E-Print Network (OSTI)

reactor (HFIR) matched only by the Institut Laue-Langevin (ILL) in Europe. The goals of this focus area

319

DOE Designated User Facilities Multiple Laboratories * ARM Climate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Center for Nanophase Materials Sciences (CNMS) * High Flux Isotope Reactor (HFIR) * National Center for Computational Sciences (NCCS) * Shared Research Equipment...

320

Life Sciences Division Open Literature Publications  

E-Print Network (OSTI)

in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy After PTCA

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter Y. Gohar, J. Herceg, L Krajtl, D. Pointer, J. Saiveau, T. Sofu, and P. Finck  

E-Print Network (OSTI)

-driven test facility (ADTF). The ADTF is a major nuclear research facility that will provide multiple testing to operate as a user facility that allows testing advanced nuclear technologies and applications, materialLead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter Y. Gohar, J. Herceg, L

McDonald, Kirk

322

REACTOR UNLOADING  

DOE Patents (OSTI)

This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

Leverett, M.C.

1958-02-18T23:59:59.000Z

323

NUCLEAR REACTOR  

DOE Patents (OSTI)

A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

Treshow, M.

1958-08-19T23:59:59.000Z

324

Neutronic reactor  

DOE Patents (OSTI)

A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

Lewis, Warren R. (Richland, WA)

1978-05-30T23:59:59.000Z

325

NUCLEAR REACTORS  

DOE Patents (OSTI)

An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

1961-12-01T23:59:59.000Z

326

REACTOR CONTROL  

DOE Patents (OSTI)

This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

Ruano, W.J.

1957-12-10T23:59:59.000Z

327

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

328

u---lm---n piltering with snequ---lity gonstr---ints for ''ur~of---n ingine re---lth istim---tion  

E-Print Network (OSTI)

A Proposal: Reliability Centered Maintenance (RCM) for the High Flux Isotope Reactor (HFIR) Eugene Isotope Reactor (HFIR). The PCS has shown decreasing reliability and performance over the last several-centered maintenance at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory to improve system

Simon, Dan

329

(XFEL) X X 2010 SPring-8  

E-Print Network (OSTI)

±voltage (I±V) characteristics of single- and poly- crystal alumina have been carried out both in HFIR (high Isotope Reactor (HFIR) at Oak Ridge Na- tional Laboratory (ORNL). The full power reactor ionizing dose) for this specimen position in the HFIR capsule. The current increased quickly after the reactor start and reached

Yamamoto, Hirosuke

330

Spectral functions and zeta functions in hyperbolic spaces Roberto Camporesi and Atsushi Higuchi  

E-Print Network (OSTI)

A Proposal: Reliability Centered Maintenance (RCM) for the High Flux Isotope Reactor (HFIR) Eugene Isotope Reactor (HFIR). The PCS has shown decreasing reliability and performance over the last several-centered maintenance at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory to improve system

Ceragioli, Francesca

331

The NIST Center for Neutron Research: Over 40 Years Serving NIST/NBS and the Na on  

E-Print Network (OSTI)

Reactor (HFBR) at BNL and the High Flux Isotope Reactor (HFIR) at ORNL were conceived and constructed ). The 100 MW ORNL/HFIR was designed to produce transuranic isotopes in a very high intensity ( 4x1015 major reactors started around 1960 were brought on line close together: HFBR (1965), HFIR (1966), NBSR

Perkins, Richard A.

332

Gamma displacement cross-sections in various materials  

E-Print Network (OSTI)

A Proposal: Reliability Centered Maintenance (RCM) for the High Flux Isotope Reactor (HFIR) Eugene Isotope Reactor (HFIR). The PCS has shown decreasing reliability and performance over the last several-centered maintenance at the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory to improve system

Motta, Arthur T.

333

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research  

E-Print Network (OSTI)

Materials Program RTNS-II FFTF DHCE-V alloy HFIR Ni-doped F/M steel ORR/HFIR spectral tailor HFIR isotopic tailor steels HFIR target/RB 316 SS appmHe displacement damage (dpa) fusionfusion reactorreactor 1980/dpa ratios G.R. Odette et al., UCSB; Ni-injector foil irradiation in HFIR fission reactor ~10-6 dpa/s #12

Abdou, Mohamed

334

Calculation Package: Derivation of Facility-Specific Derived Air Concentration (DAC) Values in Support of Spallation Neutron Source Operations  

SciTech Connect

Derived air concentration (DAC) values for 175 radionuclides* produced at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS), but not listed in Appendix A of 10 CFR 835 (01/01/2009 version), are presented. The proposed DAC values, ranging between 1 E-07 {micro}Ci/mL and 2 E-03 {micro}Ci/mL, were calculated in accordance with the recommendations of the International Commission on Radiological Protection (ICRP), and are intended to support an exemption request seeking regulatory relief from the 10 CFR 835, Appendix A, requirement to apply restrictive DACs of 2E-13 {micro}Ci/mL and 4E-11 {micro}Ci/mL and for non-listed alpha and non-alpha-emitting radionuclides, respectively.

McLaughlin, David A [ORNL

2009-12-01T23:59:59.000Z

335

Light Nuclides Produced in the Proton-Induced Spallation of 238U at 1 GeV  

E-Print Network (OSTI)

The production of light and intermediate-mass nuclides formed in the reaction 1H+238U at 1 GeV was measured at the Fragment Separator (FRS) at GSI, Darmstadt. The experiment was performed in inverse kinematics, shooting a 1 A GeV 238U beam on a thin liquid-hydrogen target. 254 isotopes of all elements in the range from Z=7 to Z=37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

M. V. Ricciardi; P. Armbruster; J. Benlliure; M. Bernas; A. Boudard; S. Czajkowski; T. Enqvist; A. Kelic; S. Leray; R. Legrain; B. Mustapha; J. Pereira; F. Rejmund; K. -H. Schmidt; C. Stephan; L. Tassan-Got; C. Volant; O. Yordanov

2005-08-24T23:59:59.000Z

336

Status of Cryogenic System for Spallation Neutron Source's Superconducting Radiofrequency Test Facility at Oak Ridge National Lab  

Science Conference Proceedings (OSTI)

Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) is building an independent cryogenic system for its Superconducting Radiofrequency Test Facility (SRFTF). The scope of the system is to support the SNS cryomodule test and cavity test at 2-K (using vacuum pump) and 4.5K for the maintenance purpose and Power Upgrade Project of SNS, and to provide the part of the cooling power needed to backup the current CHL to keep Linac at 4.5-K during CHL maintenance period in the future. The system is constructed in multiple phases. The first phase is to construct an independent 4K helium refrigeration system with helium Dewar and distribution box as load interface. It is schedule to be commissioned in 2013. Here we report the concept design of the system and the status of the first phase of this project.

Xu, Ting [ORNL; Casagrande, Fabio [ORNL; Ganni, Venkatarao [ORNL; Knudsen, Peter N [ORNL; Strong, William Herb [ORNL

2011-01-01T23:59:59.000Z

337

Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

Champion, Mark S [ORNL; Doleans, Marc [ORNL; Kim, Sang-Ho [ORNL

2013-01-01T23:59:59.000Z

338

Shielding and Activation Analyses in Support of the Spallation Neutron Source (SNS) ES{ampersand}H Requirements  

Science Conference Proceedings (OSTI)

Shielding and activation analyses play an important part in determining how to meet the Environmental, Safety and Health (ES{ampersand}H) requirements of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS). The shielding and activation analyses described in this paper were performed primarily using the CALOR code system coupled with MCNP for radiation transport, the ORIHET95 isotope generation and depletion code for activation analysis, and the DOORS multi-dimensional discrete ordinates transport code system for shielding analyses. Additionally, a portion of the shielding calculations were performed with the semi-empirical code - CASL. This paper gives an overview of relevant ES{ampersand}H policies and requirements, and provides detailed discussions of the shielding and activation analyses completed in support of those policies and requirements.

Odano, Naoteru; Johnson, Jeffrey O.; Harrington, R. M.; DeVore, Joe R.

1998-06-01T23:59:59.000Z

339

MYRRHA a multi-purpose hybrid research reactor for high-tech applications  

SciTech Connect

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

Abderrahim, H. A.; Baeten, P. [SCK CEN, Boeretang 200, 2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

340

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

Pennell, William E. (Greensburg, PA); Rowan, William J. (Monroeville, PA)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ELECTRONUCLEAR REACTOR  

DOE Patents (OSTI)

An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

1960-04-19T23:59:59.000Z

342

Photocatalytic reactor  

DOE Patents (OSTI)

A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

Bischoff, Brian L. (Knoxville, TN); Fain, Douglas E. (Oak Ridge, TN); Stockdale, John A. D. (Knoxville, TN)

1999-01-01T23:59:59.000Z

343

BES Science Network Requirements  

E-Print Network (OSTI)

Spallation Neutron Source (SNS) and the High Flux Isotopea centralized data archive at SNS. A single measurement isof the two facilities SNS and HFIR, SNS has the ability to

Dart, Eli

2011-01-01T23:59:59.000Z

344

CONTROL MEANS FOR REACTOR  

DOE Patents (OSTI)

An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

Manley, J.H.

1961-06-27T23:59:59.000Z

345

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

346

Principles of Reactor Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Physics M A Smith Argonne National Laboratory Nuclear Engineering Division Phone: 630-252-9747, Email: masmith@anl.gov Abstract: Nuclear reactor physics deals with...

347

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

Daniels, F.

1962-12-18T23:59:59.000Z

348

Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)  

Science Conference Proceedings (OSTI)

The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ``3/8 Goal`` quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed.

Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

1993-09-30T23:59:59.000Z

349

Reactor and method of operation  

DOE Patents (OSTI)

A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

Wheeler, John A. (Princeton, NJ)

1976-08-10T23:59:59.000Z

350

ORNL Guest House  

NLE Websites -- All DOE Office Websites (Extended Search)

The ORNL Guest House is located in the Oak Ridge National Laboratory campus, within 5 minutes by car to any part of the campus, High Flux Isotope Reactor (HFIR), Conference Center and short walk to the Spallation Neutron Source (SNS). The Guest House is a three story, 47 room, 71 bed facility (23 rooms with king beds and 24 rooms with 2 ex-long double beds). All rooms have a flat screen satellite TV, mini fridge, microwave, coffeemaker, iron & ironing board, and hair dryer. The entire Guest House has high speed wireless internet access with printing capabilities. The ORNL Guest House is located in the Oak Ridge National Laboratory campus, within 5 minutes by car to any part of the campus, High Flux Isotope Reactor (HFIR), Conference Center and short walk to the Spallation Neutron Source (SNS). The Guest House is a three story, 47 room, 71 bed facility (23 rooms with king beds and 24 rooms with 2 ex-long double beds). All rooms have a flat screen satellite TV, mini fridge, microwave, coffeemaker, iron & ironing board, and hair dryer. The entire Guest House has high speed wireless internet access with printing capabilities. ORNL Guest House Oak Ridge National Laboratory Address - 8640 Nano Center Drive Oak Ridge, Tn 37830 Phone: 865-576-8101 Fax: 865-576-8102 Operated by Paragon Hotel Company This Convenient and Modern Facility Offers:

351

Status of R&D on Mitigating the Effects of Pressure Waves for the Spallation Neutron Source Mercury Target  

Science Conference Proceedings (OSTI)

The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target s beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes in mechanical properties. Similar samples were cut from the second SNS target after it was removed from service in mid 2010. More extensive damage was observed on the target inner wall but damage to the containment wall was minimal.

Riemer, Bernie [ORNL; Wendel, Mark W [ORNL; Felde, David K [ORNL; Abdou, Ashraf A [ORNL; McClintock, David A [ORNL

2012-01-01T23:59:59.000Z

352

Reactor safety method  

DOE Patents (OSTI)

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

353

NEUTRONIC REACTOR MANIPULATING DEVICE  

DOE Patents (OSTI)

A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

Ohlinger, L.A.

1962-08-01T23:59:59.000Z

354

NIH RNIH ROADOAD MMAPAP ORNL NIH PORNL NIH PROGRAMROGRAM RROADOAD MMAPAP  

E-Print Network (OSTI)

Absolute (filter) HFIR: High Flux Isotope Reactor at ORNL HPTL: High Power Target Laboratory at HRIBF HRIBF at the High Flux Isotope Reactor (HFIR) (and in future work at the SNS) is concerned with studies of magnetic collaborated on several neutron scattering experiments, at HFIR, ISIS and NIST. We are also contributing

355

Electrical conductivity and current-voltage characteristics of alumina with or without neutron and electron irradiation  

E-Print Network (OSTI)

prompted a reassessment of this picture. First, the accelerated embrittlement of the HFIR reactor pressure irradiation #12;embrittlement mechanisms. Analysis showed that the special characteristics of the HFIR reactor of pressure vessel steels in HFIR [4], and in which the gamma contribution was explained on a straight

Howlader, Matiar R

356

ORNL Facilities and Equipment for Use in High-Temperature Superconductivity  

E-Print Network (OSTI)

................................................................................................................2 High Flux Isotope Reactor (HFIR of pressure conditions ranging from high vacuum to 15 atm in liquid nitrogen. High Flux Isotope Reactor (HFIR), a DOE National User Facility (CMSD) Description: HFIR is a versatile, 85-MW isotope production and test

357

D E C E M B E R 2 0 0 8 If opportunity doesn't knock, build a door.  

E-Print Network (OSTI)

Reactor (HFIR) at ORNL. Oak Ridge National Laboratory recently made the following call for proposals: Oak Ridge National Laboratory is accepting proposals for beam time at the High Flux Isotope Reactor (HFIR fellowships for SNS and HFIR users from the EPSCoR states for travel expenses. Users from these states

Selmic, Sandra

358

Progress in Fusion Materials Research  

E-Print Network (OSTI)

, a program of sys- tematic irradiation experiments utilizing fission neutrons at HFIR and ATR reactors has University. Neutron irradiation experiments were done using the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). The HFIR provides both a high flux of fast neutrons to produce dis- placement

359

ITER UltraScaleScientific Joint Dark Energy Mission ComputingCapability  

E-Print Network (OSTI)

eRHIC Fusion Energy Contingency Source Upgrade HFIR Second Cold Source Integrated Beam Experiment Source (APS) Upgrade 32 eRHIC 32 Fusion Energy Contingency 33 High-Flux Isotope Reactor (HFIR) Second Cold Source and Guide Hall 34

Homes, Christopher C.

360

Hydrate Formation and Dissociation in Simulated and Field Samples  

E-Print Network (OSTI)

- High Flux Isotope Reactor (HFIR) Instrument Scientist: Ovidiu Garlea General Structure Analysis System3009-S3015 (2005) #12;Sample Handling 23 Special Thanks to the HFIR sample environment team: Chris

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CIRE and computational science Lee Riedinger  

E-Print Network (OSTI)

cycle S&T · Fuel examination and reprocessing · Materials irradiation at HFIR · Reactor design and engineering · Nuclear research facility infrastructure (REDC, HFIR) 9 Nuclear Energy Faculty Ted Besmann

Tennessee, University of

362

An Engineering Test Reactor  

SciTech Connect

A relatively inexpensive reactor for the specific purpose of testing a sub-critical portion of another reactor under conditions that would exist during actual operation is discussed. It is concluded that an engineering tool for reactor development work that bridges the present gap between exponential and criticality experiments and the actual full scale operating reactor is feasible. An example of such a test reactor which would not entail development effort to ut into operation is depicted.

Fahrner, T.; Stoker, R.L.; Thomson, A.S.

1951-03-16T23:59:59.000Z

363

High power testing of the 402.5 MHZ and 805 MHZ RF windows for the spallation neutron source accelerator  

SciTech Connect

Hisorically, Radio Frequency (RF) windows have been a common point of failure in input power couplers; therefore, reliable RF windows are critical to the success of the Spallation Neutron Source (SNS) project. The normal conducting part of the SNS accelerator requires six RF windows at 402.5 MHz and eight RF windows at 805 MHz[l]. Each RF window will transmit up to 180 kW of average power and 2.5 MW peak power at 60 Hz with 1.2 millisecond pulses. The RF windows, designed and manufactured by Thales, were tested at the full average power for 4 hours to ensure no problems with the high average power and then tested to an effective forward power level of 10 MW by testing at 2.5 MW forward power into a short and varying the phase of the standing wave. The sliding short was moved from 0 to 180 degrees to ensure no arcing or breakdown problems occur in any part of the window. This paper discusses the results of the high power testing of both the 402.5 MHz and the 805 MHz RF windows. Problems encountered during testing and the solutions for these problems are discussed.

Cummings, K. A. (Karen Ann); De Baca, J. M. (John M.); Harrison, J. S. (John S.); Rodriguez, M. B. (Manuelita B.); Torrez, P. A. (Phillip A.); Warner, D. K. (David K.)

2003-01-01T23:59:59.000Z

364

Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of {sup 3}He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection.

Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O. [Neutron Scattering Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States); Tang, X.; Lin, J. Y. Y.; Fultz, B. [California Institute of Technology, W. M. Keck Laboratory 138-78, Pasadena, California 91125 (United States)

2012-01-15T23:59:59.000Z

365

Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically-focused neutron guide, high speed magnetic bearing choppers and a massive array of 3He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program, and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection.

Abernathy, Douglas L [ORNL; Stone, Matthew B [ORNL; Loguillo, Mark [ORNL; Lucas, Matthew [Air Force Research Laboratory, Wright-Patterson AFB, OH; Delaire, Olivier A [ORNL; Tang, Xiaoli [California Institute of Technology, Pasadena; Lin, J. Y. Y. [California Institute of Technology, Pasadena; Fultz, B. [California Institute of Technology, Pasadena

2012-01-01T23:59:59.000Z

366

Reactor Pressure Vessel Task of Light Water Reactor Sustainability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure...

367

Memorandum on Chemical Reactors and Reactor Hazards  

SciTech Connect

Two important problems in the investigation of reactor hazards are the chemical reactivity of various materials employed in reactor construction and the chracteristics of heat transfer under transient conditions, specifically heat transfer when driven by an exponentially increasing heat source (exp t/T). Although these problems are independent of each other, when studied in relation to reactor hazards they may occur in a closely coupled sequence. For example the onset of a dangerous chemical reactor may be due to structural failure of various reactor components under an exponentially rising heat source originating with a runaway nuclear reactor. For this reason, these two problems should eventually be studied together after an exploratory experimental survey has been made in which they are considered separately.

Mills, M.M.; Pearlman, H.; Ruebsamen, W.; Steele, G., Chrisney, J.

1951-07-05T23:59:59.000Z

368

Basic and Applied Science Research Reactors - Reactors designed...  

NLE Websites -- All DOE Office Websites (Extended Search)

BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th...

369

Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

Selby, Douglas L [ORNL; Jones, Amy [ORNL; Crow, Lowell [ORNL

2012-01-01T23:59:59.000Z

370

Hydrogen Cylinder Storage Array Explosion Evaluations at the High Flux Isotope Reactor  

DOE Green Energy (OSTI)

The safety analysis for a recently-installed cold neutron source at the High Flux Isotope Reactor (HFIR) involved evaluation of potential explosion consequences from accidental hydrogen jet releases that could occur from an array of hydrogen cylinders. The scope of the safety analysis involved determination of the release rate of hydrogen, the total quantity of hydrogen assumed to be involved in the explosion, the location of an ignition point or center of the explosion from receptors of interest, and the peak overpressure at the receptors. To evaluate the total quantity of hydrogen involved in the explosion, a 2D model was constructed of the jet concentration and a radial-axial integral over the jet cloud from the centerline to the flammability limit of 4% was used to determine the hydrogen mass to be used as a source term. The location of the point source was chosen as the peak of the jet centerline concentration profile. Consequences were assessed using a combination of three methods for estimating local overpressure as a function of explosion source strength and distance: the Baker-Strehlow method, the TNT-equivalence method, and the TNO method. Results from the explosions were assessed using damage estimates in screening tables for buildings and industrial equipment.

Cook, David Howard [ORNL; Griffin, Frederick P [ORNL; Hyman III, Clifton R [ORNL

2010-01-01T23:59:59.000Z

371

Cross section generation and physics modeling in a feasibility study of the conversion of the high flux isotope reactor core to use low-enriched uranium fuel  

SciTech Connect

A computational study has been initiated at ORNL to examine the feasibility of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The current study is limited to steady-state, nominal operation and are focused on the determination of the fuel requirements, primarily density, that are required to maintain the performance of the reactor. Reactor physics analyses are reported for a uranium-molybdenum alloy that would be substituted for the current fuel - U{sub 3}O{sub 8} mixed with aluminum. An LEU core design has been obtained and requires an increase in {sup 235}U loading of a factor of 1.9 over the current HEU fuel. These initial results indicate that the conversion from HEU to LEU results in a reduction of the thermal fluxes in the central flux trap region of approximately 9 % and in the outer beryllium reflector region of approximately 15%. Ongoing work is being performed to improve upon this initial design to further minimize the impact of conversion to LEU fuel. (authors)

Ellis, R. J.; Gehin, J. C.; Primm Iii, R. T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2006-07-01T23:59:59.000Z

372

Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

Lacy, Jeffrey L

2009-05-22T23:59:59.000Z

373

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

1993-01-01T23:59:59.000Z

374

Guidebook to nuclear reactors  

SciTech Connect

A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

Nero, A.V. Jr.

1976-05-01T23:59:59.000Z

375

Reactor Sharing Program  

Science Conference Proceedings (OSTI)

Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

Vernetson, W.G.

1993-01-01T23:59:59.000Z

376

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

377

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

378

High solids fermentation reactor  

DOE Patents (OSTI)

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

379

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

380

FAST NEUTRON REACTOR  

DOE Patents (OSTI)

A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

Soodak, H.; Wigner, E.P.

1961-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NUCLEAR REACTOR CONTROL SYSTEM  

DOE Patents (OSTI)

A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

1959-11-01T23:59:59.000Z

382

A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper  

E-Print Network (OSTI)

Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 $\\sigma$ significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 $\\sigma$ if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.

E. Baussan; M. Blennow; M. Bogomilov; E. Bouquerel; J. Cederkall; P. Christiansen; P. Coloma; P. Cupial; H. Danared; C. Densham; M. Dracos; T. Ekelof; M. Eshraqi; E. Fernandez Martinez; G. Gaudiot; R. Hall-Wilton; J. -P. Koutchouk; M. Lindroos; R. Matev; D. McGinnis; M. Mezzetto; R. Miyamoto; L. Mosca; T. Ohlsson; H. Ohman; F. Osswald; S. Peggs; P. Poussot; R. Ruber; J. Y. Tang; R. Tsenov; G. Vankova-Kirilova; N. Vassilopoulos; E. Wildner; J. Wurtz

2013-09-26T23:59:59.000Z

383

Triple Ion-Beam Studies of Radiation Damage Effects in a 316LN Austenitic Alloy for a High Power Spallation Neutron Source  

DOE Green Energy (OSTI)

Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe{sup 2}, 360 keV He{sup +}, and 180 keV H{sup +} to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of {approx} 1 {micro}m. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss.

Lee, EH

2001-08-01T23:59:59.000Z

384

The study of neutron activation yields in spallation reaction of 400 MeV/u carbon on a thick lead target  

E-Print Network (OSTI)

The spallation-neutron yield was studied experimentally by bombarding a thick lead target with 400 MeV/u carbon beam. The data were obtained with the activation analysis method using foils of Au, Mn, Al, Fe and In. The yields of produced isotopes were deduced by analyzing the measured {\\gamma} spectra of irradiated foils. According to the isotopes yields, the spatial and energy distributions of the neutron field were discussed. The experimental results were compared with Monte Carlo simulations performed by the GEANT4 + FLUKA code.

F. Ma; H. L. Ge; X. Y. Zhang; H. B. Zhang; Y. Q. Ju; L. Chen; L. Yang; F. Fu; Y. L. Zhang; J. Y. LI; T. J. Liang; B. Zhou; S. L. Wang; J. Y. Li; J. K. Xu; X. G. Leir; Z. Qin; L. Gu; G. M. Jin

2013-09-03T23:59:59.000Z

385

Time-of-Flight Bragg Scattering from Aligned Stacks of Lipid Bilayers using the Liquids Reflectometer at the Spallation Neutron Source  

Science Conference Proceedings (OSTI)

Time-of-flight (TOF) neutron diffraction experiments on aligned stacks of lipid bilayers using the horizontal Liquids Reflectometer at the Spallation Neutron Source are reported. Specific details are given regarding the instrumental setup, data collection and reduction, phase determination of the structure factors, and reconstruction of the one-dimensional neutron scattering length density (NSLD) profile. The validity of using TOF measurements to determine the one-dimensional NSLD profile is demonstrated by reproducing the results of two well known lipid bilayer structures. The method is then applied to show how an antimicrobial peptide affects membranes with and without cholesterol.

Pan, Jianjun [ORNL; Heberle, Frederick A [ORNL; Carmichael, Justin R [ORNL; Ankner, John Francis [ORNL; Katsaras, John [ORNL

2012-01-01T23:59:59.000Z

386

PRELIMINARY SOLUTION CRITICAL EXPERIMENTS FOR THE HIGH-FLUX ISOTOPE REACTOR  

DOE Green Energy (OSTI)

The design of the High-Flux Isotope Reactor (HFIR) was supported by a series of preliminary experiments performed at the Oak Ridge Critical Experiments Facility in 1960. The experiments yielded results describing directly some of the expected performance characteristics of the reactor and strengthened the calculational methods used in its design. The critical assembly, like the reactor, was of a flux-trap type in which a central 6-in.-dia column of H/sub 2/O was surrounded by an annulus of fissile material and, in turn, by an annular neutron reflector. The fuel region contained a solution of enriched uranyl nitrate in a mixture of H/sub 2/O and D/sub 2/O and the reflector was a composite of two annuli, the inner one of D/sub 2/O surrounded by one of H/sub 2/O. In most experiments the ends of the assembly were reflected by H/sub 2/O. Important results evaluate the absolute thermal-neutron flux to be expected in the design reactor and describe the flux distributions within this type of assembly. It was also observed that the cadmium ratio along the axis of the assembly was about 100, showing that a highly thermal-neutron flux was truly developed in the trap. It was shown that reduction of the hydrogen density in the central water column to about 80% of its normal value increased the reactivity about 6% and that further hydrogen density reduction decreased the reactivity as the effect of the loss of neutron moderation dominated the effect of the increased coupling across the central column. These considerations are of importance to the safety of the reactor. Additional experiments gave values of the usual critical dimensions and explored the effects on both the dimensions and the flux distributions of changing the concentration of the uranyl nitrate solution, of changing the composition of the solvent, and of adding neutron-absorbing materials to the D/ sub 2/O reflector. These changes were made to alter the neutron properties of the fuel solution over a range including those expected in the reactor itself. (auth)

Fox, J.K.; Gilley, L.W.; Magnuson, D.W.

1963-06-12T23:59:59.000Z

387

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

388

Nuclear reactor overflow line  

DOE Patents (OSTI)

The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

Severson, Wayne J. (Pittsburgh, PA)

1976-01-01T23:59:59.000Z

389

Reactor vessel support system  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

390

Spinning fluids reactor  

SciTech Connect

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

391

Fission reactors and materials  

SciTech Connect

The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

Frost, B.R.T.

1981-12-01T23:59:59.000Z

392

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Cao, Jun

2011-01-01T23:59:59.000Z

393

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

394

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2011-01-12T23:59:59.000Z

395

Department of Nuclear Engineering The University of Tennessee  

E-Print Network (OSTI)

Validation of MCNPx models for HFIR using Legacy Materials Test Data Nathan P. Delauder Not yet established for GCEP Component Monitoring Hiraku Nakamura Inlet Flow Blockage Consequence Analysis for HFIR Alan Nam. Taylor Validation of KENO V.a Code for High Flux Isotope Reactor (HFIR) Pi-En Tsai (Ph.D.) Light ion

Tennessee, University of

396

Steepest Descent with Curvature Dynamical System1,2  

E-Print Network (OSTI)

There is a desire to implement a reliability-centered maintenance at the High Flux Isotope Reactor (HFIR) at the Oak-Centered Maintenance (RCM) structure is proposed for implementation at the HFIR. This proposed RCM structure is based on widely used and accepted industry practices. The HFIR primary cleanup system is used to provide specific

Alvarez, Felipe

397

This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science  

E-Print Network (OSTI)

Welcome 6 Neutron Primer 7 ORNL Neutron Sciences 8 HFIR and SNS 9 Year in Review 16 Science Highlights 36. With HFIR and SNS operating, ORNL now has two of the world's best neutron facilities and the opportunity facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source

398

Fusion Engineering and Design 5152 (2000) 10951101 Progress and critical issues for IFE blanket and  

E-Print Network (OSTI)

........................................................................... 1-3 1.2.3 Complementary to the Present SNS Target Station and to HFIR.................. 1-5 1 HFIR High Flux Isotope Reactor (at ORNL) HiMaNDi high-throughput MaNDi HMI Hahn-Meitner Institute Target Station and to HFIR The first target station at SNS was optimized primarily to produce short

Abdou, Mohamed

399

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal li  

E-Print Network (OSTI)

. SNS and HFIR are funded by the U.S. Department of Energy Office of Basic Energy Sciences. 2008 ANNUAL Flux Isotope Reactor (HFIR), bringing users to our facilities, and producing scientific results. I must to achieve 1.4 megawatts of beam power by FY 2010 or CY 2011. At HFIR, the new cold source operated

400

Virtual Laboratory for Technology For Fusion Energy Science  

E-Print Network (OSTI)

, the 85-megawatt HFIR is a valuable tool for materials testing and neutron-scattering research; it is one, non- destructive testing, and explosives detection. An important radioisotope produced at HFIR High Flux Isotope Reactor (HFIR) began providing much higher intensities for neutron-scattering re

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Department of Nuclear Engineering The University of Tennessee  

E-Print Network (OSTI)

;2009 Annual Report 9 Lee P. Tschaepe Evaluation of HFIR LEU Fuel Using The COMSOL Multiphysics Platform Robert G. Taylor Validation of KENO V.a Code for High Flux Isotope Reactor (HFIR) Stuart A. Walker Low Regression Initialization Module David Chandler Design of Advanced HEU Fuel to Support Conversion of HFIR

Tennessee, University of

402

HORIZONTAL BOILING REACTOR SYSTEM  

DOE Patents (OSTI)

Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

Treshow, M.

1958-11-18T23:59:59.000Z

403

Generation -IV Reactor Concepts  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

404

Biology and Soft Matter | Neutron Sciences | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and Soft Matter Biology and Soft Matter SHARE Biology and Soft Matter This is a time of unprecedented opportunity for using neutrons in biological and soft matter research. The US Department of Energy (DOE) has invested in two forefront neutron user facilities, the accelerator-based Spallation Neutron Source (SNS) and the reactor-based High Flux Isotope Reactor (HFIR), at Oak Ridge National Laboratory (ORNL). Researchers have access to new instrumentation on some of the world's most intense neutron beam lines for studying the structure, function, and dynamics of complex systems. We anticipate that soft matter and biological sciences of tomorrow will require understanding, predicting, and manipulating complex systems to produce the new materials and products required to meet our nation's

405

NUCLEAR REACTORS AND EARTHQUAKES  

SciTech Connect

A book is presented which supplies pertinent seismological information to engineers in the nuclear reactor field. Data are presented on the occurrence, intensity, and wave shapes. Techniques are described for evaluating the response of structures to such events. Certain reactor types and their modes of operation are described briefly. Various protection systems are considered. Earthquake experience in industrial and reactor plants is described. (D.L.C.)

1961-01-01T23:59:59.000Z

406

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

407

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

408

Studies of Plutonium-238 Production at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.

Lastres, Oscar [University of Tennessee, Knoxville (UTK); Chandler, David [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Jarrell, Joshua J [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

409

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

410

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

411

Pressurized fluidized bed reactor  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

412

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

413

HOMOGENEOUS NUCLEAR POWER REACTOR  

DOE Patents (OSTI)

A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

King, L.D.P.

1959-09-01T23:59:59.000Z

414

Simulation of beryllium spallation  

National Nuclear Security Administration (NNSA)

synchronization from the generator is 100 MHz. It provides the required level of output power when phase noises are as minimum as possible. The problem of minimizing discrepancy...

415

Simulation of beryllium spallation  

National Nuclear Security Administration (NNSA)

3, which takes into account the effect of compression and strain strengthening and thermal softening, as well as relaxation of elastic stresses, has been used together with...

416

Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator...  

National Nuclear Security Administration (NNSA)

Research ReactorDomestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Our Mission Managing the Stockpile...

417

ADMINISTRATION OF ORNL RESEARCH REACTORS  

SciTech Connect

Organization of the ORNL Operations division for administration of the Oak Ridge Research Reactor, the Low Intensity Testing Reactor, and the Oak Ridge Graphite Reactor is described. (J.R.D.)

Casto, W.R.

1962-08-20T23:59:59.000Z

418

Production reactor characteristics  

SciTech Connect

Reactors for the production of special nuclear materials share many similarities with commercial nuclear power plants. Each relies on nuclear fission, uses uranium fuel, and produces large quantities of thermal power. However, there are some important differences in production reactor characteristics that may best be discussed in terms of mission, role, and technology.

Thiessen, C.W.; Hootman, H.E.

1990-01-01T23:59:59.000Z

419

Advanced converter reactors  

SciTech Connect

Advanced converter reactors (ACRs) of primary US interest are those which can be commercialized within about 20 years, and are: Advanced Light-Water Reactors, Spectral-Shift-Control Reactors, Heavy-Water Reactors (CANDU type), and High-Temperature Gas-Cooled Reactors. These reactors can operate on uranium, thorium, or uranium-thorium fuel cycles, but have the greatest fuel utilization on thorium type cycles. The water reactors tend to operate more economically on uranium cycles, while the HTGR is more economical on thorium cycles. Thus, the HTGR had the greatest practical potential for improving fuel utilization. If the US has 3.4 to 4 million tons U/sub 3/O/sub 8/ at reasonable costs, ACRs can make important contributions to maintaining a high nuclear power level for many decades; further, they work well with fast breeder reactors in the long term under symbiotic fueling conditions. Primary nuclear data needs of ACRs are integral measurements of reactivity coefficients and resonance absorption integrals.

Kasten, P.R.

1979-01-01T23:59:59.000Z

420

NEUTRONIC REACTOR SYSTEM  

DOE Patents (OSTI)

A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

Treshow, M.

1959-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NEUTRONIC REACTOR BURIAL ASSEMBLY  

DOE Patents (OSTI)

A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

Treshow, M.

1961-05-01T23:59:59.000Z

422

The Integral Fast Reactor  

SciTech Connect

Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

Till, C.E.; Chang, Y.I. (Argonne National Lab., IL (USA)); Lineberry, M.J. (Argonne National Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

423

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT  

SciTech Connect

Progress on reactor programs and in general engineering research and development programs is summarized. Research and development are reported on water-cooled reactors including EBWR and Borax-V, sodium-cooled reactors including ZPR-III, IV, and IX, Juggernaut, and EBR-I and II. Other work included a review of fast reactor technology, and studies on nuclear superheat, thermal and fast reactor safety, and reactor physics. Effort was also devoted to reactor materials and fuels development, heat engineering, separation processes and advanced reactor concepts. (J.R.D.)

1961-04-01T23:59:59.000Z

424

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue Universitys Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called Users Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. Users week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

425

Producing persistent, high-current, high-duty-factor H{sup -} beams for routine 1 MW operation of Spallation Neutron Source (invited)  

Science Conference Proceedings (OSTI)

Since 2009, the Spallation Neutron Source (SNS) has been producing neutrons with ion beam powers near 1 MW, which requires the extraction of {approx}50 mA H{sup -} ions from the ion source with a {approx}5% duty factor. The 50 mA are achieved after an initial dose of {approx}3 mg of Cs and heating the Cs collar to {approx}170 deg. C. The 50 mA normally persist for the entire 4-week source service cycles. Fundamental processes are reviewed to elucidate the persistence of the SNS H{sup -} beams without a steady feed of Cs and why the Cs collar temperature may have to be kept near 170 deg. C.

Stockli, Martin P.; Han, B. X.; Hardek, T. W.; Kang, Y. W.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-02-15T23:59:59.000Z

426

Nuclear reactor control column  

DOE Patents (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

427

Slurry reactor design studies  

SciTech Connect

The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

1990-06-01T23:59:59.000Z

428

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

429

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

Hopkins, R.J.; Land, J.T.; Misvel, M.C.

1994-06-07T23:59:59.000Z

430

NUCLEAR REACTOR FUEL SYSTEMS  

DOE Patents (OSTI)

Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

1959-09-15T23:59:59.000Z

431

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

432

CONTROL FOR NEUTRONIC REACTOR  

DOE Patents (OSTI)

S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

Lichtenberger, H.V.; Cameron, R.A.

1959-03-31T23:59:59.000Z

433

Fast Breeder Reactor studies  

Science Conference Proceedings (OSTI)

This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

1980-07-01T23:59:59.000Z

434

Microfluidic electrochemical reactors  

DOE Patents (OSTI)

A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

2011-03-22T23:59:59.000Z

435

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

436

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

437

Molten metal reactors  

SciTech Connect

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

438

Compact power reactor  

DOE Patents (OSTI)

There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

Wetch, Joseph R. (Woodland Hills, CA); Dieckamp, Herman M. (Canoga Park, CA); Wilson, Lewis A. (Canoga Park, CA)

1978-01-01T23:59:59.000Z

439

NEUTRONIC REACTOR CONSTRUCTION AND OPERATION  

DOE Patents (OSTI)

A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

West, J.M.; Weills, J.T.

1960-03-15T23:59:59.000Z

440

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

FRM FRM For the Public Awards and Honors Highlights Publications U.S. Program Planning Visiting ORNL For Researchers Profiles Program Manager Program Management ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles Accessing LAMDA Facility Our People Program Manager, Program Management, Facilities Find People ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Production SHARE Strategic Isotope Production ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center...

442

Welcome - Nuclear Medicine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

combined resources of the stable isotope inventory, a High Flux Isotope Reactor (HFIR), hot cell processing capabilities, and a wide range of support functions required for such...

443

Neutron Imaging Reveals Lithium Distribution - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

imaging instrument at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have successfully mapped the three-dimensional spatial distribution of lithium...

444

Neutron Diffraction Studies of Intercritically Austempered Ductile Irons  

Science Conference Proceedings (OSTI)

... a function of applied stress were determined using neutron diffraction at the NRSF2 at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory.

445

Neutron Imaging Explored as Complementary Technique for Improving...  

NLE Websites -- All DOE Office Websites (Extended Search)

the hydrogen-sensitive neutron imaging capabilities at the High Flux Isotope Reactor (HFIR) to image healthy and cancerous breast tissue specimens. Working with Hassina Bilheux,...

446

Neutron Flux Measurements and Calculations in the Gamma Irradiation Facility Using MCNPX.  

E-Print Network (OSTI)

??The gamma irradiation facility at the High Flux Isotope Reactor (HFIR)is used to deliver a pure gamma dose to any target of interest. in addition (more)

Giuliano, Dominic Richard

2010-01-01T23:59:59.000Z

447

2007 ORNL USER Meeting Powder Data Analysis  

E-Print Network (OSTI)

Research Reactors Future (proposed experiments and R&D) NIST R&D ATR R&D HFIR, ORNL R&D SONGS proposed

448

Development of Microstructure and Irradiation Hardening of Zircaloy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 300C in the High Flux Isotope Reactor (HFIR) at relatively low neutron ...

449

Zirconium and Fuel  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 300C in the High Flux Isotope Reactor (HFIR) at relatively low neutron...

450

Studies on Vibrational Entropy in Alloys Using Inelastic Neutron ...  

Science Conference Proceedings (OSTI)

... were measured for a verity of binary alloys using the triple-axis spectrometers at the High Flux Isotope Reactor (HFIR) at Oak Ridge NAtional Laboratory.

451

Nuclear Science | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC) together provide the western...

452

2005 ORNL EM Report.pmd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Park FD Fire Department FWENC Foster Wheeler Environmental Corporation HFIR High Flux Isotope Reactor IC Incident Commander JIC Joint Information Center LES Local...

453

Heavy Actinides | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

actinides with the construction and commissioning of the High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC) in 1965 and 1966,...

454

Breast Tissue Imaging | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

the hydrogen-sensitive neutron imaging capabilities at the High Flux Isotope Reactor (HFIR) to image healthy and cancerous breast tissue specimens. Working with Hassina Bilheux,...

455

The Swelling, Microstructure, and Hardening of LCAC, TZM, and ...  

Science Conference Proceedings (OSTI)

... Oxide Dispersion Strengthened (ODS), and TZM molybdenum following irradiation in the High Flux Isotope Reactor (HFIR) at 300C, 600C, and 870- 1100C to...

456

ORNL Neutron Sciences Annual Report for 2007  

Science Conference Proceedings (OSTI)

This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

2008-07-01T23:59:59.000Z

457

REACTOR GROUT THERMAL PROPERTIES  

DOE Green Energy (OSTI)

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

458

B Reactor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » B Reactor B Reactor B Reactor Completed in September 1944, the B Reactor was the world's first large-scale plutonium production reactor. As at Oak Ridge, the need for labor turned Hanford into an atomic boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built on a much larger scale and used water rather than air as a coolant. Whereas the X-10 had an initial design output of 1,000 kilowatts, the B Reactor was designed to operate at 250,000 kilowatts. Consisting of a 28- by 36-foot, 1,200-ton graphite cylinder lying on its side, the reactor was penetrated through its

459

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

SPNM SPNM For the Public Awards Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Capabilities Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive | Honors and Awards Archive Lynn Boatner, Joanne Ramey, Hu Longmire, research featured in the 2013 Allied High Tech Products, Inc. Calendar in the form of a color micrograph for the month of March, 2013.

460

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

IPTS Proposal Preparation IPTS Proposal Preparation Procedure November 3, 2008 Welcome to this guide to the Integrated Proposal Tracking System, used by the Neutron Sciences Directorate at Oak Ridge National Laboratory to accept and process proposals submitted by users for beam time at the High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS). This guide will allow you to: * View the mechanics of the proposal system without having to register * See the format of the proposal, and the information required before you start your proposal creation * View the guidelines for the Statement of Research (SoR) required in the proposal preparation To enter the actual Integrated Proposal Tracking System (IPTS) web page, click on the hyperlink. The following page will appear.

Note: This page contains sample records for the topic "reactor hfir spallation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

CST CST For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Capabilities Current Research Materials Our People Group Leader, Staff Members Find People Fact Sheet Group Poster Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Corrosion Science and Technology Group Corrosion Kinetics in simulated high-temperature/high-pressure environments

462

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

TFN TFN For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Core Compentencies Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Thin Films and Nanostructures Group Complex oxide thin films and heterostructures are important for not only fundamental physics, but also a wide range of exciting opportunities in

463

Educational Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program The program of the school focuses on the following areas: The fundamentals of the interaction of X-rays and neutrons with matter X-ray and neutron production and experimental instrumentation Theory and practical application of various X-ray and neutron experimental techniques Hands on experience gained through experiments at the Advanced Photon Source (APS), Spallation Neutron Source (SNS), and High Flux Isotope Reactor (HFIR). Lectures are given by prominent scientists drawn from universities, several national laboratories, and industry. Subjects for lectures include: Interactions of X-rays and Neutrons with Matter Neutron Generation and Detection Neutron Instrumentation X-ray Generation and Detection X-ray Instrumentation Single-Crystal and Surface Diffraction

464

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

465

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

ABD ABD For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Research Projects Our People Group Leader, Staff Members, Facilities Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Alloy Behavior and Design Group The principal technical contact for discussing potential projects in the Alloy Behavior and Design Group is Dr. Easo P. George, Group Leader.

466

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

467

Zero Power Reactor simulation | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

468

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network (OSTI)

jet aircraft engines, and nuclear reactor fuel elements. Ancomponents of a nuclear reactor core are susceptible tothe nuclear physics of the thermal and fast neutron reactors

Olander, Donald R.

2013-01-01T23:59:59.000Z

469

Gas-cooled reactors  

SciTech Connect

Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing.

Schulten, R.; Trauger, D.B.

1976-01-01T23:59:59.000Z

470

Nuclear reactor safety device  

DOE Patents (OSTI)

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

471

REACTOR CONTROL DEVICE  

DOE Patents (OSTI)

A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)

Graham, R.H.

1962-09-01T23:59:59.000Z

472

A NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.

Luebke, E.A.; Vandenberg, L.B.

1959-09-01T23:59:59.000Z

473

Reactor for exothermic reactions  

DOE Patents (OSTI)

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02T23:59:59.000Z

474

MERCHANT MARINE SHIP REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

1961-05-01T23:59:59.000Z

475

Heat dissipating nuclear reactor  

DOE Patents (OSTI)

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01T23:59:59.000Z

476

Heat dissipating nuclear reactor  

DOE Patents (OSTI)

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, A.; Lazarus, J.D.

1985-11-21T23:59:59.000Z

477

MERCHANT MARINE SHIP REACTOR  

DOE Patents (OSTI)

A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

Sankovich, M.F.; Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Gestson, D.K.

1961-05-01T23:59:59.000Z

478

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from