National Library of Energy BETA

Sample records for reactor generic distributed

  1. Generic magnetic fusion reactor cost assessment

    SciTech Connect (OSTI)

    Sheffield, J.

    1984-01-01

    A generic D-T burning magnetic fusion reactor model shows that within the constraints set by generic limitations it is possible for magnetic fusion to be a competitive source of electricity in the 21st century.

  2. Generic small modular reactor plant design.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  3. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOE Patents [OSTI]

    Caldwell, J.T.; Kunz, W.E.; Atencio, J.D.

    1982-03-31

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify /sup 233/U, /sup 235/U and /sup 239/Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as /sup 240/Pu, /sup 244/Cm and /sup 252/Cf, and the spontaneous alpha particle emitter /sup 241/Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether permanent low-level burial is appropriate for the waste sample.

  4. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOE Patents [OSTI]

    Caldwell, John T.; Kunz, Walter E.; Atencio, James D.

    1984-01-01

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify .sup.233 U, .sup.235 U and .sup.239 Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as .sup.240 Pu, .sup.244 Cm and .sup.252 Cf, and the spontaneous alpha particle emitter .sup.241 Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether "permanent" low-level burial is appropriate for the waste sample.

  5. Effect of coal rank and process conditions on temperature distribution in a liquefaction reactor

    SciTech Connect (OSTI)

    Nalitham, R.V.; Moniz, M.

    1986-04-01

    The temperature distribution in a liquefaction reactor in the integrated TSL process is studied. The effects of gas and slurry superficial velocities, process solvent characteristics, reactor length, and catalyst sulfiding agent on the exotherm and temperature difference in the reactor are studied. A substantial temperature difference is observed with subbituminous coal as compared with bituminous coal, at comparable reactor conditions. Some of the factors that are believed to have contributed to the large exotherm and temperature difference in the reactor are slow kinetics and high reaction heat for subbituminous coal conversion and pyrrhotite catalysis.

  6. Helium bubble distributions in reactor tank repair specimens. Part 1

    SciTech Connect (OSTI)

    Tosten, M.H.; Kestin, P.A.

    1992-03-01

    This report discusses the Reactor Tank Repair (RTR) program was initiated to develop an in-tank repair process capable of repairing stress corrosion cracks within the SRS reactor tank walls, in the event that such a repair is needed. Previous attempts to repair C-reactor tank with a gas tungsten arc (GTA) welding process were unsuccessful due to significant cracking that occurred in the heat-affected-zones adjacent to the repair welds. It was determined that this additional cracking was a result of helium embrittlement caused by the combined effects of helium (existing within the tank walls), the high heat input associated with the GTA process, and weld shrinkage stresses. Based on the results of earlier studies it was suggested that the effects of helium embrittlement could be minimized by using a low heat input GMA process. Metallographic analysis played an important role throughout the investigation of alternative welding methods for the repair of helium-containing materials.

  7. Helium bubble distributions in reactor tank repair specimens

    SciTech Connect (OSTI)

    Tosten, M.H.; Kestin, P.A.

    1992-03-01

    This report discusses the Reactor Tank Repair (RTR) program was initiated to develop an in-tank repair process capable of repairing stress corrosion cracks within the SRS reactor tank walls, in the event that such a repair is needed. Previous attempts to repair C-reactor tank with a gas tungsten arc (GTA) welding process were unsuccessful due to significant cracking that occurred in the heat-affected-zones adjacent to the repair welds. It was determined that this additional cracking was a result of helium embrittlement caused by the combined effects of helium (existing within the tank walls), the high heat input associated with the GTA process, and weld shrinkage stresses. Based on the results of earlier studies it was suggested that the effects of helium embrittlement could be minimized by using a low heat input GMA process. Metallographic analysis played an important role throughout the investigation of alternative welding methods for the repair of helium-containing materials.

  8. Residence time distribution studies in a multiphase reactor under high temperature and pressure conditions

    SciTech Connect (OSTI)

    Nalitham, R.V.; Davies, O.L.

    1987-06-01

    The residence time distribution of the slurry phase in a coal liquefaction reactor is determined experimentally under high temperature and pressure conditions using native radioactive tracers. The experimental data are fitted to several exit age distribution models, and a model is selected based on the best fit. The effect of process conditions such as recycle gas rate, coal feed rate, reactor temperature, and solvent-to-coal ratio on the degree of backmixing and mean residence time is studied. Gas holdup is estimated from the experimental mean residence time, the nominal residence time, and the total reactor holdup. The effect of gas superficial velocity on gas holdup is studied.

  9. Savannah River Site generic data base development

    SciTech Connect (OSTI)

    Blanchard , A.

    2000-01-04

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values.

  10. Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

    SciTech Connect (OSTI)

    Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G.

    2012-04-04

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

  11. Generic Deep Geologic Disposal Safety Case | Department of Energy

    Office of Environmental Management (EM)

    Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case

  12. Residence Time Distribution Measurement and Analysis of Pilot-Scale Pretreatment Reactors for Biofuels Production: Preprint

    SciTech Connect (OSTI)

    Sievers, D.; Kuhn, E.; Tucker, M.; Stickel, J.; Wolfrum, E.

    2013-06-01

    Measurement and analysis of residence time distribution (RTD) data is the focus of this study where data collection methods were developed specifically for the pretreatment reactor environment. Augmented physical sampling and automated online detection methods were developed and applied. Both the measurement techniques themselves and the produced RTD data are presented and discussed.

  13. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    SciTech Connect (OSTI)

    Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A.; Barbot, L.; Domergue, C.; Destouches, C.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  14. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    DOE Patents [OSTI]

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  15. Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds

    SciTech Connect (OSTI)

    GJ Schuster, FA Simonen, SR Doctor

    2008-04-01

    The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

  16. REACTORS

    DOE Patents [OSTI]

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  17. INL Generic Robot Architecture

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  18. Fabrication Flaw Density and Distribution in the Repairs of Reactor Pressure Vessels

    SciTech Connect (OSTI)

    Schuster, George J.; Doctor, Steven R.; Simonen, Fredric A.

    2006-02-15

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw size and density distribution for the population of U.S. reactor pressure vessels (RPVs). The purpose of the generalized flaw distribution is to predict vessel specific flaw rates for use in probabilistic fracture mechanics calculations that estimate vessel failure probability. Considerable progress has been made on the construction of an engineering data base of fabrication flaws in U.S. nuclear RPVs. The fabrication processes and product forms used to construct U.S. RPVs are represented in the data base. A validation methodology has been developed for characterizing the flaws for size, shape, orientation, and composition. The relevance of construction records has been established for describing fabrication processes and product forms. The fabrication flaws were detected in material removed from cancelled nuclear power plants using high sensitivity nondestructive ultrasonic testing, and validated by other nondestructive evaluation (NDE) techniques, and complemented by destructive testing. This paper describes research that has generated data on welding flaws, which indicated that the largest flaws occur in weld repairs. Recent research results confirm that repair flaws are complex in composition and may include cracks on the repair ends. Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code for nuclear power plant components requires radiographic examinations (RT) of welds and requires repairs for RT indications that exceed code acceptable sizes. PNNL has previously obtained the complete construction records for two RPVs. Analysis of these records show a significant change in repair frequency.

  19. Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor

    Energy Savers [EERE]

    Vessel Manufacturing Within a Factory Environment - Volume 1 | Department of Energy 1 Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a Factory Environment - Volume 1 This study focused on the learning process for the factory built components of the Integrated Reactor Vessel of a generic 100MWe SMR using Pressurized Water Reactor Technology. PDF icon Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel

  20. Generic robot architecture

    DOE Patents [OSTI]

    Bruemmer, David J. (Idaho Falls, ID) [Idaho Falls, ID; Few, Douglas A. (Idaho Falls, ID) [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  1. Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor

    Energy Savers [EERE]

    Vessel Manufacturing Within a Factory Environment - Volume 2 | Department of Energy 2 Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a Factory Environment - Volume 2 This study presents a detailed analysis of the economics of Small Modular Reactors (SMRs), specifically a generic 100MWe conceptual design at the component level. PDF icon Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel Manufacturing Within a

  2. Generic Issue 87: Flexible wedge gate valve test program

    SciTech Connect (OSTI)

    Steele, R. Jr.; DeWall, K.G.; Watkins, J.C. )

    1991-01-01

    Qualification and flow isolation tests were conducted to analyze the ability of selected boiling water reactor process valves to perform their containment isolation functions at high energy pipe break conditions and other more normal flow conditions. Numerous parameters were measured to assess valve and motor-operator performance at various valve loadings and to assess industry practices for predicting valve and motor operator requirements. The valves tested were representative of those used in reactor water cleanup systems in boiling water reactors and those used in boiling water reactor high-pressure coolant injection (HPCI) steam lines. These tests will provide further information for the US Nuclear Regulatory Commission Generic Issue-87, Failure of the HPCI Steam Line Without Isolation,'' and Generic Letter 89--10, Safety-related Motor Operated Valve Testing and Surveillance.'' 6 refs., 54 figs., 4 tabs.

  3. Generic Photovoltaic System Models for WECC - A Status Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic Photovoltaic System Models for WECC - A Status Report WECC Renewable Energy Modeling Task Force Abstract - This paper describes generic models of photovoltaic (PV) systems developed for implementation in Western Electric Coordinating Council (WECC) base cases. The scope encompasses both transmission-connected, central station PV plants and distributed PV systems. These models were added to the WECC Approved Dynamic Model Library in March of 2014. Index Terms - Distributed generation,

  4. FHR Generic Design Criteria

    SciTech Connect (OSTI)

    Flanagan, G.F.; Holcomb, D.E.; Cetiner, S.M.

    2012-06-15

    The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC)–based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process.

  5. Generic Optimization Program

    Energy Science and Technology Software Center (OSTI)

    1998-07-01

    GenOpt is a generic optimization program for nonlinear, constrained optimization. For evaluating the objective function, any simulation program that communicates over text files can be coupled to GenOpt without code modification. No analytic properties of the objective function are used by GenOpt. ptimization algorithms and numerical methods can be implemented in a library and shared among users. Gencpt offers an interlace between the optimization algorithm and its kernel to make the implementation of new algorithmsmore »fast and easy. Different algorithms of constrained and unconstrained minimization can be added to a library. Algorithms for approximation derivatives and performing line-search will be implemented. The objective function is evaluated as a black-box function by an external simulation program. The kernel of GenOpt deals with the data I/O, result sotrage and report, interlace to the external simulation program, and error handling. An abstract optimization class offers methods to interface the GenOpt kernel and the optimization algorithm library.« less

  6. Generic Geophysical Permit | Open Energy Information

    Open Energy Info (EERE)

    Generic Geophysical Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Generic Geophysical Permit Published Publisher Not Provided, Date Not...

  7. Hanford Generic Interim Safety Basis

    SciTech Connect (OSTI)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  8. Descriptive Model of Generic WAMS

    SciTech Connect (OSTI)

    Hauer, John F.; DeSteese, John G.

    2007-06-01

    The Department of Energy’s (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation’s electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.

  9. GLAD: A Generic LAttice Debugger

    SciTech Connect (OSTI)

    Lee, M.J.

    1991-11-01

    Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings.

  10. Nuclear power plant Generic Aging Lessons Learned (GALL). Appendix B

    SciTech Connect (OSTI)

    Kasza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U.

    1996-12-01

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This report consists of Volume 2, which consists of the GALL literature review tables for the NUMARC Industry Reports reviewed for the report.

  11. Generic disposal concepts and thermal load management for larger...

    Office of Scientific and Technical Information (OSTI)

    Generic disposal concepts and thermal load management for larger waste packages. Citation Details In-Document Search Title: Generic disposal concepts and thermal load management...

  12. Evaluation of Generic EBS Design Concepts and Process Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design...

  13. Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor

    SciTech Connect (OSTI)

    Satterfield, C.N.; Huff, G.A. Jr.

    1982-01-01

    Studies at 234 to 269/sup 0/C and at 790 kPa showed a precise linear relationship between the log of mole fraction m/sub n/ of products of carbon number n, and n, as predicted by the Flory molecular-weight distribution provided that all products, including oxygenated species, are considered. The relationship held over more than four orders of magnitude of m/sub n/, values of n of from 1 to about 20, and over a wide range of gas composition. The chain growth probability factor, ..cap alpha.., increased slightly from 0.67 at 269/sup 0/C to 0.71 at 234/sup 0/C. 8 figures, 1 table.

  14. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  15. Distribution of Correspondence

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-30

    Defines correct procedures for distribution of correspondence to the Naval Reactors laboratories. Does not cancel another directive. Expired 8-30-97.

  16. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  17. Generic copy of DOE's IDIQ ESPC contract | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generic copy of DOE's IDIQ ESPC contract Generic copy of DOE's IDIQ ESPC contract Generic copy of the U.S. Department of Energy's Indefinite Delivery Indefinite Quantity (IDIQ) Energy Savings Performance Contracts (ESPCs) contract. PDF icon generic_super_espc.pdf More Documents & Publications DOE IDIQ ESPC Contract Sample DOE ESPC Task Order Request for Proposal (TO-RFP) Template Guide to Government Witnessing and Review of Measurement and Verification Activities

  18. PROGRESS ON GENERIC PHASE-FIELD METHOD DEVELOPMENT

    SciTech Connect (OSTI)

    Biner, Bullent; Tonks, Michael; Millett, Paul C.; Li, Yulan; Hu, Shenyang Y.; Gao, Fei; Sun, Xin; Martinez, E.; Anderson, D.

    2012-09-26

    In this report, we summarize our current collobarative efforts, involving three national laboratories: Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboatory (LANL), to develop a computational framework for homogenous and heterogenous nucleation mechanisms into the generic phase-field model. During the studies, the Fe-Cr system was chosen as a model system due to its simplicity and availability of reliable thermodynamic and kinetic data, as well as the range of applications of low-chromium ferritic steels in nuclear reactors. For homogenous nucleation, the relavant parameters determined from atomistic studies were used directly to determine the energy functional and parameters in the phase-field model. Interfacial energy, critical nucleus size, nucleation rate, and coarsening kinetics were systematically examined in two- and three- dimensional models. For the heteregoneous nucleation mechanism, we studied the nucleation and growth behavior of chromium precipitates due to the presence of dislocations. The results demonstrate that both nucleation schemes can be introduced to a phase-field modeling algorithm with the desired accuracy and computational efficiency.

  19. CONVECTION REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  20. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.

  1. Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A

    SciTech Connect (OSTI)

    Kaza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U.

    1996-12-01

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.

  2. Small modular reactors (SMRs) such...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small modular reactors (SMRs) such as the one illustrated in Figure 1 are being considered by the commercial nuclear power industry as an option for more distributed generation and...

  3. Application of Generic Disposal System Models | Department of Energy

    Energy Savers [EERE]

    Application of Generic Disposal System Models Application of Generic Disposal System Models Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling; these are directly addressed in the Generic Disposal Systems Analysis (GDSA) work. This report describes specific GDSA activities during fiscal year 2015 toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA

  4. Enhancements to Generic Disposal System Modeling Capabilities Rev2 |

    Office of Environmental Management (EM)

    Department of Energy Enhancements to Generic Disposal System Modeling Capabilities Rev2 Enhancements to Generic Disposal System Modeling Capabilities Rev2 Contributions are described for the development of an enhanced generic disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and couplings associated with a geologic repository for UNF and HLW. The enhanced disposal system

  5. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  6. Generic implications of ATWS events at the Salem Nuclear Power Plant: generic implications. Vol. 1

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This report is the first of two volumes. It documents the work of an interoffice, interdisciplinary NRC Task Force established to determine the generic implications of two anticipated transients without scram (ATWS) at the Salem Nuclear Power Plant, Unit 1 on February 22 and 25, 1983. A second report will document the NRC actions to be taken based on the work of the Task Force. The Task Force was established to address three questions: (1) Is there a need for prompt action for similar equipment in other facilities. (2) Are NRC and its licensees learning the sefety-management lessons, and, (3) How should the priority and content of the ATWS rule be adjusted. A number of short-term actions were taken through Bulletins and an Information Notice. Intermediate-term actions to address the generic issues will be addressed in the separate report and implemented through appropriate regulatory mechanisms.

  7. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect (OSTI)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  8. System Design - Lessons Learned, Generic Concepts, Characteristics &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts | Department of Energy Design - Lessons Learned, Generic Concepts, Characteristics & Impacts System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_11_hoffman.pdf More Documents & Publications Fuel Cell 101 DOE-DOD Shipboard APU Workshop Agenda Manufacturing Fuel Cell Manhattan Project

  9. Energy deposition in STARFIRE reactor components

    SciTech Connect (OSTI)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.

  10. Generic Argillite/Shale Disposal Reference Case

    SciTech Connect (OSTI)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

  11. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  12. Effective Higgs vertices in the generic MSSM

    SciTech Connect (OSTI)

    Crivellin, Andreas

    2011-03-01

    In this article we consider chirally enhanced corrections to Higgs vertices in the most general MSSM. We include the contributions stemming from bilinear terms, from the trilinear A terms, and from their nonholomorphic analogues, the A{sup '} terms, which couple squarks to the ''wrong'' Higgs field. We perform a consistent renormalization of the Higgs vertices beyond the decoupling limit (M{sub SUSY{yields}{infinity}}), using a purely diagrammatic approach. The cancellation of the different contributions in and beyond the decoupling limit is discussed and the possible size of decoupling effects which occur if the supersymmetry particles are not much heavier than the electroweak scale are examined. In the decoupling limit we recover the results obtained in the effective-field-theory approach. For the nonholomorphic A{sup '} terms we find the well known tan{beta} enhancement in the down sector similar to the one for terms proportional to {mu}. Because of the a priori generic flavor structure of these trilinear terms large flavor-changing neutral Higgs couplings can be induced. We also discover new tan{beta} enhanced contributions involving the usual holomorphic A terms, which were not discussed before in the literature. These corrections occur only if also flavor-diagonal nonholomorphic corrections to the Higgs couplings are present. This reflects the fact that the A terms, and also the chirality-changing self-energies, are physical quantities and cannot be absorbed into renormalization constants.

  13. Evaluation on the Feasibility of Using Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density/Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2014-06-10

    This technical letter report provides the status of an assessment undertaken by PNNL at the request of the NRC to verify the capability of periodic ASME-required volumetric examinations of reactor vessels to characterize the density and distribution of flaws of interest for applying §50.61a on a plant-by-plant basis. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), "Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events," establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. Recently, the NRC completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed and promulgated an alternate PTS rule, §50.61a, that can be implemented by PWR licensees. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants.

  14. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  15. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  16. Reactor apparatus

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA)

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  17. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  18. NUCLEAR REACTOR

    DOE Patents [OSTI]

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  19. Alternate-fuel reactor studies

    SciTech Connect (OSTI)

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  20. Air Force Generic In-Kind Consideration Trust Agreement | Open...

    Open Energy Info (EERE)

    Trust Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Air Force Generic In-Kind Consideration Trust AgreementLegal Abstract...

  1. Air Force Generic In-Kind Consideration Delivery Agreement |...

    Open Energy Info (EERE)

    Delivery Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Air Force Generic In-Kind Consideration Delivery AgreementLegal...

  2. Integration of EBS Models with Generic Disposal System Models

    Broader source: Energy.gov [DOE]

    This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the UFD campaign.

  3. 3116 WASTE DETERMINATIONS PUBLIC MEETINGS AND GENERIC TECHNICAL ISSUES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUMMARIES | Department of Energy 116 WASTE DETERMINATIONS PUBLIC MEETINGS AND GENERIC TECHNICAL ISSUES SUMMARIES 3116 WASTE DETERMINATIONS PUBLIC MEETINGS AND GENERIC TECHNICAL ISSUES SUMMARIES Below are public meeting summaries and general technical issue summaries relating to 3116 waste determinations. The 3116 Public Meeting Summaries cover public meetings that the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) periodically host to provide the status of activities

  4. Generic equilibration dynamics of planar defects in trapped atomic

    Office of Scientific and Technical Information (OSTI)

    superfluids (Journal Article) | DOE PAGES Generic equilibration dynamics of planar defects in trapped atomic superfluids « Prev Next » Title: Generic equilibration dynamics of planar defects in trapped atomic superfluids Authors: Scherpelz, Peter ; Padavić, Karmela ; Murray, Andy ; Glatz, Andreas ; Aranson, Igor S. ; Levin, K. Publication Date: 2015-03-18 OSTI Identifier: 1179955 Type: Publisher's Accepted Manuscript Journal Name: Physical Review A Additional Journal Information: Journal

  5. Descriptive Model of a Generic WAMS | Department of Energy

    Energy Savers [EERE]

    Descriptive Model of a Generic WAMS Descriptive Model of a Generic WAMS The Department of Energy's (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation's electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the

  6. Generic equilibration dynamics of planar defects in trapped atomic

    Office of Scientific and Technical Information (OSTI)

    superfluids (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Generic equilibration dynamics of planar defects in trapped atomic superfluids Citation Details In-Document Search Title: Generic equilibration dynamics of planar defects in trapped atomic superfluids Authors: Scherpelz, Peter ; Padavić, Karmela ; Murray, Andy ; Glatz, Andreas ; Aranson, Igor S. ; Levin, K. Publication Date: 2015-03-18 OSTI Identifier: 1179955 Type: Publisher's Accepted

  7. Categorizing Threat Building and Using a Generic Threat Matrix | Department

    Energy Savers [EERE]

    of Energy Categorizing Threat Building and Using a Generic Threat Matrix Categorizing Threat Building and Using a Generic Threat Matrix The key piece of knowledge necessary for building defenses capable of withstanding or surviving cyber and kinetic attacks is an understanding of the capabilities posed by threats to a government, function, or system. With the number of threats continuing to increase, it is no longer feasible to enumerate the capabilities of all known threats and then build

  8. Generic Disposal System Modeling, Fiscal Year 2011 Progress Report |

    Office of Environmental Management (EM)

    Department of Energy Disposal System Modeling, Fiscal Year 2011 Progress Report Generic Disposal System Modeling, Fiscal Year 2011 Progress Report The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further

  9. DOE-STD-0100T; DOE Standard Licensed Reactor Nuclear Safety Criteria Applicable to DOE Reactors

    Office of Environmental Management (EM)

    00T November 1993 Superseding DOE/NE-0100T April 1991 DOE STANDARD LICENSED REACTOR NUCLEAR SAFETY CRITERIA APPLICABLE TO DOE REACTORS U.S. Department of Energy Washington, D.C. 20585 AREA SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly frorn the best available copy. Available to DOE and DOE contractors from the Office of Scientific

  10. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  11. Bioconversion reactor

    DOE Patents [OSTI]

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  12. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  13. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  14. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    SciTech Connect (OSTI)

    Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2012-07-01

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)

  15. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  16. REACTOR MONITORING

    DOE Patents [OSTI]

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  17. HTGR generic technology program. Semiannual report ending March 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants.

  18. Generic repository design concepts and thermal analysis (FY11).

    SciTech Connect (OSTI)

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

  19. Space reactor electric systems: system integration studies, Phase 1 report

    SciTech Connect (OSTI)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-03-29

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied.

  20. Photocatalytic reactor

    DOE Patents [OSTI]

    Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

    1999-01-19

    A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

  1. Assessment of industrial attitudes toward generic research needs in tribology

    SciTech Connect (OSTI)

    Sibley, L.B.; Zlotnick, M.; Levinson, T.M.

    1985-09-01

    Based on extended discussions during visits with 27 companies representing 13 different parts of the tribology industry (such as bearings, lubricants, coatings, powerplants), it is apparent that only a tiny fraction of the large sums publicly reported as R and D expenditures by industry are used to fund generic tribology research. For example, of the greater than $2 B expenditures reported for R and D in the lubricants sector for 1982, the estimated total for generic tribology research was $12 M. This was the largest expenditure in any sector of the tribology industry and one-third of the total of $36 M. In the automotive industry out of a reported expenditure of $4 B, the estimated generic tribology research was $3 M. In some segments of the tribology industry, for example coatings and filters, there were no expenditures on generic research. There was little tendency to improve the state of the art of the tribology industry through long-term investment in generic R and D in ways that would foster innovation and productivity of energy conservation technology. Expenditures were oriented to development of specific commercial and military products, or to basic research focused on unspecified far term results, although useful spin-off of military developments into commercial fields sometimes occurs. There was a broad consensus in the companies visited that existing research results were not always made easily accessible to potential users in industry. The implication was that industry might benefit more if a larger fraction of the funds were devoted to putting the research results into a form design and development engineers could more readily apply. The need for a more effective presentation of research results was expressed with greater urgency at the smaller companies, but there seemed to be a broad consensus on the need for improvement. Recommendations are given.

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Environment for Reactor Applications (VERA) CASL's Virtual Environment for Reactor Applications (VERA) prediction of the reactor coolant enthalpy distribution in a pressurized water reactor (PWR) at hot full power (left, 3D quarter-core; right, the plane at the exit of the core). Read More An example of data transfer on a shared interface between two different spacer grid meshes using DTK An example of data transfer on a shared interface between two different spacer grid meshes using

  3. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  4. Electricity Generating Portfolios with Small Modular Reactors | Department

    Office of Environmental Management (EM)

    of Energy Electricity Generating Portfolios with Small Modular Reactors Electricity Generating Portfolios with Small Modular Reactors This paper provides a method for estimating the probability distributions of the levellized costs of electricity. These distributions can be used to find cost-risk minimizing portfolios of electricity generating assets including Combined-Cycle Gas Turbines, coal-fired power plants with sulfur scrubbers, and Small Modular Reactors, SMRs. PDF icon Electricity

  5. Small Modular Reactors - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River National Laboratory (SRNL) has announced several partnerships to bring refrigerator-sized modular nuclear reactors, known as Small Modular Reactors or SMRs, to the...

  6. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  7. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect (OSTI)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  8. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect (OSTI)

    Kou, Gefei; Hadley, Stanton W; Markham, Penn N; Liu, Yilu

    2013-12-01

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  9. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  10. NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL

    SciTech Connect (OSTI)

    2012-03-26

    The RELAP5-3D Version 3.x code has been developed for best-estimate transient simulation of nuclear reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems including pressurized water reactors, boiling water reactors, Soviet-designed reactors, heavy water reactors, gas-cooled reactors, liquid metal and molten salt cooled reactors, and even fusion reactors. Numerical models include multi-dimensional hydrodynamics, 1- and 2-D heat transfer in metal walls, 0-, 1-, 2-, and 3-D neutron kinetics, trips, and control systems. Secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems.

  11. NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL

    Energy Science and Technology Software Center (OSTI)

    2012-03-26

    The RELAP5-3D Version 3.x code has been developed for best-estimate transient simulation of nuclear reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents and operational transients such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems including pressurized watermore » reactors, boiling water reactors, Soviet-designed reactors, heavy water reactors, gas-cooled reactors, liquid metal and molten salt cooled reactors, and even fusion reactors. Numerical models include multi-dimensional hydrodynamics, 1- and 2-D heat transfer in metal walls, 0-, 1-, 2-, and 3-D neutron kinetics, trips, and control systems. Secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems.« less

  12. SRS Small Modular Reactors

    ScienceCinema (OSTI)

    None

    2014-05-21

    The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

  13. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  14. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  15. Small modular reactors (SMRs) such as the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small modular reactors (SMRs) such as the one illustrated in Figure 1 are being considered by the commercial nuclear power industry as an option for more distributed generation and for replace- ment of older fossil fuel generating facilities. SMRs are more compact than operating pressurized water reactors (PWRs), producing from 50 MWe to 200 MWe as compared to 1000 MWe or higher for their full-sized cousins, and are offered as "expandable" units; that is, their modular design allows

  16. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  17. Basis for NGNP Reactor Design Down-Selection

    SciTech Connect (OSTI)

    L.E. Demick

    2011-11-01

    The purpose of this paper is to identify the extent of technology development, design and licensing maturity anticipated to be required to credibly identify differences that could make a technical choice practical between the prismatic and pebble bed reactor designs. This paper does not address a business decision based on the economics, business model and resulting business case since these will vary based on the reactor application. The selection of the type of reactor, the module ratings, the number of modules, the configuration of the balance of plant and other design selections will be made on the basis of optimizing the Business Case for the application. These are not decisions that can be made on a generic basis.

  18. Development and application of the dynamic system doctor to nuclear reactor probabilistic risk assessments.

    SciTech Connect (OSTI)

    Kunsman, David Marvin; Aldemir, Tunc; Rutt, Benjamin; Metzroth, Kyle; Catalyurek, Umit; Denning, Richard; Hakobyan, Aram; Dunagan, Sean C.

    2008-05-01

    This LDRD project has produced a tool that makes probabilistic risk assessments (PRAs) of nuclear reactors - analyses which are very resource intensive - more efficient. PRAs of nuclear reactors are being increasingly relied on by the United States Nuclear Regulatory Commission (U.S.N.R.C.) for licensing decisions for current and advanced reactors. Yet, PRAs are produced much as they were 20 years ago. The work here applied a modern systems analysis technique to the accident progression analysis portion of the PRA; the technique was a system-independent multi-task computer driver routine. Initially, the objective of the work was to fuse the accident progression event tree (APET) portion of a PRA to the dynamic system doctor (DSD) created by Ohio State University. Instead, during the initial efforts, it was found that the DSD could be linked directly to a detailed accident progression phenomenological simulation code - the type on which APET construction and analysis relies, albeit indirectly - and thereby directly create and analyze the APET. The expanded DSD computational architecture and infrastructure that was created during this effort is called ADAPT (Analysis of Dynamic Accident Progression Trees). ADAPT is a system software infrastructure that supports execution and analysis of multiple dynamic event-tree simulations on distributed environments. A simulator abstraction layer was developed, and a generic driver was implemented for executing simulators on a distributed environment. As a demonstration of the use of the methodological tool, ADAPT was applied to quantify the likelihood of competing accident progression pathways occurring for a particular accident scenario in a particular reactor type using MELCOR, an integrated severe accident analysis code developed at Sandia. (ADAPT was intentionally created with flexibility, however, and is not limited to interacting with only one code. With minor coding changes to input files, ADAPT can be linked to other such codes.) The results of this demonstration indicate that the approach can significantly reduce the resources required for Level 2 PRAs. From the phenomenological viewpoint, ADAPT can also treat the associated epistemic and aleatory uncertainties. This methodology can also be used for analyses of other complex systems. Any complex system can be analyzed using ADAPT if the workings of that system can be displayed as an event tree, there is a computer code that simulates how those events could progress, and that simulator code has switches to turn on and off system events, phenomena, etc. Using and applying ADAPT to particular problems is not human independent. While the human resources for the creation and analysis of the accident progression are significantly decreased, knowledgeable analysts are still necessary for a given project to apply ADAPT successfully. This research and development effort has met its original goals and then exceeded them.

  19. Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies

    DOE Patents [OSTI]

    Sun, Yugang; Hu, Yongxing

    2015-05-26

    A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.

  20. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect (OSTI)

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ?50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  1. Attrition reactor system

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  2. Attrition reactor system

    DOE Patents [OSTI]

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  3. B Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    War II, B Reactor produced plutonium used in the Trinity Test, as well as for the atomic bomb dropped on Nagasaki, Japan, to end World War II. The reactor was designed and built...

  4. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  5. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  6. Advanced Test Reactor Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  7. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  8. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  9. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  10. Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling

    SciTech Connect (OSTI)

    Leung, V.T.

    1993-12-01

    This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

  11. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  12. Generic CSP Performance Model for NREL's System Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2011-08-01

    The suite of concentrating solar power (CSP) modeling tools in NREL's System Advisor Model (SAM) includes technology performance models for parabolic troughs, power towers, and dish-Stirling systems. Each model provides the user with unique capabilities that are catered to typical design considerations seen in each technology. Since the scope of the various models is generally limited to common plant configurations, new CSP technologies, component geometries, and subsystem combinations can be difficult to model directly in the existing SAM technology models. To overcome the limitations imposed by representative CSP technology models, NREL has developed a 'Generic Solar System' (GSS) performance model for use in SAM. This paper discusses the formulation and performance considerations included in this model and verifies the model by comparing its results with more detailed models.

  13. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  14. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  15. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  16. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    SciTech Connect (OSTI)

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A.

    1997-08-01

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  17. Fission rate measurements in fuel plate type assembly reactor cores

    SciTech Connect (OSTI)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs.

  18. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  19. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D. (Chicago, IL)

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  20. NPR (New Production Reactor) capacity cost evaluation

    SciTech Connect (OSTI)

    1988-07-01

    The ORNL Cost Evaluation Technical Support Group (CETSG) has been assigned by DOE-HQ Defense Programs (DP) the task defining, obtaining, and evaluating the capital and life-cycle costs for each of the technology/proponent/site/revenue possibilities envisioned for the New Production Reactor (NPR). The first part of this exercise is largely one of accounting, since all NPR proponents use different accounting methodologies in preparing their costs. In order to address this problem of comparing ''apples and oranges,'' the proponent-provided costs must be partitioned into a framework suitable for all proponents and concepts. If this is done, major cost categories can then be compared between concepts and major cost differences identified. Since the technologies proposed for the NPR and its needed fuel and target support facilities vary considerably in level of technical and operational maturity, considerable care must be taken to evaluate the proponent-derived costs in an equitable manner. The use of cost-risk analysis along with derivation of single point or deterministic estimates allows one to take into account these very real differences in technical and operational maturity. Chapter 2 summarizes the results of this study in tabular and bar graph form. The remaining chapters discuss each generic reactor type as follows: Chapter 3, LWR concepts (SWR and WNP-1); Chapter 4, HWR concepts; Chapter 5, HTGR concept; and Chapter 6, LMR concept. Each of these chapters could be a stand-alone report. 39 refs., 36 figs., 115 tabs.

  1. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  2. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  3. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  4. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  5. H Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities H Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  6. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  7. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Lambert, H; Elayat, H A; O?Connell, W J; Szytel, L; Dreicer, M

    2007-05-31

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives.

  8. Progress in reliability of fast reactor operation and new trends to increased inherent safety

    SciTech Connect (OSTI)

    Merk, Bruno; Stanculescu, Alexander; Chellapandi, Perumal; Hill, Robert

    2015-06-01

    The reasons for the renewed interest in fast reactors and an overview of the progress in sodium cooled fast reactor operation in the last ten years are given. The excellent operational performance of sodium cooled fast reactors in this period is highlighted as a sound basis for the development of new fast reactors. The operational performance of the BN-600 is compared and evaluated against the performance of German light water reactors to assess the reliability. The relevance of feedback effects for safe reactor design is described, and a new method for the enhancement of feedback effects in fast reactors is proposed. Experimental reactors demonstrating the inherent safety of advanced sodium cooled fast reactor designs are described and the potential safety improvements resulting from the use of fine distributed moderating material are discussed.

  9. REFLECTOR FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  10. Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide Ross Bartlett Oak Ridge National Laboratory CASL-U-2014-0075-000-a CASL-U-2014-0075-000-a Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide Author: Roscoe A. Bartlett Contact: bartlett.roscoe@gmail.com Abstract This document is generated from the generic template body docu- ment TribitsBuildQickRefBody.rst and provides a general project- independent quick reference on how to configure, build, test, and

  11. Generic vehicle speed models based on traffic simulation: Development and application

    SciTech Connect (OSTI)

    Margiotta, R.; Cohen, H.; Elkins, G.; Rathi, A.; Venigalla, M.

    1994-12-15

    This paper summarizes the findings of a research project to develop new methods of estimating speeds for inclusion in the Highway Performance Monitoring System (HPMS) Analytical Process. The paper focuses on the effects of traffic conditions excluding incidents (recurring congestion) on daily average ed and excess fuel consumption. A review of the literature revealed that many techniques have been used to predict speeds as a function of congestion but most fail to address the effects of queuing. However, the method of Dowling and Skabardonis avoids this limitation and was adapted to the research. The methodology used the FRESIM and NETSIM microscopic traffic simulation models to develop uncongested speed functions and as a calibration base for the congested flow functions. The chief contributions of the new speed models are the simplicity of application and their explicit accounting for the effects of queuing. Specific enhancements include: (1) the inclusion of a queue discharge rate for freeways; (2) use of newly defined uncongested flow speed functions; (3) use of generic temporal distributions that account for peak spreading; and (4) a final model form that allows incorporation of other factors that influence speed, such as grades and curves. The main limitation of the new speed models is the fact that they are based on simulation results and not on field observations. They also do not account for the effect of incidents on speed. While appropriate for estimating average national conditions, the use of fixed temporal distributions may not be suitable for analyzing specific facilities, depending on observed traffic patterns. Finally, it is recommended that these and all future speed models be validated against field data where incidents can be adequately identified in the data.

  12. Generic effluent monitoring system certification for salt well portable exhauster

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Maughan, A.D.

    1997-09-01

    Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as it is applied to the Salt Well Portable Exhauster, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/Salt Well Exhauster system meets all applicable performance criteria. Pacific Northwest National Laboratory conducted the testing using a mockup of the Salt Well Portable Exhauster stack at the Numatec Hanford Company`s 305 Building. The stack/sampling system configuration tested was designed to provide airborne effluent control for the Salt Well pumping operation at some U.S. Department of Energy (DOE) radioactive waste storage tanks at the Hanford Site, Washington. The portable design of the exhauster allows it to be used in other applications and over a range of exhaust air flowrates (approximately 200 - 1100 cubic feet per minute). The unit includes a stack section containing the sampling probe and another stack section containing the airflow, temperature and humidity sensors. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles.

  13. Generic effluent monitoring system certification for AP-40 exhauster stack

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Davis, W.E.; Bussell, J.H.; Maughan, A.D.

    1997-09-01

    Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as applied to the AP-40 exhauster stack, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/AP-40 system meets all applicable performance criteria. The contaminant mixing tests were conducted by Pacific Northwest National Laboratory (PNNL) at the wind tunnel facility, 331-H Building, using a mockup of the actual stack. The particle sample transport tests were conducted by PNNL at the Numatec Hanford Company`s 305 Building. The AP-40 stack is typical of several 10-in. diameter stacks that discharge the filtered ventilation air from tank farms at the U.S. Department of Energy`s Hanford Site in Richland, Washington. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles. Unrelated to the performance criteria, it was found that the record sample filter holder exhibited symptoms of sample bypass around the particle collection filter. This filter holder should either be modified or replaced with a different type. 10 refs., 8 figs., 6 tabs.

  14. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  15. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  16. Reactor Safety Research Programs

    SciTech Connect (OSTI)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  18. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    SciTech Connect (OSTI)

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Rivard, Mark J.; Siebert, Frank-André; Sloboda, Ron S.; and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. Results: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ACE algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 ± 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ACE at clinically relevant distances. Conclusions: A hypothetical, generic HDR {sup 192}Ir source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.

  19. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  20. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    SciTech Connect (OSTI)

    Sevougian, S. David; Freeze, Geoffrey A.; Gardner, William Payton; Hammond, Glenn Edward; Mariner, Paul

    2014-09-01

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  1. NUCLEAR REACTOR FUEL SYSTEMS

    DOE Patents [OSTI]

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  2. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  3. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  4. CONTROL FOR NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  5. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  6. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  7. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  8. N Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities N Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A...

  9. C Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area...

  10. F Reactor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities F Reactor About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S...

  11. B Reactor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Signature Facilities » B Reactor B Reactor B Reactor Completed in September 1944, the B Reactor was the world's first large-scale plutonium production reactor. As at Oak Ridge, the need for labor turned Hanford into an atomic boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built on a much larger scale and used water rather than air as a coolant. Whereas the X-10 had an

  12. Compact power reactor

    DOE Patents [OSTI]

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  13. Molten metal reactors

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  14. Shielded fluid stream injector for particle bed reactor

    DOE Patents [OSTI]

    Notestein, John E. (Morgantown, WV)

    1993-01-01

    A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

  15. F Reactor Inspection

    ScienceCinema (OSTI)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-11-24

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  16. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  17. Hybrid energy systems (HESs) using small modular reactors (SMRs)

    SciTech Connect (OSTI)

    S. Bragg-Sitton

    2014-10-01

    Large-scale nuclear reactors are traditionally operated for a singular purpose: steady-state production of dispatchable baseload electricity that is distributed broadly on the electric grid. While this implementation is key to a sustainable, reliable energy grid, small modular reactors (SMRs) offer new opportunities for increased use of clean nuclear energy for both electric and thermal ap plications in more locations – while still accommodating the desire to support renewable production sources.

  18. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  19. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

  20. Light Water Reactor Sustainability Technical Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high...

  1. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  2. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  3. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  4. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  5. Dynamic bed reactor

    DOE Patents [OSTI]

    Stormo, Keith E. (Moscow, ID)

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  6. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  7. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  8. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  9. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  10. MEANS FOR SHIELDING REACTORS

    DOE Patents [OSTI]

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  11. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  12. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (OSTI)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  13. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  14. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  15. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E.; Camp, A.L.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  16. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  17. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  18. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  19. Generic TriBITS Project, Build, Test, and Install Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic TriBITS Project, Build, Test, and Install Reference Guide Author: Roscoe A. Bartlett Contact: bartlett.roscoe@gmail.com Date: 2015-08-27 Version: tribits_start-1317-g4908e4c Abstract: This document is generated from the generic template body document TribitsBuildReferenceBody.rst and provides a general project-independent reference on how to configure, build, test, and install a project that uses the TriBITS CMake build system. The primary audience of this particular build of this

  20. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an LEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbines and process heat plants.

  1. B Reactor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built...

  2. Nuclear plant-aging research on reactor protection systems

    SciTech Connect (OSTI)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  3. Piqua, Ohio, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    Piqua, Ohio, Decommissioned Reactor Site This fact sheet provides information about the Piqua, Ohio, Decommissioned Reactor. This site is managed by the U.S. Department of Energy Office of Legacy Management under the DOE Defense Decontamination and Decommissioning (D&D) Program. Location of the Piqua Decommissioned Reactor Site Description and History The Piqua, Ohio, Decommissioned Reactor site is located in southwestern Ohio in the city of Piqua on the east bank of the Great Miami River,

  4. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  5. Reactor Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Materials Reactor Materials The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE objectives. This will be accomplished through innovative materials development, promoting the use of modern materials science and establishing new, shared research partnerships. Research into specific degradation modes or material needs unique to a particular reactor

  6. Hallam, Nebraska, Decommissioned Reactor Site

    Office of Legacy Management (LM)

    D&D D&D Hallam, Nebraska, Decommissioned Reactor Site This fact sheet provides information about the Hallam, Nebraska, Decommissioned Reactor Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Defense Decontamination and Decommissioning (D&D) Program. Location of the Hallam Decommissioned Reactor Site Description and History The Hallam decommissioned reactor site is in southeastern Nebraska, approximately 19 miles south of Lincoln. The

  7. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  8. Cermet fuel reactors

    SciTech Connect (OSTI)

    Cowan, C.L.; Palmer, R.S.; Van Hoomissen, J.E.; Bhattacharyya, S.K.; Barner, J.O.

    1987-09-01

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. Key features of the cermet fueled reactor design are (1) the ability to achieve very high coolant exit temperatures, and (2) thermal shock resistance during rapid power changes, and (3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, thre is a potential for achieving a long operating life because of (1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and (2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core. In addition, the neutronic properties of the refractory materials assure that the reactor remains substantially subcritical under conditions of water immersion. It is concluded that cermet fueled reactors can be utilized to meet the power requirements for a broad range of advanced space applications. 4 refs., 4 figs., 3 tabs.

  9. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  10. JACKETED REACTOR FUEL ELEMENT

    DOE Patents [OSTI]

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  11. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  12. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  13. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  14. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  15. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  16. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOE Patents [OSTI]

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  17. EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

    1963-12-24

    An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

  18. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  19. Method of producing gaseous products using a downflow reactor

    DOE Patents [OSTI]

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  20. Reactor vessel support system. [LMFBR

    DOE Patents [OSTI]

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  1. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect (OSTI)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  2. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

  3. Nuclear reactor construction with bottom supported reactor vessel

    DOE Patents [OSTI]

    Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  4. HOMOGENEOUS NUCLEAR REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  5. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  6. ENGINEERING TEST REACTOR

    DOE Patents [OSTI]

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  7. Neutronic reactor construction

    DOE Patents [OSTI]

    Huston, Norman E.

    1976-07-06

    1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.

  8. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  9. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  10. Nuclear reactor shutdown system

    DOE Patents [OSTI]

    Bhate, Suresh K. (Niskayuna, NY); Cooper, Martin H. (Monroeville, PA); Riffe, Delmar R. (Murrysville, PA); Kinney, Calvin L. (Penn Hills, PA)

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  11. LOADING MACHINE FOR REACTORS

    DOE Patents [OSTI]

    Simon, S.L.

    1959-07-01

    An apparatus is described for loading or charging slugs of fissionable material into a nuclear reactor. The apparatus of the invention is a "muzzle loading" type comprising a delivery tube or muzzle designed to be brought into alignment with any one of a plurality of fuel channels. The delivery tube is located within the pressure shell and it is also disposed within shielding barriers while the fuel cantridges or slugs are forced through the delivery tube by an externally driven flexible ram.

  12. In situ reactor

    DOE Patents [OSTI]

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  13. NUCLEAR REACTOR CORE DESIGN

    DOE Patents [OSTI]

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  14. Nuclear reactor sealing system

    DOE Patents [OSTI]

    McEdwards, James A. (Calabasas, CA)

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  15. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  16. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  17. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

  18. Advanced Reactor Technology Documents | Department of Energy

    Energy Savers [EERE]

    Nuclear Reactor Technologies » Advanced Reactor Technologies » Advanced Reactor Technology Documents Advanced Reactor Technology Documents January 30, 2013 Advanced Reactor Concepts Technical Review Panel Report This report documents the establishment of a technical review process and the findings of the Advanced Reactor Concepts (ARC) Technical Review Panel (TRP).1 The intent of the process is to identify R&D needs for viable advanced reactor concepts in order to inform DOE-NE R&D

  19. Advanced Nuclear Reactors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key

  20. F Reactor Inspection | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F Reactor Inspection F Reactor Inspection Addthis Description Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor last week before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has

  1. Passive containment cooling water distribution device

    DOE Patents [OSTI]

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  2. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  3. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  4. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Office of Environmental Management (EM)

    Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed ...

  5. Small Modular Nuclear Reactors: Parametric Modeling of Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel ... PDF icon Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel ...

  6. Progress Update: Reactor Disassembly Grouting

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

  7. Neutrino oscillation studies with reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  8. Daya Bay Reactor Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are...

  9. Reactor Materials Newsletter- Issue 1

    Broader source: Energy.gov [DOE]

    The Reactor Materials (RM) newsletter includes information about key nuclear materials programs, results from ongoing projects across the Office of Nuclear Energy, and other relevant information.

  10. MC2-3: Multigroup Cross-Sections for Fast Reactors | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory MC2-3: Multigroup Cross-Sections for Fast Reactors Slices from a full core SN2ND calculation showing the axial power distribution (log scale) in the MONJU reactor. Slices from a full core SN2ND calculation showing the axial power distribution (log scale) in the MONJU reactor. No other fast spectrum multigroup generation tool matches the demonstrated accuracy of MC2-3. It generates broad-group, cell-average microscopic cross sections from ENDF/B basic nuclear data. MC2-3 handles

  11. Five Years of Building the Next Generation of Reactors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Years of Building the Next Generation of Reactors Five Years of Building the Next Generation of Reactors August 15, 2012 - 5:17pm Addthis Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light Water Reactors (CASL). Simulated three-dimensional fission power distribution of a single 17x17 rod PWR fuel assembly. | Photo courtesy of the Consortium for Advanced Simulation of Light

  12. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  13. FAST NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  14. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  15. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  16. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  17. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  18. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

    1995-01-01

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  19. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  20. Nuclear reactor fuel element

    DOE Patents [OSTI]

    Johnson, Carl E. (Elk Grove, IL); Crouthamel, Carl E. (Richland, WA)

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  1. Reactor coolant pump flywheel

    DOE Patents [OSTI]

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  2. High flux reactor

    DOE Patents [OSTI]

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  3. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  4. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN)

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  5. In-Reactor Experiment

    Office of Environmental Management (EM)

    Update on the TMIST-3 In-Reactor Experiment Tritium Release and Speciation from LiAlO 2 and LiAlO 2 /Zr Cermets DJ SENOR 1 , WG LUSCHER 1 , AND KK CLAYTON 2 1 Pacific Northwest National Laboratory, 2 Idaho National Laboratory Tritium Focus Group Meeting, Princeton, NJ 5 May 2015 1 PNNL-SA-109847 Tritium Production Enterprise: Background Tritium is required for US nuclear weapons stockpile Tritium has a 12.3 year half-life and must be replenished 1988: DOE ceased production of tritium at SRS

  6. Generic implications of ATWS events at the Salem Nuclear Power Plant. Licensee and staff actions

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    This report, Volume 2 of two volumes of NUREG-1000, describes the intermediate term actions to be taken by licensees and applicants of the US Nuclear Regulatory Commission (NRC), on the one hand, and by NRC staff, on the other, to address the generic issues raised by two anticipated transients without scram (ATWS) at the Salem Nuclear Generating Station, Unit 1, on February 22 and 25, 1983. These actions came about as a result of the findings of NUREG-1000, Volume 1, and of reviews by the NRC Committee to Review Generic Requirements, the NRC Program Offices, and the Commission. The actions to be taken by licensees and applicants have been detailed in a letter pursuant to 10 CFR 50.54(f).

  7. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    1 Key Definitions Quad: Quadrillion Btu (10^15 or 1,000,000,000,000,000 Btu) Generic Quad for the Buildings Sector: One quad of primary energy consumed in the buildings sector (includes the residential and commercial sectors), apportioned between the various primary fuels used in the sector according to their relative consumption in a given year. To obtain this value, electricity is converted into its primary energy forms according to relative fuel contributions (or shares) used to produce

  8. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  9. Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator,

    National Nuclear Security Administration (NNSA)

    Savannah River Nuclear Solutions | National Nuclear Security Administration Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our

  10. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

  11. Reactor refueling machine simulator

    SciTech Connect (OSTI)

    Rohosky, T.L.; Swidwa, K.J.

    1987-10-13

    This patent describes in combination: a nuclear reactor; a refueling machine having a bridge, trolley and hoist each driven by a separate motor having feedback means for generating a feedback signal indicative of movement thereof. The motors are operable to position the refueling machine over the nuclear reactor for refueling the same. The refueling machine also has a removable control console including means for selectively generating separate motor signals for operating the bridge, trolley and hoist motors and for processing the feedback signals to generate an indication of the positions thereof, separate output leads connecting each of the motor signals to the respective refueling machine motor, and separate input leads for connecting each of the feedback means to the console; and a portable simulator unit comprising: a single simulator motor; a single simulator feedback signal generator connected to the simulator motor for generating a simulator feedback signal in response to operation of the simulator motor; means for selectively connecting the output leads of the console to the simulator unit in place of the refueling machine motors, and for connecting the console input leads to the simulator unit in place of the refueling machine motor feedback means; and means for driving the single simulator motor in response to any of the bridge, trolley or hoist motor signals generated by the console and means for applying the simulator feedback signal to the console input lead associated with the motor signal being generated by the control console.

  12. Accident analysis of heavy water cooled thorium breeder reactor

    SciTech Connect (OSTI)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.

  13. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    SciTech Connect (OSTI)

    Bernard, J.A. . Nuclear Reactor Lab.)

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  14. Fast reactors and nuclear nonproliferation

    SciTech Connect (OSTI)

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  15. Solvent refined coal reactor quench system

    DOE Patents [OSTI]

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  16. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and efficient reactors, allowing for smaller reactors and streamlined processes that will convert coal into valuable products at low cost and with high energy efficiency. Here, the specific emphasis will be reactors enabling conversion of coal-biomass to liquid fuels, Novel reactors, advanced manufacturing, etc. will be

  17. Solvent refined coal reactor quench system

    DOE Patents [OSTI]

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  18. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  19. MOOSE simulating nuclear reactor CRUD buildup

    ScienceCinema (OSTI)

    None

    2014-07-21

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  20. MOOSE simulating nuclear reactor CRUD buildup

    SciTech Connect (OSTI)

    2014-02-06

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  1. Energy Department Announces Small Modular Reactor Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of nuclear reactors by providing more than 200 million through a cost-share agreement to support the licensing reviews for Westinghouse's AP1000 reactor design certification. ...

  2. GAS COOLED NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  3. Nuclear reactor control

    DOE Patents [OSTI]

    Cawley, William E. (Phoenix, AZ); Warnick, Robert F. (Pasco, WA)

    1982-01-01

    1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

  4. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  5. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  6. Distribution Category:

    Office of Legacy Management (LM)

    - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist

  7. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  8. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  9. DISTRIBUTION CATEGORY

    Office of Scientific and Technical Information (OSTI)

    DISTRIBUTION CATEGORY uc-11 I A W E N C E LIVERMORE IABORATORY University of Cahfmia/Livermore, California/94550 UCRL-52658 CALCULATION OF CHEMICAL EQUILIBRIUM BETWEEN AQUEOUS SOLUTION AND MINERALS: THE EQ3/6 - - SOFTWARE PACKAGE T. J. Wolery MS. date: February 1, 1979 . . - . . - . Tho rcpon rn prepared as an account of work sponsored by the United Stater Government. Seither Lhc Urutcd Stater nor the Umted Stater Department of Energy, nor any of their employees. nor any of their E O ~ ~ ~ B C I

  10. Fueling of tandem mirror reactors

    SciTech Connect (OSTI)

    Gorker, G.E.; Logan, B.G.

    1985-01-01

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.

  11. Nuclear reactor downcomer flow deflector

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  12. Benchmark Evaluation of the Medium-Power Reactor Experiment Program Critical Configurations

    SciTech Connect (OSTI)

    Margaret A. Marshall; John D. Bess

    2013-02-01

    A series of small, compact critical assembly (SCCA) experiments were performed in 1962-1965 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for the Medium-Power Reactor Experiment (MPRE) program. The MPRE was a stainless-steel clad, highly enriched uranium (HEU)-O2 fuelled, BeO reflected reactor design to provide electrical power to space vehicles. Cooling and heat transfer were to be achieved by boiling potassium in the reactor core and passing vapor directly through a turbine. Graphite- and beryllium-reflected assemblies were constructed at ORCEF to verify the critical mass, power distribution, and other reactor physics measurements needed to validate reactor calculations and reactor physics methods. The experimental series was broken into three parts, with the third portion of the experiments representing the beryllium-reflected measurements. The latter experiments are of interest for validating current reactor design efforts for a fission surface power reactor. The entire series has been evaluated as acceptable benchmark experiments and submitted for publication in the International Handbook of Evaluated Criticality Safety Benchmark Experiments and in the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  13. Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance

    Office of Environmental Management (EM)

    6, 2008 Page 1 of 6 Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance Attendees: Representatives from Department of Energy-Headquarters (DOE-HQ) and the U.S. Nuclear Regulatory Commission staff (NRC) met at the DOE offices in Germantown, Maryland on 5 March 2008. Representatives from Department of Energy- Savannah River (DOE-SR), Department of Energy-Idaho (DOE-ID), Department of Energy-Richland (DOE-RL), Department of Energy-River Protection

  14. Reviews of ASME Section 11 pump and valve relief requests: Post Generic Letter 89-04

    SciTech Connect (OSTI)

    DiBiasio, A.

    1992-07-01

    This paper presents a discussion of ASME Section 11 Pump and Valve Inservice Testing relief request reviews by the NRC and their contractors. Topics that will be discussed include the scope of USNRC reviews in Technical Evaluation Reports (TERs) (and Safety Evaluation, SEs); including the basis for granting relief requests, the status of relief requests in IST Program updates, and the Generic Letter 89-04 approval process; and the level of technical detail required in submitted programs. This presentation is based on the experiences of Brookhaven National Laboratory in reviewing IST Programs for the Mechanical Engineering Branch of the US Nuclear Regulatory Commission.

  15. Reviews of ASME Section 11 pump and valve relief requests: Post Generic Letter 89-04

    SciTech Connect (OSTI)

    DiBiasio, A.

    1992-01-01

    This paper presents a discussion of ASME Section 11 Pump and Valve Inservice Testing relief request reviews by the NRC and their contractors. Topics that will be discussed include the scope of USNRC reviews in Technical Evaluation Reports (TERs) (and Safety Evaluation, SEs); including the basis for granting relief requests, the status of relief requests in IST Program updates, and the Generic Letter 89-04 approval process; and the level of technical detail required in submitted programs. This presentation is based on the experiences of Brookhaven National Laboratory in reviewing IST Programs for the Mechanical Engineering Branch of the US Nuclear Regulatory Commission.

  16. Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization

    Broader source: Energy.gov [DOE]

    The assessment of generic EBS concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of THMC processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay hydration at ambient and elevated temperatures; and 6) coupled thermal-mechanical (TM) and thermo-hydrological (TH) modeling in salt.

  17. 2012 Annual Report Research Reactor Infrastructure Program

    SciTech Connect (OSTI)

    Douglas Morrell

    2012-11-01

    The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

  18. METHOD OF OPERATING NUCLEAR REACTORS

    DOE Patents [OSTI]

    Untermyer, S.

    1958-10-14

    A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

  19. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  20. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E. (San Jose, CA)

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  1. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  2. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  3. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  4. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  5. Reactor shroud joint

    DOE Patents [OSTI]

    Ballas, Gary J. (San Jose, CA); Fife, Alex Blair (San Jose, CA); Ganz, Israel (San Jose, CA)

    1998-01-01

    A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges.

  6. Reactor shroud joint

    DOE Patents [OSTI]

    Ballas, G.J.; Fife, A.B.; Ganz, I.

    1998-04-07

    A shroud for a nuclear reactor is described. In one embodiment, the shroud includes first and second shroud sections, and each shroud section includes a substantially cylindrical main body having a first end and a second end. With respect to each shroud section, a flange is located at the main body first end, and the flange has a plurality of bolt openings therein and a plurality of scalloped regions. The first shroud section is welded to the second shroud section, and at least some of the bolt openings in the first shroud section flange align with respective bolt openings in the second shroud section flange. In the event that the onset of inter-granular stress corrosion cracking is ever detected in the weld between the shroud section, bolts are inserted through bolt openings in the first shroud section flange and through aligned bolt openings the second shroud section flange. Each bolt, in one embodiment, has a shank section and first and second threaded end sections. Nuts are threadedly engaged to the threaded end sections and tightened against the respective flanges. 4 figs.

  7. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Upton, Hubert A. (Morgan Hill, CA)

    1994-01-01

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.

  8. Novel Catalytic Membrane Reactors

    SciTech Connect (OSTI)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  9. Reactor pressure vessel nozzle

    DOE Patents [OSTI]

    Challberg, R.C.; Upton, H.A.

    1994-10-04

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

  10. Small Modular Reactors (SMRs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Technologies » Small Modular Reactors (SMRs) Small Modular Reactors (SMRs) NuScale Power Reactors. ©NuScale Power, LLC, All Rights Reserved NuScale Power Reactors. ©NuScale Power, LLC, All Rights Reserved Small Modular Reactors (SMRs) are nuclear power plants that are smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). These smaller, compact designs are factory-fabricated reactors that can be transported by truck or rail to a nuclear

  11. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  12. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  13. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  14. Automatic safety rod for reactors

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  15. Biological sludge stabilization reactor evaluations

    SciTech Connect (OSTI)

    Corbitt, R.A.; Bowen, P.T.; Smith, P.E.

    1998-07-01

    Anaerobic digestion was chosen as the means to stabilize primary and thickened waste activated sludge for a 0.88 m{sup 3}/s (20 mgd) advanced wastewater reclamation facility. Two stage digestion was proposed to produce Class B sludge. Reactor shape was an important variable in design of the first stage digestion. Evaluation of conventional and egg shaped anaerobic digesters was performed. Based on the economic and non-economic criteria analysis, egg shaped reactors were selected.

  16. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  17. When Do Commercial Reactors Permanently Shut Down?

    Reports and Publications (EIA)

    2011-01-01

    For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

  18. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  19. A reactor core on-line monitoring program - COMP

    SciTech Connect (OSTI)

    Wang, C.; Wu, H.; Cao, L.

    2012-07-01

    A program named COMP is developed for on-line monitoring PWRs' in-core power distribution in this paper. Harmonics expansion method is used in COMP. The Unit 1 reactor of Daya Bay Nuclear Power Plant (Daya Bay NPP) in China is considered for verification. The numerical results show that the maximum relative error between measurement and reconstruction results from COMP is less than 5%, and the computing time is short, indicating that COMP is capable for online monitoring PWRs. (authors)

  20. Circulation in gas-slurry column reactors

    SciTech Connect (OSTI)

    Clark, N.; Kuhlman, J.; Celik, I.; Gross, R.; Nebiolo, E.; Wang, Yi-Zun.

    1990-08-15

    Circulation in bubble columns, such as those used in fischer-tropsch synthesis, detracts from their performance in that gas is carried on average more rapidly through the column, and the residence time distribution of the gas in the column is widened. Both of these factors influence mass-transfer operations in bubble columns. Circulation prediction and measurement has been undertaken using probes, one-dimensional models, laser Doppler velocimetry, and numerical modeling. Local void fraction was measured using resistance probes and a newly developed approach to determining air/water threshold voltage for the probe. A tall column of eight inch diameter was constructed of Plexiglas and the distributor plate was manufactured to distribute air evenly through the base of the column. Data were gathered throughout the volume at three different gas throughputs. Bubble velocities proved difficult to measure using twin probes with cross-correlation because of radial bubble movement. A series of three-dimensional mean and RMS bubble and liquid velocity measurements were also obtained for a turbulent flow in a laboratory model of a bubble column. These measurements have been made using a three-component laser Doppler velocimeter (LDV), to determine velocity distributions non-intrusively. Finally, the gas-liquid flow inside a vertically situated circular isothermal column reactor was simulated numerically. 74 refs., 170 figs., 5 tabs.

  1. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  2. Things to Consider When Upgrading a Non-Power Reactor to a Digital I&C System

    SciTech Connect (OSTI)

    Muhlheim, Michael David; Hardin, LeRoy A; Hardesty, Duane; Wilson, Thomas L

    2011-01-01

    Non-Power Reactor (NPR) licensees are increasing their use of state-of-the-art digital technology in instrumentation and control (I&C) systems because digital systems offer improved reactor control, information processing, and information storage. In Generic Letter GL 95-02, the NRC recognized that the design characteristics specific to the new digital electronics could result in failure modes and system malfunctions that either were not considered during the initial plant design or not evaluated in sufficient detail in the safety analysis report. These concerns include potential common mode failures. A conversion from analog to digital I&C systems in NPRs solves some problems while potentially introducing others. Good design, engineering, review, and testing can identify and minimize these risks.

  3. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  4. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    SciTech Connect (OSTI)

    Demuth, Scott Francis; Sprinkle, James K.

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  5. Supercell Depletion Studies for Prismatic High Temperature Reactors

    SciTech Connect (OSTI)

    J. Ortensi

    2012-10-01

    The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challenges exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.

  6. International Research Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  7. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  8. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  9. PIA - Advanced Test Reactor National Scientific User Facility...

    Office of Environmental Management (EM)

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor ...

  10. Small Modular Nuclear Reactors: Parametric Modeling of Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Small Modular Nuclear Reactors: Parametric Modeling of Integrated Reactor Vessel ... This study presents a detailed analysis of the economics of Small Modular Reactors (SMRs), ...

  11. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  12. GNEP Element:Develop Advanced Burner Reactors | Department of...

    Office of Environmental Management (EM)

    Develop Advanced Burner Reactors GNEP Element:Develop Advanced Burner Reactors An article describing burner reactors and the role in GNEP. PDF icon GNEP Element:Develop Advanced...

  13. Business Opportunities for Small Reactors

    SciTech Connect (OSTI)

    Minato, Akio; Nishimura, Satoshi; Brown, Neil W.

    2007-07-01

    This report assesses the market potential and identifies a number of potential paths for developing the small nuclear reactor business. There are several potential opportunities identified and evaluated. Selecting a specific approach for the business development requires additional information related to a specific market and sources of capital to support the investment. If and how a market for small nuclear plants may develop is difficult to predict because of the complexity of the economic and institutional factors that will influence such development. Key factors are; economics, safety, proliferation resistance and investment risk. The economic and political interest of any of the identified markets is also dependent on successful demonstration of the safety and reliability of small nuclear reactor. Obtaining a US-NRC Standard Design approval would be an important development step toward establishing a market for small reactors. (authors)

  14. Reactor control rod timing system

    DOE Patents [OSTI]

    Wu, Peter T. K. (Clifton Park, NY)

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  15. Reactor control rod timing system

    SciTech Connect (OSTI)

    Wu, P.T.

    1982-02-09

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (Above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  16. Feasibility of establishing and operating a generic oil shale test facility

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The December 19, 1985, Conference Report on House Joint Resolution 465, Further continuing appropriations for Fiscal Year 1986, included instruction to DOE to conduct a feasibility study for a generic oil shale test facility. The study was completed, as directed, and its findings are documented in this report. To determine the feasibility of establishing and operating such a facility, the following approach was used: examine the nature of the resource, and establish and basic functions associated with recovery of the resource; review the history of oil shale development to help put the present discussion in perspective; describe a typical oil shale process; define the relationship between each oil shale system component (mining, retorting, upgrading, environmental) and its cost. Analyze how research could reduce costs; and determine the scope of potential research for each oil shale system component.

  17. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    6 Shares of U.S. Buildings Generic Quad (Percent) (1) Renewables Natural Gas Petroleum Coal Hydro. Other Total Nuclear Total 1980 39% 12% 31% 7% 4% 11% 7% 100% 1981 38% 11% 32% 7% 4% 11% 8% 100% 1982 37% 10% 33% 8% 4% 12% 8% 100% 1983 35% 10% 34% 9% 4% 13% 8% 100% 1984 35% 10% 34% 8% 4% 12% 8% 100% 1985 34% 10% 35% 7% 4% 11% 10% 100% 1986 32% 10% 36% 7% 4% 11% 11% 100% 1987 32% 10% 37% 6% 4% 10% 11% 100% 1988 32% 10% 37% 5% 4% 9% 13% 100% 1989 32% 9% 36% 6% 5% 11% 12% 100% 1990 32% 8% 36% 7% 4%

  18. Generic inference of inflation models by non-Gaussianity and primordial power spectrum reconstruction

    SciTech Connect (OSTI)

    Dorn, Sebastian; Enßlin, Torsten A.; Ramirez, Erandy; Kunze, Kerstin E.

    2014-06-01

    We present a generic inference method for inflation models from observational data by the usage of higher-order statistics of the curvature perturbation on uniform density hypersurfaces. This method is based on the calculation of the posterior for the primordial non-Gaussianity parameters f{sub NL} and g{sub NL}, which in general depend on specific parameters of inflation and reheating models, and enables to discriminate among the still viable inflation models. To keep analyticity as far as possible to dispense with numerically expensive sampling techniques a saddle-point approximation is introduced, whose precision is validated for a numerical toy example. The mathematical formulation is done in a generic way so that the approach remains applicable to cosmic microwave background data as well as to large scale structure data. Additionally, we review a few currently interesting inflation models and present numerical toy examples thereof in two and three dimensions to demonstrate the efficiency of the higher-order statistics method. A second quantity of interest is the primordial power spectrum. Here, we present two Bayesian methods to infer it from observational data, the so called critical filter and an extension thereof with smoothness prior, both allowing for a non-parametric spectrum reconstruction. These methods are able to reconstruct the spectra of the observed perturbations and the primordial ones of curvature perturbation even in case of non-Gaussianity and partial sky coverage. We argue that observables like T- and B-modes permit to measure both spectra. This also allows to infer the level of non-Gaussianity generated since inflation.

  19. Toward reactor monitoring with antineutrinos

    SciTech Connect (OSTI)

    Guillon, Benoit; Cormon, S.; Fallot, M.; Giot, L.; Martino, J.; Cribier, M.; Lasserre, T.

    2007-07-01

    The fundamental knowledge on neutrino properties acquired in recent years as well as the great experimental progress made on neutrino detection open nowadays the possibility of applied neutrino physics. Among it, the International Atomic Energy Agency (IAEA) asked to its member states to study the possibility of nuclear reactor monitoring applications, such as the thermal power measurement or the fuel composition bookkeeping. In this context, we report studies aiming at a better determination of the antineutrino energy spectrum emitted by nuclear power plants, necessary for reactor monitoring applications, but also for experiments studying the ground properties of these particles. (authors)

  20. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  1. Horizontal baffle for nuclear reactors

    DOE Patents [OSTI]

    Rylatt, John A. (Monroeville, PA)

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  2. Reactor Application for Coaching Newbies

    Energy Science and Technology Software Center (OSTI)

    2015-06-17

    RACCOON is a Moose based reactor physics application designed to engage undergraduate and first-year graduate students. The code contains capabilities to solve the multi group Neutron Diffusion equation in eigenvalue and fixed source form and will soon have a provision to provide simple thermal feedback. These capabilities are sufficient to solve example problems found in Duderstadt & Hamilton (the typical textbook of senior level reactor physics classes). RACCOON does not contain any advanced capabilities asmore » found in YAK.« less

  3. Operating experience feedback report -- Pressure locking and thermal binding of gate valves. Commercial power reactors: Volume 9

    SciTech Connect (OSTI)

    Hsu, C.

    1993-03-01

    The potential for valve inoperability caused by pressure locking and thermal binding has been known for many years in the nuclear industry. Pressure locking or thermal binding is a common-mode failure mechanism that can prevent a gate valve from opening, and could render redundant trains of safety systems or multiple safety systems inoperable. In spite of numerous generic communications issued in the past by the Nuclear Regulatory Commission (NRC) and industry, pressure locking and thermal binding continues to occur to gate valves installed in safety-related systems of both boding water reactors (BWRs) and pressurized water reactors (PWRs). The generic communications to date have not led to effective industry action to fully identify, evaluate, and correct the problem. This report provides a review of operating events involving these failure mechanisms. As a result of this review this report: (1) identifies conditions when the failure mechanisms have occurred, (2) identifies the spectrum of safety systems that have been subjected to the failure mechanisms, and (3) identifies conditions that may introduce the failure mechanisms under both normal and accident conditions. On the basis of the evaluation of the operating events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the NRC concludes that the binding problems with gate valves are an important safety issue that needs priority NRC and industry attention. This report also provides AEOD`s recommendation for actions to effectively prevent the occurrence of valve binding failures.

  4. Radiation dosimetry at the BNL reactor facilities

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.; Greenberg, D.D.; Sengupta, S.; Farrell, K.; Greenwood, L.R.

    1999-07-01

    Neutron and gamma-ray dosimetry measurements have been performed at various facilities in the High Flux Beam Reactor (HFBR) and in the Brookhaven National Laboratory Medical Research Reactor (BMRR). These experimental results are discussed.

  5. Auxiliary reactor for a hydrocarbon reforming system

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  6. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  7. What can recycling in thermal reactors accomplish?

    SciTech Connect (OSTI)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-07-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  8. Challenges in the Development of Advanced Reactors

    SciTech Connect (OSTI)

    P. Sabharwall; M.C. Teague; S.M. Bragg-Sitton; M.W. Patterson

    2012-08-01

    Past generations of nuclear reactors have been successively developed and the next generation is currently being developed, demonstrating the constant progress and technical and industrial vitality of nuclear energy. In 2000 US Department of Energy launched Generation IV International Forum (GIF) which is one of the main international frameworks for the development of future nuclear systems. The six systems that were selected were: sodium cooled fast reactor, lead cooled fast reactor, supercritical water cooled reactor, very high temperature gas cooled reactor (VHTR), gas cooled fast reactor and molten salt reactor. This paper discusses some of the proposed advanced reactor concepts that are currently being researched to varying degrees in the United States, and highlights some of the major challenges these concepts must overcome to establish their feasibility and to satisfy licensing requirements.

  9. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    SciTech Connect (OSTI)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  10. Report on THMC Modeling of the Near Field Evolution of a Generic Clay Repository: Model Validation and Demonstration Rev 2

    Broader source: Energy.gov [DOE]

    Shale and clay-rich rock formations have been considered as potential host rocks for geological disposal of high-level radioactive waste throughout the world: modeling thermal, hydrological, mechanical, and chemical (THMC) of the near field of generic clay repository is discussed.

  11. Nuclear reactor characteristics and operational history

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear > U.S. reactor operation status tables Nuclear Reactor Operational Status Tables Release date: November 22, 2011 Next release date: TBD See also: Table 1. Capacity and Generation, Table 2. Ownership Data Table 3. Nuclear Reactor Characteristics and Operational History PDF XLS Plant Name Generator ID Type Reactor Supplier and Model Construction Start Grid Connection Original Expiration Date License Renewal Application License Renewal Issued Extended Expiration Arkansas Nuclear One 1

  12. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  13. Naval Reactors | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Reactors Naval Reactors Y-12 processes the feedstock to power the nation's submarines and aircraft carriers. Y-12 processes highly enriched uranium for use by the Naval Reactors Program for Naval Nuclear Propulsion. Our support of the Naval Reactors program began in Fiscal Year 2002 and is currently planned through FY 2050 and beyond. We use dismantled weapons to provide feedstock, moving the material off-site and reducing Y-12's storage footprint and risk. The United States stopped

  14. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, Robert W. (Richland, WA)

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  15. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  16. Missouri University Research Reactor Site Fact Sheet

    Office of Legacy Management (LM)

    FACT SHEET FACT SHEET Missouri University Research Reactor Site This fact sheet provides information about the Transuranic Management by Pyropartitioning Separation project conducted at the Missouri University Research Reactor. The U.S. Department of Energy Office of Legacy Management is responsible for maintaining records for this project. Location of the Missouri University Research Reactor Site Overview A research project in the Alpha Laboratory at the Missouri University Research Reactor

  17. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  18. X-10 Graphite Reactor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    X-10 Graphite Reactor X-10 Graphite Reactor X-10 Graphite Reactor When President Roosevelt in December 1942 authorized the Manhattan Project, the Oak Ridge site in eastern Tennessee had already been obtained and plans laid for an air-cooled experimental pile, a pilot chemical separation plant, and support facilities. The X-10 Graphite Reactor, designed and built in ten months, went into operation on November 4, 1943. The X-10 used neutrons emitted in the fission of uranium-235 to convert

  19. Petascale algorithms for reactor hydrodynamics.

    SciTech Connect (OSTI)

    Fischer, P.; Lottes, J.; Pointer, W. D.; Siegel, A.

    2008-01-01

    We describe recent algorithmic developments that have enabled large eddy simulations of reactor flows on up to P = 65, 000 processors on the IBM BG/P at the Argonne Leadership Computing Facility. Petascale computing is expected to play a pivotal role in the design and analysis of next-generation nuclear reactors. Argonne's SHARP project is focused on advanced reactor simulation, with a current emphasis on modeling coupled neutronics and thermal-hydraulics (TH). The TH modeling comprises a hierarchy of computational fluid dynamics approaches ranging from detailed turbulence computations, using DNS (direct numerical simulation) and LES (large eddy simulation), to full core analysis based on RANS (Reynolds-averaged Navier-Stokes) and subchannel models. Our initial study is focused on LES of sodium-cooled fast reactor cores. The aim is to leverage petascale platforms at DOE's Leadership Computing Facilities (LCFs) to provide detailed information about heat transfer within the core and to provide baseline data for less expensive RANS and subchannel models.

  20. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1996-04-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  1. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1998-04-14

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  2. Integrated reformer and shift reactor

    DOE Patents [OSTI]

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  3. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

    1998-06-02

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

  4. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1998-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  5. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

    1996-01-01

    A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  6. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1998-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  7. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  8. Nozzle for electric dispersion reactor

    DOE Patents [OSTI]

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  9. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  10. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  11. Plasma Facing Components Generic Facilities Review Panel (PFC-GFRP): Final report

    SciTech Connect (OSTI)

    McGrath, R.; Allen, S.; Hill, D.; Brooks, J.; Mattas, R.; Davis, J.; Lipschultz, B.; Ulrickson, M.

    1993-10-01

    The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel`s findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development.

  12. Control of reactor coolant flow path during reactor decay heat removal

    DOE Patents [OSTI]

    Hunsbedt, Anstein N. (Los Gatos, CA)

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  13. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  14. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, Edward F. (Naperville, IL); Olson, Arne P. (Western Springs, IL); Wade, David C. (Naperville, IL); Robinson, Bryan W. (Oak Lawn, IL)

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  15. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  16. Self isolating high frequency saturable reactor

    DOE Patents [OSTI]

    Moore, James A. (Powell, TN)

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  17. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  18. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    SciTech Connect (OSTI)

    Chan, Emory Ming-Yue

    2006-12-19

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.

  19. EIA - Coal Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin

  20. A compilation of reports of the Advisory Committee on Reactor Safeguards, 1997 annual, U.S. Nuclear Regulatory Commission. Volume 19

    SciTech Connect (OSTI)

    1998-04-01

    This compilation contains 67 ACRS reports submitted to the Commission, or to the Executive Director for Operations, during calendar year 1997. It also includes a report to the Congress on the NRC Safety Research Program. Specific topics include: (1) advanced reactor designs, (2) emergency core cooling systems, (3) fire protection, (4) generic letters and issues, (5) human factors, (6) instrumentation, control and protection systems, (7) materials engineering, (8) probabilistic risk assessment, (9) regulatory guides and procedures, rules, regulations, and (10) safety research, philosophy, technology and criteria.

  1. Safety control circuit for a neutronic reactor

    DOE Patents [OSTI]

    Ellsworth, Howard C. (Richland, WA)

    2004-04-27

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  2. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  3. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  4. Multigroup Reactor Lattice Cell Calculation

    Energy Science and Technology Software Center (OSTI)

    1990-03-01

    The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less

  5. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  6. Nuclear reactor alignment plate configuration

    DOE Patents [OSTI]

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  7. Numerical Modeling of Geomechanical Processes Related to CO{sub 2} Injection within Generic Reservoirs

    SciTech Connect (OSTI)

    Eckert, Andreas

    2013-05-31

    In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ΔP{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ΔP{sub c} magnitudes, especially for the compressional stress regime.

  8. Generic BWR-4 degraded core in-vessel study. Status report

    SciTech Connect (OSTI)

    Not Available

    1984-11-01

    Original intent of this project was to produce a phenomenological study of the in-vessel degradation which occurs during the TQUX and TQUV sequences for a generic BWR-4 from the initiation of the FSAR Chapter 15 operational transient through core debris bed formation to the failure of the primary pressure boundary. Bounding calculations were to be performed for the two high pressure and low pressure non-LOCA scenarios to assess the uncertainties in the current state of knowledge regarding the source terms for containment integrity studies. Source terms as such were defined in terms of hydrogen generation, unreacted metal, and coolant inventroy, and in terms of the form, sequencing and mode of dispersal through the primary vessel boundary. Fission product release was not to be considered as part of this study. Premature termination of the project, however, led to the dicontinuation of work on an as is basis. Work on the in-core phase from the point of scram to core debris bed formation was largely completed. A preliminary scoping calculation on the debris bed phase had been initiated. This report documents the status of the study at termination.

  9. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    5 Cost of a Generic Quad Used in the Buildings Sector ($2010 Billion) (1) Residential Commercial Buildings 1980 10.45 10.30 10.39 1981 11.20 11.09 11.15 1982 11.58 11.32 11.47 1983 11.85 11.42 11.67 1984 11.65 11.28 11.49 1985 11.43 11.08 11.29 1986 10.90 10.40 10.69 1987 10.55 9.90 10.27 1988 10.18 9.45 9.87 1989 9.98 9.17 9.64 1990 10.12 9.17 9.70 1991 9.94 9.02 9.54 1992 9.78 8.95 9.42 1993 9.77 8.93 9.40 1994 9.78 8.86 9.37 1995 9.44 8.51 9.03 1996 9.44 8.47 9.02 1997 9.59 8.42 9.06 1998

  10. Flow duct for nuclear reactors

    DOE Patents [OSTI]

    Straalsund, Jerry L.

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  11. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  12. CONTROL MEANS FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Tonks, L.

    1962-08-01

    A control device surrounding the active portion of a nuclear reactor is described. The control device consists of a plurality of contiguous cylinders partly filled with a neutron absorbing material and partly filled with a neutron reflecting material, each cylinder having a longitudinal reentrant surface into which a portion of an adjacent cylinder extends, one of the cylinders having two re-entrant surfaces, and means for rotating the cylinders one at a time. (AEC)

  13. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  14. PUSH-PULL POWER REACTOR

    DOE Patents [OSTI]

    Froman, D.K.

    1959-02-24

    Power generating nuclear reactors of the homogeneous liquid fuel type are discussed. The apparatus utilizes two identical reactors interconnected by conduits through heat exchanging apparatus. Each reactor contains a critical geometry region and a vapor region separated from the critical region by a baffle. When the liquid in the first critical region becomes critical, the vapor pressure above the fuel is increased due to the rise in the temperature until it forces the liquid fuel out of the first critical region through the heat exchanger and into the second critical region, which is at a lower temperature and consequently a lower vapor pressure. The above reaction is repeated in the second critical region and the liquid fuel is forced back into the first critical region. In this manner criticality is achieved alternately in each critical region and power is extracted by the heat exchanger from the liquid fuel passing therethrough. The vapor region and the heat exchanger have a non-critical geometry and reactivity control is effected by conventional control rods in the critical regions.

  15. The ARIES tokamak reactor study

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  16. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  17. EIA -Quarterly Coal Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: March 9, 2016 Next Release Date: May 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination

  18. Articulated limiter blade for a tokamak fusion reactor

    DOE Patents [OSTI]

    Doll, David W. (San Diego, CA)

    1985-01-01

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  19. Articulated limiter blade for a tokamak fusion reactor

    DOE Patents [OSTI]

    Doll, D.W.

    1982-10-21

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  20. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  1. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  2. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  3. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  4. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  5. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect (OSTI)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)

  6. PID Control Effectiveness for Surface Reactor Concepts

    SciTech Connect (OSTI)

    Dixon, David D.; Marsh, Christopher L.; Poston, David I.

    2007-01-30

    Control of space and surface fission reactors should be kept as simple as possible, because of the need for high reliability and the difficulty to diagnose and adapt to control system failures. Fortunately, compact, fast-spectrum, externally controlled reactors are very simple in operation. In fact, for some applications it may be possible to design low-power surface reactors without the need for any reactor control after startup; however, a simple proportional, integral, derivative (PID) controller can allow a higher performance concept and add more flexibility to system operation. This paper investigates the effectiveness of a PID control scheme for several anticipated transients that a surface reactor might experience. To perform these analyses, the surface reactor transient code FRINK was modified to simulate control drum movements based on bulk coolant temperature.

  7. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  8. The application of Plant Reliability Data Information System (PRINS) to CANDU reactor

    SciTech Connect (OSTI)

    Hwang, S. W.; Lim, Y. H.; Park, H. C.

    2012-07-01

    As risk-informed applications (RIAs) are actively implanted in the nuclear industry, an issue associated with technical adequacy of Probabilistic Safety Assessment (PSA) arises in its modeling and data sourcing. In Korea, PSA for all Korean NPPs has been completed and KHNP(Korea Hydro and Nuclear Power Plant Company) developed the database called the Plant Reliability Data Information System (PRinS). It has several characteristics that distinguish it from other database system such as NPRDs (INPO,1994), PRIS (IAEA), and SRDF (EdF). This database has the function of systematic data management such as automatic data-gathering, periodic data deposition and updating, statistical analysis including Bayesian method, and trend analysis of failure rate or unavailability. In recent PSA for CANDU reactor, the component failure data of EPRI ALWR URD and Component Reliability Database were preferentially used as generic data set. The error factor for most component failure data was estimated by using the information NUREG/CR-4550 and NUREG/CR-4639. Also, annual trend analysis was performed for the functional losses of components using the statistical analysis and chart module of PRinS. Furthermore, the database has been updated regularly and maintained as a living program to reflect the current status. This paper presents the failure data analysis using PRinS which provides Bayesian analysis on main components in the CANDU reactor. (authors)

  9. Experimental Breeder Reactor I Preservation Plan

    SciTech Connect (OSTI)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  10. Solid tags for identifying failed reactor components

    DOE Patents [OSTI]

    Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  11. Small Self-Regulating Fission Reactor System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    359 This document is approved for public release; further dissemination unlimited Small Self-Regulating Fission Reactor System ANTICIPATED IMPACT PATH FORWARD DESCRIPTION BACKGROUND & MOTIVATION INNOVATION A power system for special government applications Point of Contact: Patrick McClure, NEN-5, pmcclure@lanl.gov (505)667-9534 Small Self-Regulating Fission Reactor System A small self- regulating fission reactor made with U 235 . LANL and NASA with the support of NSTec performed a proof of

  12. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  13. SUPERHEATING IN A BOILING WATER REACTOR

    DOE Patents [OSTI]

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  14. Small Reactor for Deep Space Exploration

    SciTech Connect (OSTI)

    2012-11-29

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  15. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  16. Neutron shielding panels for reactor pressure vessels

    DOE Patents [OSTI]

    Singleton, Norman R. (Murrysville, PA)

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  17. Nuclear Reactor Technology Subcommittee of NEAC

    Energy Savers [EERE]

    Report to NEAC Mike Corradini (UW), Chair Ashok Bhatnagar (FPL), Doug Chapin (NPR), Tom Cochran (NRDC), Regis Matzie (Consultant) , Harold Ray (Consultant), Joy Rempe (Consultant) Nuclear Energy Advisory Committee Meeting December 11, 2015 1 Subcommittee Scope * Congress appropriated funds for "an advanced test/demonstration reactor planning study by the national laboratories, industry, and relevant stakeholders of such a reactor in the U.S. The study will evaluate advanced reactor

  18. Small Reactor for Deep Space Exploration

    ScienceCinema (OSTI)

    none,

    2014-05-30

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  19. Measurement of Species Distributions in Operating Fuel Cells

    SciTech Connect (OSTI)

    Partridge Jr, William P; Toops, Todd J; Parks, II, James E; Armstrong, Timothy R.

    2004-10-01

    Measurement and understanding of transient species distributions across and within fuel cells is a critical need for advancing fuel cell technology. The Spatially Resolved Capillary Inlet Mass Spectrometer (SpaciMS) instrument has been applied for in-situ measurement of transient species distributions within operating reactors; including diesel catalyst, air-exhaust mixing systems, and non-thermal plasma reactors. The work described here demonstrates the applicability of this tool to proton exchange membrane (PEM) and solid oxide fuel cells (SOFC) research. Specifically, we have demonstrated SpaciMS measurements of (1) transient species dynamics across a PEM fuel cell (FC) associated with load switching, (2) intra-PEM species distributions, and transient species dynamics at SOFC temperatures associated with FC load switching.

  20. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials

    Broader source: Energy.gov [DOE]

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the...

  1. Electricity Generating Portfolios with Small Modular Reactors

    Broader source: Energy.gov [DOE]

    A paper by Geoffrey Rothwell, Ph.D., Stanford University (retired), and Francesco Ganda, Ph.D., Argonne National Laboratory on "Electricity Generating Portfolios with Small Modular Reactors".

  2. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and efficient...

  3. Progress Update: P-Reactor Grout

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update, the Recovery Act at work at the Savannah River Site. The new phase of work on the permanent closure of two cold war nuclear reactors.

  4. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  5. Virtual Environment for Reactor Applications (VERA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment for Reactor Applications (VERA) Modern high performance computing (HPC) platforms bring an opportunity for modeling and simulation (modsim) at levels of detail...

  6. Nuclear Reactor Technology Subcommittee of NEAC

    Broader source: Energy.gov (indexed) [DOE]

    advanced technology deployment in nuclear power plants and more rapid commercialization ... be, commissioning new test reactors (France, China, Netherlands, and Russia). * The ...

  7. The First Reactor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The First Reactor The First Reactor Chicago Pile-1 (CP-1) was the world's first nuclear reactor. CP-1 was built on a rackets court, under the abandoned west stands of the original Alonzo Stagg Field stadium, at the University of Chicago. The first self-sustaining nuclear chain reaction was initiated in CP-1 on December 2, 1942. It operated until February 1943, when it was dismantled, moved to another location and rebuilt as Chicago Pile 2. PDF icon The First Reactor.pdf More Documents &

  8. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect (OSTI)

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  9. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  10. Horizontal Pretreatment Reactor System (Poster), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diff erent pretreatment chemistry residence time combinations are possible using these multiple horizontal-tube reactors * Each tube is indirectly and directly steam heated to...

  11. Sandia National Laboratories Medical Isotope Reactor concept.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  12. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, Emil L. (San Jose, CA); Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  13. Advanced Reactor Research and Development Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Energy (NE) sponsors a program of research, development, and demonstration related to advanced non-light water reactor concepts. A goal of the program is to facilitate...

  14. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  15. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, James K. (San Jose, CA)

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  16. Synfuel production in nuclear reactors

    DOE Patents [OSTI]

    Henning, C.D.

    Apparatus and method for producing synthetic fuels and synthetic fuel components by using a neutron source as the energy source, such as a fusion reactor. Neutron absorbers are disposed inside a reaction pipe and are heated by capturing neutrons from the neutron source. Synthetic fuel feedstock is then placed into contact with the heated neutron absorbers. The feedstock is heated and dissociates into its constituent synfuel components, or alternatively is at least preheated sufficiently to use in a subsequent electrolysis process to produce synthetic fuels and synthetic fuel components.

  17. CHIMNEY FOR BOILING WATER REACTOR

    DOE Patents [OSTI]

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  18. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | Revision/Correction Revision to the Annual Coal Distribution Report 2013 data The 2013 Annual Coal Distribution Report has been republished to include final 2013 electric power sector data as well as domestic and foreign distribution data. Contact:

  19. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Environmental Management (EM)

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  20. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  1. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  2. Initiating Events for Multi-Reactor Plant Sites

    SciTech Connect (OSTI)

    Muhlheim, Michael David; Flanagan, George F.; Poore, III, Willis P.

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  3. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T. (Idaho Falls, ID)

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  4. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  5. LIGHT WATER MODERATED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  6. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  7. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect (OSTI)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  8. Hydrogasification reactor and method of operating same

    DOE Patents [OSTI]

    Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki

    2013-09-10

    The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.

  9. Fuel elements of research reactor CM

    SciTech Connect (OSTI)

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  10. Aerosol reactor production of uniform submicron powders

    DOE Patents [OSTI]

    Flagan, Richard C. (Pasadena, CA); Wu, Jin J. (Pasadena, CA)

    1991-02-19

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  11. Explosive demolition of K East Reactor Stack

    ScienceCinema (OSTI)

    None

    2010-09-02

    Using $420,000 in Recovery Act funds, the Department of Energy and contractor CH2M HILL Plateau Remediation Company topped off four months of preparations when they safely demolished the exhaust stack at the K East Reactor and equipment inside the reactor building on July 23, 2010.

  12. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  13. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect (OSTI)

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  14. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department of Energy ACTION: Notice of Availability of Archival Information Package SUMMARY: The Office of Operational Safety of the Department of Energy (DOE) has, reviewed documentation relating to the decontamination and decommissioning operations conducted at the Westinghouse Advanced Reactor Division laboratories (buildings 7

  15. Scanning tunneling microscope assembly, reactor, and system

    DOE Patents [OSTI]

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  16. Program for the Analysis of Reactor Transients

    Energy Science and Technology Software Center (OSTI)

    2002-01-29

    This program is designed for use in predicting the course of and consequence of nondestructive accidents in research and test reactor cores. It is intended primarily for the analysis of plate type research and test reactors and has been subjected to extensive comparisons with the SPERT I and SPERT II experiments. These comparisons were quite favorable for a wide range of transients up to and including melting of the clad. Favorable comparisons have also beenmore » made for TRIGA reactor pulses in pin geometry. The PARET/ANL code has been used by the RERTR (Reduced Enrichment Research and Test Reactor) Program for the safety evaluation of many of the candidate reactors for reduced enrichment.« less

  17. Update; Sodium advanced fast reactor (SAFR) concept

    SciTech Connect (OSTI)

    Oldenkamp, R.D.; Brunings, J.E. ); Guenther, E. ); Hren, R. )

    1988-01-01

    This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

  18. Nuclear propulsion apparatus with alternate reactor segments

    DOE Patents [OSTI]

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  19. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  20. Self-actuating reactor shutdown system

    DOE Patents [OSTI]

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  1. Cooling system for a nuclear reactor

    DOE Patents [OSTI]

    Amtmann, Hans H. (Rancho Santa Fe, CA)

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  2. State space modeling of reactor core in a pressurized water reactor

    SciTech Connect (OSTI)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W.; Shamsuddin, Mustaffa; Abdullah, M. Adib

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  3. Light Water Reactor Sustainability Program Risk-Informed Safety Margins Characterization (RISMC) PathwayTechnical Program Plan

    SciTech Connect (OSTI)

    Curtis Smith; Cristian Rabiti; Richard Martineau

    2012-11-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”

  4. Advanced Test Reactor National Scientific User Facility: Addressing...

    Office of Scientific and Technical Information (OSTI)

    Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research Citation Details In-Document Search Title: Advanced Test Reactor National ...

  5. Advanced Test Reactor National Scientific User Facility: Addressing...

    Office of Scientific and Technical Information (OSTI)

    Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research Citation Details In-Document Search Title: Advanced Test Reactor National...

  6. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  7. Light Water Reactor Sustainability Program - Non-Destructive...

    Energy Savers [EERE]

    Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for ... important information to the Light Water Reactor Sustainability (LWRS) program ...

  8. Evaluation of Potential Locations for Siting Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals Evaluation of Potential Locations for Siting Small Modular Reactors near Federal ...

  9. Small Modular Reactors Presentation to Secretary of Energy Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Modular Reactors Presentation to Secretary of Energy Advisory Board - Deputy Assistant Secretary John Kelly Small Modular Reactors Presentation to Secretary of Energy ...

  10. Annular Core Research Reactor at Sandia National Laboratories...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog Annular Core Research Reactor at Sandia National ... Annular Core Research Reactor at Sandia National...

  11. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of ...

  12. Reactor Physics Scoping and Characterization Study on Implementation...

    Office of Scientific and Technical Information (OSTI)

    Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor Citation Details In-Document Search Title: Reactor Physics Scoping and...

  13. Reactor power for large displacement autonomous underwater vehicles...

    Office of Scientific and Technical Information (OSTI)

    USDOE Country of Publication: United States Language: English Subject: 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS autonomous underwater vehicle; reactor power Word...

  14. Annual average efficiency of a solar thermochemical reactor....

    Office of Scientific and Technical Information (OSTI)

    Annual average efficiency of a solar thermochemical reactor. Citation Details In-Document Search Title: Annual average efficiency of a solar thermochemical reactor. Abstract not ...

  15. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to...

  16. Proceedings of the Advisory Committee on Reactor Safeguards Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings of the Advisory Committee on Reactor Safeguards Safety Culture Workshop Proceedings of the Advisory Committee on Reactor Safeguards Safety Culture Workshop December 16,...

  17. NEAC Nuclear Reactor Technology Subcommittee Report for December...

    Office of Environmental Management (EM)

    Nuclear Reactor Technology Subcommittee Report for December 11, 2015 Meeting NEAC Nuclear Reactor Technology Subcommittee Report for December 11, 2015 Meeting PDF icon NEAC Nuclear...

  18. In-Reactor Measurement of Tritium Permeation through Stainless...

    Office of Environmental Management (EM)

    In-Reactor Measurement of Tritium Permeation through Stainless Steel Cladding In-Reactor Measurement of Tritium Permeation through Stainless Steel Cladding Presentation from the...

  19. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  20. Joint Statement of Intent Concerning the Arak Heavy Water Reactor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Intent Concerning the Arak Heavy Water Reactor Research Reactor Modernization Project under the Joint Comprehensive Plan of Action Joint Statement of Intent Concerning the Arak ...

  1. NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS...

    Office of Scientific and Technical Information (OSTI)

    Limit analysis of pipe clamps Flanders, H.E. Jr. 22 GENERAL STUDIES OF NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS; HEAT TRANSFER; HYDRAULICS; REACTOR SAFETY;...

  2. Nuclear reactor composite fuel assembly

    DOE Patents [OSTI]

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  3. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOE Patents [OSTI]

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  4. Nuclear reactor internals alignment configuration

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Singleton, Norman R. (Murrysville, PA)

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  5. Reactor pressure vessel vented head

    DOE Patents [OSTI]

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  6. Doubly Distributed Transactions

    Energy Science and Technology Software Center (OSTI)

    2014-08-25

    Doubly Distributed Transactions (D2T) offers a technique for managing operations from a set of parallel clients with a collection of distributed services. It detects and manages faults. Example code with a test harness is also provided

  7. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  8. Gas-cooled nuclear reactor

    DOE Patents [OSTI]

    Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

    1985-01-01

    A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

  9. Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

    Office of Environmental Management (EM)

    8, 2008 Page 1 of 8 Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization Attendees: Representatives from Department of Energy-Headquarters (DOE-HQ) and the U.S. Nuclear Regulatory Commission staff (NRC) met at the DOE offices in Germantown, Maryland on 28 May 2008. Representatives from Department of Energy- Savannah River (DOE-SR), Department of Energy-Richland (DOE-RL), and Department of Energy-River Protection (DOE-ORP)

  10. Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part I: Template-Based Generic Programming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.

    2012-01-01

    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering.

  11. Microsoft Word - PNNL 17138 FINAL generic WAMS reform w file from Dagle desteese no ouo.doc

    Office of Environmental Management (EM)

    38 Descriptive Model of a Generic WAMS J.F. Hauer J.G. DeSteese First Issued: November 2006 Revised: June 2007 Prepared for U.S. Department of Energy Office of Electricity Delivery and Energy Reliability under Contract DE-AC05-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express

  12. What is Distributed Wind?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind? Distributed wind energy systems are commonly installed on residential, agricultural, commercial, institutional, and industrial sites connected either physically or virtually on the customer side of the meter (to serve on-site load) or directly to the local distribution or micro grid (to support local grid operations or offset nearby loads). Because the definition is based on a wind project's location relative to end-use and power-distribution infrastructure, rather than on

  13. Evolution of the core physics concept for the Canadian supercritical water reactor

    SciTech Connect (OSTI)

    Pencer, J.; Colton, A.; Wang, X.; Gaudet, M.; Hamilton, H.; Yetisir, M.

    2013-07-01

    The supercritical water cooled reactor (SCWR) is one of the advanced reactor concepts chosen by the GEN-IV International Forum (GIF) for research and development efforts. Canada's contribution is the Canadian SCWR, a heavy water moderated, pressure tube supercritical light water cooled reactor. Recent developments in the SCWR lattice and core concepts, primarily the introduction of a large central flow tube filled with coolant combined with a two-ring fuel assembly, have enabled significant improvements compared to earlier concepts. These improvements include a reduction in coolant void reactivity (CVR) by more than 10 mk, and an almost 40% increase in fuel exit burnup, which is achieved via balanced power distribution between the fuel pins in the fuel assembly. In this paper the evolution of the physics concept is reviewed, and the present lattice and core physics concepts are presented.

  14. Distributed Monte Carlo production for D0

    SciTech Connect (OSTI)

    Snow, Joel; /Langston U.

    2010-01-01

    The D0 collaboration uses a variety of resources on four continents to pursue a strategy of flexibility and automation in the generation of simulation data. This strategy provides a resilient and opportunistic system which ensures an adequate and timely supply of simulation data to support D0's physics analyses. A mixture of facilities, dedicated and opportunistic, specialized and generic, large and small, grid job enabled and not, are used to provide a production system that has adapted to newly developing technologies. This strategy has increased the event production rate by a factor of seven and the data production rate by a factor of ten in the last three years despite diminishing manpower. Common to all production facilities is the SAM (Sequential Access to Metadata) data-grid. Job submission to the grid uses SAMGrid middleware which may forward jobs to the OSG, the WLCG, or native SAMGrid sites. The distributed computing and data handling system used by D0 will be described and the results of MC production since the deployment of grid technologies will be presented.

  15. Pneumatic solids feeder for coal gasification reactor

    SciTech Connect (OSTI)

    Notestein, J.E.; Halow, J.S.

    1991-12-31

    This invention is comprised of a pneumatic feeder system for a coal gasification reactor which includes one or more feeder tubes entering the reactor above the level of the particle bed inside the reactor. The tubes are inclined downward at their outer ends so that coal particles introduced into the tubes through an aperture at the top of the tubes slides downward away from the reactor and does not fall directly into the reactor. Pressurized gas introduced into, or resulting from ignition of recycled combustible gas in a chamber adjacent to the tube ends, propels the coal from the tube into the reactor volume and onto the particle bed. Leveling of the top of the bed is carried out by a bladed rotor mounted on the reactor stirring shaft. Coal is introduced into the tubes from containers above the tubes by means of rotary valves placed across supply conduits. This system avoids placement of feeder hardware in the plenum above the particle bed and keeps the coal from being excessively heated prior to reaching the particle bed.

  16. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  17. Control system for a small fission reactor

    DOE Patents [OSTI]

    Burelbach, James P. (Glen Ellyn, IL); Kann, William J. (Park Ridge, IL); Saiveau, James G. (Hickory Hills, IL)

    1986-01-01

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired. In another embodiment, a plurality of flexible hollow tubes each containing a neutron absorber are positioned adjacent to one another in spaced relation around the periphery of the reactor vessel and inside the outer neutron reflector with reactivity controlled by the extension and compression of all or some of the coiled hollow tubes. Yet another embodiment of the invention envisions the neutron reflector in the form of an expandable coil spring positioned in an annular space between the reactor vessel and an outer neutron absorbing structure for controlling the neutron flux reflected back into the reactor vessel.

  18. Neutronic Reactor Design to Reduce Neutron Loss

    DOE Patents [OSTI]

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  19. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOE Patents [OSTI]

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  20. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  1. Neutronic Assessment of Transmutation Target Compositions in Heterogeneous Sodium Fast Reactor Geometries

    SciTech Connect (OSTI)

    Samuel E. Bays; Rodolfo M. Ferrer; Michael A. Pope; Benoit Forget; Mehdi Asgari

    2008-02-01

    The sodium fast reactor is under consideration for consuming the transuranic waste in the spent nuclear fuel generated by light water reactors. This work is concerned with specialized target assemblies for an oxide-fueled sodium fast reactor that are designed exclusively for burning the americium and higher mass actinide component of light water reactor spent nuclear fuel (SNF). The associated gamma and neutron radioactivity, as well as thermal heat, associated with decay of these actinides may significantly complicate fuel handling and fabrication of recycled fast reactor fuel. The objective of using targets is to isolate in a smaller number of assemblies these concentrations of higher actinides, thus reducing the volume of fuel having more rigorous handling requirements or a more complicated fabrication process. This is in contrast to homogeneous recycle where all recycled actinides are distributed among all fuel assemblies. Several heterogeneous core geometries were evaluated to determine the fewest target assemblies required to burn these actinides without violating a set of established fuel performance criteria. The DIF3D/REBUS code from Argonne National Laboratory was used to perform the core physics and accompanying fuel cycle calculations in support of this work. Using the REBUS code, each core design was evaluated at the equilibrium cycle condition.

  2. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect (OSTI)

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  3. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  4. NEAC Nuclear Reactor Technology (NRT) Subcommittee On the Planning Study of Future Test/Demonstration Reactors

    Office of Environmental Management (EM)

    Report and Recommendations of NEAC Nuclear Reactor Technology (NRT) Subcommittee On the Planning Study of Future Test/Demonstration Reactors March 2, 2015 Final Given direction from Congress and interest of several stakeholders, the Department of Energy's Office of Nuclear Energy (DOE-NE) requested that Nuclear Energy Advisory Committee (NEAC)-NRT Subcommittee help define the scope and process for conducting a planning study for an advanced test/demonstration reactor in the United States. The

  5. Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment

    Broader source: Energy.gov [DOE]

    Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory

  6. Passive heat transfer means for nuclear reactors

    DOE Patents [OSTI]

    Burelbach, James P. (Glen Ellyn, IL)

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  7. Control system for a small fission reactor

    DOE Patents [OSTI]

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  8. Monitoring circuit for reactor safety systems

    DOE Patents [OSTI]

    Keefe, Donald J.

    1976-01-01

    The ratio between the output signals of a pair of reactor safety channels is monitored. When ratio falls outside of a predetermined range, it indicates that one or more of the safety channels has malfunctioned.

  9. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect (OSTI)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  10. Downstream extent of the N Reactor plume

    SciTech Connect (OSTI)

    Dauble, D.D.; Ecker, R.M.; Vail, L.W.; Neitzel, D.A.

    1987-09-01

    The downstream extent of the N Reactor thermal plume was studied to assess the potential for fisheries impacts downstream of N Reactor. The N Reactor plume, as defined by the 0.5/sup 0/F isotherm, will extend less than 10 miles downstream at river flows greater than or equal to annual average flows (120,000 cfs). Incremental temperature increases at the Oregon-Washington border are expected to be less than 0.5/sup 0/F during all Columbia River flows greater than the minimum regulated flows (36,000 cfs). The major physical factor affecting Columbia River temperatures in the Hanford Reach is solar radiation. Because the estimated temperature increase resulting from N Reactor operations is less than 0.3/sup 0/F under all flow scenarios, it is unlikely that Columbia River fish populations will be adversely impacted.

  11. Special Analysis: Naval Reactor Waste Disposal Pad

    SciTech Connect (OSTI)

    Cook, J.R.

    2003-03-31

    This report presents the results of a special study of the Naval Reactor Waste Disposal Pad located within the boundary of the E-Area Low-Level Waste Facility at the Savannah River Site.

  12. D and DR Reactors - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities D and DR Reactors About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S...

  13. Automatic safety rod for reactors. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  14. Environmental Information Document: L-reactor reactivation

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  15. Nuclear reactor characteristics and operational history

    Gasoline and Diesel Fuel Update (EIA)

    1. Capacity and Generation, Table 3. Characteristics and Operational History Table 2. U.S. Nuclear Reactor Ownership Data PDF XLS Plant/Reactor Name Generator ID Utility Name - Operator Owner Name % Owned Arkansas Nuclear One 1 Entergy Arkansas Inc Entergy Arkansas Inc 100 Arkansas Nuclear One 2 Entergy Arkansas Inc Entergy Arkansas Inc 100 Beaver Valley 1 FirstEnergy Nuclear Operating Company FirstEnergy Nuclear Generation Corp 100 Beaver Valley 2 FirstEnergy Nuclear Operating Company

  16. Report of the Nuclear Reactor Technology Subcommittee

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Reactor Technology Subcommittee November 18, 2014 Nuclear power competitiveness in the U.S. current electricity market is at risk in several parts of the country. The Department of Energy Office of Nuclear Energy (DOE-NE) has considered the situation and is developing a number of approaches to assist the electric power industry. The Nuclear Reactor Technology Subcommittee and the entire NEAC has already discussed policy issues that should be considered to help retain existing nuclear

  17. Fusion reactor design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactor design Subscribe to RSS - Fusion reactor design The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a

  18. Power-reactor fuel-pin thermomechanics

    SciTech Connect (OSTI)

    Tutnov, A.A.; Ul'yanov, A.I.

    1987-11-01

    The authors describe a method for determining the creep and elongation and other aspects of mechanical behavior of fuel pins and cans under the effects of irradiation and temperature encountered in reactors under loading and burnup conditions. An exhaustive method for testing for fuel-cladding interactions is described. The methodology is shown to be applicable to the design, fabrication, and loading of pins for WWER, SGHWR, and RBMK type reactors, from which much of the experimental data were derived.

  19. Nuclear Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Small

  20. Ames Laboratory Research Reactor Facility Ames, Iowa

    Office of Legacy Management (LM)

    ,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival