National Library of Energy BETA

Sample records for reactor hfir spallation

  1. HFIR | High Flux Isotope Reactor | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HFIR User Office User Program Manager Laura Morris Edwards 865.574.2966 Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities |...

  2. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  3. High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and...

  4. Accelerator spallation reactors for breeding of fissile fuel and transmuting fission products. Status and prospects

    SciTech Connect (OSTI)

    Steinberg, M.

    1981-01-01

    This report constitutes a summary review of the status and prospects of the development of accelerator spallation reactors for breeding fissile fuel and for transmuting fission products.

  5. Meeting notes of the High Flux Isotope Reactor (HFIR) futures group

    SciTech Connect (OSTI)

    Houser, M.M.

    1995-08-01

    This report is a compilation of the notes from the ten meetings. The group charter is: (1) to identify and characterize the range of possibilities and necessities for keeping the HFIR operating for at least the next 15 years; (2) to identify and characterize the range of possibilities for enhancing the scientific and technical utility of the HFIR; (3) to evaluate the benefits or impacts of these possibilities on the various scientific fields that use the HFIR or its products; (4) to evaluate the benefits or impacts on the operation and maintenance of the HFIR facility and the regulatory requirements; (5) to estimate the costs, including operating costs, and the schedules, including downtime, for these various possibilities; and one possible impact of proposed changes may be to stimulate increased pressure for a reduced enrichment fuel for HFIR.

  6. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL; Proctor, Larry Duane [ORNL

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  7. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    SciTech Connect (OSTI)

    Rothrock, Benjamin G [ORNL] [ORNL; Farrar, Mike B [ORNL] [ORNL

    2009-01-01

    This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  8. Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL

    SciTech Connect (OSTI)

    Bodey, Isaac T [ORNL] [ORNL; Arimilli, Rao V [ORNL] [ORNL; Freels, James D [ORNL] [ORNL

    2010-01-01

    Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched uranium (HEU) fuel to a low enriched uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC), which adds much conservatism to the safety analysis. The multi-dimensional multi-physics capabilities of the COMSOL environment allow the analyst to relax the number and magnitude of conservatisms, imposed by the SSHTC, to present a more physical model of the TH aspect of the HFIR.

  9. Upgraded HFIR Fuel Element Welding System

    SciTech Connect (OSTI)

    Sease, John D [ORNL

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  10. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at ORNL. HFIR Girth Weld Neutron and Gamma LEUHEU DPA Ratios Idealized HB-2 potential cold source geometries Science Highlight 7 Managed by UT-Battelle for the U.S. Department...

  11. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora; Jones, Amy; Bailey, William Barton; Vandergriff, David H

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.

  12. Evaluation of HFIR LEU Fuel Using the COMSOL Multiphysics Platform

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Ruggles, Arthur [ORNL; Freels, James D [ORNL

    2009-03-01

    A finite element computational approach to simulation of the High Flux Isotope Reactor (HFIR) Core Thermal-Fluid behavior is developed. These models were developed to facilitate design of a low enriched core for the HFIR, which will have different axial and radial flux profiles from the current HEU core and thus will require fuel and poison load optimization. This report outlines a stepwise implementation of this modeling approach using the commercial finite element code, COMSOL, with initial assessment of fuel, poison and clad conduction modeling capability, followed by assessment of mating of the fuel conduction models to a one dimensional fluid model typical of legacy simulation techniques for the HFIR core. The model is then extended to fully couple 2-dimensional conduction in the fuel to a 2-dimensional thermo-fluid model of the coolant for a HFIR core cooling sub-channel with additional assessment of simulation outcomes. Finally, 3-dimensional simulations of a fuel plate and cooling channel are presented.

  13. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries on 70 separate strategic materials of high interest completed for Defense Logistics Agency Advanced High Temperature Reactor Level 2 Milestone Report successfully...

  14. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topical Meeting on High Temperature Reactor Technology * C.A. Baldwin, J.D. Hunn, R.N. Morris, F.C. Montgomery, C.M. Silva, and P.A. Demkowicz, "First Elevated Temperature...

  15. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IV International Forum working group that is developing design criteria for sodium fast reactors. The meeting was held July 17-18 in Paris, France. * Bob Grove was an invited...

  16. The HIgh Flux Isotope Reactor: Past, Present, and Future

    SciTech Connect (OSTI)

    Beierschmitt, Kelly J [ORNL; Farrar, Mike B [ORNL

    2009-01-01

    HFIR construction began in 1965 and completed in 1966. During the first 15 years of operation, the heavy actinide isotope production mission was dominant. HFIR is now positioned as one of the most versataile research reactors in the world.

  17. Analysis of HFIR Dosimetry Experiments Performed in Cycles 400 and 401

    SciTech Connect (OSTI)

    Remec, Igor [ORNL; Baldwin, Charles A [ORNL

    2008-09-01

    The High Flux Isotope Reactor (HFIR) has been in operation at Oak Ridge National Laboratory since 1966. To upgrade and enhance capabilities for neutron science research at the reactor, a larger HB-2 beam tube was installed in April of 2002. To assess, experimentally, the impact of this larger beam tube on radiation damage rates [i.e., displacement-per-atom (dpa) rates] used in vessel life extension studies, dosimetry experiments were performed from April to August 2004 during fuel cycles 400 and 401. This report documents the analysis of the dosimetry experiments and the determination of best-estimate dpa rates. These dpa rates are obtained by performing a least-squares adjustment of calculated neutron and gamma-ray fluxes and the measured responses of radiometric monitors and beryllium helium accumulation fluence monitors. The best-estimate dpa rates provided here will be used to update HFIR pressure vessel life extension studies, which determine the pressure/temperature limits for reactor operation and the HFIR pressure vessel's remaining life. All irradiation parameters given in this report correspond to a reactor power of 85 MW.

  18. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    SciTech Connect (OSTI)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  19. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect (OSTI)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  20. Data Management Resources at the Office of Science User Facilities...

    Office of Science (SC) Website

    Radiation Light Source (SSRL) SLAC Link External link Neutron Sources High Flux Isotope Reactor (HFIR) ORNL Link External link Spallation Neutron Source (SNS) ORNL Link External...

  1. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Source (SSRL) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Lujan Neutron Scattering Center (Lujan) Center for Functional Nanomaterials (CFN) Center for...

  2. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Source (SSRL) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Lujan Neutron Scattering Center (Lujan) Center for Functional Nanomaterials (CFN) Center for...

  3. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect (OSTI)

    Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  4. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  5. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2015-01-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50–70 ?C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutronirradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 ?C twice at the ion fluence of 5×1025 m-2 to reach the total ion fluence of 1×1026 m-2 in order to investigate maximum near-surface (more »in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the nearsurface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50µm depth for 0.025 dpa and 35µm depth for 0.3 dpa) at 500 ?C cases even in the relatively low ion fluence of 1026 m-2.« less

  6. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Shimada, Masashi [Idaho National Lab. (INL), Idaho Falls, ID (United States).Fusion Safety Program; Cao, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Otsuka, T. [Kyushu Univ., Fukuoka (Japan). Interdisciplinary Graduate School of Engineering Science; Hara, M. [Univ. of Toyama (Japan). Hydrogen Isotope Center; Kobayashi, M. [Shizuoka Univ. (Japan). Radioscience Research Lab.; Oya, Y. [Shizuoka Univ. (Japan). Radioscience Research Lab.; Hatano, Y. [Shizuoka Univ. (Japan). Radioscience Research Lab.

    2015-01-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50–70 ?C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutronirradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 ?C twice at the ion fluence of 5×1025 m-2 to reach the total ion fluence of 1×1026 m-2 in order to investigate maximum near-surface (<5µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the nearsurface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50µm depth for 0.025 dpa and 35µm depth for 0.3 dpa) at 500 ?C cases even in the relatively low ion fluence of 1026 m-2.

  7. Synchrotron-driven spallation sources

    E-Print Network [OSTI]

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  8. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Renfro, David; Chandler, David; Cook, David; Ilas, Germina; Jain, Prashant; Valentine, Jennifer

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present studies used current analytical tools to evaluate the various alternate designs for cycle length, scientific performance (e.g., neutron scattering), and steady-state and transient thermal performance using both safety limit and nominal parameter assumptions. The studies concluded that a new reference design combining a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone will allow successful conversion of HFIR. Future collaboration with the program will reveal whether the new reference design can be fabricated reliably and affordably. Following this feedback, additional studies using state-of-the-art developmental analytical tools are proposed to optimize the design of the fuel zone radial contour and the amount and location of both types of neutron absorbers to further flatten thermal peaks while maximizing the performance of the reactor.

  9. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10˛? m?˛ to reach a total ion fluence of 1×10˛? m?˛ in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore »thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (« less

  10. The European Spallation Source

    SciTech Connect (OSTI)

    Peggs, S; Eshraqi, M; Hahn, H; Jansson, A; Lindroos, M; Ponton, A; Rathsman, K; Trahern, G; Bousso, S; Calaga, R; Devanz, G; Duperrier, R D; Eguia, J; Gammino, S; Moller, S P; Oyon, C; Ruber, R.J.M.Y.

    2011-03-01

    The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.

  11. The SpallaTion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of PennsylvaniaLBNL-2258E ERNEST ORLANDO SpallaTion

  12. Simulated Irradiation of Samples in HFIR for use as Possible Test Materials in the MPEX (Material Plasma Exposure Experiment) Facility

    SciTech Connect (OSTI)

    Ellis, Ronald James; Rapp, Juergen

    2014-01-01

    The importance of Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) facility will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. The project presented in this paper involved performing assessments of the induced radioactivity and resulting radiation fields of a variety of potential fusion reactor materials. The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR; generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. These state-of-the-art simulation methods were used in addressing the challenge of the MPEX project to minimize the radioactive inventory in the preparation of the samples for inclusion in the MPEX facility.

  13. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  14. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10˛? m?˛ to reach a total ion fluence of 1×10˛? m?˛ in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10˛? m?˛.

  15. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect (OSTI)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  16. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect (OSTI)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  17. Evidence of a halo formation mechanism in the Spallation Neutron...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Evidence of a halo formation mechanism in the Spallation Neutron Source linac Title: Evidence of a halo formation mechanism in the Spallation Neutron Source...

  18. Supporting Organizations | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL. ORNL is home to the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR), and our materials program works with the Neutron Sciences staff at these...

  19. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  20. The SNS/HFIR Web Portal System for SANS

    SciTech Connect (OSTI)

    Campbell, Stuart I; Miller, Stephen D; Bilheux, Jean-Christophe; Reuter, Michael A; Peterson, Peter F; Kohl, James Arthur; Trater, James R; Vazhkudai, Sudharshan S; Lynch, Vickie E

    2010-01-01

    In a busy world, continuing with the status-quo, to do things the way we are already familiar, often seems to be the most efficient way to conduct our work. We look for the value-add to decide if investing in a new method is worth the effort. How shall we evaluate if we have reached this tipping point for change? For contemporary researchers, understanding the properties of the data is a good starting point. The new generation of neutron scattering instruments being built are higher resolution and produce one or more orders of magnitude larger data than the previous generation of instruments. For instance, we have grown out of being able to perform some important tasks with our laptops the data are too big and the computations would simply take too long. These large datasets can be problematic as facility users now begin to grapple with many of the same issues faced by more established computing communities. These issues include data access, management, and movement, data format standards, distributed computing, and collaboration among others. The Neutron Science Portal has been architected, designed, and implemented to provide users with an easy-to-use interface for managing and processing data, while also keeping an eye on meeting modern cybersecurity requirements imposed on institutions. The cost of entry for users has been lowered by utilizing a web interface providing access to backend portal resources. Users can browse or search for data which they are allowed to see, data reduction applications can be run without having to load the software, sample activation calculations can be performed for SNS and HFIR beamlines, McStas simulations can be run on TeraGrid and ORNL computers, and advanced analysis applications such as those being produced by the DANSE project can be run. Behind the scenes is a live cataloging system which automatically catalogs and archives experiment data via the data management system, and provides proposal team members access to their experiment data. The complexity of data movement and utilizing distributed computing resources has been taken care on behalf of users. Collaboration is facilitated by providing users a read/writeable common area, shared across all experiment team members. To date, these shared areas are the fastest growing data spaces. The portal currently has over 370 registered users, almost 7TB of experiment and user data, approximately 1,000,000 files cataloged, and had almost 10,000 unique visits last year. Future directions for enhancing portal robustness include examining how to mirror data and portal services, better facilitation of collaborations via virtual organizations, enhancing disconnected service via thick client applications, and better inter-facility connectivity to support cross-cutting research. The portal has established itself in the SNS/HFIR user community, and the development team strives to continue to improve the quality of features and services provided in order to better serve the community.

  1. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.

  2. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  3. Supernova neutrino detection at spallation neutron sources

    E-Print Network [OSTI]

    Huang, Ming-Yang; Young, Bing-Lin

    2015-01-01

    With considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on the Earth is applied to some other spallation neutron sources, and the total event numbers of supernova neutrinos observed through different reactions channels are given.

  4. Upgrading scientific capabilities at the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    West, C.D.; Farrar, M.B.

    1997-07-14

    Following termination of the Advanced Neutron Source (ANS) Project, a program of upgrades to the Department of Energy`s High Flux Isotope Reactor (HFIR) was devised by a team of researchers and reactor operators and has been proposed to the department. HFIR is a multipurpose research reactor, commissioned in 1965, with missions in four nationally important areas: isotope production, especially transuranic isotopes; neutron scattering; neutron activation analysis; and irradiation testing of materials. For neutron scattering, there are two major enhancements and several smaller ones. The first is the installation of a small, hydrogen cold neutron source in one of the four existing beam tubes: because of the high reactor power, and the use of new design concepts developed for ANS, the cold source will be as bright as, or brighter than, the Institute Laue Langevin liquid deuterium vertical cold source, although space limitations mean that there will be far fewer cold beams and instruments at HFIR. This project is underway, and the cold source is expected to come on line following an extended shutdown in 1999 to replace the reactor`s beryllium reflector. The second major change proposed would put five thermal neutron guides at an existing beam port and construct a new guide hall to accommodate instruments on these very intense beams.

  5. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    SciTech Connect (OSTI)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  6. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  7. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  8. Markets for reactor-produced non-fission radioisotopes

    SciTech Connect (OSTI)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included.

  9. High Flux Isotope Reactor (HFIR) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H. Zinn,ChristopherDOE OfficeScience (SC)

  10. Development of a Hydrothermal Spallation Drilling System for EGS

    Broader source: Energy.gov [DOE]

    Project objective: Build and demonstrate a working prototype hydrothermal spallation drilling unit that will accelerate commercial deployment of EGS as a domestic energy resource.

  11. Development of a Hydrothermal Spallation Drilling System for...

    Open Energy Info (EERE)

    Spallation Drilling System for EGS Project Type Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Drilling...

  12. Neutron Scattering of CeNi at the Spallation Neutron Source at...

    Office of Scientific and Technical Information (OSTI)

    Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the Spallation Neutron...

  13. A spallation-based irradiation test facility for fusion and future fission materials

    E-Print Network [OSTI]

    Samec, K.; Kadi, Y.; Luis, R.; Romanets, Y.; Behzad, M.; Aleksan, R.; Bousson, S.

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  14. First Data Acquired on the EQ-SANS Diffractometer at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Liu, Dazhi [ORNL; Hong, Kunlun [ORNL; Gao, Carrie Y [ORNL; Melnichenko, Yuri B [ORNL; Littrell, Ken [ORNL; Smith, Greg [ORNL; Zhao, Jinkui [ORNL

    2011-01-01

    The measurement of the conformation of a Generation-8 Polyamidoamine dendrimer is reported as an initial experiment using the Extended Q-range Small Angle Neutron Scattering (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory (ORNL). The conformation parameters (radius of gyration, thickness of the soft shell etc.) are extracted by model fitting. The results are compared with data collected at the General-Purpose Small Angle Neutron Scattering at the High Flux Isotopic Reactor at ORNL. The comparison shows that the EQ-SANS diffractometer has comparable data statistics and Q resolution with shorter counting time over the measured Q-range.

  15. Surface modification to prevent oxide scale spallation

    SciTech Connect (OSTI)

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  16. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this site SandiaSpallation Neutron

  17. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  18. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect (OSTI)

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  19. SPALLATION STUDIES ON SHOCK LOADED U-6 WT PCT NB.

    SciTech Connect (OSTI)

    D. TONKS; ET AL

    2001-01-10

    Several spallation experiments have been performed on the 6 wt pct alloy of uranium using gas gun driven normal plate impacts with VISAR instrumentation and soft recovery. The nominal shock pressures achieved were 28, 34, 42, 50, 55, and 82 kbar. This paper will focus on spallation modeling, e.g. using the 1 D characteristics code CHARADE to simulate the free surface particle velocity. The spallation model involves the ductile growth and coalescence of voids. Metallographical examination of recovered samples and details of the experimental apparatus are discussed in a separate paper.

  20. Neutrino detection at a spallation source

    E-Print Network [OSTI]

    Huang, Ming-Yang

    2015-01-01

    In this paper, we study the detection of accelerator neutrinos and supernova (SN) neutrinos at China Spallation Neutron Source (CSNS). Firstly, by using the code FLUKA, the processes of accelerator neutrinos production during the proton beam hitting on the tungsten target can be simulated, and the yield efficiency, numerical flux, average energy of different flavor neutrinos are given. Secondly, the detection of accelerator neutrinos through two reaction channels: the neutrino-electron reactions and the neutrino-carbon reactions, is studied, and the neutrino event numbers can be calculated. Finally, while considering the SN shock effects, the MSW effects, the neutrino collective effects, and the Earth matter effects, the detection of SN neutrinos on the Earth is studied. Then, the event numbers of SN neutrinos observed through various reaction channels are given.

  1. Testing Spallation Processes With Beryllium and Boron

    E-Print Network [OSTI]

    Brian D. Fields; Keith A. Olive; Elisabeth Vangioni-Flam; Michel Casse

    1999-11-17

    The nucleosynthesis of Be and B by spallation processes provides unique insight into the origin of cosmic rays. Namely, different spallation schemes predict sharply different trends for the growth of LiBeB abundances with respect to oxygen. ``Primary'' mechanisms predict BeB $\\propto$ O, and are well motivated by the data if O/Fe is constant at low metallicity. In contrast, ``secondary'' mechanisms predict BeB $\\propto$ O$^2$ and are consistent with the data if O/Fe increases towards low metallicity as some recent data suggest. Clearly, any primary mechanism, if operative, will dominate early in the history of the Galaxy. In this paper, we fit the BeB data to a two-component scheme which includes both primary and secondary trends. In this way, the data can be used to probe the period in which primary mechanisms are effective. We analyze the data using consistent stellar atmospheric parameters based on Balmer line data and the continuum infrared flux. Results depend sensitively on Pop II O abundances and, unfortunately, on the choice of stellar parameters. When using recent results which show O/Fe increasing toward lower metallicity, a two-component Be-O fits indicates that primary and secondary components contribute equally at [O/H]$_{eq}$ = -1.8 for Balmer line data; and [O/H]$_{eq}$ = -1.4 to -1.8 for IRFM. We apply these constraints to recent models for LiBeB origin. The Balmer line data does not show any evidence for primary production. On the other hand, the IRFM data does indicate a preference for a two-component model, such as a combination of standard GCR and metal-enriched particles accelerated in superbubbles. These conclusions rely on a detailed understanding of the abundance data including systematic effects which may alter the derived O-Fe and BeB-Fe relations.

  2. A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source

    E-Print Network [OSTI]

    Heil, M; Fowler, M M; Haight, R C; Käppeler, F; Rundberg, R S; Seabury, E H; Ullmann, J L; Wilhelmy, J B; Wisshak, K

    2013-01-01

    The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

  3. Research Collaboration with local Centers of

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    , and Control Laboratory · PWR Simulator (hardware and software) · Radiochemistry and Nuclear Forensics in the past 56 years · 85 MW High Flux Isotope Reactor (HFIR) · Spallation Neutron Source (SNS) · Nuclear Water Reactors · Provision Center for Proton Therapy · Institute for Nuclear Security · Nuclear Fuels

  4. Proceedings of the international workshop on spallation materials technology

    SciTech Connect (OSTI)

    Mansur, L.K.; Ullmaier, H. [comps.] [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  5. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? RETURN TO 100 MW

    SciTech Connect (OSTI)

    Smith, Kevin Arthur [ORNL; Primm, Trent [ORNL

    2009-01-01

    The feasibility of low-enriched uranium (LEU) fuel as a replacement for the current, high enriched uranium (HEU) fuel for the High Flux Isotope Reactor (HFIR) has been under study since 2006. Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting to LEU fuel requires returning the reactor power to 100 MW from 85 MW. The analyses required to up-rate the reactor power and the methods to perform these analyses are discussed. Comments regarding the regulatory approval process are provided along with a conceptual schedule.

  6. Characterization of the Neutron Detector Upgrade to the GP-SANS and BIO-SANS Instruments at HFIR

    SciTech Connect (OSTI)

    Berry, Kevin D [ORNL; Bailey, Katherine M [ORNL; Beal, Justin D [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hicks, J Steve [ORNL; Jones, Amy Black [ORNL; Littrell, Ken [ORNL; Summers, Randy [ORNL; Urban, Volker S [ORNL; Vandergriff, David H [ORNL; Johnson, Nathan [GE Energy Services; Bradley, Brandon [GE Energy Services

    2012-01-01

    Over the past year, new 1 m x 1 m neutron detectors have been installed at both the General Purpose SANS (GP-SANS) and the Bio-SANS instruments at HFIR, each intended as an upgrade to provide improved high rate capability. This paper presents the results of characterization studies performed in the detector test laboratory, including position resolution, linearity and background, as well as a preliminary look at high count rate performance.

  7. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect (OSTI)

    Chandler, David; Freels, James D; Ilas, Germina; Miller, James Henry; Primm, Trent; Sease, John D; Guida, Tracey; Jolly, Brian C

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  8. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  9. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  10. Spallation reactions. A successful interplay between modeling and applications

    E-Print Network [OSTI]

    J. -C. David

    2015-05-13

    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.

  11. Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2015-01-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6--18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit ...

  12. Tagging Spallation Backgrounds with Showers in Water-Cherenkov Detectors

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2015-08-21

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6--18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit low-energy studies in Super-Kamiokande, and will be especially important for detectors at shallower depths, like the proposed Hyper-Kamiokande.

  13. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  14. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    SciTech Connect (OSTI)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  15. On Solar System and Cosmic Rays Nucleosynthesis and Spallation Processes

    E-Print Network [OSTI]

    Stepan G. Mashnik

    2000-08-24

    A brief survey of nuclide abundances in the solar-system and in cosmic rays and of the believed mechanisms of their synthesis is given. The role of spallation processes in nucleosynthesis is discussed. A short review of recent measurements, compilations, calculations, and evaluations of spallation cross sections relevant to nuclear astrophysics is given as well. It is shown that in some past astrophysical simulations, old experimental nuclear data and theoretical cross sections that are in poor agreement with recent measurements and calculations were used. New astrophysical simulations using recently measured and reliably calculated nuclear cross sections, further researches in obtaining better cross sections, and production of evaluated spallation cross sections libraries for astrophysics are suggested.

  16. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect (OSTI)

    Huang, X. [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Ling, Z. [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Dai, L. H., E-mail: lhdai@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 10081 (China)

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  17. Spall-Fracture Physics and Spallation-Resistance-Based Material Selection

    E-Print Network [OSTI]

    Grujicic, Mica

    Spall-Fracture Physics and Spallation-Resistance-Based Material Selection M. Grujicic, B. Pandurangan, B.A. Cheeseman, and C.-F. Yen (Submitted July 29, 2011) Spallation is a fracture mode commonly cause material damage and ultimate fracture (spallation). In this study, the phenomenon of spall-fracture

  18. Estimation of neutron-induced spallation yields of krypton isotopes

    SciTech Connect (OSTI)

    Karol, P.J.; Tobin, M.J.; Shibata, S.

    1983-10-01

    A procedure is outlined for estimating cross sections for neutron-induced spallation products relative to those for proton-induced reactions. When combined with known proton spallation systematics, it is demonstrated that cumulative yields for cosmogenically-important stable /sup 84/Kr and /sup 86/Kr isotopes are approx.1.4 and approx.2.8 times greater, respectively, for incident neutrons compared to protons at 0.2< or =E< or =3.0 GeV for nearby medium mass targets. Yields for lighter kryptons are relatively insensitive to the identity of the incident nucleon.

  19. METALLURGICAL CHARACTERIZATION OF ATLAS CYLINDRICALLY CONVERGENT SPALLATION EXPERIMENTS.

    SciTech Connect (OSTI)

    Thissell, W. R.; Cerreta, E. K.; Anderson, W. A.; Atchison, W. A.; Cochrane, J. C.; Kaul, Ann M.; Keinigs, R. K.; Ladish, J. S.; Lindemuth, I. R.; Oro, D. M.; Paisley, D.; G. Rodriguez,; Salazar, M. A.; Stokes, J. L.; Taylor, A. J.; Tonks, D. L.

    2003-07-18

    The microstructural distribution and nature of damage from three different cylindrically convergent spallation experiments performed on the pulsed power machine named Atlas are presented. Longitudinal momentum trapping was used to minimize the influence of release waves and thereby decrease the dimensionality of the experiments. Two of the experiments involved soft capture of the spalled piece. The material used is a proprietary directionally cast Al alloy with a mostly equiaxed grain morphology and essentially random texture in the region of spallation. The damage was most distributed in the lowest impact velocity shot and became progressively more narrow with increasing impact velocity. The effectiveness of the momentum trap design increased with increasing impact velocity.

  20. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  1. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Primm, Trent; Guida, Tracey

    2010-02-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  2. Department founded in 1957 Produced over 1000 graduates in the past

    E-Print Network [OSTI]

    Tennessee, University of

    ) · Awards = $7.1 million · Nuclear Fuels and Materials · Nuclear Security · Radiological Sciences and Health Physics · Nuclear I&C, Reliability, and Safety · Nuclear Fuel Cycles · Advanced Modeling and Simulation · 85 MW High Flux Isotope Reactor (HFIR) · Spallation Neutron Source (SNS) Accelerator · Nuclear

  3. Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2009-11-01

    An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

  4. ThermoMechanical Analysis of ISIS TS2 Spallation Target

    E-Print Network [OSTI]

    McDonald, Kirk

    1 ThermoMechanical Analysis of ISIS TS2 Spallation Target Dan Wilcox High Power Targets Group, Rutherford Appleton Laboratory 5th High Power Targetry Workshop, Fermilab 21/05/2014 #12;ISIS Overview Target at 50Hz #12;Background · Aim: model the operating condition of the current ISIS TS2 target ­ Identify

  5. Lead-Bismuth Spallation Target Design Yousry Gohar

    E-Print Network [OSTI]

    McDonald, Kirk

    Driven System (100 MWt , 5 MW Beam, 600MeV Protons) #12;Target and Core Configuration of Accelerator Driven System #12;Lead-Bismuth Spallation Target Design A study was carried out to analyze and design Laboratory 9700 S. Cass Avenue, Argonne, IL 60439, USA Applications of High Intensity Proton Accelerators

  6. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  7. Decommissioning and PIE of the MEGAPIE spallation target

    SciTech Connect (OSTI)

    Latge, C.; Henry, J.; Wohlmuther, M.; Dai, Y.; Gavillet, D.; Hammer, B.; Heinitz, S.; Neuhausen, J.; Schumann, D.; Thomsen, K.; Tuerler, A.; Wagner, W.; Gessi, A.; Guertin, A.; Konstantinovic, M.; Lindau, R.; Maloy, S.; Saito, S.

    2013-07-01

    A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly. The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by ?-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from ?-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and ?-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.

  8. Improved modelling of helium and tritium production for spallation targets

    E-Print Network [OSTI]

    S. Leray; A. Boudard; J. Cugnon; J. C. David; A. Kelic-Heil; D. Mancusi; M. V. Ricciardi

    2009-12-11

    Reliable predictions of light charged particle production in spallation reactions are important to correctly assess gas production in spallation targets. In particular, the helium production yield is important for assessing damage in the window separating the accelerator vacuum from a spallation target, and tritium is a major contributor to the target radioactivity. Up to now, the models available in the MCNPX transport code, including the widely used default option Bertini-Dresner and the INCL4.2-ABLA combination of models, were not able to correctly predict light charged particle yields. The work done recently on both the intranuclear cascade model INCL4, in which cluster emission through a coalescence process has been introduced, and on the de-excitation model ABLA allows correcting these deficiencies. This paper shows that the coalescence emission plays an important role in the tritium and $^3He$ production and that the combination of the newly developed versions of the codes, INCL4.5-ABLA07, now lead to good predictions of both helium and tritium cross sections over a wide incident energy range. Comparisons with other available models are also presented.

  9. STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR

    SciTech Connect (OSTI)

    Chandler, David [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL; Primm, Trent [ORNL] [ORNL

    2010-01-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  10. Skyshine And Groundshine Phenomena And Related Radiological quantities evaluated For The Environment Of A High Current Spallation Facility

    E-Print Network [OSTI]

    Zazula, J M; Cloth, P

    1987-01-01

    Skyshine And Groundshine Phenomena And Related Radiological quantities evaluated For The Environment Of A High Current Spallation Facility

  11. Designing a New Fuel for HFIR-Performance Parameters for LEU Core Configurations

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-01-01

    An engineering design study for a fuel that would enable the conversion of the High Flux Isotope Reactor from highly enriched uranium to low enriched uranium fuel is ongoing as part of an effort sponsored by the U.S. Department of Energy's National Nuclear Security Administration through the Global Threat Reduction Initiative. Given the unique fuel and core design and high power density of the reactor and the requirement that the impact of the fuel change on the core performance and operation be minimal, this conversion study presents a complex and challenging task, requiring improvements in the computational models currently used to support the operation of the reactor and development of new models that would take advantage of newly available simulation methods and tools. The computational models used to search for a fuel design that would meet the requirements for the conversion study and the results obtained with these models are presented and discussed. Estimates of relevant reactor performance parameters for the low enriched uranium fuel core are presented and compared to the corresponding data for the currently operating highly enriched uranium fuel core.

  12. SPALLATION NEUTRON SOURCE RING-DESIGN AND CONSTRUCTION SUMMARY.

    SciTech Connect (OSTI)

    WEI,J.

    2005-05-16

    After six years, the delivery of components for the Spallation Neutron Source (SNS) accumulator ring (AR) and the transport lines was completed in Spring 2005. Designed to deliver 1.5 MW beam power (1.5 x 10{sup 14} protons of 1 GeV kinetic energy at a repetition rate of 60 Hz), stringent measures were implemented in the fabrication, test, and assembly to ensure the quality of the accelerator systems. This paper summarizes the design, R&D, and construction of the ring and transport systems.

  13. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    SciTech Connect (OSTI)

    Olsen, C.S.; Welland, H.; Abraschoff, J. (Idaho National Engineering Laboratory, EG G Idaho Inc., P.O. Box 1625, Idaho Falls, Idaho 83415 (United States)); Thoms, K. (Oak Ridge National Laboratory, P.O. Box, Oak Ridge, Tennessee 37831-8087 (United States))

    1993-01-15

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  14. Probing neutrino magnetic moments at Spallation Neutron Source facilities

    E-Print Network [OSTI]

    T. S. Kosmas; O. G. Miranda; D. K. Papoulias; M. Tortola; J. W. F. Valle

    2015-07-15

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a chi^2 analysis employing realistic nuclear structure calculations in the context of the quasi-particle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for Standard Model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge-radius. We illustrate our results for various choices of experimental setup and target material.

  15. Spallation production of neutron deficient radioisotopes in North America

    SciTech Connect (OSTI)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-12-31

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described.

  16. STATUS OF THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING RF FACILITIES

    SciTech Connect (OSTI)

    Stout, Daniel S [ORNL] [ORNL; Assadi, Saeed [ORNL] [ORNL; Campisi, Isidoro E [ORNL] [ORNL; Casagrande, Fabio [ORNL] [ORNL; Crofford, Mark T [ORNL] [ORNL; DeVan, Bill [ORNL] [ORNL; Hardek, Thomas W [ORNL] [ORNL; Henderson, Stuart D [ORNL] [ORNL; Howell, Matthew P [ORNL] [ORNL; Kang, Yoon W [ORNL] [ORNL; Geng, Xiaosong [ORNL] [ORNL; Stone Jr, William C [ORNL] [ORNL; Strong, William Herb [ORNL] [ORNL; Williams, Derrick C [ORNL] [ORNL; Wright, Paul Alan [ORNL] [ORNL

    2007-01-01

    The Spallation Neutron Source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

  17. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect (OSTI)

    Tonks, Davis L [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Bronkhorst, C A [Los Alamos National Laboratory

    2010-01-01

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  18. The COHERENT Experiment at the Spallation Neutron Source

    E-Print Network [OSTI]

    Akimov, D; Awe, C; Barbeau, P S; Barton, P; Becker, B; Below, V; Bolozdynya, A; Burenkov, A; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Dean, D; Detwiler, J; Efremenko, Y; Elliott, S R; Fields, N; Fox, W; Galindo-Uribarri, A; Green, M; Heath, M; Hedges, S; Herman, N; Hornback, D; Iverson, E B; Kaufman, L; Klein, S R; Khromov, A; Konovalev, A; Kumpan, A; Leadbetter, C; Li, L; Lu, W; Melikyan, A; Markoff, D; Miller, K; Middlebrook, M; Mueller, P; Naumov, P; Newby, J; Parno, D; Penttila, S; Perumpilly, G; Radford, D; Ray, H; Raybern, J; Reyna, D; Rich, G C; Rimal, D; Rudik, D; Scholberg, K; Scholz, B; Snow, W M; Sosnovchev, A; Shakirov, A; Suchyta, S; Suh, B; Tayloe, R; Thornton, R T; Tolstukhin, A; Vetter, K; Yu, C H

    2015-01-01

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT...

  19. Fission and spallation data evaluation using induced-activity method

    E-Print Network [OSTI]

    Karapetyan, G S

    2015-01-01

    The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from U-238, Th-232 and Ta-181 photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from Am-241, U-238 and Np-237 fission induced by 660-MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. We subsequently discuss the complex particle-induced reaction, such as heavy-ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fr...

  20. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  1. Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Betzler, Benjamin R; Ade, Brian J; Chandler, David; Ilas, Germina; Sunny, Eva E

    2015-01-01

    Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools feasible. The optimization of the neutronics and depletion model for the HFIR is based on two factors: (i) the explicit representation of the involute fuel plates with sets of polyhedra and (ii) the treatment of depletion mixtures and control element position during depletion calculations. A very fine representation (i.e., more polyhedra in the involute plate approximation) does not significantly improve simulation accuracy. The recommended representation closely represents the physical plates and ensures sufficient fidelity in regions with high flux gradients. Including the fissile targets in the central flux trap of the reactor as depletion mixtures has the greatest effect on the calculated cycle length, while localized effects (e.g., the burnup of specific isotopes or the power distribution evolution over the cycle) are more noticeable consequences of including a critical control element search or depleting burnable absorbers outside the fuel region.

  2. The COHERENT Experiment at the Spallation Neutron Source

    E-Print Network [OSTI]

    COHERENT Collaboration; D. Akimov; P. An; C. Awe; P. S. Barbeau; P. Barton; B. Becker; V. Below; A. Bolozdynya; A. Burenkov; B. Cabrera-Palmer; J. I. Collar; R. J. Cooper; R. L. Cooper; C. Cuesta; D. Dean; J. Detwiler; Y. Efremenko; S. R. Elliott; N. Fields; W. Fox; A. Galindo-Uribarri; M. Green; M. Heath; S. Hedges; N. Herman; D. Hornback; E. B. Iverson; L. Kaufman; S. R. Klein; A. Khromov; A. Konovalev; A. Kumpan; C. Leadbetter; L. Li; W. Lu; A. Melikyan; D. Markoff; K. Miller; M. Middlebrook; P. Mueller; P. Naumov; J. Newby; D. Parno; S. Penttila; G. Perumpilly; D. Radford; H. Ray; J. Raybern; D. Reyna; G. C. Rich; D. Rimal; D. Rudik; K. Scholberg; B. Scholz; W. M. Snow; A. Sosnovchev; A. Shakirov; S. Suchyta; B. Suh; R. Tayloe; R. T. Thornton; A. Tolstukhin; K. Vetter; C. H. Yu

    2015-09-29

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the $N^2$ dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  3. Fission and spallation data evaluation using induced-activity method

    E-Print Network [OSTI]

    G. S. Karapetyan

    2015-09-01

    The induced-activity investigations in off-line analysis performed in different experiments, concerning pre-actinide and actinide nuclei, are here presented and discussed. Generalized expressions for the determination of independent yields/cross sections of radioactive nuclei, formed in the targets, are derived and analysed. The fragment mass distribution from U-238, Th-232 and Ta-181 photofission at the bremsstrahlung end-point energies of 50 and 3500 MeV, and from Am-241, U-238 and Np-237 fission induced by 660-MeV protons, are scrutinized from the point of view of the multimodal fission approach. The results of these studies are hence compared with theoretical model calculations using the CRISP code. We subsequently discuss the complex particle-induced reaction, such as heavy-ions and deuterons, by using the thick-target thick-catcher technique and the two-step vector model framework as well. This is accomplished in order to present the investigation of the main processes (fission, spallation and (multi)fragmentation) in intermediate- and high-energy ranges of the incident particle. The set of experimental data, presented in this work, encompasses not merely the data as total production cross sections. Notwithstanding, it further covers other data, as individual yields/cross sections, charge, mass and spin distributions of the reaction fragments, as well as kinematic features. These sources of experimental data can serve as a consistent set of benchmarking data, still necessary for the study of heavy nuclei. Besides, it is also useful for technological applications, from astrophysics and environmental sciences to accelerator technology and accelerator-based nuclear waste transmutation and energy amplification as well.

  4. Performance of a Clad Tungsten Rod Spallation Neutron Source Target

    SciTech Connect (OSTI)

    Sommer, Walter F. [Los Alamos National Laboratory (United States); Maloy, Stuart A. [Los Alamos National Laboratory (United States); Louthan, McIntyre R. [Savannah River National Laboratory (United States); Willcutt, Gordon J. [Los Alamos National Laboratory (United States); Ferguson, Phillip D. [Oak Ridge National Laboratory (United States); James, Michael R. [Los Alamos National Laboratory (United States)

    2005-09-15

    Tungsten rods, slip-clad with Type 304L stainless steel, performed successfully as a spallation neutron source target operating to a peak fluence of {approx}4 x 10{sup 21} p/cm{sup 2}. The target was used as a neutron source during the Accelerator Production of Tritium (APT) materials irradiation program at the Los Alamos Neutron Science Center. Tungsten rods of 2.642-mm diameter were slip-fit in Type 304L stainless steel tubes that had an inner diameter of 2.667 mm. The radial gap was filled with helium at atmospheric pressure and room temperature. Los Alamos High Energy Transport (LAHET) calculations suggest a time-averaged peak power deposition in the W of 2.25 kW/cm{sup 3}. Thermal-hydraulic calculations indicate that the peak centerline W temperature reached 271 deg. C. The LAHET calculations were also used to predict neutron and proton fluxes and spectra for the complex geometry used in the irradiation program. Activation foil sets distributed throughout the experiment were used to determine target neutronics performance as a comparison to the LAHET calculations. Examination of the irradiated target assemblies revealed no significant surface degradation or corrosion on either the Type 304L or the W surfaces. However, it was clear that the irradiation changed material properties because post-proton-irradiation measurements on Type 304L test samples from the APT program demonstrated increases in the yield strength and decreases in the ductility and fracture toughness with increasing dose, and the wrought W rod samples became brittle. Fortunately, the slip-clad target design subjects the materials to very low stress.

  5. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV

    E-Print Network [OSTI]

    ,

    2015-01-01

    Cosmic-ray-muon spallation-induced radioactive isotopes with $\\beta$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $\\beta$'s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $\\beta + n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measuremen...

  6. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV

    E-Print Network [OSTI]

    Super-Kamiokande Collaboration

    2015-09-28

    Cosmic-ray-muon spallation-induced radioactive isotopes with $\\beta$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $\\beta$'s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $\\beta + n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measurements, the application of a neutron tagging technique using correlated triggers was found to improve this $^9$Li measurement. The measured yields were generally found to be comparable with theoretical calculations based on the simulation code FLUKA.

  7. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPO, VRI, RTM, THM, VUQ * Data Center Proposal Discussions * GTRF Workshop * Structural Mechanics Meeting * Hydra Repository Setup VOCC Tours - 14 Tours for April * Admiral John...

  8. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depot (TEAD) for their use in fabricating hundreds of similar units for the Defense Logistics Agency (DLA) The specification was produced by ORNL - The unit is designed for...

  9. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the toroidal asymmetry of the pellet triggered ELMs using a newly installed LLNL IR periscope. 18 Managed by UT-Battelle for the U.S. Department of Energy NNFD FY2012 cumulative...

  10. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffusion limited reaction of U3O8 to UO3. * TGA analysis of the oxidation of actual used fuel under a controlled atmosphere, conducted in REDC Cave B, correlated well with models....

  11. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by UT-Battelle for the U.S. Department of Energy ORNL Isotope Infrastructure Fusion Energy Science Outcome * Four barrels (bores 0.4 to 1.0 mm) * Hydrogen pellets (T 10 K)...

  12. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29 1.921HEP User Facilities6-000 CASL

  13. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect (OSTI)

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  14. High Flux Isotope Reactor named Nuclear Historic Landmark | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A major upgrade to HFIR in 2007 provided improved beam lines, new instruments and a cold source that expanded its research capabilities by literally chilling, or removing...

  15. MYRRHA: Design and Verification Experiments for the Windowless Spallation Target of the ADS Prototype MYRRHA

    E-Print Network [OSTI]

    McDonald, Kirk

    of an Accelerator Driven System is the spallation target. It is the neutron source providing primary neutrons on applications such as waste transmutation, radioisotope production and safety of sub-critical systems. In (Van a number of systems properties the knowledge of which will be very valuable in the proper design

  16. Geological Calibration of Spallation Production Rates1 in the CRONUS-Earth Project2

    E-Print Network [OSTI]

    Borchers, Brian

    : cosmogenic nuclide, production rate, calibration, beryllium-10,28 aluminum-26, carbon-14, helium-3, chlorineGeological Calibration of Spallation Production Rates1 in the CRONUS-Earth Project2 Brian Borchersa. stone@ess.washington.edu26 Abstract27 Models of the production of cosmogenic nuclides typically

  17. MERCURY PURIFICATION IN THE MEGAWATT LIQUID METAL SPALLATION TARGET OF EURISOL-DS Joerg Neuhausena

    E-Print Network [OSTI]

    McDonald, Kirk

    such as corrosion. Additionally, the fast flowing liquid metal can cause erosion of the construction materials such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems such as temperature, pressure, liquid metal flow, redox potential and proton dose. These micro

  18. Adhesion strength measurement of polymer dielectric interfaces using laser spallation technique

    E-Print Network [OSTI]

    Sottos, Nancy R.

    Adhesion strength measurement of polymer dielectric interfaces using laser spallation technique on the interface adhesion strength is investigated. The interface strength values correlate strongly with the PBO formulation and surface roughness of the substrate. Effect of autoclaving on the interface adhesion strength

  19. Effect of Substrate Thickness on Oxide Scale Spallation for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-07-01

    In this paper, the effect of the ferritic substrate's thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the high-temperature oxidation environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The growth stress is induced by the growth of the oxide scale on the scale/substrate interface, and thermal stress is induced by a mismatch of the coefficient of thermal expansion between the oxide scale and the substrate. The numerical results show that the interfacial shear stresses, which are the driving force of scale delamination between the oxide scale and the ferritic substrate, increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. Experimental observation confirmed the predicted results of the delamination and spallation of the oxide scale on the ferritic substrate.

  20. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  1. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    SciTech Connect (OSTI)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G.; Beßler, Y.; Klaus, M.

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  2. Nanoscale Laser-Induced Spallation in SiO2 Films Containing Gold Nanoparticles

    SciTech Connect (OSTI)

    Kudryashov, S.I.; Allen, S.D.; Papernov, S.; Schmid, A.W.

    2006-02-16

    A phenomenological theory of ultraviolet pulsed-laser-induced spallation is proposed to interpret crater formation in SiO2 thin films containing absorbing 18.5-nm gold particles. The theory considers a spherical thermoacoustic stress wave propagating from a thermal source produced by laser-energy absorption inside the particle and surrounding ionized volume. Calculations show that the tensile stress associated with such an acoustic wave may exceed the local strength of the material and cause fracture and spallation of the top film portion. The theory provides an explanation of the experimentally observed complex (two-cone) shape of craters formed in the film with particle-lodging depth exceeding 110 nm. Theoretical estimates for the threshold stress amplitude and peak temperature in the thermal source are in qualitative agreement with the experimental observations.

  3. Spallation Model for the Titanium-Rich Supernova Remnant Cassiopeia A

    SciTech Connect (OSTI)

    Ouyed, Rachid; Leahy, Denis; Ouyed, Amir; Jaikumar, Prashanth

    2011-10-07

    Titanium-rich subluminous supernovae are rare and challenge current SN nucleosynthesis models. We present a model in which ejecta from a standard supernova is impacted by a second explosion of the neutron star (a quark nova), resulting in spallation reactions that lead to {sup 56}Ni destruction and {sup 44}Ti creation under the right conditions. Basic calculations of the spallation products shows that a delay between the two explosions of {approx}5 days reproduces the observed abundance of {sup 44}Ti in Cas A and explains its low luminosity as a result of the destruction of {sup 56}Ni. Our results could have important implications for light curves of subluminous as well as superluminous supernovae.

  4. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

  5. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Shirley Weishi Li; John F. Beacom

    2015-04-28

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6--18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  6. Spallation Backgrounds in Super-Kamiokande Are Made in Muon-Induced Showers

    E-Print Network [OSTI]

    Li, Shirley Weishi

    2015-01-01

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by $\\simeq 90\\%$ (at a cost of $\\simeq 20\\%$ deadtime), but its rate at 6 -- 18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper [Bays {\\it et al.}, Phys.~Rev.~D {\\bf 85}, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discove...

  7. Optimizing Moderator Dimensions for Neutron Scattering at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  8. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect (OSTI)

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  9. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    E-Print Network [OSTI]

    Qiang Zhao; Zhiyong He; Lei Yang; Xueying Zhang; Wenjuan Cui; Zhiqiang Chen; Hushan Xu

    2015-08-09

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with the fission chamber (FC). The effective technique consists in establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for FC in the environment of ADS system. The results indicate that the proposed method functions very well when the neutron flux is below 10^{13} neutron/cm^2/second.

  10. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    E-Print Network [OSTI]

    Zhao, Qiang; Yang, Lei; Zhang, Xueying; Cui, Wenjuan; Chen, Zhiqiang; Xu, Hushan

    2015-01-01

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron fl...

  11. Spallation Neutrons and Pressure â?? SNAP â?? DE-FG02-03ER46085 CLOSE-OUT MAY 2009

    SciTech Connect (OSTI)

    John B Parise

    2009-05-22

    The purpose of the grant was to build a community of scientist and to draw upon their expertise to design and build the world's first dedicated high pressure beamline at a spallation source - the so called Spallation Neutron And Pressure (SNAP) beamline at the Spallation Neutron Source (SNS) at OAk Ridge NAtional LAboratory. . Key to this endeavor was an annual meeting attended by the instrument design team and the executive committee. The discussions at those meeting set an ambitious agenda for beamline design and construction and highlighted key science areas of interest for the community. This report documents in 4 appendices the deliberations at the annual SNAP meetings and the evolution of the beamline optics from concept to construction. The appendices also contain key science opportunities for extreme conditions research.

  12. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  13. Compact Reactor

    SciTech Connect (OSTI)

    Williams, Pharis E. [Williams Research, P.O. Box 554, Los Alamos, NM87544 (United States)

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  14. Reactor Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Technology Advanced Reactor Concepts Advanced Instrumentation & Controls Light Water Reactor Sustainability Safety and Regulatory Technology Small Modular Reactors Nuclear...

  15. ANS Dedicates Reactor as Nuclear Historic Landmark on 50th Anniversary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutron analysis used in the investigation of the assassination of President John F. Kennedy. The HFIR is the sixth ANS Landmark designation for the Department of Energy's Oak...

  16. Reactor apparatus

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA)

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  17. Steady-State Neutronic Analysis of Converting the UK CONSORT Reactor for ADS Experiments

    E-Print Network [OSTI]

    Owen, Hywel; Chambers, Trevor

    2011-01-01

    CONSORT is the UK's last remaining civilian research reactor, and its present core is soon to be removed. This study examines the feasibility of re-using the reactor facility for accelerator-driven systems research by replacing the fuel and installing a spallation neutron target driven by an external proton accelerator. MCNP5/MCNPX were used to model alternative, high-density fuels and their coupling to the neutrons generated by 230 MeV protons from a cyclotron striking a solid tungsten spallation target side-on to the core. Low-enriched U3Si2 and U-9Mo were considered as candidates, with only U-9Mo found to be feasible in the compact core; fuel element size and arrangement were kept the same as the original core layout to minimise thermal hydraulic and other changes. Reactor thermal power up to 2.5 kW is predicted for a keff of 0.995, large enough to carry out reactor kinetic experiments.

  18. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect (OSTI)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  19. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect (OSTI)

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  20. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect (OSTI)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  1. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect (OSTI)

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  2. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Cook, David Howard

    2009-01-01

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities.

  3. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  4. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, Matthew B [ORNL; Niedziela, Jennifer L [ORNL; Abernathy, Douglas L [ORNL; Debeer-Schmitt, Lisa M [ORNL; Garlea, Vasile O [ORNL; Granroth, Garrett E [ORNL; Graves-Brook, Melissa K [ORNL; Ehlers, Georg [ORNL; Kolesnikov, Alexander I [ORNL; Podlesnyak, Andrey A [ORNL; Winn, Barry L [ORNL

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  5. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L.; Ehlers, G.; Garlea, O.; Podlesnyak, A.; Winn, B. [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Niedziela, J. L.; DeBeer-Schmitt, L.; Graves-Brook, M. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Granroth, G. E. [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kolesnikov, A. I. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-04-15

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  6. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  7. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  8. Results from the Commissioning of the n-TOF Spallation Neutron Source at CERN

    E-Print Network [OSTI]

    Borcea, C; Dahlfors, M; Ferrari, A; García-Muńoz, G; Haefner, P; Herrera-Martínez, A; Kadi, Y; Lacoste, V; Radermacher, E; Saldańa, F; Vlachoudis, V; Zanini, L; Rubbia, Carlo; Buoni, S; Dangendorf, V; Nolte, R; Weierganz, M

    2003-01-01

    The new neutron time-of-flight facility (n_TOF) has been built at CERN and is now operational. The facility is intended for the measurement of neutron induced cross sections of relevance to Accelerator Driven Systems (ADS) and to fundamental physics. Neutrons are produced by spallation of the 20 GeV/c proton beam, delivered by the Proton Synchrotron (PS), on a massive target of pure lead. A measuring station is placed at about 185 m from the neutron producing target, allowing high-resolution measurements. The facility was successfully commissioned with two campaigns of measurements, in Nov. 2000 and Apr. 2001. The main interest was concentrated in the physical parameters of the installation (neutron flux and resolution function), along with the target behavior and various safety-related aspects. These measurements confirmed the expectations from Monte Carlo simulations of the facility, thus allowing to initiate the foreseen physics program.

  9. Spallation process with simultaneous multi-particle emission in nuclear evaporation

    SciTech Connect (OSTI)

    Santos, B. M.

    2013-05-06

    High energy probes have been used currently to explore nuclear reaction mechanism and nuclear structure. The spallation process governs the reaction process around 1 GeV energy regime. A new aspect introduced here to describe the nuclear reaction is the in-medium nucleonnucleon collision framework. The nucleon-nucleon scattering is kinematically treated by using an effective mass to represent the nuclear binding. In respect to the evaporation phase of the reaction, we introduce the simultaneous particles emission decay. This process becomes important due to the rise of new channels at high excitation energy regime of the compound nucleus. As results, the particles yields in the rapid and evaporation phases are obtained and compared to experimental data. The effect and relevance of these simultaneous emission processes in the evaporation chain is also discussed.

  10. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect (OSTI)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  11. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  12. Structure of processes in flow reactor and closed reactor: Flow reactor

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Structure of processes in flow reactor and closed reactor: Flow reactor Closed reactor Active Zone -- chemical quasi- equilibria, similarity principles and macroscopic kinetics", in: Lectures on Plasma Physics

  13. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  14. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect (OSTI)

    Neri, L. Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G.; Torrisi, G.; Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Universitŕ Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria ; Cheymol, B.; Ponton, A.; Galatŕ, A.; Patti, G.; Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universitŕ 2, 35020 Legnaro ; Gozzo, A.; Lega, L.; Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Universitŕ degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  15. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect (OSTI)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  16. Optimizing moderator dimensions for neutron scattering at the spallation neutron source

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, J. L.; Herwig, Kenneth W.; Gallmeier, Franz X.; Riemer, Bernard W. [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-12-15

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter)

  17. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect (OSTI)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  18. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect (OSTI)

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  19. Beryllium in turnoff stars of NGC6397: early Galaxy spallation, cosmochronology and cluster formation

    E-Print Network [OSTI]

    L. Pasquini; P. Bonifacio; S. Randich; D. Galli; R. G. Gratton

    2004-07-26

    We present the first detection of beryllium in two turnoff stars of the old, metal-poor globular cluster NGC 6397. The beryllium lines are clearly detected and we determine a mean beryllium abundance of log(Be/H)=-12.35 +/- 0.2. The beryllium abundance is very similar to that of field stars of similar Fe content. We interpret the beryllium abundance observed as the result of primary spallation of cosmic rays acting on a Galactic scale, showing that beryllium can be used as a powerful cosmochronometer for the first stellar generations. With this method, we estimate that the cluster formed 0.2-0.3 Gyr after the onset of star formation in the Galaxy, in excellent agreement with the age derived from main sequence fitting. From the same spectra we also find low O (noticeably different for the two stars) and high N abundances, suggesting that the original gas was enriched in CNO processed material. Our beryllium results, together with the N, O, and Li abundances, provide insights on the formation of this globular cluster, showing that any CNO processing of the gas must have occurred in the protocluster cloud before the formation of the stars we observe now. We encounter, however, difficulties in giving a fully consistent picture of the cluster formation, able to explain the complex overall abundance pattern.

  20. ITER UltraScaleScientific Joint Dark Energy Mission ComputingCapability

    E-Print Network [OSTI]

    eRHIC Fusion Energy Contingency Source Upgrade HFIR Second Cold Source Integrated Beam Experiment Source (APS) Upgrade 32 eRHIC 32 Fusion Energy Contingency 33 High-Flux Isotope Reactor (HFIR) Second Cold Source and Guide Hall 34

  1. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  2. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  3. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  4. A. M., Jan 2002 Some considerations of the usefulness of the proposed spallation

    E-Print Network [OSTI]

    nuclear technology. Therefore for the design, licensing, construction and safe operation of fusion the conceptual design of the International Fusion Materials Irradiation Facility (IFMIF), a source of that kind for the qualification of fusion reactor materials has to meet the following main criteria: · A neutron spectrum

  5. Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Selby, Douglas L [ORNL; Jones, Amy [ORNL; Crow, Lowell [ORNL

    2012-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

  6. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect (OSTI)

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  7. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  8. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  9. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  10. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  11. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  12. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  13. Advanced Test Reactor Tour

    SciTech Connect (OSTI)

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  14. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  15. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    SciTech Connect (OSTI)

    Haire, M.J.

    2003-06-30

    The Spallation Neutron Source (SNS) is designed to meet the growing need for new tools that will deepen our understanding in materials science, life science, chemistry, fundamental and nuclear physics, earth and environmental sciences, and engineering sciences. The SNS is an accelerator-based neutron-scattering facility that when operational will produce an average beam power of 2 MW at a repetition rate of 60 Hz. The accelerator complex consists of the front-end systems, which will include an ion source; a 1-GeV full-energy linear accelerator; a single accumulator ring and its transfer lines; and a liquid mercury target. This report documents an as-low-as-reasonably-achievable (ALARA) review of the accumulator ring and transfer lines at their early design stage. An ALARA working group was formed and conducted a review of the SNS ring and transfer lines at the {approx}25% complete design stage to help ensure that ALARA principles are being incorporated into the design. The radiological aspects of the SNS design criteria were reviewed against regulatory requirements and ALARA principles. Proposed features and measures were then reviewed against the SNS design criteria. As part of the overall review, the working group reviewed the design manual; design drawings and process and instrumentation diagrams; the environment, safety, and health manual; and other related reports and literature. The group also talked with SNS design engineers to obtain explanations of pertinent subject matter. The ALARA group found that ALARA principles are indeed being incorporated into the early design stage. Radiation fields have been characterized, and shielding calculations have been performed. Radiological issues are being adequately addressed with regard to equipment selection, access control, confinement structure and ventilation, and contamination control. Radiation monitoring instrumentation for worker and environment protection are also being considered--a good practice at this early design stage. The ring and transfer lines are being designed for hands-on maintenance. The SNS beam loss criteria, which determine radiation dose design, are a factor of {approx}30 lower than the lowest that has been achieved at any existing proton synchrotron and accumulator rings. This demonstrates that ALARA considerations are an important part of SNS design. A noteworthy example of the ALARA principal being incorporated into the SNS is the hybrid ring lattice design recently approved by the SNS change control process. The new lattice design increases calculated acceptance by about 50% and improves the expected collimator efficiency from 80 to 95%. As a result, the expected calculated beam loss rate, and resulting radiation dose rates, are significantly improved. Another major design change with ALARA implications was the change from an alpha to an omega configuration for the high-energy beam transport (HEBT) system, ring, and ring-to-target beam transport (RTBT) system. Because of this change, the ring and transfer lines will have crane coverage, eliminating the need for personnel to be near activated equipment for repair and removal. By using the crane, extensive shielding can be placed around highly radioactive equipment (e.g., collimators), and the equipment can be moved by remote control. As part of the change from an alpha to omega configuration, the tunnel width was increased by 2 ft. This increased width will allow easier access to failed equipment, reducing radiation exposure time to workers during maintenance and repair. In addition, a personnel entrance was added to the ring between the HEBT and RTBT so that personnel will not have to enter this area directly through the HEBT or RTBT. This addition will shorten the travel distance, and therefore the time, that personnel performing maintenance work on radioactive equipment will need to be in the area, reducing potential dose. In the RTBT beam line, a hatchway will be placed above the collimators and quad doublet magnets near the target to facilitate their removal. This design was chosen in lieu

  16. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  17. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  18. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  19. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  20. Conceptual Design for Replacement of the DTL and CCL with Superconducting RF Cavities in the Spallation Neutron Source Linac

    SciTech Connect (OSTI)

    Champion, Mark S; Doleans, Marc; Kim, Sang-Ho

    2013-01-01

    The Spallation Neutron Source Linac utilizes normal conducting RF cavities in the low energy section from 2.5 MeV to 186 MeV. Six Drift Tube Linac (DTL) structures accelerate the beam to 87 MeV, and four Coupled Cavity Linac (CCL) structures provide further acceleration to 186 MeV. The remainder of the Linac is comprised of 81 superconducting cavities packaged in 23 cryomodules to provide final beam energy of approximately 1 GeV. The superconducting Linac has proven to be substantially more reliable than the normal conducting Linac despite the greater number of stations and the complexity associated with the cryogenic plant and distribution. A conceptual design has been initiated on a replacement of the DTL and CCL with superconducting RF cavities. The motivation, constraints, and conceptual design are presented.

  1. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    SciTech Connect (OSTI)

    Saunders, A.; Makela, M.; Bagdasarova, Y.; Boissevain, J.; Bowles, T. J.; Currie, S. A.; Hill, R. E.; Hogan, G.; Morris, C. L.; Mortensen, R. N.; Ramsey, J.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Back, H. O.; Broussard, L. J.; Hoagland, J.; Holley, A. T.; Pattie, R. W. Jr. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); and others

    2013-01-15

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of {approx}1500 cm{sup 3}.

  2. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    SciTech Connect (OSTI)

    Ricciardi, M.V.; Armbruster, P.; Enqvist, T.; Kelic, A.; Rejmund, F.; Schmidt, K.-H.; Yordanov, O.; Benlliure, J.; Pereira, J.; Bernas, M.; Mustapha, B.; Stephan, C.; Tassan-Got, L.

    2006-01-15

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the Fragment Separator at GSI, Darmstadt. The experiment was performed in inverse kinematics, by shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. A total of 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

  3. Light Nuclides Produced in the Proton-Induced Spallation of 238U at 1 GeV

    E-Print Network [OSTI]

    M. V. Ricciardi; P. Armbruster; J. Benlliure; M. Bernas; A. Boudard; S. Czajkowski; T. Enqvist; A. Kelic; S. Leray; R. Legrain; B. Mustapha; J. Pereira; F. Rejmund; K. -H. Schmidt; C. Stephan; L. Tassan-Got; C. Volant; O. Yordanov

    2005-08-24

    The production of light and intermediate-mass nuclides formed in the reaction 1H+238U at 1 GeV was measured at the Fragment Separator (FRS) at GSI, Darmstadt. The experiment was performed in inverse kinematics, shooting a 1 A GeV 238U beam on a thin liquid-hydrogen target. 254 isotopes of all elements in the range from Z=7 to Z=37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

  4. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  5. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  6. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  7. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  8. Brookhaven Graphite Research Reactor Workshop

    Broader source: Energy.gov [DOE]

    The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

  9. Instrument performance study on the short and long pulse options of the second Spallation Neutron Source target station

    SciTech Connect (OSTI)

    Zhao, J. K.; Herwig, Kenneth W.; Robertson, J. L.; Gallmeier, Franz X.; Riemer, Bernard W.

    2013-10-15

    The Spallation Neutron Source (SNS) facility at the Oak Ridge National Laboratory is designed with an upgrade option for a future low repetition rate, long wavelength second target station. This second target station is intended to complement the scientific capabilities of the 1.4 MW, 60 Hz high power first target station. Two upgrade possibilities have been considered, the short and the long pulse options. In the short pulse mode, proton extraction occurs after the pulse compression in the accumulator ring. The proton pulse structure is thus the same as that for the first target station with a pulse width of ?0.7 ?s. In the long pulse mode, protons are extracted as they are produced by the linac, with no compression in the accumulator ring. The time width of the uncompressed proton pulse is ?1 ms. This difference in proton pulse structure means that neutron pulses will also be different. Neutron scattering instruments thus have to be designed and optimized very differently for these two source options which will directly impact the overall scientific capabilities of the SNS facility. In order to assess the merits of the short and long pulse target stations, we investigated a representative suit of neutron scattering instruments and evaluated their performance under each option. Our results indicate that the short pulse option will offer significantly better performance for the instruments and is the preferred choice for the SNS facility.

  10. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Plum Borough, PA)

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  11. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  12. Instrumentation Overview.pptx

    Broader source: Energy.gov (indexed) [DOE]

    tube tensile, and tube compression testing (PNNL) n Radiation damage and thermal annealing - Irradiate H-doped cladding in HFIR reactor at ORNL without all other effects...

  13. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  14. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  15. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  16. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  17. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  18. Reactor- Nuclear Science Center 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    A neutronic evaluation of two reactor benchmark problems was performed. The benchmark problems describe typical PWR uranium and plutonium (mixed oxide) fueled lattices. WIMSd4m, a neutron transport lattice code, was used to evaluate multigroup...

  19. P Reactor Grouting

    SciTech Connect (OSTI)

    None

    2010-01-01

    Filling the P Reactor with grout. This seals the radioactive material and reduces the environmental footprint left from the Cold War. Project sponsored by the Recovery Act at the Savannah River Site.

  20. Hypothetical Reactor Accident Study

    E-Print Network [OSTI]

    POPULATIONS; IODINE 131; MELTDOWN; METEOROLOGY; NUCLEAR POWER PLANTS; P CODES; PWR TYPE REACTORS; RADIATION in a Typical BWR and in a typical PWR. Comparison with WASH-1400 by C F . Hřjerup 202 APPENDIX 3. Calculation

  1. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  2. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  3. F Reactor Inspection

    SciTech Connect (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  4. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  5. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  6. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  7. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    SciTech Connect (OSTI)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture measurements in progress include {sup 240}Pu and {sup 242}Pu. The United States recently announced the Global Nuclear Energy Partnership (GNEP), with the goal of closing the commercial nuclear fuel cycle while minimizing proliferation risk. GNEP achieves these goals using fast-spectrum nuclear reactors powered by new transmutation fuels that contain significant quantities of minor actinides. The proposed Materials Test Station (MTS) will provide the GNEP with a cost-effective means of obtaining domestic fast-spectrum irradiations of advanced transmutation fuel forms and structural materials, which is an important step in the fuels qualification process. The MTS will be located at the LANSCE, and will be driven by a 1.08-MW proton beam. Th epeak neutron flux in the irradiation region is 1.67 x 10{sup 15} n/cm{sup 2}/s, and the energy spectrum is similar to that of a fast reactor, with the addition of a high-energy tail. The facility is expected to operate at least 4,400 hours per year. Fuel burnup rates will exceed 4% per year, and the radiation damage rate in iron will be 18 dpa (displacements per atom) per year. The construction cost is estimated to be $73M (including 25% contingency), with annual operating costs in the range of $6M to $10M. Appropriately funded, the MTS could begin operation in 2010.

  8. Power Burst Facility (PBF) Reactor Reactor Decommissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlinesPotentialReactor Decommissioning

  9. Dynamic bed reactor

    DOE Patents [OSTI]

    Stormo, Keith E. (Moscow, ID)

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  10. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  11. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  12. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  13. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  14. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  15. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  16. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  17. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E. (Ruffs Dale, PA)

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  18. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  19. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  20. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  1. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  2. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  3. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  4. Development of nanodiamond foils for H- stripping to Support the Spallation Neutron Source (SNS) using hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L

    2014-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a small foil about the size of a postage stamp is critical to the operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control film thickness. The results are discussed in the light of development of nanodiamond foils that will be able to withstand a few MW proton beam and hopefully will be able to be used after possible future upgrades to the SNS to greater than a 3MW beam.

  5. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  6. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  7. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  8. Cermet fuel reactors

    SciTech Connect (OSTI)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  9. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  10. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  11. Stabilized Spheromak Fusion Reactors

    SciTech Connect (OSTI)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  12. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  13. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    M. Cribier

    2007-04-06

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  14. Reactor Monitoring with Neutrinos

    E-Print Network [OSTI]

    Cribier, Michel

    2011-01-01

    The fundamental knowledge on neutrinos acquired in the recent years open the possibility of applied neutrino physics. Among it the automatic and non intrusive monitoring of nuclear reactor by its antineutrino signal could be very valuable to IAEA in charge of the control of nuclear power plants. Several efforts worldwide have already started.

  15. Reactor component automatic grapple

    DOE Patents [OSTI]

    Greenaway, Paul R. (Bethel Park, PA)

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  16. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  17. Reactor vessel support system. [LMFBR

    DOE Patents [OSTI]

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  18. Nuclear reactor construction with bottom supported reactor vessel

    DOE Patents [OSTI]

    Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  19. Multiscale Modeling of Radiation Damage in

    E-Print Network [OSTI]

    Multiscale Modeling of Radiation Damage in Fusion Reactor Materials Brian D. Wirth, R.J. Kurtz-7405-Eng-48. #12;Presentation overview · Introduction to fusion reactor materials and radiation damage. tailor He HFIR isotopic tailor He HFIR target/RB He appmHe displacement damage (dpa) ffuussiioonn

  20. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  1. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M. (Oak Ridge, TN)

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  2. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  3. Advanced Reactor Concepts Technical Review Panel Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a range of reactor types and coolant selections. The concepts included five fast reactors and three thermal reactors. As to reactor coolants, there were three sodium-cooled...

  4. Measurement of a complete set of nuclides, cross-sections and kinetic energies in spallation of 238U 1A GeV with protons

    E-Print Network [OSTI]

    P. Armbruster; J. Benlliure; M. Bernas; A. Boudard; E. Casarejos; S. Czajkowski; T. Enqvist; S. Leray; P. Napolitani; J. Pereira; F. Rejmund; M. -V. Ricciardi; K. -H. Schmidt; C. Stephan; J. Taieb; L. Tassan-Got; C. Volant

    2004-06-28

    Spallation residues and fission fragments from 1A GeV 238U projectiles irradiating a liquid hydrogen target were investigated by using the FRagment Separator at GSI for magnetic selection of reaction products including ray-tracing, energy-loss and time-of-flight techniques. The longitudinal-momentum spectra of identified fragments were analysed, and evaporation residues and fission fragments could be separated. For 1385 nuclides, production cross-sections covering 3 orders of magnitude with a mean accuracy of 15%, velocities in the U-rest frame and kinetic energies were determined. In the reaction all elements from uranium to nitrogen were found, each with a large number of isotopes.

  5. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  6. Small modular reactors (SMRs) such...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ARO), using soluble boron in the coolant for reactivity control. Conversely, boiling water reactors (BWRs) typically maneuver their control blades as often as every 2 GWdmtU...

  7. Progress Update: Reactor Disassembly Grouting

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

  8. Progress Update: Reactor Disassembly Grouting

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

  9. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Petr Vogel; Liangjian Wen; Chao Zhang

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  10. Neutrino Oscillation Studies with Reactors

    E-Print Network [OSTI]

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  11. Neutrino oscillation studies with reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle ?13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Thermonuclear Reflect AB-Reactor

    E-Print Network [OSTI]

    Alexander Bolonkin

    2008-03-26

    The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

  13. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  14. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN)

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  15. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  16. Reactor coolant pump flywheel

    DOE Patents [OSTI]

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  17. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  18. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

    1995-01-01

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  19. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  20. High flux reactor

    DOE Patents [OSTI]

    Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  1. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  2. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  3. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  4. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

  5. Solvent refined coal reactor quench system

    DOE Patents [OSTI]

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  6. Solvent refined coal reactor quench system

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA)

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  7. Antineutrino Monitoring of Thorium Reactors

    E-Print Network [OSTI]

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  8. Advanced Reactor Research and Development Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE)...

  9. THE MATERIALS OF FAST BREEDER REACTORS

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

  10. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and...

  11. MOOSE simulating nuclear reactor CRUD buildup

    SciTech Connect (OSTI)

    2014-02-06

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  12. MOOSE simulating nuclear reactor CRUD buildup

    ScienceCinema (OSTI)

    None

    2014-07-21

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  13. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

  14. A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences

    SciTech Connect (OSTI)

    Bryant, Rebecca [Bryant Research, LLC

    2010-12-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

  15. Nuclear reactor control

    DOE Patents [OSTI]

    Cawley, William E. (Phoenix, AZ); Warnick, Robert F. (Pasco, WA)

    1982-01-01

    1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

  16. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  17. Tokamak reactor startup power

    SciTech Connect (OSTI)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor (ETR).

  18. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  19. Reactor protection system design alternatives for sodium fast reactors

    E-Print Network [OSTI]

    DeWitte, Jacob D. (Jacob Dominic)

    2011-01-01

    Historically, unprotected transients have been viewed as design basis events that can significantly challenge sodium-cooled fast reactors. The perceived potential consequences of a severe unprotected transient in a ...

  20. Reactor physics design of supercritical CO?-cooled fast reactors

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2004-01-01

    Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

  1. Nuclear reactor downcomer flow deflector

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  2. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  3. Chemical Reactor Analysis and Optimal Digestion

    E-Print Network [OSTI]

    Jumars, Pete

    derived from basic principles o f chemical reactor analysis and design Deborah L. Penry and Peter in terms of chemical reactor components and then use principles of reactor design to identify variablesJ 310 Chemical Reactor Analysis and Optimal Digestion An optimal digestion theory can be readily

  4. Interfacial effects in fast reactors

    E-Print Network [OSTI]

    Saidi, Mohammad Said

    1979-01-01

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

  5. Graphite Reactor | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphite Reactor 'In the early, desperate days of World War II, the United States launched the top-secret, top-priority Manhattan Project...' In the early, desperate days of U.S....

  6. Reactor physics project final report

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1970-01-01

    This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, ...

  7. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  8. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  9. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  10. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E. (San Jose, CA)

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  11. Automatic safety rod for reactors

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  12. Alternate-fuel reactor studies

    SciTech Connect (OSTI)

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  13. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Upton, Hubert A. (Morgan Hill, CA)

    1994-01-01

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.

  14. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, R.C.; Upton, H.A.

    1994-10-04

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

  15. Reactor shroud joint

    DOE Patents [OSTI]

    Ballas, G.J.; Fife, A.B.; Ganz, I.

    1998-04-07

    A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges. 4 figs.

  16. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  17. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D. (Chicago, IL)

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  18. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  19. When Do Commercial Reactors Permanently Shut Down?

    Reports and Publications (EIA)

    2011-01-01

    For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

  20. PIA - Advanced Test Reactor National Scientific User Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

  1. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

  2. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Djurcic, Zelimir

    2009-01-01

    neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

  3. UCLA program in reactor studies: The ARIES tokamak reactor study

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

  4. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  5. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  6. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  7. Reactor control rod timing system

    DOE Patents [OSTI]

    Wu, Peter T. K. (Clifton Park, NY)

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  8. Reactor control rod timing system

    SciTech Connect (OSTI)

    Wu, P.T.

    1982-02-09

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (Above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  9. Horizontal baffle for nuclear reactors

    DOE Patents [OSTI]

    Rylatt, John A. (Monroeville, PA)

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  10. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect (OSTI)

    Bernardin, J. D. (John D.); Ammerman, C. N. (Curtt N.); Hopkins, S. M. (Steve M.)

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL water cooling tests are used to assess water cooling system performance and numerical modeling accuracy.

  11. Increasing fuel utilization of breed and burn reactors

    E-Print Network [OSTI]

    Di Sanzo, Christian Diego

    2014-01-01

    double cladded sodium cooled fast reactor (ADR) 4.4 Thermal-utilization to 30% in a sodium fast reactor and up to 40%reactor, the sodium-cooled fast reactor, the supercritical

  12. Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor 

    E-Print Network [OSTI]

    Gandhir, Akshay

    2012-10-19

    High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

  13. Stability analysis of supercritical water cooled reactors

    E-Print Network [OSTI]

    Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

    2005-01-01

    The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

  14. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  15. Challenges in the Development of Advanced Reactors

    SciTech Connect (OSTI)

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  16. Microfluidic reactors for the synthesis of nanocrystals

    E-Print Network [OSTI]

    Yen, Brian K. H

    2007-01-01

    Several microfluidic reactors were designed and applied to the synthesis of colloidal semiconductor nanocrystals (NCs). Initially, a simple single-phase capillary reactor was used for the synthesis of CdSe NCs. Precursors ...

  17. Auxiliary reactor for a hydrocarbon reforming system

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  18. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  19. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  20. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, Robert W. (Richland, WA)

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  1. Granular Dynamics in Pebble Bed Reactor Cores

    E-Print Network [OSTI]

    Laufer, Michael Robert

    2013-01-01

    a simulant fluid to match the dynamics of fuel pebbles andfuel pebbles through reactor cores with and without coupled fluid

  2. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  3. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    for the Second Experimental Breeder Reactor (EBR-II), infuel in the Experimental Breeder Reactor II project [32].

  4. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    re- actor (PWR) and boiling-water reactor (BWR) designsin integral boiling water super heat reactors. Technical

  5. Methanosaeta fibers in anaerobic migrating blanket reactors

    E-Print Network [OSTI]

    Angenent, Lars T.

    An anaerobic migrating blanket reactor (AMBR) was seeded with flocculent biomass from a digester and fedMethanosaeta fibers in anaerobic migrating blanket reactors L.T. Angenent,* D. Zheng,* S. Sung in these fibers. Keywords Anaerobic migrating blanket reactor; AMBR; fibers; oligonucleotide hybridization probes

  6. Pebble Flow Experiments For Pebble Bed Reactors

    E-Print Network [OSTI]

    Pebble Flow Experiments For Pebble Bed Reactors Andrew C. Kadak1 Department of Nuclear Engineering of Technology 2nd International Topical Meeting on High Temperature Reactor Technology Institute of Nuclear was that the draining of the pebbles in such a reactor would conform to granular flow theory which suggested rapid

  7. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  8. CONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV

    E-Print Network [OSTI]

    Abdou, Mohamed

    in the physics of laser-target interactions, target design and implosion experiments; 5.3. New ICF reactorCONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV Report on the Fourth IAEA Technical Committee Reactor Design and Technology at Yalta, USSR, from 26 May -- 6 June 1986. This report contains all

  9. Integrated reformer and shift reactor

    DOE Patents [OSTI]

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  10. Aerial of Nuclear Science Reactor 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Small graphite-moderated and gas-cooled reactors have been around since the beginning of the atomic age. Though their existence in the past has been associated with nuclear weapons programs, they are capable of being used in civilian power programs...

  11. Computer aided nuclear reactor modeling 

    E-Print Network [OSTI]

    Warraich, Khalid Sarwar

    1995-01-01

    Nuclear reactor modeling is an important activity that lets us analyze existing as well as proposed systems for safety, correct operation, etc. The quality of a analysis is directly proportional to the quality of the model used. In this work we look...

  12. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1996-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  13. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1998-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  14. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1998-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  15. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1996-04-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  16. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1998-06-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  17. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1998-04-14

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  18. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  19. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  20. Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina)

    E-Print Network [OSTI]

    Gratta, Giorgio

    Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Sandia of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being

  1. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  2. Control of reactor coolant flow path during reactor decay heat removal

    DOE Patents [OSTI]

    Hunsbedt, Anstein N. (Los Gatos, CA)

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  3. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  4. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  5. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  6. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, Edward F. (Naperville, IL); Olson, Arne P. (Western Springs, IL); Wade, David C. (Naperville, IL); Robinson, Bryan W. (Oak Lawn, IL)

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  7. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  8. Nuclear reactor alignment plate configuration

    DOE Patents [OSTI]

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  9. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  10. Modular Stellarator Fusion Reactor concept

    SciTech Connect (OSTI)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  11. Flow duct for nuclear reactors

    DOE Patents [OSTI]

    Straalsund, Jerry L. (Richland, WA)

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  12. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  13. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  14. Reference worldwide model for antineutrinos from reactors

    E-Print Network [OSTI]

    Marica Baldoncini; Ivan Callegari; Giovanni Fiorentini; Fabio Mantovani; Barbara Ricci; Virginia Strati; Gerti Xhixha

    2015-02-16

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

  15. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  16. Experimental Breeder Reactor I Preservation Plan

    SciTech Connect (OSTI)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  17. Solid tags for identifying failed reactor components

    DOE Patents [OSTI]

    Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  18. Neutron shielding panels for reactor pressure vessels

    DOE Patents [OSTI]

    Singleton, Norman R. (Murrysville, PA)

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  19. Energy deposition in STARFIRE reactor components

    SciTech Connect (OSTI)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.

  20. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  1. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  2. Small Reactor for Deep Space Exploration

    SciTech Connect (OSTI)

    2012-11-29

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  3. SNS | Spallation Neutron Source | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA. This one-of-a-kind facility provides the most intense pulsed neutron beams in the world for scientific research and industrial development. The 80-acre SNS site is located...

  4. Energy Department Announces Small Modular Reactor Technology...

    Energy Savers [EERE]

    today three public-private partnerships to develop deployment plans for small modular nuclear reactor (SMR) technologies at SRS facilities, near Aiken, South Carolina. As part...

  5. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  6. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, Emil L. (San Jose, CA); Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  7. Progress Update: P-Reactor Grout

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    A progress update, the Recovery Act at work at the Savannah River Site. The new phase of work on the permanent closure of two cold war nuclear reactors.

  8. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  9. Virtual Environment for Reactor Applications (VERA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment for Reactor Applications (VERA) Modern high performance computing (HPC) platforms bring an opportunity for modeling and simulation (modsim) at levels of detail...

  10. Progress Update: P-Reactor Grout

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update, the Recovery Act at work at the Savannah River Site. The new phase of work on the permanent closure of two cold war nuclear reactors.

  11. Nuclear reactor multiphysics via bond graph formalism

    E-Print Network [OSTI]

    Sosnovsky, Eugeny

    2014-01-01

    This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

  12. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  13. Reactor and Nuclear Systems Division (RNSD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation...

  14. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  15. Fast pulse nonthermal plasma reactor

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2005-06-14

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  16. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Fuel Vibration Integrity Investigations Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities...

  17. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports byGeothermalDepartment of

  18. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  19. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T. (Idaho Falls, ID)

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  20. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  1. APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR

    E-Print Network [OSTI]

    Kunz, Robert Francis

    1 APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR SYSTEMS CODE ACCURACY ASSESSMENT) has been developed by the authors to provide quantitative comparisons between nuclear reactor systems. 1. INTRODUCTION In recent years, the commercial nuclear reactor industry has focused significant

  2. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01

    Fuels for sodium-cooled fast reactors: US perspective.Pitch to Diameter Sodium-cooled Fast Reactor Simple Movingreactor (GFR), sodium-cooled fast reactor (SFR) and lead-

  3. 22.312 Engineering of Nuclear Reactors, Fall 2004

    E-Print Network [OSTI]

    Buongiorno, Jacopo, 1971-

    Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

  4. 22.312 Engineering of Nuclear Reactors, Fall 2002

    E-Print Network [OSTI]

    Todreas, Neil E.

    Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

  5. Selective purge for hydrogenation reactor recycle loop

    SciTech Connect (OSTI)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  6. Aerosol reactor production of uniform submicron powders

    DOE Patents [OSTI]

    Flagan, Richard C. (Pasadena, CA); Wu, Jin J. (Pasadena, CA)

    1991-02-19

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  7. CASCADE OPTIMIZATION AND CONTROL OF BATCH REACTORS

    E-Print Network [OSTI]

    Jutan, Arthur

    CASCADE OPTIMIZATION AND CONTROL OF BATCH REACTORS Xiangming Hua, Sohrab Rohani and Arthur Jutan ajutan@uwo.ca Abstract: In this study, a cascade closed-loop optimization and control strategy for batch reactor. Using model reduction a cascade system is developed, which can effectively combine optimization

  8. Explosive demolition of K East Reactor Stack

    ScienceCinema (OSTI)

    None

    2010-09-02

    Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.

  9. Reactor accelerator coupling experiments: a feasability study 

    E-Print Network [OSTI]

    Woddi Venkat Krishna, Taraknath

    2006-08-16

    ) ______________________________ William E. Burchill (Head of Department) ______________________________ Marvin L. Adams (Member) ______________________________ Ronald J. Ellis (Member) May 2005 Major Subject: Nuclear Engineering iii ABSTRACT Reactor... (Commissariat ? l??nergie Atomique), EDF (Electricit? de France), and FRAMATOME. This experimental program takes place at the research reactor MASURCA (MAquette de SURg?n?rateur ? CAdarache) of the CEA Nuclear Center of Cadarache. It is devoted to the study...

  10. FISSION REACTORS KEYWORDS: core-barrel vibra-

    E-Print Network [OSTI]

    Demazičre, Christophe

    FISSION REACTORS KEYWORDS: core-barrel vibra- tions, in-core neutron noise, shell- mode vibrations-REGION SLAB REACTOR MODEL CARL SUNDE,* CHRISTOPHE DEMAZIČRE, and IMRE PÁZSIT Chalmers University of Technology. 5 gives a self-contained description of the principles of fluctuation analysis for the diagnostics

  11. Pebble Flow Experiments For Pebble Bed Reactors

    E-Print Network [OSTI]

    Bazant, Martin Z.

    of Technology 2nd International Topical Meeting on High Temperature Reactor Technology Institute of NuclearPebble Flow Experiments For Pebble Bed Reactors Andrew C. Kadak1 Department of Nuclear Engineering Massachusetts Institute of Technology Martin Z. Bazant Department of Mathematics Massachusetts Institute

  12. BioElectrochemically Assisted Microbial Reactor

    E-Print Network [OSTI]

    Lee, Dongwon

    microbial fuel cell-based technologies. Bruce Logan and John M. Regan Hydrogen Energy CenterBioElectrochemically Assisted Microbial Reactor (BEAMR) The BEAMR reactor uses only >0.2 V needed/mol) expected Energy recovery from acetate: 5x the energy in electricity used recovered as H2 (heat

  13. Hydrogasification reactor and method of operating same

    DOE Patents [OSTI]

    Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki

    2013-09-10

    The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.

  14. Safety Issues for High Temperature Gas Reactors

    E-Print Network [OSTI]

    . · Behavior of fuel, fission product release behavior in reactor building and structures under accidentSafety Issues for High Temperature Gas Reactors Andrew C. Kadak Professor of the Practice #12;Major Consequences AOO AC SPC Challenges DESIGN BASIS * Severe challenge to the Fission Products Confinement Function

  15. The First Reactor, 40th Anniversary (rev.)

    SciTech Connect (OSTI)

    Allardice, Corbin; Trapnell, Edward R.; Fermi, Enrico; Fermi, Laura; Williams, Robert C.

    1982-12-01

    This booklet, an updated version of the original booklet describing the first nuclear reactor, was written in honor of the 40th anniversary of the first reactor or "pile". It is based on firsthand accounts told to Corbin Allardice and Edward R. Trapnell, and includes recollections of Enrico and Laura Fermi.

  16. FISSION REACTORS KEYWORDS: high-temperature

    E-Print Network [OSTI]

    Yildiz, Bilge

    REACTORS WITH SUPERCRITICAL CO2 CYCLES BILGE YILDIZ,* KATHERINE J. HOHNHOLT, and MUJID S. KAZIMI-temperature steam electrolysis (HTSE) supported by a supercritical CO2 (SCO2) recompression Brayton cycle by a supercritical CO2 ~SCO2! power conversion system that is directly coupled to an advanced gas-cooled reactor

  17. Fuel elements of research reactor CM

    SciTech Connect (OSTI)

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  18. State space modeling of reactor core in a pressurized water reactor

    SciTech Connect (OSTI)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W.; Shamsuddin, Mustaffa; Abdullah, M. Adib

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  19. Scanning tunneling microscope assembly, reactor, and system

    DOE Patents [OSTI]

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  20. Update; Sodium advanced fast reactor (SAFR) concept

    SciTech Connect (OSTI)

    Oldenkamp, R.D.; Brunings, J.E. ); Guenther, E. ); Hren, R. )

    1988-01-01

    This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

  1. Self-actuating reactor shutdown system

    DOE Patents [OSTI]

    Barrus, Donald M. (San Jose, CA); Brummond, Willian A (Livermore, CA); Peterson, Leslie F. (Danville, CA)

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  2. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  3. Cooling system for a nuclear reactor

    DOE Patents [OSTI]

    Amtmann, Hans H. (Rancho Santa Fe, CA)

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  4. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  5. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to...

  6. Physics-based multiscale coupling for full core nuclear reactor...

    Office of Scientific and Technical Information (OSTI)

    multiscale coupling for full core nuclear reactor simulation Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety,...

  7. PIA - Advanced Test Reactor National Scientific User Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test...

  8. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and...

  9. Proceedings of the Advisory Committee on Reactor Safeguards Safety...

    Energy Savers [EERE]

    the Advisory Committee on Reactor Safeguards Safety Culture Workshop, June 12, 2003 U.S. Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards Washington, DC...

  10. B Reactor Tour Registration Opens March 2 - Visitors Have Come...

    Energy Savers [EERE]

    and 21. Visitors will see the front face of the reactor, fan ventilation rooms, water valve pit, water process laboratories, accumulator room, and the reactor's control room. In...

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in AP1000 reactor core Test run signals emergence of the next generation in nuclear power reactor analysis tools OAK RIDGE, Tenn., Feb. 18, 2014 - Scientists and engineers...

  12. Reactor Modeling and Recipe Optimization of Polyether Polyol Processes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Reactor Modeling and Recipe Optimization of Polyether Polyol Processes Spring 2013 EWO Meeting Yisu.M. Wassick. Reactor Modeling and Recipe Optimization of Polyether Polyol Processes: Polypropylene Glycol

  13. Westinghouse-CASL team wins major computing award for reactor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performed core physics simulations of the Westinghouse AP1000 pressurized water reactor (PWR) core using CASL's Virtual Environment for Reactor Application (VERA). Westinghouse is...

  14. Fundamental aspects of nuclear reactor fuel elements (Technical...

    Office of Scientific and Technical Information (OSTI)

    Fundamental aspects of nuclear reactor fuel elements Citation Details In-Document Search Title: Fundamental aspects of nuclear reactor fuel elements You are accessing a document...

  15. A Stochastic Reactor Based Virtual Engine Model Employing Detailed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Stochastic Reactor Based Virtual Engine Model Employing Detailed Chemistry for Kinetic Studies of In-Cylinder Combustion and Exhaust Aftertreatment A Stochastic Reactor Based...

  16. A Study and Comparison of SCR Reaction Kinetics from Reactor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data...

  17. NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS...

    Office of Scientific and Technical Information (OSTI)

    Limit analysis of pipe clamps Flanders, H.E. Jr. 22 GENERAL STUDIES OF NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS; HEAT TRANSFER; HYDRAULICS; REACTOR SAFETY;...

  18. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  19. Reactor operation environmental information document

    SciTech Connect (OSTI)

    Wike, L.D.; Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wilde, E.W.; Dicks, A.S.

    1989-12-01

    The Savannah River Site (SRS) is a large United States Department of Energy installation on the upper Atlantic Coastal Plain of South Carolina. The SRS contains diverse habitats, flora, and fauna. Habitats include upland terrestrial areas, varied wetlands including Carolina Bays, the Savannah River swamp system, and impoundment related and riparian wetlands, and the aquatic habitats of several stream systems, two large cooling reservoirs, and the Savannah River. These diverse habitats support a large variety of plants and animals including many commercially or recreational valuable species and several rare, threatened or endangered species. This volume describes the major habitats and their biota found on the SRS, and discuss the impacts of continued operation of the K, L, and P production reactors.

  20. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  1. Nuclear reactor internals alignment configuration

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Singleton, Norman R. (Murrysville, PA)

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  2. Nuclear reactor composite fuel assembly

    DOE Patents [OSTI]

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  3. Gas-cooled nuclear reactor

    DOE Patents [OSTI]

    Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

    1985-01-01

    A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

  4. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  5. Pneumatic solids feeder for coal gasification reactor

    SciTech Connect (OSTI)

    Notestein, J.E.; Halow, J.S.

    1991-12-31

    This invention is comprised of a pneumatic feeder system for a coal gasification reactor which includes one or more feeder tubes entering the reactor above the level of the particle bed inside the reactor. The tubes are inclined downward at their outer ends so that coal particles introduced into the tubes through an aperture at the top of the tubes slides downward away from the reactor and does not fall directly into the reactor. Pressurized gas introduced into, or resulting from ignition of recycled combustible gas in a chamber adjacent to the tube ends, propels the coal from the tube into the reactor volume and onto the particle bed. Leveling of the top of the bed is carried out by a bladed rotor mounted on the reactor stirring shaft. Coal is introduced into the tubes from containers above the tubes by means of rotary valves placed across supply conduits. This system avoids placement of feeder hardware in the plenum above the particle bed and keeps the coal from being excessively heated prior to reaching the particle bed.

  6. Nuclear reactor fissile isotopes antineutrino spectra

    E-Print Network [OSTI]

    V. Sinev

    2012-07-30

    Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.

  7. Advances in ICF power reactor design

    SciTech Connect (OSTI)

    Hogan, W.J.; Kulcinski, G.L.

    1985-07-01

    Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, we expect it to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies.

  8. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  9. ME 361E Nuclear Reactor Engineering ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 361E ­ Nuclear Reactor Engineering Page 1 ABET EC2000 syllabus ME 361E ­ Nuclear Reactor; neutron diffusion and moderation; reactor equations; Fermi Age theory; multigroup and multiregional students should be able to: · Compare and contrast numerous nuclear reactor designs · Calculate the effects

  10. Today and Future Neutrino Experiments at Krasnoyarsk Nuclear Reactor

    E-Print Network [OSTI]

    Yu. V. Kozlov; S. V. Khalturtsev; I. N. Machulin; A. V. Martemyanov; V. P. Martemyanov; A. A. Sabelnikov; V. G. Tarasenkov; E. V. Turbin; V. N. Vyrodov; L. A. Popeko; A. V. Cherny; G. A. Shishkina

    1999-12-22

    The results of undergoing experiments and new experiment propositions at Krasnoyarsk underground nuclear reactor are presented

  11. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  12. LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS

    E-Print Network [OSTI]

    Bazhenov, Maxim

    LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC employed for analyzing reactor dynamics. Equations of this type are used for analyzing the stability of the reactor power, etc. Among these problems the question of the boundedness of reactor power bursts

  13. ASSESSMENT OF SMALL AND MODULAR REACTOR NUCLEAR FUEL COST 

    E-Print Network [OSTI]

    Pannier, Christopher 1992-

    2012-05-03

    INCAS INtegrated model for the Competitiveness Analysis of Small modular reactors LWR Light Water Reactor NEI Nuclear Energy Institute PWR Pressurized Water Reactor PHWR Pressurized Heavy Water Reactor SEMER Systčme d’Évaluation et de Modélisation... ...................................................... 27 8 LWR Fuel Cost ..................................................................................................... 28 9 SMR Fuel Cost ..................................................................................................... 29...

  14. Packed bed reactor for photochemical sup 196 Hg isotope separation

    SciTech Connect (OSTI)

    Grossman, M.W.; Speer, R.

    1992-03-03

    This patent describes a photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury comprising a reactor cell and a monoisotopic light source It comprises: a plurality of transparent, straight reactor cell tubes disposed axially within the internal volume of the reactor cell to increase the surface area thereof for production deposition.

  15. Evidence for Neutrino Oscillations I: Solar and Reactor Neutrinos

    E-Print Network [OSTI]

    A. B. McDonald

    2004-12-06

    This paper discusses evidence for neutrino oscillations obtained from measurements with solar neutrinos and reactor neutrinos.

  16. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  17. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Udovich, Carl A. (Joliet, IL)

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  18. Small Modular Reactors: Institutional Assessment

    SciTech Connect (OSTI)

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview purposes and is a sampling of advanced SMR concepts, which will be considered as part of the current DOE SMR program but whose estimated deployment time is beyond CAP’s current investment time horizon. Attachment I is the public DOE statement describing the present approach of their SMR Program.

  19. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect (OSTI)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  20. Downstream extent of the N Reactor plume

    SciTech Connect (OSTI)

    Dauble, D.D.; Ecker, R.M.; Vail, L.W.; Neitzel, D.A.

    1987-09-01

    The downstream extent of the N Reactor thermal plume was studied to assess the potential for fisheries impacts downstream of N Reactor. The N Reactor plume, as defined by the 0.5/sup 0/F isotherm, will extend less than 10 miles downstream at river flows greater than or equal to annual average flows (120,000 cfs). Incremental temperature increases at the Oregon-Washington border are expected to be less than 0.5/sup 0/F during all Columbia River flows greater than the minimum regulated flows (36,000 cfs). The major physical factor affecting Columbia River temperatures in the Hanford Reach is solar radiation. Because the estimated temperature increase resulting from N Reactor operations is less than 0.3/sup 0/F under all flow scenarios, it is unlikely that Columbia River fish populations will be adversely impacted.

  1. Modular Pebble Bed Reactor March 22, 2000

    E-Print Network [OSTI]

    ;"Naturally" Safe Fuel · Shut Off All Cooling · Withdraw All Control Rods · No Emergency Cooling · No Operator · No melt down · No significant radiation release in accident · Demonstrate with actual test of reactor #12

  2. Generic magnetic fusion reactor cost assessment

    SciTech Connect (OSTI)

    Sheffield, J.

    1984-01-01

    A generic D-T burning magnetic fusion reactor model shows that within the constraints set by generic limitations it is possible for magnetic fusion to be a competitive source of electricity in the 21st century.

  3. Heterogeneous effects in fast breeder reactors

    E-Print Network [OSTI]

    Gregory, Michael Vladimir

    1973-01-01

    Heterogeneous effects in fast breeder reactors are examined through development of simple but accurate models for the calculation of a posteriori corrections to a volume-averaged homogeneous representation. Three distinct ...

  4. Methanol synthesis in a trickle bed reactor 

    E-Print Network [OSTI]

    Tjandra, Sinoto

    1992-01-01

    the heat of reaction for synthesis of liquid fuels from CO and H2. At present, they are used primarily in the petroleum industries for hydrodenitrogenation, hydrodesulfurization and hydrocracking. Other commercial applications of trickle bed reactors...

  5. Passive heat transfer means for nuclear reactors

    DOE Patents [OSTI]

    Burelbach, James P. (Glen Ellyn, IL)

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  6. Actinide minimization using pressurized water reactors

    E-Print Network [OSTI]

    Visosky, Mark Michael

    2006-01-01

    Transuranic actinides dominate the long-term radiotoxity in spent LWR fuel. In an open fuel cycle, they impose a long-term burden on geologic repositories. Transmuting these materials in reactor systems is one way to ease ...

  7. Control system for a small fission reactor

    DOE Patents [OSTI]

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  8. Self-Sustaining Thorium Boiling Water Reactors

    E-Print Network [OSTI]

    Ganda, Francesco

    A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar ...

  9. Prismatic modular reactor analysis with melcor 

    E-Print Network [OSTI]

    Zhen, Ni

    2009-05-15

    core reactor, was simulated with the complete model. MELCOR has been demonstrated to have the ability of modeling a prismatic core VHTR. The calculated outlet temperature and mass flow rate under normal operation correspond well to references. However...

  10. Rethinking the light water reactor fuel cycle

    E-Print Network [OSTI]

    Shwageraus, Evgeni, 1973-

    2004-01-01

    The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

  11. Computational evaluation of two reactor benchmark problems 

    E-Print Network [OSTI]

    Cowan, James Anthony

    1998-01-01

    A neutronic evaluation of two reactor benchmark problems was performed. The benchmark problems describe typical PWR uranium and plutonium (mixed oxide) fueled lattices. WIMSd4m, a neutron transport lattice code, was used to evaluate multigroup...

  12. Critical assessment of thorium reactor technology

    E-Print Network [OSTI]

    Drenkhahn, Robert (Robert A.)

    2012-01-01

    Thorium-based fuels for nuclear reactors are being considered for use with current and future designs in both large and small-scale energy production. Thorium-232 is as abundant on Earth as lead, far more common than all ...

  13. Reactor physics project progress report no. 2

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1969-01-01

    This is the second annual report in an experimental and theoretical program to develop and apply single and few element heterogeneous methods for the determination of reactor lattice parameters. During the period covered ...

  14. Radial power flattening in sodium fast reactors

    E-Print Network [OSTI]

    Krentz-Wee, Rebecca (Rebecca Elizabeth)

    2012-01-01

    In order to improve a new design for a uranium startup sodium cooled fast reactor which was proposed at MIT, this thesis evaluated radial power flattening by varying the fuel volume fraction at a fixed U-235 enrichment of ...

  15. Granular Dynamics in Pebble Bed Reactor Cores

    E-Print Network [OSTI]

    Laufer, Michael Robert

    2013-01-01

    Design Criteria for Nucler Power Plants,” U.S. NuclearDesign Criteria GRECO Granular Recirculation Code HDPE High-Density Polyethylene HTR High-Temperature Reactor NRC Nuclear

  16. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect (OSTI)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  17. Advanced Reactors Transition Program Resource Loaded Schedule

    SciTech Connect (OSTI)

    GANTT, D.A.

    2000-01-12

    The Advanced Reactors Transition (ART) Resource Loaded Schedule (RLS) provides a cost and schedule baseline for managing the project elements within the ART Program. The Fast Flux Test Facility (FETF) activities are delineated through the end of FY 2000, assuming continued standby. The Nuclear Energy (NE) Legacies and Plutonium Recycle Test Reactor (PRTR) activities are delineated through the end of the deactivation process. This revision reflects the 19 Oct 1999 baseline.

  18. Environmental Information Document: L-reactor reactivation

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  19. Automatic safety rod for reactors. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  20. NEUTRON WALL LOADING OF TOKAMAK REACTORS

    E-Print Network [OSTI]

    California at Los Angeles, University of

    GA­A23223 NEUTRON WALL LOADING OF TOKAMAK REACTORS by C.P.C. WONG OCTOBER 1999 #12;DISCLAIMER Government or any agency thereof. #12;GA­A23223 NEUTRON WALL LOADING OF TOKAMAK REACTORS by C.P.C. WONG by General Atomics IR&D Funds GA PROJECT 4437 OCTOBER 1999 #12;C.P.C. WONG NEUTRON WALL LOADING OF TOKAMAK

  1. Power-reactor fuel-pin thermomechanics

    SciTech Connect (OSTI)

    Tutnov, A.A.; Ul'yanov, A.I.

    1987-11-01

    The authors describe a method for determining the creep and elongation and other aspects of mechanical behavior of fuel pins and cans under the effects of irradiation and temperature encountered in reactors under loading and burnup conditions. An exhaustive method for testing for fuel-cladding interactions is described. The methodology is shown to be applicable to the design, fabrication, and loading of pins for WWER, SGHWR, and RBMK type reactors, from which much of the experimental data were derived.

  2. Space reactors - past, present, and future

    SciTech Connect (OSTI)

    Buden, D.; Angelo, J.

    1983-01-01

    In the 1990s and beyond, advanced-design nuclear reactors could represent the prime source of both space power and propulsion. Many sophisticated military and civilian space missions of the future will require first kilowatt and then megawatt levels of power. This paper reviews key technology developments that accompanied past US space nuclear power development efforts, describes on-going programs, and then explores reactor technologies that will satisfy megawatt power level needs and beyond.

  3. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  4. Optimally moderated nuclear fission reactor and fuel source therefor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M. (Idaho Falls, ID); Terry, William K. (Shelley, ID); Gougar, Hans D. (Idaho Falls, ID)

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  5. Design options for a bunsen reactor.

    SciTech Connect (OSTI)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  6. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect (OSTI)

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  7. Apparatus for feeding an MTG conversion reactor

    SciTech Connect (OSTI)

    Mao, C.H.; Schreiner, M. Jr.

    1989-05-02

    A continuous system is described comprising: first distillation means; second distillation means; pressurized chemical reactor means containing dehydration catalyst; methanol-to-gasoline conversion reactor means containing conversion catalyst; means for passing a crude methanol feed containing a minor amount of water to an upper stage of the first distillation means; means for maintaining the first distillation means at a pressure at least equal to the pressure of the pressurized chemical reactor means; means for withdrawing dehydration product from pressurized chemical reactor means; means for adding dehydration product to an intermediate stage of the first distillation means; means for withdrawing from first distillation means a first overhead stream comprising essentially water-free dimethylether; means for withdrawing from first distillation means a first bottoms stream containing aqueous methanol; means for passing the dimethylether-containing first overhead stream from the first distillation means to methanol-to-gasoline conversion reactor means; means for passing the first bottoms stream containing aqueous methanol from the first distillation means to the second distillation means; means for withdrawing from second distillation means a second overhead stream comprising methanol; means for withdrawing from second distillation means a second bottoms stream comprising water; means for passing the second overhead methanol stream to pressurized chemical reactor means; and means for recycling the dehydration product to an intermediate stage of the first distillation means.

  8. Micro -Thermonuclear AB-Reactors for Aerospace

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-08

    The author offers several innovations that he first suggested publicly early in 1983 for the AB multi-reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB-Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power-making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator. Non-industrial countries can produce these researches and constructions. Currently, the author is researching the efficiency of these innovations for two types of the micro-thermonuclear reactors: multi-reflection reactor (ICF) and self-magnetic reactor (MCF).

  9. Supply of enriched uranium for research reactors

    SciTech Connect (OSTI)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  10. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  11. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

  12. CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR

    SciTech Connect (OSTI)

    Vinson, Dennis

    2010-06-01

    The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

  13. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    SciTech Connect (OSTI)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  14. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

  15. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  16. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    L. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,R. J. Neuhold, Introductury Nuclear Reactor Dynamics. ANSL. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,

  17. White paper report on using nuclear reactors to search for a value of theta13

    E-Print Network [OSTI]

    2004-01-01

    PAPER REPORT on Using Nuclear Reactors to Search for a valuetimely new experiment at a nuclear reactor sensitive to theand judicious choice of a nuclear reactor. The dominant

  18. DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT

    E-Print Network [OSTI]

    Myers, Richard Allen

    2011-01-01

    exceed that of fusion power reactors for wall loadings up toplasma. The vessel wall temperatures in power reactors isfor· the first wall of fusion power reactors. However, for

  19. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect (OSTI)

    Byun, Thak Sang

    2008-01-01

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  20. Gamma displacement cross-sections in various materials

    E-Print Network [OSTI]

    Motta, Arthur T.

    Electric (GE) Advanced Boiling Water Reactor (ABWR) indicated that the calculated gamma displacement damage of reactor pressure vessel (RPV) steels in the HFIR reactor (Rehn and Birtcher, 1993; Farrell et al. 1994 there is a large water gap, gamma damage can become comparable to that produced by neutrons, on a straight

  1. Risk Management for Sodium Fast Reactors.

    SciTech Connect (OSTI)

    Denman, Matthew R; Groth, Katrina; Cardoni, Jeffrey N; Wheeler, Timothy A.

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  2. Control Rod Malfunction at the NRAD Reactor

    SciTech Connect (OSTI)

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  3. Sodium Reactor Experiment decommissioning. Final report

    SciTech Connect (OSTI)

    Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

    1983-08-15

    The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

  4. Alternatives to proposed replacement production reactors

    SciTech Connect (OSTI)

    Cullingford, H.S.

    1981-06-01

    To insure adequate supplies of plutonium and tritium for defense purposes, an independent evaluation was made by Los Alamos National Laboratory of the numerous alternatives to the proposed replacement production reactors (RPR). This effort concentrated on the defense fuel cycle operation and its technical implications in identifying the principal alternatives for the 1990s. The primary options were identified as (1) existing commercial reactors, (2) existing and planned government-owned facilities (not now used for defense materials production), and (3) other RPRs (not yet proposed) such as CANDU or CANDU-type heavy-water reactors (HWR) for both plutonium and tritium production. The evaluation considered features and differences of various options that could influence choice of RPR alternatives. Barring a change in the US approach to civilian and defense fuel cycles and precluding existing commercial reactors at government-owned sites, the most significant alternatives were identified as a CANDU-type HWR at Savannah River Plant (SRP) site or the Three Mile Island commercial reactor with reprocessing capability at Barnwell Nuclear Fuel Plant and at SRP.

  5. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  6. Weld monitor and failure detector for nuclear reactor system

    DOE Patents [OSTI]

    Sutton, Jr., Harry G. (Mt. Lebanon, PA)

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  7. Generic small modular reactor plant design.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  8. Probabilistic Safety Assessment of Tehran Research Reactor

    SciTech Connect (OSTI)

    Hosseini, Seyed Mohammad Hadi; Nematollahi, Mohammad Reza; Sepanloo, Kamran

    2004-07-01

    Probabilistic Safety Assessment (PSA) application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this paper the application of the Probabilistic Safety Assessment to the Tehran Research Reactor (TRR) is presented. The level 1 PSA application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using SAPHIRE software. This Study shows that the obtained core damage frequency for Tehran Research Reactor (8.368 E-6 per year) well meets the IAEA criterion for existing nuclear power plants (1E-4). But safety improvement suggestions are offered to decrease the most probable accidents. (authors)

  9. Nuclear reactor shutdown control rod assembly

    DOE Patents [OSTI]

    Bilibin, Konstantin (North Hollywood, CA)

    1988-01-01

    A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

  10. A Compact Quasi-axisymmetric Stellarator Reactor

    SciTech Connect (OSTI)

    L.P. Ku; the ARIES-CS Team

    2003-10-20

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils.

  11. Fifty years of progress in reactor safety

    SciTech Connect (OSTI)

    Okrent, D. (Univ. of California, Los Angeles (United States))

    1992-01-01

    This paper chronicles the major watershed occurrences in the evaluation of current reactor safety principles and concepts. The author covers such issues as the development of siting criteria in the early 1960s, development and design of engineered safety features and emergency cooling systems (ECCS), core meltdown scenarios, anticipated transients without scram (ATWS) issues, WASH-1400 Reactor Safety study employing probabilistic risk assessment (PRA) approaches, early PRAs conducted, development of safety goals in the 1980s, and reliability of AC power. Perhaps three of the most significant events related to operating reactors that occurred near the end of the 50-yr period were recognition of the problems of aging, completion of the NUREG-1150 study, and the development of a program on severe accident management.

  12. Reactor control rod timing system. [LMFBR

    DOE Patents [OSTI]

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  13. Mirror Advanced Reactor Study interim design report

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  14. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect (OSTI)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  15. Tritium issues in commercial pressurized water reactors

    SciTech Connect (OSTI)

    Jones, G. [Constellation Energy Group, R.E. Ginna Nuclear Power Plant, Ontario, NY (United States)

    2008-07-15

    Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

  16. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    SciTech Connect (OSTI)

    Ruger, C.J.; Higgins, J.C.

    1993-11-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970`s and early 1980`s raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.

  17. Testing of Gas Reactor Fuel and Materials in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2006-10-01

    The recent growth in interest for high temperature gas reactors has resulted in an increased need for materials and fuel testing for this type of reactor. The Advanced Test Reactor (ATR), located at the US Department of Energy’s Idaho National Laboratory, has long been involved in testing gas reactor fuel and materials, and has facilities and capabilities to provide the right environment for gas reactor irradiation experiments. These capabilities include both passive sealed capsule experiments, and instrumented/actively controlled experiments. The instrumented/actively controlled experiments typically contain thermocouples and control the irradiation temperature, but on-line measurements and controls for pressure and gas environment have also been performed in past irradiations. The ATR has an existing automated gas temperature control system that can maintain temperature in an irradiation experiment within very tight bounds, and has developed an on-line fission product monitoring system that is especially well suited for testing gas reactor particle fuel. The ATR’s control system, which consists primarily of vertical cylinders used to rotate neutron poisons/reflectors toward or away from the reactor core, provides a constant vertical flux profile over the duration of each operating cycle. This constant chopped cosine shaped axial flux profile, with a relatively flat peak at the vertical centre of the core, is more desirable for experiments than a constantly moving axial flux peak resulting from a control system of axially positioned control components which are vertically withdrawn from the core.

  18. Rodded shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Golden, Martin P. (Penn Township, Allegheny County, PA); Govi, Aldo R. (Greensburg, PA)

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  19. Pressurized melt ejection into scaled reactor cavities

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Ross, J.W.; Gilbert, D.W.

    1986-10-01

    This report describes four tests performed in the High-Pressure Melt Streaming Program (HIPS) using linear-scaled cavities of the Zion Nuclear Power Plant. These experiments were conducted to study the phenomena involved in high-pressure ejection of core debris into the cavity beneath the reactor pressure vessel. One-tenth and one-twentieth linear scale models of reactor cavities were constructed and instrumented. The first test used an apparatus constructed of alumina firebrick to minimize the potential interaction between the ejected melt and cavity material. The remaining three experiments used scaled representations of the Zion nuclear plant geometry, constructed of prototypic concrete composition.

  20. Theta 13 Determination with Nuclear Reactors

    E-Print Network [OSTI]

    F. Dalnoki-Veress

    2004-06-24

    Recently there has been a lot of interest around the world in the use of nuclear reactors to measure theta 13, the last undetermined angle in the 3-neutrino mixing scenario. In this paper the motivations for theta 13 measurement using short baseline nuclear reactor experiments are discussed. The features of such an experiment are described in the context of Double Chooz, which is a new project planned to start data-taking in 2008, and to reach a sensitivity of sinsq(2 theta 13) < 0.03.