National Library of Energy BETA

Sample records for reactor cooling water

  1. Accident analysis of heavy water cooled thorium breeder reactor...

    Office of Scientific and Technical Information (OSTI)

    Accident analysis of heavy water cooled thorium breeder reactor Citation Details In-Document Search Title: Accident analysis of heavy water cooled thorium breeder reactor ...

  2. Boiling water reactor-full length emergency core cooling heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Boiling water reactor-full length emergency core cooling heat transfer ... Citation Details In-Document Search Title: Boiling water reactor-full length emergency ...

  3. Electrochemistry of Water-Cooled Nuclear Reactors

    SciTech Connect (OSTI)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  4. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor

    SciTech Connect (OSTI)

    T. R. Allen and G. S. Was

    2008-12-12

    Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept.

  5. Development of Materials for Supercritical-Water-Cooled Reactor

    Broader source: Energy.gov [DOE]

    Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system...

  6. Code System for Supercritical Water Cooled Reactor LOCA Analysis.

    Energy Science and Technology Software Center (OSTI)

    1999-10-13

    Version 00 The new SCRELA code was developed to analyze the LOCA of the supercritical water cooled reactor. Since the currently available LWR codes for LOCA analysis could not analyze the significant differences in reactor characteristics between the supercritical-water cooled reactor and the current LWR, the first objective of this code development was to analyze the uniqueness of this reactor. The behavior of the supercritical water in the blowdown phase and the reflood phase ismore » modeled.« less

  7. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect (OSTI)

    Mardiansah, Deby; Takaki, Naoyuki

    2010-06-22

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  8. Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. Technical progress report

    SciTech Connect (OSTI)

    Pimblott, S.M.

    2000-04-01

    OAK B188 Effects of Water Radiolysis in Water Cooled Reactors, NERI Proposal No.99-0010. Technical progress report

  9. Cooling performance of a water-cooling panel system for modular high-temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Takada, Shoji; Suzuki, Kunihiko; Inagaki, Yoshiyuki; Sudo, Yukio

    1995-12-31

    Experiments on a water cooling panel system were performed to investigate its heat removal performance and the temperature distribution of components for a modular high-temperature gas-cooled reactor (MHTGR). The analytical code THANPACST2 was applied to analyze the experimental results to verify the validity of the analytical method and the model.

  10. REACTOR COOLING

    DOE Patents [OSTI]

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  11. Accident analysis of heavy water cooled thorium breeder reactor

    SciTech Connect (OSTI)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  12. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect (OSTI)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  13. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  14. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  15. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    SciTech Connect (OSTI)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  16. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  17. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  18. A Qualitative Assessment of Thorium-Based Fuels in Supercritical Pressure Water Cooled Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Mac Donald, Philip Elsworth

    2002-10-01

    The requirements for the next generation of reactors include better economics and safety, waste minimization (particularly of the long-lived isotopes), and better proliferation resistance (both intrinsic and extrinsic). A supercritical pressure water cooled reactor has been chosen as one of the lead contenders as a Generation IV reactor due to the high thermal efficiency and compact/simplified plant design. In addition, interest in the use of thorium-based fuels for Generation IV reactors has increased based on the abundance of thorium, and the minimization of transuranics in a neutron flux; as plutonium (and thus the minor actinides) is not a by-product in the thorium chain. In order to better understand the possibility of the combination of these concepts to meet the Generation IV goals, the qualitative burnup potential and discharge isotopics of thorium and uranium fuel were studied using pin cell analyses in a supercritical pressure water cooled reactor environment. Each of these fertile materials were used in both nitride and metallic form, with light water reactor grade plutonium and minor actinides added. While the uranium-based fuels achieved burnups that were 1.3 to 2.7 times greater than their thorium-based counterparts, the thorium-based fuels destroyed 2 to 7 times more of the plutonium and minor actinides. The fission-to-capture ratio is much higher in this reactor as compared to PWR’s and BWR’s due to the harder neutron spectrum, thus allowing more efficient destruction of the transuranic elements. However, while the uranium-based fuels do achieve a net depletion of plutonium and minor actinides, the breeding of these isotopes limits this depletion; especially as compared to the thorium-based fuels.

  19. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  20. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    SciTech Connect (OSTI)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Subhki, Muhamad Nurul; Ismail,

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this

  1. A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components

    Broader source: Energy.gov [DOE]

    In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the...

  2. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  3. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  4. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  5. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  6. Results from a scaled reactor cavity cooling system with water at steady state

    SciTech Connect (OSTI)

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.; Anderson, M. H.; Corradini, M. L.

    2012-07-01

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representing a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)

  7. COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  8. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    SciTech Connect (OSTI)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  9. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  10. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  11. AIR COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  12. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  13. GAS COOLED NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Rodwell, W.

    1958-06-10

    A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

  14. Gas-cooled nuclear reactor

    DOE Patents [OSTI]

    Peinado, Charles O.; Koutz, Stanley L.

    1985-01-01

    A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

  15. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  16. A COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Wigner, E.P.; Creutz, E.C.

    1960-03-15

    A nuclear reactor comprising a pair of graphite blocks separated by an air gap is described. Each of the blocks contains a plurality of channels extending from the gap through the block with a plurality of fuel elements being located in the channels. Means are provided for introducing air into the gap between the graphite blocks and for exhausting the air from the ends of the channels opposite the gap.

  17. Development of Modeling Capabilities for the Analysis of Supercritical Water-Cooled Reactor Thermal-Hydraulics and Dynamics

    SciTech Connect (OSTI)

    Dr. Michael Z. Podowski

    2009-04-16

    Develop an experimental and theoretical data base for heat transfer in tubes and channels cooled by water and CO2 at supercritical pressures.

  18. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  19. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  20. Water Cooling | Open Energy Information

    Open Energy Info (EERE)

    Water Cooling Jump to: navigation, search Dictionary.png Water Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an...

  1. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  2. Passive containment cooling water distribution device

    DOE Patents [OSTI]

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  3. Liquid metal cooled nuclear reactors

    SciTech Connect (OSTI)

    Barnes, S.

    1980-10-07

    The vault of a liquid metal cooled nuclear reactor is lined with thermal insulation. The insulation is in two layers, a first layer cladding the vault surface is of solid ceramic material while a second layer cladding the first layer is of fibrous or metallic material. In the event of a breach of the vessel leakage of liquid metal is absorbed by the second layer providing a conduction path to the first layer thereby enhancing heat loss to the concrete of the vault and maintaining the internal temperature at a safe limit.

  4. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  5. Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors

    SciTech Connect (OSTI)

    Digby Macdonald; Mirna Urquidi-Macdonald; Yingzi Chen; Jiahe Ai; Pilyeon Park; Han-Sang Kim

    2006-12-12

    Our work involved the continued development of the theory of passivity and passivity breakdown, in the form of the Point Defect Model, with emphasis on zirconium and zirconium alloys in reactor coolant environments, the measurement of critically-important parameters, and the development of a code that can be used by reactor operators to actively manage the accumulation of corrosion damage to the fuel cladding and other components in the heat transport circuits in both BWRs and PWRs. In addition, the modified boiling crevice model has been further developed to describe the accumulation of solutes in porous deposits (CRUD) on fuel under boiling (BWRs) and nucleate boiling (PWRs) conditions, in order to accurately describe the environment that is contact with the Zircaloy cladding. In the current report, we have derived expressions for the total steady-state current density and the partial anodic and cathodic current densities to establish a deterministic basis for describing Zircaloy oxidation. The models are deterministic because the relevant natural laws are satisfied explicitly, most importantly the conversation of mass and charge and the equivalence of mass and charge (Faradays law). Cathodic reactions (oxygen reduction and hydrogen evolution) are also included in the models, because there is evidence that they control the rate of the overall passive film formation process. Under open circuit conditions, the cathodic reactions, which must occur at the same rate as the zirconium oxidation reaction, are instrumental in determining the corrosion potential and hence the thickness of the barrier and outer layers of the passive film. Controlled hydrodynamic methods have been used to measure important parameters in the modified Point Defect Model (PDM), which is now being used to describe the growth and breakdown of the passive film on zirconium and on Zircaloy fuel sheathing in BWRs and PWRs coolant environments. The modified PDMs recognize the existence of a thick

  6. Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors

    SciTech Connect (OSTI)

    Michael Podowski

    2009-11-30

    The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.

  7. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y.

    2012-07-01

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  8. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  9. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  10. WATER BOILER REACTOR

    DOE Patents [OSTI]

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  11. Cooling system for a nuclear reactor

    DOE Patents [OSTI]

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  12. MEANS FOR SHIELDING AND COOLING REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  13. Water Cooled Mirror Design

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  14. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    SciTech Connect (OSTI)

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-12-31

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  15. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H.

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  16. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  17. Light Water Reactor Sustainability (LWRS) Program | Department...

    Energy Savers [EERE]

    Nuclear Reactor Technologies Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) ...

  18. Nuclear reactor cooling system decontamination reagent regeneration

    DOE Patents [OSTI]

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  19. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Chang Oh; Cliff Davis; Goon C. Park

    2007-09-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls.

  20. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  1. Liquid-metal-cooled reactor

    DOE Patents [OSTI]

    Hutter, E.

    A perforated depressor plate extending across the bottom of the instrument tree of a fast breeder reactor cooperates with a circular cylindrical metal bellows forming a part of the upper adapter of each core assembly and bearing on the bottom of the depressor plate to restrict flow of coolant between core assemblies, thereby reducing significantly the pressure differential between the coolant inside the core assemblies and the coolant outside of the core assemblies. Openings in the depressor plate are slightly smaller than the top of the upper adapter so the depressor plate will serve as a backup mechanical holddown for the core. In addition, coolant mixing devices and locating devices are provided attached to the depressor plate.

  2. Liquid-metal-cooled reactor

    DOE Patents [OSTI]

    Hutter, Ernest

    1982-01-01

    A perforated depressor plate extending across the bottom of the instrument ree of a fast breeder reactor cooperates with a circular cylindrical metal bellows forming a part of the upper adapter of each core assembly and bearing on the bottom of the depressor plate to restrict flow of coolant between core assemblies, thereby reducing significantly the pressure differential between the coolant inside the core assemblies and the coolant outside of the core assemblies. Openings in the depressor plate are slightly smaller than the top of the upper adapter so the depressor plate will serve as a backup mechanical holddown for the core. In addition coolant mixing devices and locating devices are provided attached to the depressor plate.

  3. HEAVY WATER MODERATED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  4. A resting bottom sodium cooled fast reactor

    SciTech Connect (OSTI)

    Costes, D.

    2012-07-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  5. System Study: Reactor Core Isolation Cooling 1998-2014

    SciTech Connect (OSTI)

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  6. System Study: Reactor Core Isolation Cooling 1998–2013

    SciTech Connect (OSTI)

    Schroeder, John Alton

    2015-01-31

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  7. System Study: Reactor Core Isolation Cooling 1998–2012

    SciTech Connect (OSTI)

    T. E. Wierman

    2013-10-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2012 for selected components were obtained from the Equipment Performance and Information Exchange (EPIX). The unreliability results are trended for the most recent 10 year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trend was identified in the HPCI results. Statistically significant decreasing trends were identified for RCIC start-only and 8-hour trends.

  8. Light water reactor program

    SciTech Connect (OSTI)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  9. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  10. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  11. A Computer Code To Analyze The Gas-Phase Transport of Fission Products In Reactor Cooling System Under Severe Accidents.

    Energy Science and Technology Software Center (OSTI)

    1990-12-06

    Version 00 HORN calculates the transport of volatile fission products in a dry primary cooling circuit under severe accidents of water reactors.

  12. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  13. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  14. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  15. Sodium-Cooled Fast Reactor: Past and Future | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sodium-Cooled Fast Reactor: Past and Future June 21, 2016 10:00AM to 11:00AM Presenter ... The United States designed, built, and operated fast reactors (mostly SFRs) from EBR-I ...

  16. Monitoring system for a liquid-cooled nuclear fission reactor

    DOE Patents [OSTI]

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  17. A model for radionuclide transport in the Cooling Water System

    SciTech Connect (OSTI)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  18. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    SciTech Connect (OSTI)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  19. High Temperature Gas-Cooled Test Reactor Options Status Report

    SciTech Connect (OSTI)

    Sterbentz, James William; Bayless, Paul David

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  20. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  1. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOE Patents [OSTI]

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  2. Light-Water Breeder Reactor

    DOE Patents [OSTI]

    Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  3. HTGR (High Temperature Gas-Cooled Reactor) ingress analysis using MINET

    SciTech Connect (OSTI)

    Van Tuyle, G.J.; Yang, J.W.; Kroeger, P.G.; Mallen, A.N.; Aronson, A.L.

    1989-04-01

    Modeling of water/steam ingress into the primary (helium) cooling circuit of a High Temperature Gas-Cooled Reactor (HTGR) is described. This modeling was implemented in the MINET Code, which is a program for analyzing transients in intricate fluid flow and heat transfer networks. Results from the simulation of a water ingress event postulated for the Modular HTGR are discussed. 27 refs., 6 figs., 6 tabs.

  4. Passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  5. Natural circulating passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  6. Light Water Reactor Sustainability Technical Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high...

  7. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to incinerate or transmutate the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  8. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect (OSTI)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic honeycomb structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  9. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  10. Liquid metal reactor air cooling baffle

    DOE Patents [OSTI]

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  11. Medium-size high-temperature gas-cooled reactor

    SciTech Connect (OSTI)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760/sup 0/C (1400/sup 0/F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics (a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant) and engineered safety features (core auxiliary cooling, relief valve, and steam generator dump systems).

  12. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOE Patents [OSTI]

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  13. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  14. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOE Patents [OSTI]

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  15. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  16. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  17. Light Water Reactor Sustainability Nondestructive Evaluation...

    Broader source: Energy.gov (indexed) [DOE]

    US Department of Energy Office of Nuclear Energy's Light Water Reactor Sustainability ... A multitude of concrete-based structures are typically part of a light water reactor (LWR) ...

  18. Light Water Reactor Sustainability Program - Integrated Program...

    Office of Environmental Management (EM)

    Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and ...

  19. Experimental Study on Flow Optimization in Upper Plenum of Reactor Vessel for a Compact Sodium-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Kimura, Nobuyuki; Hayashi, Kenji; Kamide, Hideki; Itoh, Masami; Sekine, Tadashi

    2005-11-15

    An innovative sodium-cooled fast reactor has been investigated in a feasibility study of fast breeder reactor cycle systems in Japan. A compact reactor vessel and a column-type upper inner structure with a radial slit for an arm of a fuel-handling machine (FHM) are adopted. Dipped plates are set in the reactor vessel below the free surface to prevent gas entrainment. We performed a one-tenth-scaled model water experiment for the upper plenum of the reactor vessel. Gas entrainment was not observed in the experiment under the same velocity condition as the reactor. Three vortex cavitations were observed near the hot-leg inlet. A vertical rib on the reactor vessel wall was set to restrict the rotating flow near the hot leg. The vortex cavitation between the reactor vessel wall and the hot leg was suppressed by the rib under the same cavitation factor condition as in the reactor. The cylindrical plug was installed through the hole in the dipped plates for the FHM to reduce the flow toward the free surface. It was effective when the plug was submerged into the middle height in the upper plenum. This combination of two components had a possibility to optimize the flow in the compact reactor vessel.

  20. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; et al

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  1. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOE Patents [OSTI]

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  2. Investigation of vessel exterior air cooling for an HLMC reactor

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    2000-07-01

    The secure transportable autonomous reactor (STAR) concept under development at Argonne National Laboratory provides a small [300-MW(thermal)] reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100% + natural-circulation heat removal from the low-power-density/low-pressure-drop ultralong lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the reactor exterior cooling system (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the reactor vessel auxiliary cooling system (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  3. Investigation of vessel exterior air cooling for a HLMC reactor

    SciTech Connect (OSTI)

    Sienicki, J. J.; Spencer, B. W.

    2000-01-13

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  4. Water-lithium bromide double-effect absorption cooling analysis...

    Office of Scientific and Technical Information (OSTI)

    Water-lithium bromide double-effect absorption cooling analysis Citation Details In-Document Search Title: Water-lithium bromide double-effect absorption cooling analysis You ...

  5. Use of nanofiltration to reduce cooling tower water consumption...

    Office of Scientific and Technical Information (OSTI)

    Use of nanofiltration to reduce cooling tower water consumption. Citation Details In-Document Search Title: Use of nanofiltration to reduce cooling tower water consumption. ...

  6. Cooling tower water treatment and reuse. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Cooling tower water treatment and reuse. Citation Details In-Document Search Title: Cooling tower water treatment and reuse. No abstract prepared. Authors: Brady, Patrick Vane ; ...

  7. Purchasing Energy-Efficient Water-Cooled Ice Machines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Energy-Efficient Water-Cooled Ice Machines Purchasing Energy-Efficient Water-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides efficiency ...

  8. Water-Efficient Technology Opportunity: Advanced Cooling Tower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving ...

  9. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors Citation Details In-Document Search Title: Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors The safety ...

  10. Annular core liquid-salt cooled reactor with multiple fuel and...

    Office of Scientific and Technical Information (OSTI)

    Annular core liquid-salt cooled reactor with multiple fuel and blanket zones Citation Details In-Document Search Title: Annular core liquid-salt cooled reactor with multiple fuel ...

  11. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  12. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  13. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  14. Containment system for supercritical water oxidation reactor

    DOE Patents [OSTI]

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  15. Boiler and cooling water basics

    SciTech Connect (OSTI)

    Ketrick, B.T.

    1995-06-01

    Boiler Water Treatment products and programs are used in boiler systems to prevent the formation of water side deposits and corrosion. Water side deposits will cause a loss of boiler efficiency, as well as, damage to the boiler internals. Corrosion can cause a loss of boiler metal integrity. Both conditions can lead to a reduced operating life for the boiler and costly annual repairs.

  16. Hybrid fusion-fission reactor with a thorium blanket: Its potential...

    Office of Scientific and Technical Information (OSTI)

    reactor (HTR) as a fuel for light-water reactors opens up the possibility of ... URANIUM; URANIUM 232; URANIUM 233; WATER COOLED REACTORS; WATER MODERATED REACTORS ...

  17. Evaluation of in-vessel corium retention through external reactor vessel cooling for integral reactor

    SciTech Connect (OSTI)

    Park, R. J.; Lee, J. R.; Kim, S. B.; Jin, Y.; Kim, H. Y.

    2012-07-01

    In-vessel corium retention through external reactor vessel cooling (IVR-ERVC) for a small integral reactor has been evaluated to determine the thermal margin for the prevention of a reactor vessel failure. A thermal load analysis from the corium pool to the outer reactor vessel wall in the lower plenum of the reactor vessel has been performed to determine the heat flux distribution. The critical heat flux (CHF) on the outer reactor vessel wall has been determined to fix the maximum heat removal rate through the external coolant between the outer reactor vessel and the insulation of the reactor vessel. Finally, the thermal margin has been evaluated by comparison of the thermal load with the maximum heat removal rate of the CHF on the outer reactor vessel wall. The maximum heat flux from the corium pool to the outer reactor vessel is estimated at approximately 0.25 MW/m{sup 2} in the metallic layer because of the focusing effect. The CHF of the outer reactor vessel is approximately 1.1 MW/m{sup 2} because of a two phase natural circulation mass flow. Since the thermal margin for the IVR-ERVC is sufficient, the reactor vessel integrity is maintained during a severe accident of a small integral reactor. (authors)

  18. NEUTRONIC REACTOR WITH ACCESSIBLE THIMBLE AND EMERGENCY COOLING FEATURES

    DOE Patents [OSTI]

    McCorkle, W.H.

    1960-02-23

    BS>A safety system for a water-moderated reactor is described. The invention comprises a reservoir system for spraying the fuel elements within a fuel assembly with coolant and keeping them in a continuous bath even if the coolant moderator is lost from the reactor vessel. A reservoir gravity feeds one or more nozzels positioned within each fuel assembly which continually forces water past the fuel elements.

  19. Feasibility study on the thorium fueled boiling water breeder reactor

    SciTech Connect (OSTI)

    PetrusTakaki, N.

    2012-07-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  20. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  1. Subcooling margin system for cooling fluid in a nuclear reactor

    SciTech Connect (OSTI)

    Ball, R. M.; Womack, E. A. Jr.

    1984-11-13

    A monitoring system for providing a display of the margin between actual and saturation pressure as well as a display between actual and saturation temperature for the cooling fluid of a nuclear reactor. The system also has an alarm which is set off whenever the pressure margin to saturation pressure reaches a predetermined limit as well as a temperature margin alarm which sets off an alarm whenever the temperature margin to saturation temperature reaches a predetermined limit.

  2. A Gas-Cooled Reactor Surface Power System

    SciTech Connect (OSTI)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  3. CHIMNEY FOR BOILING WATER REACTOR

    DOE Patents [OSTI]

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  4. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  5. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  6. Specific power of liquid-metal-cooled reactors

    SciTech Connect (OSTI)

    Dobranich, D.

    1987-10-01

    Calculations of the core specific power for conceptual space-based liquid-metal-cooled reactors, based on heat transfer considerations, are presented for three different fuel types: (1) pin-type fuel; (2) cermet fuel; and (3) thermionic fuel. The calculations are based on simple models and are intended to provide preliminary comparative results. The specific power is of interest because it is a measure of the core mass required to produce a given amount of power. Potential problems concerning zero-g critical heat flux and loss-of-coolant accidents are also discussed because these concerns may limit the core specific power. Insufficient experimental data exists to accurately determine the critical heat flux of liquid-metal-cooled reactors in space; however, preliminary calculations indicate that it may be a concern. Results also indicate that the specific power of the pin-type fuels can be increased significantly if the gap between the fuel and the clad is eliminated. Cermet reactors offer the highest specific power because of the excellent thermal conductivity of the core matrix material. However, it may not be possible to take fuel advantage of this characteristic when loss-of-coolant accidents are considered in the final core design. The specific power of the thermionic fuels is dependent mainly on the emitter temperature. The small diameter thermionic fuels have specific powers comparable to those of pin-type fuels. 11 refs., 12 figs, 2 tabs.

  7. Cooling molten salt reactors using “gas-lift”

    SciTech Connect (OSTI)

    Zitek, Pavel E-mail: klimko@kke.zcu.cz; Valenta, Vaclav E-mail: klimko@kke.zcu.cz; Klimko, Marek E-mail: klimko@kke.zcu.cz

    2014-08-06

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a “Two-phase flow demonstrator” (TFD) used for experimental study of the “gas-lift” system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for “gas-lift” (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  8. Method of shielding a liquid-metal-cooled reactor

    DOE Patents [OSTI]

    Sayre, Robert K.

    1978-01-01

    The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.

  9. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    SciTech Connect (OSTI)

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael; Walker, Matthew

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  10. Self-Sustaining Thorium Boiling Water Reactors (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; ... Language: English Subject: 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; ...

  11. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  12. Water inventory management in condenser pool of boiling water reactor

    DOE Patents [OSTI]

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  13. LIGHT WATER MODERATED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  14. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  15. WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS

    Office of Scientific and Technical Information (OSTI)

    WATER-LITHIUM BROMIDE DOUBLE-EFFECT ABSORPTION COOLING ANALYSIS Gary C . V l i e t , ... i e n t simulation of the double-effect, water-1 ithium bromide absorption cooling ...

  16. Water Managment: The Dynamic Challenges of Evaporative Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As water flows over the tower, heat picked up by the process is released by evaporation. The cooling water then returns to the heat exchangers to pick up more heat. Cooling Tower ...

  17. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  18. Covered Product Category: Water-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines.

  19. The Small Modular Liquid Metal Cooled Reactor: A New Approach to Proliferation Risk Management

    SciTech Connect (OSTI)

    Smith, C F; Crawford, D; Cappiello, M; Minato, A; Herczeg, J W

    2003-11-12

    There is an ongoing need to supply energy to small markets and remote locations with limited fossil fuel infrastructures. The Small, Modular, Liquid-Metal-Cooled Reactor, also referred to as SSTAR (Small, Secure, Transportable, Autonomous Reactor), can provide reliable and cost-effective electricity, heat, fresh water, and potentially hydrogen transportation fuels for these markets. An evaluation of a variety of reactor designs indicates that SSTAR, with its secure, long-life core, has many advantages for deployment into a variety of national and international markets. In this paper, we describe the SSTAR concept and its approach to safety, security, environmental and non-proliferation. The system would be design-certified using a new license-by-test approach, and demonstrated for commercial deployment anywhere in the world. The project addresses a technology development need (i.e., a small secure modular system for remote sites) that is not otherwise addressed in other currently planned research programs.

  20. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  1. SUPERHEATING IN A BOILING WATER REACTOR

    DOE Patents [OSTI]

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  2. Covered Product Category: Water-Cooled Electric Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for water-co...

  3. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  4. Natural Convection and Boiling for Cooling SRP Reactors During Loss of Circulation Conditions

    SciTech Connect (OSTI)

    Buckner, M.R.

    2001-06-26

    This study investigated natural convection and boiling as a means of cooling SRP reactors in the event of a loss of circulation accident. These studies show that single phase natural convection cooling of SRP reactors in shutdown conditions with the present piping geometry is probably not feasible.

  5. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  6. Topical report : NSTF facilities plan for water-cooled VHTR RCCS : normal operational tests.

    SciTech Connect (OSTI)

    Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C. P.; Lomperski, S.; Aeschlimann, R. W.; Nuclear Engineering Division

    2006-09-01

    As part of the Department of Energy (DOE) Generation IV roadmapping activity, the gas-cooled Very High Temperature Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept.

  7. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    SciTech Connect (OSTI)

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  8. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    SciTech Connect (OSTI)

    Ren, Weiju; Muralidharan, Govindarajan; Wilson, Dane F; Holcomb, David Eugene

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  9. CFD analyses of natural circulation in the air-cooled reactor cavity cooling system

    SciTech Connect (OSTI)

    Hu, R.; Pointer, W. D.

    2013-07-01

    The Natural Convection Shutdown Heat Removal Test Facility (NSTF) is currently being built at Argonne National Laboratory, to evaluate the feasibility of the passive Reactor Cavity Cooling System (RCCS) for Next Generation Nuclear Plant (NGNP). CFD simulations have been applied to evaluate the NSTF and NGNP RCCS designs. However, previous simulations found that convergence was very difficult to achieve in simulating the complex natural circulation. To resolve the convergence issue and increase the confidence of the CFD simulation results, additional CFD simulations were conducted using a more detailed mesh and a different solution scheme. It is found that, with the use of coupled flow and coupled energy models, the convergence can be greatly improved. Furthermore, the effects of convection in the cavity and the effects of the uncertainty in solid surface emissivity are also investigated. (authors)

  10. PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP

    DOE Patents [OSTI]

    Puechl, K.H.

    1963-09-24

    A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)

  11. EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

  12. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    SciTech Connect (OSTI)

    Forsberg, Charles; Hu, Lin-wen; Peterson, Per; Sridharan, Kumar

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  13. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  14. Covered Product Category: Water-Cooled Electric Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Category: Water-Cooled Electric Chillers Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency

  15. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    SciTech Connect (OSTI)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  16. Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox

    SciTech Connect (OSTI)

    Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J.; Doswell, A.

    1994-05-01

    This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

  17. TA-2 Water Boiler Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  18. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Qualls, A. L.; Betzler, Benjamin R.; Brown, Nicholas R.; Carbajo, Juan; Greenwood, Michael Scott; Hale, Richard Edward; Harrison, Thomas J.; Powers, Jeffrey J.; Robb, Kevin R.; Terrell, Jerry W.

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  19. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  20. Preliminary design study of small long life boiling water reactor...

    Office of Scientific and Technical Information (OSTI)

    boiling water reactor (BWR) with tight lattice thorium nitride fuel Citation Details In-Document Search Title: Preliminary design study of small long life boiling water reactor ...

  1. Partial Defect Testing of Pressurized Water Reactor Spent Fuel...

    Office of Scientific and Technical Information (OSTI)

    Partial Defect Testing of Pressurized Water Reactor Spent Fuel Assemblies Citation Details In-Document Search Title: Partial Defect Testing of Pressurized Water Reactor Spent Fuel ...

  2. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ...

  3. Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap...

    Office of Environmental Management (EM)

    Damage in Piping Light Water Reactor Sustainability (LWRS) Program - R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping Light water reactor sustainability ...

  4. Light Water Reactor Sustainability Program - Non-Destructive...

    Office of Environmental Management (EM)

    Light Water Reactor Sustainability Program - Non-Destructive Evaluation R&D Roadmap for ... important information to the Light Water Reactor Sustainability (LWRS) program ...

  5. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the

  6. Generation IV International Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors

    Office of Energy Efficiency and Renewable Energy (EERE)

    FUKUI, JAPAN - The Department of Energy today announced that the United States signed a sodium-cooled fast reactor systems arrangement with France and Japan, providing the framework for...

  7. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect (OSTI)

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  8. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect (OSTI)

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  9. Safety aspects of forced flow cooldown transients in Modular High Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Kroger, P.G.

    1993-05-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs), the main Heat Transport System (HTS) and the Shutdown Cooling System n removed by the passive Reactor (SCS) are assumed to have failed. Decay heat is the Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This report used the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits.

  10. Validation of SCALE for High Temperature Gas-Cooled Reactors...

    Office of Scientific and Technical Information (OSTI)

    SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark ...

  11. Development of 1000 MWe Advanced Boiling Water Reactor

    SciTech Connect (OSTI)

    Kazuo Hisajima; Ken Uchida; Keiji Matsumoto; Koichi Kondo; Shigeki Yokoyama; Takuya Miyagawa [Toshiba Corporation (Japan)

    2006-07-01

    1000 MWe Advanced Boiling Water Reactor has only two main steam lines and six reactor internal pumps, whereas 1350 MWe ABWR has four main steam lines and ten reactor internal pumps. In order to confirm how the differences affect hydrodynamic conditions in the dome and lower plenum of the reactor pressure vessel, fluid analyses have been performed. The results indicate that there is not substantial difference between 1000 MWe ABWR and 1350 MWe ABWR. The primary containment vessel of the ABWR consists of the drywell and suppression chamber. The suppression chamber stores water to suppress pressure increase in the primary containment vessel and to be used as the source of water for the emergency core cooling system following a loss-of-coolant accident. Because the reactor pressure vessel of 1000 MWe ABWR is smaller than that of 1350 MWe ABWR, there is room to reduce the size of the primary containment vessel. It has been confirmed feasible to reduce inner diameter of the primary containment vessel from 29 m of 1350 MWe ABWR to 26.5 m. From an economic viewpoint, a shorter outage that results in higher availability of the plant is preferable. In order to achieve 20-day outage that results in 97% of availability, improvement of the systems for removal of decay heat is introduced that enables to stop all the safety-related decay heat removal systems except at the beginning of an outage. (authors)

  12. Method of detecting leakage of reactor core components of liquid metal cooled fast reactors

    DOE Patents [OSTI]

    Holt, Fred E.; Cash, Robert J.; Schenter, Robert E.

    1977-01-01

    A method of detecting the failure of a sealed non-fueled core component of a liquid-metal cooled fast reactor having an inert cover gas. A gas mixture is incorporated in the component which includes Xenon-124; under neutron irradiation, Xenon-124 is converted to radioactive Xenon-125. The cover gas is scanned by a radiation detector. The occurrence of 188 Kev gamma radiation and/or other identifying gamma radiation-energy level indicates the presence of Xenon-125 and therefore leakage of a component. Similarly, Xe-126, which transmutes to Xe-127 and Kr-84, which produces Kr-85.sup.m can be used for detection of leakage. Different components are charged with mixtures including different ratios of isotopes other than Xenon-124. On detection of the identifying radiation, the cover gas is subjected to mass spectroscopic analysis to locate the leaking component.

  13. Light Water Reactor Sustainability (LWRS) Initiative Science...

    Energy Savers [EERE]

    disposed instead of untreated used fuel. April 29, 2010 Constituents of Used Light Water Reactor Nuclear Fuel (by mass) April 29, 2010 Descriptions from NE R&D Roadmap to...

  14. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States)

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  15. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    SciTech Connect (OSTI)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Qualls, A L.; Borum, Robert C.; Chaleff, Ethan S.; Rogerson, Doug W.; Batteh, John J.; Tiller, Michael M.

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  16. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect (OSTI)

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  17. Control rod system useable for fuel handling in a gas-cooled nuclear reactor

    DOE Patents [OSTI]

    Spurrier, Francis R.

    1976-11-30

    A control rod and its associated drive are used to elevate a complete stack of fuel blocks to a position above the core of a gas-cooled nuclear reactor. A fuel-handling machine grasps the control rod and the drive is unlatched from the rod. The stack and rod are transferred out of the reactor, or to a new location in the reactor, by the fuel-handling machine.

  18. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    SciTech Connect (OSTI)

    Sulaiman, S. A. Dominguez-Ontiveros, E. E. Alhashimi, T. Budd, J. L. Matos, M. D. Hassan, Y. A.

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  19. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  20. Method and apparatus for enhancing reactor air-cooling system performance

    DOE Patents [OSTI]

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  1. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  2. Technical basis for extending storage of the UK's advanced gas-cooled reactor fuel

    SciTech Connect (OSTI)

    Hambley, D.I.

    2013-07-01

    The UK Nuclear Decommissioning Agency has recently declared a date for cessation of reprocessing of oxide fuel from the UK's Advanced Gas-cooled Reactors (AGRs). This will fundamentally change the management of AGR fuel: from short term storage followed by reprocessing to long term fuel storage followed, in all likelihood, by geological disposal. In terms of infrastructure, the UK has an existing, modern wet storage asset that can be adapted for centralised long term storage of dismantled AGR fuel under the required pond water chemistry. No AGR dry stores exist, although small quantities of fuel have been stored dry as part of experimental programmes in the past. These experimental programmes have shown concerns about corrosion rates.

  3. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these

  4. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Elkassabgi, Yousri M.; De Leon, Gerardo I.; Fetterly, Caitlin N.; Ramos, Jorge A.; Cunningham, Richard Burns

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  5. Pressurized water reactor flow skirt apparatus

    DOE Patents [OSTI]

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  6. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    SciTech Connect (OSTI)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  7. Keeping Cool, Saving Water and Money | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cool, Saving Water and Money Keeping Cool, Saving Water and Money July 2, 2010 - 2:25pm Addthis The Orlando Science Center has installed a new energy efficient HVAC unit. | Photo courtesy of Orlando Science Center The Orlando Science Center has installed a new energy efficient HVAC unit. | Photo courtesy of Orlando Science Center In the summer of 2009, the Orlando Science Center (OSC) was full of hot air, literally. The museum's heating, ventilation and air conditioning (HVAC) system - which had

  8. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect (OSTI)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  9. DUSEL Facility Cooling Water Scaling Issues

    SciTech Connect (OSTI)

    Daily, W D

    2011-04-05

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include

  10. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  11. Materials Degradation in Light Water Reactors: Life After 60

    Broader source: Energy.gov [DOE]

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field....

  12. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-07-24

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  13. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  14. Property:CoolingTowerWaterUseAnnlAvgConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgConsumed Property Type Number Description Cooling Tower Water use (annual average) (afday) Consumed. Retrieved from "http:...

  15. Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:...

  16. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. , Carlson; Bryan J. , Wingo; Robert M. , Robison; Thomas W.

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  17. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    DOE Patents [OSTI]

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  18. Sodium leak detection system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Modarres, Dariush

    1991-01-01

    A light source is projected across the gap between the containment vessel and the reactor vessel. The reflected light is then analyzed with an absorption spectrometer. The presence of any sodium vapor along the optical path results in a change of the optical transmissivity of the media. Since the absorption spectrum of sodium is well known, the light source is chosen such that the sensor is responsive only to the presence of sodium molecules. The optical sensor is designed to be small and require a minimum of amount of change to the reactor containment vessel.

  19. The modular high-temperature gas-cooled reactor (MHTGR)

    SciTech Connect (OSTI)

    Neylan, A.J.

    1986-10-01

    The MHTGR is an advanced reactor concept being developed in the USA under a cooperative program involving the US Government, the nuclear industry and the utilities. The design utilizes basic HTGR features of ceramic fuel, helium coolant and a graphite moderator. However the specific size and configuration are selected to utilize the inherently safe characteristics associated with these standard features coupled with passive safety systems to provide a significantly higher margin of safety and investment protection than current generation reactors. Evacuation or sheltering of the public is not required. The major components of the nuclear steam supply, with special emphasis on the core, are described. Safety assessments of the concept are discussed.

  20. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOE Patents [OSTI]

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  1. An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang

    2007-11-01

    The existing sodium cooled fast reactors (SFR) have two types of designs – loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphénix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL’s Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

  2. Preliminary Neutronics Design and Analysis of D2O Cooled High...

    Office of Scientific and Technical Information (OSTI)

    Such fast reactors (e.g. sodium-cooled reactors) usually rely on technologies that are very different from those of existing water-cooled reactors and are probably more expensive. ...

  3. Use of reclaimed water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those

  4. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    SciTech Connect (OSTI)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  5. Light-water reactor accident classification

    SciTech Connect (OSTI)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art.

  6. Hydrogen and water reactor safety: proceedings

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  7. Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling

    SciTech Connect (OSTI)

    Leung, V.T.

    1993-12-01

    This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

  8. Air-cooled condensers eliminate plant water use

    SciTech Connect (OSTI)

    Wurtz, W.; Peltier, R.

    2008-09-15

    River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

  9. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOE Patents [OSTI]

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  10. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  11. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  12. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  13. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    SciTech Connect (OSTI)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  14. High-temperature gas-cooled reactors: preliminary safety and environmental information document. Volume IV

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Information is presented concerning medium-enriched uranium/thorium once-through fuel cycle; medium-enrichment uranium-233/thorium recycle fuel; high-enrichment uranium-235/thorium recycle (spiked) fuel cycle; high-enrichment uranium-233/thorium recycle (spiked) fuel cycle; and gas-turbine high-temperature gas-cooled reactor.

  15. Evolution of the core physics concept for the Canadian supercritical water reactor

    SciTech Connect (OSTI)

    Pencer, J.; Colton, A.; Wang, X.; Gaudet, M.; Hamilton, H.; Yetisir, M.

    2013-07-01

    The supercritical water cooled reactor (SCWR) is one of the advanced reactor concepts chosen by the GEN-IV International Forum (GIF) for research and development efforts. Canada's contribution is the Canadian SCWR, a heavy water moderated, pressure tube supercritical light water cooled reactor. Recent developments in the SCWR lattice and core concepts, primarily the introduction of a large central flow tube filled with coolant combined with a two-ring fuel assembly, have enabled significant improvements compared to earlier concepts. These improvements include a reduction in coolant void reactivity (CVR) by more than 10 mk, and an almost 40% increase in fuel exit burnup, which is achieved via balanced power distribution between the fuel pins in the fuel assembly. In this paper the evolution of the physics concept is reviewed, and the present lattice and core physics concepts are presented.

  16. Light Water Reactor Sustainability Program - Integrated Program Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Water Reactor Sustainability Program - Integrated Program Plan Light Water Reactor Sustainability Program - Integrated Program Plan The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs. Light Water Reactor Sustainability Program - Integrated Program Plan - Revision 3 (2.66 MB)

  17. Selection of a suitable reactor type for water desalination and power generation in Saudi Arabia

    SciTech Connect (OSTI)

    Hussein, F.M.

    1988-03-01

    Selection of a reactor type suitable for water desalination and power generation is a complex process that involves the evaluation of many criteria and requires the professional judgment of many experts in different fields. A reactor type that is suitable for one country might not be suitable for another. This is especially true in the case of Saudi Arabia because of its strategic location, the nature of its land and people, and its moderate technological situation. A detailed study using a computer code based on Saaty's mathematical pairwise comparison technique and developed in a previous study was carried out to find the most suitable reactor for water desalination and power generation in Saudi Arabia from among five potential types: boiling water reactors (BWRs), pressurized water reactors, CANDU heavy water reactors (HWRs), steam-generating heavy water reactors (SGHWRs), and high-temperature gas-cooled reactors. It was concluded that the CANDU HWR is the most suitable type for this purpose followed first by the BWR, then the SGHWR.

  18. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    SciTech Connect (OSTI)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  19. An optimization study for the reactor vessel auxiliary cooling system of a pool liquid-metal reactor

    SciTech Connect (OSTI)

    Tzanos, C.P.; Tessier, H.; Pedersen, D.R. )

    1991-04-01

    This paper reports on the effects of design parameters on the performance of the reactor vessel auxiliary cooling system (RVACS) of a pool liquid-metal reactor (LMR). These parameters include stack height, size of the airflow gap, system pressure loss, fins on the guard vessel or the baffle wall, and repeated ribs on the airflow channel walls. As a measure of performance , the peak sodium pool temperature during transient following a reactor scram from full power was used. Horizontal ribs with a 0.003-m height and a 0.015-m pitch gave the best performance, i.e., the lowest peak sodium pool temperature during the scram transient. For a 3500-MW(thermal) LMR, they gave peak hot pool and peak cladding temperatures that were 52{degrees}C lower than those obtained with a reference RVACS having smooth airflow channel walls.

  20. Light Water Reactor Sustainability Program: Materials Aging and...

    Office of Environmental Management (EM)

    Program: Materials Aging and Degradation Technical Program Plan Light Water Reactor ... Primary water stress corrosion cracking (PWSCC) is one key form of degradation in extended ...

  1. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  2. Light Water Reactor Sustainability Technical Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2015 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research

  3. Covered Product Category: Water-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  4. Purchasing Energy-Efficient Water-Cooled Ice Machines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides efficiency requirements and acquisition guidance for water-cooled ice machines. Federal laws and requirements mandate that agencies purchase FEMP-designated products or ENERGY STAR-qualified products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  5. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    SciTech Connect (OSTI)

    Takeda, T.; Shimazu, Y.; Hibi, K.; Fujimura, K.

    2012-07-01

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of this project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)

  6. Preliminary requirements for a Fluoride Salt-Cooled High-Temperature Test Reactor (FHTR)

    SciTech Connect (OSTI)

    Massie, M.; Forsberg, C.; Forget, B.; Hu, L. W.

    2012-07-01

    A Fluoride Salt-Cooled High-Temperature Test Reactor (FHTR) design is being developed at MIT to provide the first demonstration and test of a salt-cooled reactor using high-temperature fuel. The first step is to define the requirements. The top level requirements are (1) provide the confidence that a larger demonstration reactor is warranted and (2) develop the necessary data for a larger-scale reactor. Because requirements will drive the design of the FHTR, a significant effort is being undertaken to define requirements and understand the tradeoffs that will be required for a practical design. The preliminary requirements include specifications for design parameters and necessary tests of major reactor systems. Testing requirements include demonstration of components, systems, and procedures for refueling, instrumentation, salt temperature control to avoid coolant freezing, salt chemistry and volume control, tritium monitoring and control, and in-service inspection. Safety tests include thermal hydraulics, neutronics - including intrinsic core shutdown mechanisms such as Doppler feedback - and decay heat removal systems. Materials and coolant testing includes fuels (including mechanical wear and fatigue) and system corrosion behavior. Preliminary analysis indicates a thermal power output below 30 MW, an initial core using pebble-bed or prismatic-block fuel, peak outlet temperatures of at least 700 deg. C, and use of FLi{sup 7}Be ({sup 7}LiF-BeF{sub 2}) coolant. The option to change-out the reactor core, fuel type, and major components is being investigated. While the FHTR will be used for materials testing, its primary mission is as a reactor system performance test to enable the design and licensing of a FHR demonstration power reactor. (authors)

  7. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  8. Self-Sustaining Thorium Boiling Water Reactors

    SciTech Connect (OSTI)

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  9. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  10. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  11. TRISO-Coated Fuel Processing to Support High Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Del Cul, G.D.

    2002-10-01

    The initial objective of the work described herein was to identify potential methods and technologies needed to disassemble and dissolve graphite-encapsulated, ceramic-coated gas-cooled-reactor spent fuels so that the oxide fuel components can be separated by means of chemical processing. The purpose of this processing is to recover (1) unburned fuel for recycle, (2) long-lived actinides and fission products for transmutation, and (3) other fission products for disposal in acceptable waste forms. Follow-on objectives were to identify and select the most promising candidate flow sheets for experimental evaluation and demonstration and to address the needs to reduce technical risks of the selected technologies. High-temperature gas-cooled reactors (HTGRs) may be deployed in the next -20 years to (1) enable the use of highly efficient gas turbines for producing electricity and (2) provide high-temperature process heat for use in chemical processes, such as the production of hydrogen for use as clean-burning transportation fuel. Also, HTGR fuels are capable of significantly higher burn-up than light-water-reactor (LWR) fuels or fast-reactor (FR) fuels; thus, the HTGR fuels can be used efficiently for transmutation of fissile materials and long-lived actinides and fission products, thereby reducing the inventory of such hazardous and proliferation-prone materials. The ''deep-burn'' concept, described in this report, is an example of this capability. Processing of spent graphite-encapsulated, ceramic-coated fuels presents challenges different from those of processing spent LWR fuels. LWR fuels are processed commercially in Europe and Japan; however, similar infrastructure is not available for processing of the HTGR fuels. Laboratory studies on the processing of HTGR fuels were performed in the United States in the 1960s and 1970s, but no engineering-scale processes were demonstrated. Currently, new regulations concerning emissions will impact the technologies used in

  12. A 50-100 kWe gas-cooled reactor for use on Mars.

    SciTech Connect (OSTI)

    Peters, Curtis D.

    2006-04-01

    In the space exploration field there is a general consensus that nuclear reactor powered systems will be extremely desirable for future missions to the outer solar system. Solar systems suffer from the decreasing intensity of solar radiation and relatively low power density. Radioisotope Thermoelectric Generators are limited to generating a few kilowatts electric (kWe). Chemical systems are short-lived due to prodigious fuel use. A well designed 50-100 kWe nuclear reactor power system would provide sufficient power for a variety of long term missions. This thesis will present basic work done on a 50-100 kWe reactor power system that has a reasonable lifespan and would function in an extraterrestrial environment. The system will use a Gas-Cooled Reactor that is directly coupled to a Closed Brayton Cycle (GCR-CBC) power system. Also included will be some variations on the primary design and their effects on the characteristics of the primary design. This thesis also presents a variety of neutronics related calculations, an examination of the reactor's thermal characteristics, feasibility for use in an extraterrestrial environment, and the reactor's safety characteristics in several accident scenarios. While there has been past work for space reactors, the challenges introduced by thin atmospheres like those on Mars have rarely been considered.

  13. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    SciTech Connect (OSTI)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  14. Water Panel Discussion: Federal Reduction Update & Cooling Water Savings

    Office of Environmental Management (EM)

    Water Electrolysis Working Group Water Electrolysis Working Group The Water Electrolysis Working Group, inaugurated in May 2007, brings industry, academia, and national laboratories together to overcome the technical barriers to commercializing electrolysis technology for the production of hydrogen for transportation and industrial use. Description Technical Targets Progress and Financial Opportunities Contacts Description Water electrolysis is the conversion of electrical energy into chemical

  15. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  16. Light-water breeder reactor (LWBR Development Program)

    DOE Patents [OSTI]

    Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  17. Code and model extensions of the THATCH code for modular high temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Kroger, P.G.; Kennett, R.J. )

    1993-05-01

    This report documents several model extensions and improvements of the THATCH code, a code to model thermal and fluid flow transients in High Temperature Gas-Cooled Reactors. A heat exchanger model was added, which can be used to represent the steam generator of the main Heat Transport System or the auxiliary Shutdown Cooling System. This addition permits the modeling of forced flow cooldown transients with the THATCH code. An enhanced upper head model, considering the actual conical and spherical shape of the upper plenum and reactor upper head was added, permitting more accurate modeling of the heat transfer in thisregion. The revised models are described, and the changes and addition to the input records are documented.

  18. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    SciTech Connect (OSTI)

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  19. Neutronic and severe safety aspects of 1500 MWth lead and sodium cooled fast reactors

    SciTech Connect (OSTI)

    Tucek, Kamil; Carlsson, Johan; Vidovic, Dragan; Wider, Hartmut

    2007-07-01

    In this paper, neutronics and severe safety characteristics of Lead-cooled Fast Reactor (LFR) and Sodium-cooled Fast Reactor (SFR) cores concurrently breeding plutonium and burning minor actinides (MAs) are investigated. For LFR, two core variants were modeled: with active core part 90 cm and 120 cm tall. Monte Carlo code was used for neutronics and European Accident Code EAC-2 for severe safety studies. It is shown that both 1500 MW{sub th} LFR and SFR start-up cores can transmute on average 70 kg of MAs annually in the homogeneous mode. In this case, 5% of MAs were admixed to the core fuel. More than 110 kg of MAs can be burned per year when 10% of MAs are additionally added to axial and radial blankets. LFR core designs show advantages over SFR cores regarding severe safety behavior due to higher thermal inertia, better natural circulation behavior and the higher boiling point of lead. (authors)

  20. Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the...

  1. The 100K West Reactor Water Treatment Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demolition (D&D) work at the 100K West Reactor Water Treatment Facilities at the Hanford ... facilities and waste sites that supported reactor operations from the 1950s to the 1970s. ...

  2. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    DOE Patents [OSTI]

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  3. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Wayne Moe

    2013-05-01

    This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

  4. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect (OSTI)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  5. Thermal Hydraulic Challenges of Gas Cooled Fast Reactors with Passive Safety Features

    SciTech Connect (OSTI)

    Michael Pope; Jeong-Ik Lee; Pavel Hejzlar; Michael J. Driscoll

    2009-05-01

    Transient response of a Gas cooled Fast Reactor (GFR) coupled to a recompression supercritical CO2 (S-CO2) power conversion system (PCS) in a direct cycle to Loss of Coolant and Loss of Generator Load Accidents is analyzed using RELAP5-3D. A number of thermal hydraulic challenges for GFR design are pointed out as the designers strive to accommodate cooling of the high power density core of a fast reactor by a gas with its inherently low heat transfer capability, in particular under post LOCA events when system pressure is lost and when reliance on passive decay heat removal is emphasized. Although it is possible to design a S-CO2 cooled GFR that can survive LOCA by cooling the core through natural circulating loops between the core and elevated emergency cooling heat exchangers, it is not an attractive approach because of various bypass paths that can, depending on break location, degrade core cooling. Moreover, natural circulation gas loops can operate in deteriorated heat transfer regimes with substantial reduction of heat transfer coefficient: as low as 30% of forced convection values, and data and correlations in these regimes carry large uncertainties. Therefore, reliable battery powered blowers for post-LOCA decay heat removal (DHR) that provide flow in well defined regimes with low uncertainty, and can be easily over-designed to accommodate bypass flows were selected. The results confirm that a GFR with such a DHR system and negative coolant void worth can withstand LOCA with and without scram as well as loss of electrical load without exceeding core temperature and turbomachinery overspeed limits.

  6. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Cetiner, Sacit M; Flanagan, George F; Peretz, Fred J; Yoder Jr, Graydon L

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  7. Concept of an inherently-safe high temperature gas-cooled reactor

    SciTech Connect (OSTI)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-06-06

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  8. USE of mine pool water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  9. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    SciTech Connect (OSTI)

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-10-03

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region.

  10. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Flanagan, George F; Mays, Gary T; Pointer, William David; Robb, Kevin R; Yoder Jr, Graydon L

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.