Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recovery Act Workers Clear Reactor Shields from Brookhaven Lab | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Clear Reactor Shields from Brookhaven Lab Workers Clear Reactor Shields from Brookhaven Lab Recovery Act Workers Clear Reactor Shields from Brookhaven Lab American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for research. The Brookhaven National Laboratory is using $39 million from the Recovery Act to decommission the Brookhaven Graphite Research Reactor, the world's first reactor built solely for peaceful research purposes. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab More Documents & Publications Brookhaven Graphite Research Reactor Workshop 2011 ARRA Newsletters Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell

2

Recovery Act Workers Clear Reactor Shields from Brookhaven Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UPTON, N.Y. - American Recovery and Reinvestment Act UPTON, N.Y. - American Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb neutrons produced for research. The Brookhaven National Laboratory is using $39 million from the Recovery Act to decommission the Brookhaven Graphite Research Reactor, the world's first reactor built solely for peaceful research purposes. The decommissioning is slated for completion later this year and will end Office of Environmental Management legacy cleanup activities at the Lab. The neutron shields were located on the north and south sides of a 700-ton graphite pile. The three-inch-thick shields absorbed neutrons that escaped from the graphite pile. The shields also limited movement of the pile when the reactor was in opera-

3

Neutron shielding panels for reactor pressure vessels  

DOE Patents (OSTI)

In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

Singleton, Norman R. (Murrysville, PA)

2011-11-22T23:59:59.000Z

4

E-Print Network 3.0 - aircraft shield test reactor Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

shield test reactor Search Powered by Explorit Topic List Advanced Search Sample search results for: aircraft shield test reactor Page: << < 1 2 3 4 5 > >> 1 A' Brief. History of...

5

Proposal of DC shield reactor type superconducting fault current limiter  

Science Journals Connector (OSTI)

Saturated DC reactor type superconducting fault current limiter (SFCL) had been proposed two years ago. It was classified to rectifier type SFCL. The changing inductance value with the operating mode has superior characteristics to reduce voltage sag during step increase of the load current. But it has the disadvantage of its weight. In this paper, rectifier type SFCL with shielded reactor has been proposed. The reactor which has superconducting ring or tube inside its winding is substituted to the DC link of the rectifier. The configuration looks like an air core transformer with secondary short winding. When the current through the bulk shield-ring reaches to a certain level, the flux penetrates to the shield body and finite impedance appears in the primary winding. In other words, when the surface flux density exceeds its critical flux density, the flux penetrates into the bulk superconductor, and increases equivalent inductance. The equivalent transient resistance of the shield was represented as a function of exponential of the time. Using this equivalent transient resistance, the transient impedance was expressed. The transient wave analysis using EMTDC (electro-magnetic transients in DC systems) has been described. Simulated waveforms are shown considering the source inductance, the leakage inductance, the coupling coefficient and the forward voltage drop of the semiconductor. And voltage sag was also investigated with 50% step load increase. Preliminary design was also performed. The coil size and number of turns are designed to obtain adequate inductance for the current limitation, and the central magnetic field of the coils are calculated. There is optimal aspect ratio to minimize the magnetic field with restriction in outer diameter of the coil.

Itsuya Muta; Tsutomu Hoshino; Khosru Mohammad Salim; Akio Kawasaki; Taketsune Nakamura; Masato Yamada

2004-01-01T23:59:59.000Z

6

Shielding design aspects of thermionic space nuclear reactors  

SciTech Connect

It has been well documented that nuclear power sources will be required for the future exploration of space. Higher power levels (>10 kW (electric)) will be enabling, if not absolutely necessary, for the continued expansion of a human presence in the solar system and beyond. Space missions that will directly benefit continued life on Earth, including the monitoring for climate change and global warming, high-capacity communication satellites, and large, space-based radar systems to monitor the flow of airline traffic, will require progressively larger amounts of electrical power. Military applications, even with the ending of the Cold War, will continue to be needed for treaty verification activities. A thermionic energy conversion-based nuclear reactor system is one of the many different technologies proposed for the utilization of nuclear energy in space. How the energy conversion is accomplished and the equipment requiring shielding have a profound effect on the overall shielding requirements for the system. There exist two configurations of this technology that can be exploited and will have a significant effect on shielding needs. The paper discusses in-core thermionic conversion and out-of-core conversion concepts.

Klein, A.C.

1991-01-01T23:59:59.000Z

7

Solid tags for identifying failed reactor components  

DOE Patents (OSTI)

A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

1987-01-01T23:59:59.000Z

8

Nuclear reactor having a polyhedral primary shield and removable vessel insulation  

DOE Patents (OSTI)

A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

Ekeroth, D.E.; Orr, R.

1993-12-07T23:59:59.000Z

9

Nuclear reactor having a polyhedral primary shield and removable vessel insulation  

DOE Patents (OSTI)

A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

Ekeroth, Douglas E. (Delmont, PA); Orr, Richard (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

10

DOSE RATES FROM NEUTRON ACTIVATION OF FUSION REACTOR COMPONENTS  

E-Print Network (OSTI)

NEUTRON ACTIVATION OF FUSION REACTOR C01WONENTS LawrenceNeutron Activation of Fusion Reactor Components Lawrence

Ruby, Lawrence

2014-01-01T23:59:59.000Z

11

EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR  

SciTech Connect

Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

REID, ROBERT S. [Los Alamos National Laboratory; PEARSON, J. BOSIE [Los Alamos National Laboratory; STEWART, ERIC T. [Los Alamos National Laboratory

2007-01-16T23:59:59.000Z

12

Mossbauer Spectroscopic Study of Gamma Irradiation on the Structural Properties of Hematite, Magnetite and Limonite Concrete for Nuclear Reactor Shielding  

Science Journals Connector (OSTI)

This work investigate the effect of gamma irradiation on a heavy type of concrete, constructed for nuclear reactor shield. The effect of gamma irradiation was...

N.A. Eissa; M.S.I. Kany; A.S. Mohamed; A.A. Sallam; M.H. El Fouly

13

Gamma dose from activation of internal shields in IRIS reactor  

Science Journals Connector (OSTI)

......located inside the reactor vessel, which requires...the sake of better reliability and safety, it...located inside the reactor vessel, which requires...the sake of better reliability and safety, it...Equipment Failure Analysis methods European...Carlo Method Nuclear Reactors Radiation Dosage......

Stefano Agosteo; Antonio Cammi; Luisella Garlati; Carlo Lombardi; Enrico Padovani

2005-12-20T23:59:59.000Z

14

Heat insulating system for a fast reactor shield slab  

DOE Patents (OSTI)

Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, Jr., James (LaGrange Park, IL); Groh, Edward F. (Naperville, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

15

Heat insulating system for a fast reactor shield slab  

DOE Patents (OSTI)

Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

1984-04-10T23:59:59.000Z

16

Shielding requirements for the transport of nuclear warhead components under decommissioning  

SciTech Connect

The requirements to carry out accurate shielding calculations involved with the safe off-site transportation of packages containing nuclear warhead components, special assemblies and radioactive materials are discussed. The need for (a) detailed information on the geometry and material composition of the packaging and radioactive load, (b) accurate representation of the differential energy spectra (dN/dE) for the neutron and gamma spectra emitted by the radioactive materials enclosed in the packaging, (c) well-tested neutron and photon cross section libraries, (d) and accurate three-dimensional Monte Carlo transport codes are illustrated. A brief discussion of the need for reliable dose measurements is presented.

Hansen, L.F.

1994-09-01T23:59:59.000Z

17

Measurement Of Flow Induced Vibration Of Reactor Component  

Science Journals Connector (OSTI)

The effect of flow-induced vibration on class I components in the reactor is a very important design factor for its qualifications worthy of loading inside the core. In this regard, a clear definition of the f...

N. Dharmaraju; K. K. Meher; A. Rama Rao

2008-01-01T23:59:59.000Z

18

Radiation embrittlement of the neutron shield tank from the Shippingport reactor  

SciTech Connect

The irradiation embrittlement of neutron shield tank (NST) material (A212 Grade B steel) from the Shippingport reactor has been characterized. Irradiation increases the Charpy transition temperature (CTT) by 23--28{degrees}C (41--50{degrees}F) and decreases the upper-shelf energy. The shift in CTT is not as severe as that observed in high-flux isotope reactor (HFIR) surveillance specimens. However, the actual value of the CTT is higher than that for the HFIR data. The increase in yield stress is 51 MPa (7.4 ksi), which is comparable to HFIR data. The NST material is weaker in the transverse orientation than in the longitudinal orientation. Some effects of position across the thickness of the wall are also observed; the CTT shift is slightly greater for specimens from the inner region of the wall. Annealing studies indicate complete recovery from embrittlement after 1 h at 400{degrees}C (752{degrees}F). Although the weld metal is significantly tougher than the base metal, the shifts in CTT are comparable. The shifts in CTT for the Shippingport NST are consistent with the test and Army reactor data for irradiations at <232{degrees}C (<450{degrees}F) and show very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor (ORR). The effects of irradiation temperature, fluence rate, and neutron flux spectrum are discussed. The results indicate that fluence rate has no effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s and at the low operating temperatures of the Shippingport NST, i.e., 55{degrees}C (130{degrees}F). This suggests that the accelerated embrittlement of HFIR surveillance samples is most likely due to the relatively higher proportion of thermal neutrons in the HFIR spectrum compared to that for the test reactors. 28 refs., 25 figs.

Chopra, O.K.; Shack, W.J. (Argonne National Lab., IL (United States)); Rosinski, S.T. (Sandia National Labs., Albuquerque, NM (United States))

1991-10-01T23:59:59.000Z

19

Austenitic alloy and reactor components made thereof  

DOE Patents (OSTI)

An austenitic stainless steel alloy is disclosed, having excellent fast neutron irradiation swelling resistance and good post irradiation ductility, making it especially useful for liquid metal fast breeder reactor applications. The alloy contains: about 0.04 to 0.09 wt. % carbon; about 1.5 to 2.5 wt. % manganese; about 0.5 to 1.6 wt. % silicon; about 0.030 to 0.08 wt. % phosphorus; about 13.3 to 16.5 wt. % chromium; about 13.7 to 16.0 wt. % nickel; about 1.0 to 3.0 wt. % molybdenum; and about 0.10 to 0.35 wt. % titanium.

Bates, John F. (Ogden, UT); Brager, Howard R. (Richland, WA); Korenko, Michael K. (Wexford, PA)

1986-01-01T23:59:59.000Z

20

Nuclear reactor spacer grid and ductless core component  

DOE Patents (OSTI)

The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gamma-Ray Shielding Effectiveness of Some Alloys for Fusion Reactor Design  

Science Journals Connector (OSTI)

The gamma-ray shielding effectiveness of some oxide dispersion-strengthen (ODS) alloys by means of mass attenuation coefficients, mean free path, exposure buildup factors and energy absorption buildup factors hav...

Vishwanath P. Singh; M. E. Medhat; N. M. Badiger

2014-10-01T23:59:59.000Z

22

Macroscopic erosion of plasma facing and nearby components during plasma instabilities: the droplet shielding phenomenon  

E-Print Network (OSTI)

be extremely high. This can severely limit divertor system lifetime to only a few disruptions. Ablation is mass; Shielding; Lifetime; HEIGHTS package 1. Introduction During plasma disruptions, the power ¯ux reaching to the reduced radiation power for a reasonable disruption frequency. However, mass losses due to ablation can

Harilal, S. S.

23

Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDU{sup R} and ACR{sup TM} reactors  

SciTech Connect

This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies heavily on experience and engineering judgement, consistent with the ALARA philosophy. Special care is taken to ensure that the best estimate dose rates are used to the extent possible when applying ALARA. Provisions for safeguards equipment are made throughout the fuel-handling route in CANDU and ACR reactors. For example, the fuel bundle counters rely on the decay gammas from the fission products in spent-fuel bundles to record the number of fuel movements. The International Atomic Energy Agency (IAEA) Safeguards system for CANDU and ACR reactors is based on item (fuel bundle) accounting. It involves a combination of IAEA inspection with containment and surveillance, and continuous unattended monitoring. The spent fuel bundle counter monitors spent fuel bundles as they are transferred from the fuelling machine to the spent fuel bay. The shielding and dose-rate analysis need to be carried out so that the bundle counter functions properly. This paper includes two codes used in criticality safety analyses. Criticality safety is a unique phenomenon and codes that address criticality issues will demand specific validations. However, it is recognised that some of the codes used in radiation physics will also be used in criticality safety assessments. (authors)

Aydogdu, K.; Boss, C. R. [Atomic Energy of Canada Limited, Sheridan Science and Technology Park, Mississauga, Ont. L5K 1B2 (Canada)

2006-07-01T23:59:59.000Z

24

Radiation Hardness of Passive Fibre Optic Components for the Future Thermonuclear Fusion Reactor  

E-Print Network (OSTI)

thermon uclearfusion reactor ITER will require remote-hanA#0 equipmen t to monNNfl its operation an to allow hazard-freemand-freexAN durin itsfrequen tmain ten3# periods. Heavy shielded umbilicals will be required tocon5N3 thesen2A5 an the actuators with theirinrx0flNj tation Multiplexin sen#0 signfl3 turn out to beessen tial to ease the umbilicalmancalx5 t. We arecon33NxF0# fibre optic technxfljN , with its in trinfl# wavelenflfl multiplexin (WDM) capabilities, tohanA5 these ITER multiplexin issues. We propose anA anAN2 data lin design for low-banjxF0N sennj an actuators basedon commercialo #-the-shelf (COTS) fiber optic compon5 ts. We relyon passive compon0 ts such as WDM couplersan fibre Bragggratin2 (FBG) to build a radiationfl0#NxnN t an5#j datalin0 WDM couplers remain operationx up to a 13 MGy gamma total dose. Aradiation53AxnA chan#/ drift is observed. The refractive inflNN han3 un33 ion33jj radiation is proposed as the degradation mechan30j FBG filters con tin ue to operate satisfactorily up to a 150 MGy total gamma dosean an505/3 fluen2 of about 10 15nx0 2 . Our resultson these COTS all-fibre passive compon5 ts open perspectives to build a radiation#A2/xn t an/5/ optical data lin compatible with the ITERrequiremen ts.

A. Fernandez Fernandez F. Berghmans; A. Fern; Ez Fern; M. Decréton; P. Mégret; M. Blondel; A. Delchambre; Ez A; F. Berghmans A; B. Brichard; M. Van Uffelen

2001-01-01T23:59:59.000Z

25

Concepts and Tests for the Remote-Controlled Dismantling of the Biological Shield and Form work of the KNK Reactor - 13425  

SciTech Connect

The compact sodium-cooled nuclear reactor facility Karlsruhe (KNK), a prototype Fast Breeder, is currently in an advanced stage of dismantling. Complete dismantling is based on 10 partial licensing steps. In the frame of the 9. decommissioning permit, which is currently ongoing, the dismantling of the biological shield is foreseen. The biological shield consists of heavy reinforced concrete with built-in steel fitments, such as form-work of the reactor tank, pipe sleeves, ventilation channels, and measuring devices. Due to the activation of the inner part of the biological shield, dismantling has to be done remote-controlled. During a comprehensive basic design phase a practical dismantling strategy was developed. Necessary equipment and tools were defined. Preliminary tests revealed that hot wire plasma cutting is the most favorable cutting technology due to the geometrical boundary conditions, the varying distance between cutter and material, and the heavy concrete behind the steel form-work. The cutting devices will be operated remotely via a carrier system with an industrial manipulator. The carrier system has expandable claws to adjust to the varying diameter of the reactor shaft during dismantling progress. For design approval of this prototype development, interaction between manipulator and hot wire plasma cutting was tested in a real configuration. For the demolition of the concrete structure, an excavator with appropriate tools, such as a hydraulic hammer, was selected. Other mechanical cutting devices, such as a grinder or rope saw, were eliminated because of concrete containing steel spheres added to increase the shielding factor of the heavy concrete. Dismantling of the biological shield will be done in a ring-wise manner due to static reasons. During the demolition process, the excavator is positioned on its tripod in three concrete recesses made prior to the dismantling of the separate concrete rings. The excavator and the manipulator carrier system will be operated alternately. Main boundary condition for all the newly designed equipment is the decommissioning housing of limited space within the reactor building containment. To allow for a continuous removal of the concrete rubble, an additional opening on the lowest level of the reactor shaft will be made. All equipment and the interaction of the tools have to be tested before use in the controlled area. Therefore a full-scale model of the biological shield will be provided in a mock-up. The tests will be performed in early 2014. The dismantling of the biological shield is scheduled for 2015. (authors)

Neff, Sylvia; Graf, Anja; Petrick, Holger; Rothschmitt, Stefan [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein- Leopoldshafen (Germany)] [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein- Leopoldshafen (Germany); Klute, Stefan [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany)] [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Stanke, Dieter [Siempelkamp NIS Ingenieurgesellschaft mbH, Industriestrasse 13, 63755 Alzenau (Germany)] [Siempelkamp NIS Ingenieurgesellschaft mbH, Industriestrasse 13, 63755 Alzenau (Germany)

2013-07-01T23:59:59.000Z

26

Radiation Shielding Design and Orientation Considerations for a 1 kWe Heat Pipe Cooled Reactor Utilized to Bore Through the Ice Caps of Mars  

SciTech Connect

The goal in designing any space power system is to develop a system able to meet the mission requirements for success while minimizing the overall costs. The mission requirements for the this study was to develop a reactor (with Stirling engine power conversion) and shielding configuration able to fit, along with all the other necessary science equipment, in a Cryobot 3 m high with {approx}0.5 m diameter hull, produce 1 kWe for 5yrs, and not adversely affect the mission science by keeping the total integrated dose to the science equipment below 150 krad. Since in most space power missions the overall system mass dictates the mission cost, the shielding designs in this study incorporated Martian water extracted at the startup site in order to minimize the tungsten and LiH mass loading at launch. Different reliability and mass minimization concerns led to three design configuration evolutions. With the help of implementing Martian water and configuring the reactor as far from the science equipment as possible, the needed tungsten and LiH shield mass was minimized. This study further characterizes the startup dose and the necessary mission requirements in order to ensure integrity of the surface equipment during reactor startup phase.

Fensin, Michael L. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Elliott, John O. [Jet Propulsion Laboratories, California Institute of Technology, Pasedena, Ca 91109 (United States); Lipinski, Ronald J. [Sandia National Laboratory, Albuquerque, NM 87185 (United States); Poston, David I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2006-01-20T23:59:59.000Z

27

Safety analysis report for the National Low-Temperature Neutron Irradiation Facility (NLTNIF) at the ORNL Bulk Shielding Reactor (BSR)  

SciTech Connect

This report provides information concerning: the experiment facility; experiment assembly; instrumentation and controls; materials; radioactivity; shielding; thermodynamics; estimated or measured reactivity effects; procedures; hazards; and quality assurance. (JDB)

Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Richardson, S.A.

1986-06-01T23:59:59.000Z

28

Liquid Metal Reactor Program: JASPER US/DOE/PNC Shielding Research Program : Technical progress report, April 1-May 31, 1987  

SciTech Connect

This progress report details activities on the JASPER Shielding Program for the time period of April 1, 1987 through May 31, 1987.

Ingersoll, D.T.; Engle, W.W.; Muckenthaler, F.J.; Slater, C.O.

1987-12-31T23:59:59.000Z

29

Methods for nondestructive testing of austenitic high-temperature gas-cooled reactor components  

SciTech Connect

Safety-relevant components of high-temperature gas-cooled reactor components are mostly fabricated in nickel-based alloys and austenitic materials like Inconel-617, Hastelloy-X, Nimonic-86, or Incoloy-800H. Compared to ferritic steels, these austenitic materials can have a coarse-grained microstructure, especially in weldments and castings. Coarse-grained or elastic anisotropic materials are difficult to inspect with ultrasonics due to strong attenuation, high noise level (scattering, ''grass'' indications), and sound beam distortions (skewing, splitting, and mode conversion). Only few results dealing with the nondestructive testing of nickel-based alloys are known. The problem area, solutions, and first experiences are reported.

Gobbels, K.; Kapitza, H.

1984-09-01T23:59:59.000Z

30

Fusion tritons and plasma-facing components in a fusion reactor  

Science Journals Connector (OSTI)

We would like to discuss the role that 1?MeV tritons produced in deuterium–deuterium fusion reactions might play in a long-pulse or steady-state fusion reactor. Albeit a small minority in quantity compared to the fuel tritium, the fusion tritons have significantly longer penetration length in materials and can have detrimental consequences for the integrity of the components. Because deeply deposited atoms are not easily removed from the plasma-facing components, the fusion tritium inventory in a steady-state device is expected to be limited only by decay. Furthermore, unlike fuel tritium, it is not evenly distributed on the plasma-facing components. We conclude that, of the materials considered here, tungsten appears better than carbon or beryllium in this respect. Nonetheless, 1?MeV tritons from deuterium fusion should not be neglected when making material choices for ITER and, especially, for future fusion reactors. In particular, studies on the bulk effects of deeply penetrated tritium in tungsten are urgently needed if metal-wall reactors are considered for the future. This is an interdisciplinary problem needing the attention of material scientists and plasma physicists.

T. Kurki-Suonio; V. Hynönen; T. Ahlgren; K. Nordlund; K. Sugiyama; R. Dux

2007-01-01T23:59:59.000Z

31

Method for fabricating wrought components for high-temperature gas-cooled reactors and product  

DOE Patents (OSTI)

A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

Thompson, Larry D. (San Diego, CA); Johnson, Jr., William R. (San Diego, CA)

1985-01-01T23:59:59.000Z

32

Modeling of reactor components using FIDAP: a finite element computer code  

E-Print Network (OSTI)

. ? e model are listed in table 1. 19 CHAPTER III FLUID AND THERMAL MIXING IN THE COLD LEG AND DOWNCOMER OF A PWR - A BENCHMARK In order to vahdste the code FIDAP, s, thermal mixing experiment is simulated This is basically a test of the field...MODELING OF REACTOR COMPONENTS USING FIDAP - A FINITE ELEMENT COMPUTE& CODE A Thesrs by ANAND GANGADHARAN Subnutted to the Office of Graduate Stuches of Texs, s ARM University in partial fulfillment of the requirements for the degree...

Gangadharan, Anand

2012-06-07T23:59:59.000Z

33

Mechanical properties of welds in commercial alloys for high-temperature gas-cooled reactor components  

SciTech Connect

Weld properties of Hastelloy-X, Incoloy alloy 800H (with and without Inconel-82 cladding), and 2 1/4 Cr-1 Mo are being studied to provide design data to support the development of steam generator, core auxiliary heat exchanger, and metallic thermal barrier components of the high-temperature gas-cooled reactor (HTGR) steam cycle/cogeneration plant. Tests performed include elevated-temperature creep rupture tests and tensile tests. So far, data from the literature and from relatively short-term tests at GA Technologies Inc. indicate that the weldments are satisfactory for HTGR application.

Lindgren, J.R.; Li, C.C.; Ryder, R.H.; Thurgood, B.E.

1984-07-01T23:59:59.000Z

34

THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

35

Induced Radioactivity and Waste Classification of Reactor Zone Components of the Chernobyl Nuclear Power Plant Unit 1 After Final Shutdown  

SciTech Connect

The dismantlement of the reactor core materials and surrounding structural components is a major technical concern for those planning closure and decontamination and decommissioning of the Chernobyl Nuclear Power Plant (NPP). Specific issues include when and how dismantlement should be accomplished and what the radwaste classification of the dismantled system would be at the time it is disassembled. Whereas radiation levels and residual radiological characteristics of the majority of the plant systems are directly measured using standard radiation survey and radiochemical analysis techniques, actual measurements of reactor zone materials are not practical due to high radiation levels and inaccessibility. For these reasons, neutron transport analysis was used to estimate induced radioactivity and radiation levels in the Chernobyl NPP Unit 1 reactor core materials and structures.Analysis results suggest that the optimum period of safe storage is 90 to 100 yr for the Unit 1 reactor. For all of the reactor components except the fuel channel pipes (or pressure tubes), this will provide sufficient decay time to allow unlimited worker access during dismantlement, minimize the need for expensive remote dismantlement, and allow for the dismantled reactor components to be classified as low- or medium-level radioactive waste. The fuel channel pipes will remain classified as high-activity waste requiring remote dismantlement for hundreds of years due to the high concentration of induced {sup 63}Ni in the Zircaloy pipes.

Bylkin, Boris K. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Davydova, Galina B. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Zverkov, Yuri A. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Krayushkin, Alexander V. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Neretin, Yuri A. [Chernobyl Nuclear Power Plant (Ukraine); Nosovsky, Anatoly V. [Slavutych Division of the International Chernobyl Center (Ukraine); Seyda, Valery A. [Chernobyl Nuclear Power Plant (Ukraine); Short, Steven M. [Pacific Northwest National Laboratory (United States)

2001-10-15T23:59:59.000Z

36

Advancements in FBR shielding - Ten years in Japan  

SciTech Connect

Research and development in the area of fast breeder reactor (FBR) shielding in Japan was fully under way in April 1987 when criticality of the JOYO experimental FBR was first attained. The main activities performed and results obtained during more than 10 yr of FBR shielding research are presented. The paper describes shielding research in Joyo; Monju shielding design and related research; research activities for future FBRs; and evaluation of Monju shielding designs.

Ohtani, Nobuo; Suzuki, Soju

1990-01-01T23:59:59.000Z

37

Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components  

SciTech Connect

This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.

Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

2013-05-17T23:59:59.000Z

38

Cryogenic system component development for the fusion experimental reactor at JAERI  

SciTech Connect

The major objective of fusion R and D at the Japan Atomic Energy Research Institute (JAERI) is to construct the Fusion Experimental Reactor (FER) to follow JT-60. The construction of FER inevitably requires development of a large, reliable, and efficient helium liquefier/refrigerator and the more advanced cryogenic technology for cooling superconducting toroidal and poloidal coils. Typical characteristics required for the cryogenic system of FER are 10 to 20 kW at 4 K as one unit, reliability for > 8000 h, a stable pulsed heat load, and high-energy efficiency of > 1/500. In this cryogenic system, the major components such as the helium compressor, turbo-expander, cold circulation pump for supercritical helium, and cold compressor to reduce operating temperature below 4 K should be scaled up to a mass flow rate of > 1000 g/s. For this purpose, JAERI has developed cryogenics since 1980 in accordance with the development program in which the scaling up of the major components mentioned above are involved as well as cooling technology development.

Kato, T.; Kamiya, S.; Tada, E.; Hiyama, T.; Kawano, K.; Shimamoto, S.

1986-01-01T23:59:59.000Z

39

Design and development of a special purpose SAFT system for nondestructive evaluation of nuclear reactor vessels and piping components  

SciTech Connect

This report describes the design details of a special purpose system for real-time nondestructive evaluation of reactor vessels and piping components. The system consists of several components and the report presents the results of the research aimed at the design of each component and recommendations based on the results. One major component of the NDE system, namely the real-time SAFT processor, was designed with sufficient details to enable the fabrications of a prototype by GARD Inc. under a subcontract from The University of Michigan and the report includes their results and conclusions.

Ganapathy, S.; Schmult, B.; Wu, W.S.; Dennehy, T.G.; Moayeri, N.; Kelly, P.

1985-08-01T23:59:59.000Z

40

Thermocouple shield  

DOE Patents (OSTI)

A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.

Ripley, Edward B. (Knoxville, TN)

2009-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Physics-Based Multi-State Models of Passive Component Degradation for the R7 Reactor Simulation Environment  

SciTech Connect

Abstract: The Next Generation Systems Analysis Code - referred to as R7 - is reactor systems simulation software being developed to support the Risk-Informed Safety Margin Characterization Pathway of the U.S. Department of Energy's Light Water Reactor Sustainability Program. It will provide an integrated multi-physics environment, implemented in an uncertainty quantification (UQ) framework that can produce risk and other performance insights on long-term reactor operations. An element of this simulation environment will be the performance of passive components and materials. Conventional models of component reliability are largely parametric, relying on plant service data to estimate component lifetimes and failure rates. This type of model has limited usefulness in the R7 environment where the intent is to explicitly determine the influence of physical stressors on component degradation. In this paper, we describe a new class of multi-state physics-based component models designed to be R7-compatible. These models capture the physics of materials degradation while also incorporating the effects of interventions and component rejuvenation. The models are implemented in a cumulative damage framework that allows the impact of an evolving physical environment to be addressed without recourse to resampling within the Monte Carlo-based UQ framework. The paper describes an application to stress corrosion cracking in dissimilar metal welds - a principal contributor to potential loss of coolant accidents. So while R7 will have the more conventional capability of reactor simulation codes to model the impact of degraded components and systems on plant performance, the methodology described here allows R7 to model the inverse effect; the impact of the physical environment on component degradation and performance.

Unwin, Stephen D.; Layton, Robert F.; Johnson, Kenneth I.; Lowry, Peter P.

2012-06-25T23:59:59.000Z

42

Progress in the Reliable Inspection of Cast Stainless Steel Reactor Piping Components  

SciTech Connect

Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing the effectiveness and reliability of novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the inservice ultrasonic inspec¬tion of primary piping components in pressurized water reactors (PWRs). This paper describes progress, recent developments and results from assessments of three different NDE approaches including ultrasonic phased array inspection techniques, eddy current testing for surface-breaking flaws, and a low-frequency ultrasonic inspection methodology coupled with a synthetic aperture focusing technique (SAFT). Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank spool pieces were used for assessing the inspection methods. Eddy current studies were conducted on the inner diameter (ID) surface of piping specimens while the ultrasonic inspection methods were applied from the outer diameter (OD) surface of the specimens. The eddy current technique employed a Zetec MIZ-27SI Eddy Current instrument and a Zetec Z0000857-1 cross point spot probe with an operating frequency of 250 kHz. In order to reduce noise effects, degaussing of a subset of the samples resulted in noticeable improvements. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1 MHz, providing composite volumetric images of the samples. The low-frequency ultrasonic method employs a zone-focused, multi-incident angle inspection protocol (operating at 250-500 kHz) coupled with SAFT for improved signal-to-noise and advanced imaging capabilities. A variety of dual-element, custom designed low-frequency probes (fixed-wedge and variable angle configurations) were employed in laboratory trials. Re¬sults from laboratory studies for assessing detection, localization and length sizing effectiveness are discussed. This work was sponsored by the U.S. Nuclear Regulatory Commission under Contract DE-AC06-76RLO 1830; NRC JCN Y6604; Mr. Wallace Norris, Program Monitor.

Doctor, Steven R.; Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.

2005-12-31T23:59:59.000Z

43

Method for Producing Components with Internal Architectures, Such as Micro-Channel Reactors, via Diffusion Bonding Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

partners partners interested in implementing United States Patent Number 7,900,811 entitled "Method for Producing Components with Internal Architectures, Such as Micro-Channel Reactors, via Diffusion Bonding Sheets."Disclosed in this patent is a method for producing microchannels using graduated diffusion bonding of a stack of precision machined foils or sheets (laminates) to make a micro-channel reactor. The method is a novel multi-step process for the diffusion bonding of laminates, which is independent of the channel width-to-fin lamina thickness (fin aspect ratio) and allows for laminae to uniformly and effectively bond. Unlike conventional hot-pressing methods, the NETL invention increases functional reaction surface area for higher conversion efficiency and reactor performance, and avoids

44

Feasibility of underwater welding of highly irradiated in-vessel components of boiling-water reactors: A literature review  

SciTech Connect

In February 1997, the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), initiated a literature review to assess the state of underwater welding technology. In particular, the objective of this literature review was to evaluate the viability of underwater welding in-vessel components of boiling water reactor (BWR) in-vessel components, especially those components fabricated from stainless steels that are subjected to high neutron fluences. This assessment was requested because of the recent increased level of activity in the commercial nuclear industry to address generic issues concerning the reactor vessel and internals, especially those issues related to repair options. This literature review revealed a preponderance of general information about underwater welding technology, as a result of the active research in this field sponsored by the U.S. Navy and offshore oil and gas industry concerns. However, the literature search yielded only a limited amount of information about underwater welding of components in low-fluence areas of BWR in-vessel environments, and no information at all concerning underwater welding experiences in high-fluence environments. Research reported by the staff of the U.S. Department of Energy (DOE) Savannah River Site and researchers from the DOE fusion reactor program proved more fruitful. This research documented relevant experience concerning welding of stainless steel materials in air environments exposed to high neutron fluences. It also addressed problems with welding highly irradiated materials, and primarily attributed those problems to helium-induced cracking in the material. (Helium is produced from the neutron irradiation of boron, an impurity, and nickel.) The researchers found that the amount of helium-induced cracking could be controlled, or even eliminated, by reducing the heat input into the weld and applying a compressive stress perpendicular to the weld path.

Lund, A.L.

1997-11-01T23:59:59.000Z

45

Magnetic shielding  

DOE Patents (OSTI)

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

Kerns, J.A.; Stone, R.R.; Fabyan, J.

1987-10-06T23:59:59.000Z

46

Magnetic shielding  

DOE Patents (OSTI)

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

Kerns, John A. (Livermore, CA); Stone, Roger R. (Walnut Creek, CA); Fabyan, Joseph (Livermore, CA)

1987-01-01T23:59:59.000Z

47

Magnetic shielding  

DOE Patents (OSTI)

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

Kerns, J.A.; Stone, R.R.; Fabyan, J.

1985-02-12T23:59:59.000Z

48

Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1  

SciTech Connect

This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

Owen, M.B.

1997-04-01T23:59:59.000Z

49

Early test facilities and analytic methods for radiation shielding: Proceedings  

SciTech Connect

This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

Ingersoll, D.T. (comp.) (Oak Ridge National Lab., TN (United States)); Ingersoll, J.K. (comp.) (Tec-Com, Knoxville, TN (United States))

1992-11-01T23:59:59.000Z

50

Intact and Degraded Component Criticality Calculations of N Reactors Spent Nuclear Fuel  

SciTech Connect

The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for both intact and degraded mode internal configurations of the codisposal waste package. This calculation will support the analysis that will be performed to demonstrate the technical viability for disposing of U-metal (N Reactor) spent nuclear fuel in the potential MGR.

L. Angers

2001-01-31T23:59:59.000Z

51

Acoustic Emission and Guided Ultrasonic Waves for Detection and Continuous Monitoring of Cracks in Light Water Reactor Components  

SciTech Connect

Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth where distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at 41 mm and 46 mm.

Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Watson, Bruce E.; Cumblidge, Stephen E.; Doctor, Steven R.; Bond, Leonard J.

2012-06-28T23:59:59.000Z

52

Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr–Nd–Pb isotopes  

Science Journals Connector (OSTI)

The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type com...

Andrey A. Gurenko; Kaj A. Hoernle…

2010-05-01T23:59:59.000Z

53

DUCRETE Shielding: A Cost Effective Alternative Radiation Shield  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary Submitted to Spectrum 2000, Sept 24-28, 2000, Chattanooga, TN Summary Submitted to Spectrum 2000, Sept 24-28, 2000, Chattanooga, TN DUCRETE: A Cost Effective Radiation Shielding Material W. J. Quapp, Starmet CMI W. H. Miller, University of Missouri-Columbia James Taylor, Starmet CMI Colin Hundley, Starmet CMI Nancy Levoy, Starmet Corporation 1. INTRODUCTION A consequence of uranium enrichment in the US has been the accumulation of nearly 740,000 metric tons of depleted uranium hexafluoride (UF 6 ) tails. 1 While this material was once considered a feed stock for the United States Breeder Reactor Program, it is no longer needed. Alternative uses of depleted uranium are few. Some have been used for medical isotope transport casks, some for industrial radioactive source shields, some for military anti-tank

54

Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets  

DOE Patents (OSTI)

This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

Alman, David E. (Corvallis, OR); Wilson, Rick D. (Corvallis, OR); Davis, Daniel L. (Albany, OR)

2011-03-08T23:59:59.000Z

55

Early shielding research at Bettis Atomic Power Laboratory  

SciTech Connect

Reminiscences of shielding research at Bettis Atomic Power Laboratory (BAPL) always have in the background the reason for its existence - the design of efficient and safe reactors. Shielding is essential for personnel safety. However, the only computational tools available in the early 1950s were slide rules and desk calculators. Under these conditions, any shield desing calculation accurate within a factor of 2 was a good one, and the phrases close enough for shielding purposes' and including a factor for conservation' became a permanent part of the shielding vocabulary. This early work instilled a respect for hand calculations and the requirements that nay result, no matter how calculated, must meet the test of being reasonable and in line with previous experience. Even today, with sophisticated shielding programs available on the latest computers, calculated results must pass the same test.

Shure, K.; Wallace, O.J. (Westinghouse Electric Corp., West Mifflin, PA (United States))

1992-01-01T23:59:59.000Z

56

Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors  

SciTech Connect

A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

1989-10-01T23:59:59.000Z

57

Assessment of torsatrons as reactors  

SciTech Connect

Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R[sub 0] = 6.6-8.8 m, on-axis magnetic field B[sup 0] = 4.8-7.5 T, B[sub max] (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

Lyon, J.F. (Oak Ridge National Lab., TN (United States)) [Oak Ridge National Lab., TN (United States); Painter, S.L. (Australian National Univ., Canberra, ACT (Australia)) [Australian National Univ., Canberra, ACT (Australia)

1992-12-01T23:59:59.000Z

58

Assessment of torsatrons as reactors  

SciTech Connect

Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R{sub 0} = 6.6-8.8 m, on-axis magnetic field B{sup 0} = 4.8-7.5 T, B{sub max} (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

Lyon, J.F. [Oak Ridge National Lab., TN (United States); Painter, S.L. [Australian National Univ., Canberra, ACT (Australia)

1992-12-01T23:59:59.000Z

59

Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A  

SciTech Connect

Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encom¬passes primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

2009-11-30T23:59:59.000Z

60

Handbook of Reactor Physics  

Science Journals Connector (OSTI)

... THIS handbook is one volume in a series sponsored by the United States Atomic Energy Commission with ... data and reference information in the field of reactors. The volume is devoted to reactor physics and radiation shielding, the latter subject occupying approximately a quarter of the book.

PETER W. MUMMERY

1956-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CSR SHIELDING EXPERIMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

of CSR shielding is described in many papers * But experimentally... Hmmm not much RF Gun 2 x 3m S-band Linac Chicane HES CTR IR Spectrometer Experimental Layout Photocathode...

62

Shielded cells transfer automation  

SciTech Connect

Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

Fisher, J J

1984-01-01T23:59:59.000Z

63

The trade experiment: shielding calculations for the building hosting the subcritical system  

Science Journals Connector (OSTI)

......Italy), a pool reactor of 1 MW thermal...the feasibility analysis is played by radioprotection...to a traditional reactor owing to the presence...Utilisation and Reliability of High Power Proton...calculations in the reactor building. TRADE...Summary hazard analysis and shielding studies......

K. W. Burn; M. Carta; L. Casalini; Y. Kadi; S. Monti; E. Nava; M. Palomba; C. Petrovich; L. Picardi; C. Rubbia; F. Troiani

2005-12-20T23:59:59.000Z

64

Composition for radiation shielding  

DOE Patents (OSTI)

A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

Kronberg, James W. (Aiken, SC)

1994-01-01T23:59:59.000Z

65

Development and validation of a real-time SAFT-UT system for the inspection of light water reactor components. Semiannual report, April 1984-September 1984. Volume 1  

SciTech Connect

The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is for inservice inspection of light water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering data base to support ASME Code acceptance of the technology. This process report covers the programmatic work from April 1984 through September 1984. 58 figs.

Doctor, S.R.; Busse, L.J.; Crawford, S.L.; Hall, T.E.; Gribble, R.P.; Baldwin, A.J.; Van Houten, L.P.

1986-05-01T23:59:59.000Z

66

Development and validation of a real-time SAFT-UT system for the inspection of light water reactor components: Annual report, October 1984-September 1985  

SciTech Connect

The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is designed to perform inservice inspection of light-water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering data base to support ASME Code acceptance of the technology. This progress report covers the programmatic work from October 1984 through September 1985.

Doctor, S.R.; Hall, T.E.; Reid, L.D.; Crawford, S.L.; Littlefield, R.J.; Gilbert, R.W.

1987-06-01T23:59:59.000Z

67

Lightweight blast shield  

DOE Patents (OSTI)

A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

Mixon, Larry C. (Madison, AL); Snyder, George W. (Huntsville, AL); Hill, Scott D. (Toney, AL); Johnson, Gregory L. (Decatur, AL); Wlodarski, J. Frank (Huntsville, AL); von Spakovsky, Alexis P. (Huntsville, AL); Emerson, John D. (Arab, AL); Cole, James M. (Huntsville, AL); Tipton, John P. (Huntsville, AL)

1991-01-01T23:59:59.000Z

68

Composition for radiation shielding  

DOE Patents (OSTI)

A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

Kronberg, J.W.

1994-08-02T23:59:59.000Z

69

Gas shielding apparatus  

DOE Patents (OSTI)

An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

Brandt, D.

1984-06-05T23:59:59.000Z

70

Shielding design for the proposed Advanced Photon Source at Argonne  

SciTech Connect

Bulk shielding was designed for the proposed Argonne Advanced Photon Source. The shielding is for two linacs, the positron converter, booster synchrotron, and the storage ring. Shielding design limits exposure to 20 mrem/wk for occupational and 25 mrem/y for an individual member of the public from the radiation products, which include high energy neutrons (HEN), giant resonance neutrons (GRN), and Bremsstrahlung radiation (BR). The beam loss parameters at various components were estimated. Dose rates were computed for continuous loss during beam decay using an empirical method. Normal operational losses and certain accidental beam losses were also considered.

Moe, H.J.; Veluri, V.R.

1987-01-01T23:59:59.000Z

71

Final analysis of the GCFR radial blanket and shield integral experiment  

SciTech Connect

An integral experiment has been performed for verification of radiation transport methods and nuclear data used in the design of the radial shield for the proposed gas-cooled fast breeder reactor demonstration plant. The experiment was conducted at the ORNL Tower Shielding Facility and consisted of integral and spectral measurements of the neutron and gamma-ray flux transmitted through slabs of materials which modeled a GCFR-type radial blanket and radial shield. Both UO/sub 2/ and ThO/sub 2/ blankets were investigated as well as several shield designs comprising stainless steel, graphite, and boronated graphite.

Ingersoll, D.T.; Williams, L.R.

1981-04-01T23:59:59.000Z

72

Evaluation of aging degradation of structural components  

SciTech Connect

Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center_dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

Chopra, O.K.; Shack, W.J.

1992-03-01T23:59:59.000Z

73

Evaluation of aging degradation of structural components  

SciTech Connect

Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

Chopra, O.K.; Shack, W.J.

1992-03-01T23:59:59.000Z

74

Actively driven thermal radiation shield  

DOE Patents (OSTI)

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

75

SHIELDING ANALYSIS FOR PORTABLE GAUGING COMBINATION SOURCES  

SciTech Connect

Radioisotopic decay has been used as a source of photons and neutrons for industrial gauging operations since the late 1950s. Early portable moisture/density gauging equipment used Americium (Am)-241/Beryllium (Be)/Cesium (Cs)-137 combination sources to supply the required nuclear energy for gauging. Combination sources typically contained 0.040 Ci of Am-241 and 0.010 Ci of CS-137 in the same source capsule. Most of these sources were manufactured approximately 30 years ago. Collection, transportation, and storage of these sources once removed from their original device represent a shielding problem with distinct gamma and neutron components. The Off-Site Source Recovery (OSR) Project is planning to use a multi-function drum (MFD) for the collection, shipping, and storage of AmBe sources, as well as the eventual waste package for disposal. The MFD is an approved TRU waste container design for DOE TRU waste known as the 12 inch Pipe Component Overpack. As the name indicates, this drum is based on a 12 inch ID stainless steel weldment approximately 25 inch in internal length. The existing drum design allows for addition of shielding within the pipe component up to the 110 kg maximum pay load weight. The 12 inch pipe component is packaged inside a 55-gallon drum, with the balance of the interior space filled with fiberboard dunnage. This packaging geometry is similar to the design of a DOT 6M, Type B shipping container.

J. TOMPKINS; L. LEONARD; ET AL

2000-08-01T23:59:59.000Z

76

shields-98.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 The Whole Sky Imager - A Year of Progress J. E. Shields and M. E. Karr Marine Physical Laboratory Scripps Institution of Oceanography University of California, San Diego San Diego, California T. P. Tooman Sandia National Laboratories Livermore, California D. H. Sowle and S. T. Moore Mission Research Corporation Santa Barbara, California Abstract Much progress has been made this last year in realizing the potential of the whole sky imager (WSI). Two imagers are deployed [at the Southern Great Plains (SGP) site and the Surface Heat Budget of the Arctic Ocean (SHEBA)], two are being prepared for deployment in the Tropical Western Pacific (TWP), and more are in production. Data products now include daytime thick cloud fraction and calibrated radiance. Night cloud fraction and daytime thin cloud

77

Shield Volcano | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Shield Volcano Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Shield Volcano Dictionary.png Shield Volcano: A dome shaped volcano with gently sloping sides and a broad base characteristic of relatively low viscosity, basaltic lava eruptions. Other definitions:Wikipedia Reegle Topographic Features List of topographic features commonly encountered in geothermal resource areas: Mountainous Horst and Graben Shield Volcano Flat Lava Dome Stratovolcano Cinder Cone Caldera Depression Resurgent Dome Complex Schematic representation of the internal structure of a typical shield

78

Portable convertible blast effects shield  

DOE Patents (OSTI)

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler,; Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A (Livermore, CA)

2010-10-26T23:59:59.000Z

79

Portable convertible blast effects shield  

DOE Patents (OSTI)

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler, Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A. (Livermore, CA)

2011-03-15T23:59:59.000Z

80

Welding shield for coupling heaters  

DOE Patents (OSTI)

Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

Menotti, James Louis (Dickinson, TX)

2010-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fusion reactor systems  

Science Journals Connector (OSTI)

In this review we consider deuterium-tritium (D-T) fusion reactors based on four different plasma-confinement and heating approaches: the tokamak, the theta-pinch, the magnetic-mirror, and the laser-pellet system. We begin with a discussion of the dynamics of reacting plasmas and basic considerations of reactor power balance. The essential plasma physical aspects of each system are summarized, and the main characteristics of the corresponding conceptual power plants are described. In tokamak reactors the plasma densities are about 1020 m-3, and the ? values (ratio of plasma pressure to confining magnetic pressure) are approximately 5%. Plasma burning times are of the order of 100-1000 sec. Large superconducting dc magnets furnish the toroidal magnetic field, and 2-m thick blankets and shields prevent heat deposition in the superconductor. Radially diffusing plasma is diverted away from the first wall by means of null singularities in the poloidal (or transverse) component of the confining magnetic field. The toroidal theta-pinch reactor has a much smaller minor diameter and a much larger major diameter, and operates on a 10-sec cycle with 0.1-sec burning pulses. It utilizes shock heating from high-voltage sources and adabatic-compression heating powered by low-voltage, pulsed cryogenic magnetic or inertial energy stores, outside the reactor core. The plasma has a density of about 1022 m-3 and ? values of nearly unity. In the power balance of the reactor, direct-conversion energy obtained by expansion of the burning high-? plasma against the containing magnetic field is an important factor. No divertor is necessary since neutral-gas flow cools and replaces the "spent" plasma between pulses. The open-ended mirror reactor uses both thermal conversion of neutron energy and direct conversion of end-loss plasma energy to dc electrical power. A fraction of this direct-convertor power is then fed back to the ioninjection system to sustain the reaction and maintain the plasma. The average ion energy is 600 keV, plasma diameter 6 m, and the plasma beta 85%. The power levels of the three magnetic-confinement devices are in the 500-2000 MWe range, with the exception of the mirror reactor, for which the output is approximately 200 MWe. In Laser-Pellet reactors, frozen D-T pellets are ignited in a cavity which absorbs the electromagnetic, charged particle, and neutron energy from the fusion reaction. The confinement is "inertial," since the fusion reaction occurs during the disassembly of the heated pellet. A pellet-cavity unit would produce about 200 MWt in pulses with a repetition rate of the order of 10 sec-1. Such units could be clustered to give power plants with outputs in the range of 1000 MWe.

F. L. Ribe

1975-01-01T23:59:59.000Z

82

Gas-Cooled Fast Reactor Program. Annual progress report for period ending December 31, 1979  

SciTech Connect

Information on the GCFR reactor is presented concerning the Core Flow Test Loop; shielding and physics; pressure vessel and closure studies; and irradiation program.

Gat, U.; Kasten, P.R.

1980-11-01T23:59:59.000Z

83

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

84

Thermal neutron shield and method of manufacture  

DOE Patents (OSTI)

A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

Metzger, Bert Clayton; Brindza, Paul Daniel

2014-03-04T23:59:59.000Z

85

Atlas SCT/Pixel Grounding and Shielding ATLAS SCT/Pixel Grounding and Shielding Note  

E-Print Network (OSTI)

Atlas SCT/Pixel Grounding and Shielding 1 ATLAS SCT/Pixel Grounding and Shielding Note November 22 mostly connects existing mechanical electrical conductive #12; Atlas SCT/Pixel Grounding and Shielding 2 that equivalent. The barrel outer heat shield (150 aluminum) main element shield. #12; Atlas SCT/Pixel Grounding

California at Santa Cruz, University of

86

Nuclear processes in magnetic fusion reactors with polarized fuel  

E-Print Network (OSTI)

We consider the processes $d +d \\to n +{^3He}$, $d +{^3He} \\to p +{^4He}$, $d +{^3H} \\to n +{^4He}$, ${^3He} +{^3He}\\to p+p +{^4He}$, ${^3H} +{^3He}\\to d +{^4He}$, with particular attention for applications in fusion reactors. After a model independent parametrization of the spin structure of the matrix elements for these processes at thermal colliding energies, in terms of partial amplitudes, we study polarization phenomena in the framework of a formalism of helicity amplitudes. The strong angular dependence of the final nuclei and of the polarization observables on the polarizations of the fuel components can be helpful in the design of the reactor shielding, blanket arrangement etc..We analyze also the angular dependence of the neutron polarization for the processes $\\vec d +\\vec d \\to n +{^3He}$ and $\\vec d +\\vec {^3H} \\to n +{^4He}$.

Michail P. Rekalo; Egle Tomasi-Gustafsson

2000-10-16T23:59:59.000Z

87

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Was the BGRR Decommissioned? Why Was the BGRR Decommissioned? BGRR The Brookhaven Graphite Research Reactor (BGRR) at Brookhaven National Laboratory (BNL) was decommissioned to ensure the complex is in a safe and stable condition and to reduce sources of groundwater contamination. The BGRR contained over 8,000 Curies of radioactive contaminants from past operations consisting of primarily nuclear activation products such as hydrogen-3 (tritium) and carbon-14 and fission products cesium-137 and strontium-90. The nature and extent of contamination varied by location depending on historic uses of the systems and components and releases, however, the majority of the contamination (over 99 percent) was bound within the graphite pile and biological shield. Radioactive contamination was identified in the fuel handling system deep

88

Multidimensional shielding analysis of the JASPER in-vessel fuel storage experiments  

SciTech Connect

The In-Vessel Fuel Storage (IVFS) experiments analyzed in this report were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present report describes the 2-D and 3-D models, analyses, and calculated results corresponding to a limited subset of those IVFS experiments in which the US LMR program has a particular interest.

Bucholz, J.A.

1993-03-01T23:59:59.000Z

89

Radiation Shielding Materials and Containers Incorporating Same  

DOE Patents (OSTI)

An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

2005-11-01T23:59:59.000Z

90

Shielding vacuum fluctuations with graphene  

E-Print Network (OSTI)

The Casimir-Polder interaction of ground-state and excited atoms with graphene is investigated with the aim to establish whether graphene systems can be used as a shield for vacuum fluctuations of an underlying substrate. We calculate the zero-temperature Casimir-Polder potential from the reflection coefficients of graphene within the framework of the Dirac model. For both doped and undoped graphene we show limits at which graphene could be used effectively as a shield. Additional results are given for AB-stacked bilayer graphene.

Sofia Ribeiro; Stefan Scheel

2014-03-14T23:59:59.000Z

91

Shielding and grounding in large detectors  

SciTech Connect

Prevention of electromagnetic interference (EMI), or ``noise pickup,`` is an important design aspect in large detectors in accelerator environments. Shielding effectiveness as a function of shield thickness and conductivity vs the type and frequency of the interference field is described. Noise induced in transmission lines by ground loop driven currents in the shield is evaluated and the importance of low shield resistance is emphasized. Some measures for prevention of ground loops and isolation of detector-readout systems are discussed.

Radeka, V.

1998-09-01T23:59:59.000Z

92

Biological Diversity of the Guiana Shield: Georeferencing Plants of the Guiana Shield  

E-Print Network (OSTI)

of Suriname, maximum elevation 500 m] #12;Georeferencing Plants of the Guiana Shield Google Earth allows

Mathis, Wayne N.

93

Nuclear component horizontal seismic restraint  

DOE Patents (OSTI)

A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

Snyder, Glenn J. (Lynchburg, VA)

1988-01-01T23:59:59.000Z

94

Modified shielding jet model for twin-jet shielding analysis  

E-Print Network (OSTI)

the slowing of the jet flow due to turbulent mixing and entrainment of particles from the surrounding medium. The empirical formulations and velocity profiles derived for the respective regions of the jet consider this increase in entrained fluid... velocity profiles are integrated over their respective cross sections of the shielding jet to determine the total volumetric flowrate at the specified locations. A slug flow velocity approximation is then determined for each of the desired downstream...

Gilbride, Jennifer Frances

2012-06-07T23:59:59.000Z

95

Nuclear Reactor (atomic reactor)  

Science Journals Connector (OSTI)

A nuclear reactor splits Uranium or Plutonium nuclei, and the...235 is fissionable but more than 99% of the naturally occurring Uranium is U238 that makes enrichment mandatory. In some reactors U238 and Thorium23...

2008-01-01T23:59:59.000Z

96

Light shield for solar concentrators  

DOE Patents (OSTI)

A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

Plesniak, Adam P.; Martins, Guy L.

2014-08-26T23:59:59.000Z

97

Development and validation of a real-time SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) system for the inspection of light water reactor components: Annual report, October 1985-September 1986  

SciTech Connect

The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is designed to perform inservice inspection of light-water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering data base to support ASME Code acceptance of the technology. This progress report covers the programmatic work from October 1985 through September 1986. 45 figs., 8 tabs.

Doctor, S.R.; Hall, T.E.; Reid, L.D.; Mart, G.A.

1987-07-01T23:59:59.000Z

98

Accelerator shield design of KIPT neutron source facility  

SciTech Connect

Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)

Zhong, Z.; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-07-01T23:59:59.000Z

99

Shielding effectiveness against electromagnetic interference  

SciTech Connect

The use of metal-filled and metal-coated plastics and other modified dielectric materials to replace metals for enclosures has created a need to test these materials for their electromagnetic interference (EMI) shielding effectiveness (SE). Shielding effectiveness involves a variety of electromagnetic environments, and useful data can be obtained from tests that carefully limit the environment to that of a plane wave. Such an environment can be created in a circular or rectangular transmission line. Two such transmission line test fixtures, which hold samples of the material to be tested, have been developed. The fixtures described in this report are the National Bureau of Standards (NBS) coaxial transverse electromagnetic (TEM) cell, and a dual TEM cell constructed at ORNL from a design suggested by the NBS. The NBS coaxial fixture is an improved version of the device recommended by the American Society for Testing and Materials (ASTM). The problems associated with measuring SE are well described in the literature. The two methods described here are the result of years of work to establish procedures and instrumentation that will produce acceptable data.

Googe, J.M.; Hess, R.A.

1987-10-01T23:59:59.000Z

100

Decontaminating lead bricks and shielding  

SciTech Connect

Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially of planned decommissioning operations. Thus lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for contaminated lead is removing the superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a scaled-off area. The slurry of abrasive and particles of lead falls through a floor and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling.

Lussiez, G.

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Decontaminating lead bricks and shielding  

SciTech Connect

Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium trader pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of contaminated lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling.

Lussiez, G.W.

1993-05-01T23:59:59.000Z

102

Decontaminating lead bricks and shielding  

SciTech Connect

Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium trader pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of contaminated lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling.

Lussiez, G.W.

1993-01-01T23:59:59.000Z

103

Relative radiant heat absorption characteristics of two types of mirror shields and a polished aluminum shield  

E-Print Network (OSTI)

RELATIVE RADIANT HEAT ABSORPTION CHARACTERISTICS OF TWO TYPES OF MIRROR SHIELDS AND A POLISHED ALUMINUM SHIELD A Thesis by STEVEN DOUGLAS HERRON Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1973 Major Subject: Industrial Hygiene RELATIVE RADIANT HEAT ABSORPTION CHARACTERISTICS OF TWO TYPES OF MIRROR SHIELDS AND A POLISHED ALUMINUM SHIELD A Thesis by STEVEN DOUGLAS HERRON Approved...

Herron, Steven Douglas

2012-06-07T23:59:59.000Z

104

Nuclear analysis and shielding optimisation in support of the ITER In-Vessel Viewing System design  

E-Print Network (OSTI)

The In-Vessel Viewing System (IVVS) units proposed for ITER are deployed to perform in-vessel examination. During plasma operations, the IVVS is located beyond the vacuum vessel, with shielding blocks envisaged to protect components from neutron damage and reduce shutdown dose rate (SDR) levels. Analyses were conducted to determine the effectiveness of several shielding configurations. The neutron response of the system was assessed using global variance reduction techniques and a surface source, and shutdown dose rate calculations were undertaken using MCR2S. Unshielded, the absorbed dose to piezoelectric motors (PZT) was found to be below stable limits, however activation of the primary closure plate (PCP) was prohibitively high. A scenario with shielding blocks at probe level showed significantly reduced PCP contact dose rate, however still marginally exceeded port cell requirements. The addition of shielding blocks at the bioshield plug demonstrated PCP contact dose rates below project requirements. SDR l...

Turner, A; Loughlin, M J; Ghani, Z; Hurst, G; Bue, A Lo; Mangham, S; Puiu, A; Zheng, S

2014-01-01T23:59:59.000Z

105

SHLDUTIL: A Code for Useful Shielding Data  

E-Print Network (OSTI)

SHLDUTIL: A Code for Useful Shielding Data by J. Kenneth Shultis and Richard E. Faw (jks 66506 SHLDUTIL is a collection of modules that yield much useful data for use in shielding analyses program. Much of the data and the details of how calculations are done can be found in one or the other

Shultis, J. Kenneth

106

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents (OSTI)

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, John M. (Del Mar, CA); Peuron, Unto A. (Solana Beach, CA)

1982-01-01T23:59:59.000Z

107

Thermomagnetic burn control for magnetic fusion reactor  

DOE Patents (OSTI)

Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

Rawls, J.M.; Peuron, A.U.

1980-07-01T23:59:59.000Z

108

Former Reactor Facilities Surveillance and Maintenance and  

E-Print Network (OSTI)

and Dark (2010) Majority of remaining radiation contained in reactor vessel (inside biological shield window damage Minor roof leaks to former office areas Stack and Grounds: Stack drain tank Safety of confinement dome Replaced exhaust fan Security system hardware/software upgrade BGRR: Covered vents above 2

Ohta, Shigemi

109

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from

110

Shielding calculation techniques used in the design of fuel storage systems  

SciTech Connect

To augment the existing at-reactor fuel storage capacity, many utilities are implementing modular dry storage systems. This paper addresses the shielding design and analysis of one such storage system. Particular attention will be given to comparing various computer and hand calculation techniques. The Nutech horizontal modular storage (NUHOMS) system consists of a dry canister (a stainless steel canister containing seven pressurized water reactor fuel assemblies), a horizontal storage module (a concrete storage module), an on-site transfer cask, a trailer and cask skid, and a hydraulic ram. The shielding analyses utilized hand calculations of direct and scattered radiation, the QADMOD (three-dimensional point kernal computer program and the ANISN (one-dimensional) and DOT-IV (two-dimensional) transport theory computer programs. Each calculational technique has its advantages and disadvantages.

Wang, S.S.; Massey, J.V.

1985-11-01T23:59:59.000Z

111

X-10 Graphite Reactor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-10 Graphite Reactor X-10 Graphite Reactor X-10 Graphite Reactor X-10 Graphite Reactor When President Roosevelt in December 1942 authorized the Manhattan Project, the Oak Ridge site in eastern Tennessee had already been obtained and plans laid for an air-cooled experimental pile, a pilot chemical separation plant, and support facilities. The X-10 Graphite Reactor, designed and built in ten months, went into operation on November 4, 1943. The X-10 used neutrons emitted in the fission of uranium-235 to convert uranium-238 into a new element, plutonium-239. The reactor consists of a huge block of graphite, measuring 24 feet on each side, surrounded by several feet of high-density concrete as a radiation shield. The block is pierced by 1,248 horizontal diamond-shaped channels in

112

Seismic Crystals And Earthquake Shield Application  

E-Print Network (OSTI)

We theoretically demonstrate that earthquake shield made of seismic crystal can damp down surface waves, which are the most destructive type for constructions. In the paper, seismic crystal is introduced in aspect of band gaps (Stop band) and some design concepts for earthquake and tsunami shielding were discussed in theoretical manner. We observed in our FDTD based 2D elastic wave simulations that proposed earthquake shield could provide about 0.5 reductions in magnitude of surface wave on the Richter scale. This reduction rate in magnitude can considerably reduce destructions in the case of earthquake.

B. Baykant Alagoz; Serkan Alagoz

2009-02-09T23:59:59.000Z

113

Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230  

SciTech Connect

Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)] [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

2013-07-01T23:59:59.000Z

114

ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository  

SciTech Connect

en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuel packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose to as low as 29 mrem/hour with head loss on the order of 1.9 J/kg.

Bevill, Aaron M [ORNL] [ORNL; Radulescu, Georgeta [ORNL] [ORNL; Scaglione, John M [ORNL] [ORNL; Howard, Rob L [ORNL] [ORNL

2013-01-01T23:59:59.000Z

115

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

116

Maintenance features of the Compact Ignition Tokamak fusion reactor  

SciTech Connect

The Compact Ignition Tokamak (CIT) is envisaged to be the next experimental machine in the US Fusion Program. Its use of deuterium/tritium fuel requires the implementation of remote handling technology for maintenance and disassembly operations. The reactor is surrounded by a close-proximity nuclear shield which is designed to permit personnel access within the test cell, one day after shutdown. With the shield in place, certain maintenance activities in the cell may be done hands-on. Maintenance on the reactor is accomplished remotely using a boom-mounted manipulator after disassembling the shield. Maintenance within the plasma chamber is accomplished with two articulated boom manipulators that are capable of operating in a vacuum environment. They are stored in a vacuum enclosure behind movable shield plugs.

Spampinato, P.T.; Hager, E.R.

1987-01-01T23:59:59.000Z

117

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites  

E-Print Network (OSTI)

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer electromagnetic interference (EMI) shielding material with shielding effectiveness 124 dB, low surface impedance interference shielding 1. Introduction Electromagnetic interference (EMI) shielding is receiv- ing increasing

Chung, Deborah D.L.

118

Hewlett and Duncan - Atomic Shield | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duncan - Atomic Shield Duncan - Atomic Shield Hewlett and Duncan - Atomic Shield Hewlett, Richard G. and Francis Duncan. Atomic Shield, 1947-1952. U.S. Atomic Energy Comission, 1972. The second volume of the three volume A History of the United States Atomic Energy Commission. Text in each PDF is fully searchable. "Hewlett and Duncan - Atomic Shield (complete).pdf" contains the complete text and images from Atomic Shield. 12mb "Hewlett and Duncan - Atomic Shield (figures only).pdf" contains hi-res (600dpi) scans of the images from Atomic Shield. 30mb Hewlett and Duncan - Atomic Shield (complete).pdf Hewlett and Duncan - Atomic Shield (figures only).pdf More Documents & Publications A History of the Atomic Energy Commission Hewlett and Duncan, Nuclear Navy, 1946-1962

119

Advanced Nuclear Reactors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Advanced Nuclear Reactors Advanced Nuclear Reactors Turbulent Flow of Coolant in an Advanced Nuclear Reactor Visualizing Coolant Flow in Sodium Reactor Subassemblies Sodium-cooled Fast Reactor (SFR) Coolant Flow At the heart of a nuclear power plant is the reactor. The fuel assembly is placed inside a reactor vessel where all the nuclear reactions occur to produce the heat and steam used for power generation. Nonetheless, an entire power plant consists of many other support components and key structures like coolant pipes; pumps and tanks including their surrounding steel framing; and concrete containment and support structures. The Reactors Product Line within NEAMS is concerned with modeling the reactor vessel as well as those components of a complete power plant that

120

Atlas SCT/Pixel Grounding and Shielding Note 1 ATLAS SCT/Pixel Grounding and Shielding Note  

E-Print Network (OSTI)

Atlas SCT/Pixel Grounding and Shielding Note 1 ATLAS SCT/Pixel Grounding and Shielding Note for SCT. This proposal mostly connects existing mechanical and electrical conductive #12;Atlas SCT. The barrel outer heat shield (150 µm aluminum) is the main element of the shield. #12;Atlas SCT

California at Santa Cruz, University of

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reactor Core Assembly - HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home › Facilities › HFIR › Reactor Core Assembly Home › Facilities › HFIR › Reactor Core Assembly Reactor Core Assembly The reactor core assembly is contained in an 8-ft (2.44-m)-diameter pressure vessel located in a pool of water. The top of the pressure vessel is 17 ft (5.18 m) below the pool surface, and the reactor horizontal mid-plane is 27.5 ft (8.38 m) below the pool surface. The control plate drive mechanisms are located in a subpile room beneath the pressure vessel. These features provide the necessary shielding for working above the reactor core and greatly facilitate access to the pressure vessel, core, and reflector regions. In-core irradiation and experiment locations (cross section at horizontal midplane) Reactor core assembly Reactor core assembly: (1) in-core irradiation and experiment locations,

122

ANL/APS/TB-21 Radiation Shielding of Insertion Device Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Radiation Shielding of Insertion Device Beamlines Using a Mirror as the First Optical Element W. Yun, B. Lai, K. J. Randall, S. Davey, D. R. Haeffner, P. K. Job, and D. Shu February 1995 Abstract The radiation shielding for an Advanced Photon Source (APS) insertion device beamline using a mirror as the first optical component is discussed. The beamline layout for a specific Synchrotron Radiation Instrumentation Collaborative Access Team beamline (sector 2 of SRI CAT) is described, and the methodology used to determine the radiation shielding is presented. Results indicate that, by using a x-ray mirror with a critical energy of 32 keV for total reflection, an undulator beam containing nearly all x-rays in the 0 - 32 keV spectral range can be delivered

123

Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.  

SciTech Connect

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured to maintain the biological dose equivalent during operation {le} 0.5 mrem/h inside the subcritical hall, which is five times less than the allowable dose for working forty hours per week for 50 weeks per year. This study analyzed and designed the thickness and the shape of the radial and top shields of the neutron source based on the biological dose equivalent requirements inside the subcritical hall during operation. The Monte Carlo code MCNPX is selected because of its capabilities for transporting electrons, photons, and neutrons. Mesh based weight windows variance reduction technique is utilized to estimate the biological dose outside the shield with good statistics. A significant effort dedicated to the accurate prediction of the biological dose equivalent outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The building wall was designed with ordinary concrete to reduce the biological dose equivalent to the public with a safety factor in the range of 5 to 20.

Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

2008-10-31T23:59:59.000Z

124

Non-Reactor Micro-Component Development  

SciTech Connect

This book chapter will appear in a book being published by Wiley VCH, titled "Micro-Instrumentation for High Throughput Experimentation and Process Intensification." It represents a summary of microchannel-based research in all areas of non-reactive process development, such as heat exchange, mixing, emulsification, phase separation, distillation, mass-transfer, and biological applications.

Palo, Daniel R.; Stenkamp, Victoria S.; Holladay, Jamie D.; Humble, Paul H.; Dagle, Robert A.; Brooks, Kriston P.

2007-02-01T23:59:59.000Z

125

Sandia National Laboratories: Reactor Component Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

126

Thermophysical Properties of Heat Resistant Shielding Material  

SciTech Connect

This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C).

Porter, W.D.

2004-12-15T23:59:59.000Z

127

Nuclear Reactor Severe Accident Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Severe Accident Experiments Nuclear Reactor Severe Accident Experiments Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Nuclear Reactor Severe Accident Experiments 1 2 3 4 5 6 7 We perform experiments simulating reactor core melt phenomena in which molten core debris ("corium") erodes the concrete floor of a containment building. This occurred during the Fukushima nuclear power plant accident though the extent of concrete damage is yet unknown. This video shows the top view of a churning molten pool of uranium oxide at 2000°C (3600°F) seen during an experiment at Argonne. Corium behaves much like lava.

128

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

129

Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Pulsed Reactor Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core configurations and fuel types. The facility is also available for hands-on nuclear criticality safety training. Research and other activities The 7% series, an evaluation of various core characteristics for higher commercial-fuel enrichment, is currently under way at the SPRF/CX. Past critical experiments at the SPRF/CX have included the Burnup Credit

130

Experimental Test of Self-Shielding in VUV Photodissociation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Test of Self-Shielding in VUV Photodissociation of CO Experimental Test of Self-Shielding in VUV Photodissociation of CO Print Wednesday, 25 March 2009 00:00 One way...

131

Summary of Prometheus Radiation Shielding Nuclear Design Analysis  

SciTech Connect

This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

J. Stephens

2006-01-13T23:59:59.000Z

132

CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES  

SciTech Connect

Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species followed by the polyvinyl acetate (PVAc) glue. The fiberboard material induced corrosion to a much lesser extent than the PVAc glue and RTV, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water as expected. A corrosion rate of 0.05 mm/year measured for coupons exposed to the most aggressive conditions was recommended as a conservative estimate for use in package performance calculations.

Subramanian, K; Kerry Dunn, K

2007-11-16T23:59:59.000Z

133

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

134

System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor  

SciTech Connect

Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range.

Lee, H.H.; Lewis, B.R.; Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Radiation Center, C116, Corvallis, Oregon 97331-5902 (United States)); Pawlowski, R.A. (Battelle Pacific Northwest Laboratories, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

135

February, 2010 Fire Analysis of the Shielded Container  

E-Print Network (OSTI)

significant radiation (mostly gamma radiation) can be packaged within the lead shielded containers and the surface dose rate is reduced to levels for safe handling as a CH container. The shielded container, appropriate damage ratios and release estimate factors are derived for postulated fires involving the shielded

136

NUCLEAR REACTORS.  

E-Print Network (OSTI)

??Nuclear reactors are devices containing fissionable material in sufficient quantity and so arranged as to be capable of maintaining a controlled, self-sustaining NUCLEAR FISSION chain… (more)

Belachew, Dessalegn

2010-01-01T23:59:59.000Z

137

Thermoforming plastic in lead shield construction  

SciTech Connect

Radiation treatments using low energy X-rays or electrons frequently require a final field defining shield to be placed on the patient's skin. A custom made lead cut-out is used to provide a close fit to a particular patient's surface contours. We have developed a procedure which utilizes POLYFORM thermoplastic to obtain a negative mold of the patient instead of the traditional plaster bandage or dental impression gel. The Polyform is softened in warm water, molded carefully over the patient's surface, and is removed when set or hardened, usually within five minutes. Then lead sheet cut-outs can be formed within this negative. For shielding cut-outs requiring thicker lead sheet, a positive is made from dental stone using this Polyform negative. We have found this procedure to be neat, fast and comfortable for both patient and the dosimetrist.

Abrahams, M.E.; Chow, C.H.; Loyd, M.D. (Univ. of Texas Medical Branch, Galveston (USA))

1989-09-01T23:59:59.000Z

138

Shielding analyses: the rabbit vs the turtle?  

SciTech Connect

This paper compares solutions using Monte Carlo and discrete- ordinates methods applied to two actual shielding situations in order to make some general observations concerning the efficiency and advantages/disadvantages of the two approaches. The discrete- ordinates solutions are performed using two-dimensional geometries, while the Monte Carlo approaches utilize three-dimensional geometries with both multigroup and point cross-section data.

Broadhead, B.L.

1996-12-31T23:59:59.000Z

139

Diffusive shielding stabilizes bulk nanobubble clusters  

E-Print Network (OSTI)

Using molecular dynamics, we study the nucleation and stability of bulk nanobubble clusters. We study the formation, growth, and final size of bulk nanobubbles. We find that, as long as the bubble-bubble interspacing is small enough, bulk nanobubbles are stable against dissolution. Simple diffusion calculations provide an excellent match with the simulation results, giving insight into the reason for the stability: nanobubbles in a cluster of bulk nanobubbles "protect" each other from diffusion by a shielding effect.

Weijs, Joost H; Lohse, D

2011-01-01T23:59:59.000Z

140

GRAVITATIONAL FIELD SHIELDING AND SUPERNOVA EXPLOSIONS  

SciTech Connect

A new mechanism for supernova explosions called gravitational field shielding is proposed, in accord with a five-dimensional fully covariant Kaluza-Klein theory with a scalar field that unifies the four-dimensional Einsteinian general relativity and Maxwellian electromagnetic theory. It is shown that a dense compact collapsing core of a star will suddenly turn off or completely shield its gravitational field when the core collapses to a critical density, which is inversely proportional to the square of mass of the core. As the core suddenly turns off its gravity, the extremely large pressure immediately stops the core collapse and pushes the mantle material of supernova moving outward. The work done by the pressure in the expansion can be the order of energy released in a supernova explosion. The gravity will resume and stop the core from a further expansion when the core density becomes less than the critical density. Therefore, the gravitational field shielding leads a supernova to impulsively explode and form a compact object such as a neutron star as a remnant. It works such that a compressed spring will shoot the oscillator out when the compressed force is suddenly removed.

Zhang, T. X. [Physics Department, Alabama A and M University, Normal, AL 35762 (United States)

2010-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Increasing transcurium production efficiency through direct resonance shielding  

SciTech Connect

The Radiochemical Engineering Development Center at Oak Ridge National Laboratory is the world s leader in production of 252Cf. This and other heavy actinides are produced by irradiation of mixed curium/americium targets in the High Flux Isotope Reactor. Due to the strong dependence of isotopic cross sections upon incoming neutron energy, the efficiency with which an isotope is transmuted is highly dependent upon the neutron flux energy spectrum and intensities. There are certain energy ranges in which the rate of fissions in feedstock materials can be minimized relative to the rate of (n, ) absorptions. It is shown that by perturbing the flux spectrum, it is possible to alter the net consumption of curium feedstock, as well as the yields of key isotopes for the heavy element research program, such as 249Bk and 252Cf. This flux spectrum perturbation is accomplished by means of focused resonance shielding through the use of filter materials. It is further shown that these perturbations can alter the target yields in a significant way, increasing the amount of 252Cf produced per unit curium consumption by over 40%.

Hogle, Susan L [ORNL; Maldonado, G Ivan [ORNL; Alexander, Charles W [ORNL

2013-01-01T23:59:59.000Z

142

Distributed resonance self-shielding using the equivalence principle  

SciTech Connect

This paper presents an extension of the equivalence principle to allow distributed resonance self-shielding in a multi-region fuel configuration. Rational expansion of fuel-to-fuel collision probability is applied in order to establish equivalence between the actual fuel configuration and a homogeneous mixture of hydrogen and resonant absorber, which is a commonly used model to calculate library tables of resonance integrals. The main steps in derivation are given along with the basic physics assumptions on which the presented approach relies. The method has been implemented in the lattice code WIMS-AECL and routinely used for calculation of CANDU-type reactor lattices. Its capabilities are illustrated by comparison of WIMS-AECL and MCNP results of {sup 238}U resonance capture in a CANDU lattice cell. In order to determine optimal rational expansion of fuel-to-fuel collision probability, the calculations were carried out by varying the number of rational terms from 1 to 6. The results show that 4 terms are sufficient. The further increase of the number of terms affects the computing time, while the impact on accuracy is negligible. To illustrate the convergence of the results, the fuel subdivision is gradually refined varying the number of fuel pin subdivisions from 1 to 32 equal-area annuli. The results show very good agreement with the reference MCNP calculation. (authors)

Altiparmakov, D. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON K0J 1J0 (Canada)

2012-07-01T23:59:59.000Z

143

Passive heat transfer means for nuclear reactors  

DOE Patents (OSTI)

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01T23:59:59.000Z

144

Stack Components  

NLE Websites -- All DOE Office Websites (Extended Search)

Stack Components Stack Components Nancy L. Garland Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Fuel Cell Team FORS 5G-086 (202) 586-5673 nancy.garland@ee.doe.gov Stack Components F u e l P r o c e s s o r Bipolar Plate Cathode + Anode - Electrolyte H+ H+ HYDROGEN OXYGEN Example shown is for acidic electrolytes Bipolar Plate e - e - O 2 O 2 O 2 e - H+ Bipolar Plate Bipolar Plate Cathode + Anode - Electrolyte H+ H+ H+ H+ HYDROGEN OXYGEN Example shown is for acidic electrolytes Bipolar Plate Bipolar Plate e - e - e - e - O 2 O 2 O 2 O 2 O 2 O 2 e - e - H+ H+ Power Stack Component Barriers $10 Other Bipolar Plates Membranes Electrodes $25 $5 $5 Fuel Cell Power Systems $45/kW BARRIERS * Stack material cost/manufacturing * Durability * Electrode performance * Thermal and water management Stack Component Targets

145

COMBINING MAGNETIC SHIELDING AND CRYOPUMPING FOR A NEUTRAL BEAM SOURCE  

E-Print Network (OSTI)

generated by the fusion reactor while the cold surface willfor the Toka. -nak Fusion Test Reactor", in Proceed­ ings of

Tanabe, J.

2010-01-01T23:59:59.000Z

146

naval reactors  

National Nuclear Security Administration (NNSA)

After operating for 34 years and training over 14,000 sailors, the Department of Energy S1C Prototype Reactor Site in Windsor, Connecticut, was returned to "green field"...

147

The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474  

SciTech Connect

The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

2012-07-01T23:59:59.000Z

148

Longwall shield design: is bigger better?  

SciTech Connect

This article evaluates the bigger is better design philosophy for longwall shields. The conventional support design approach based on simplistic models of supporting the full dead weight detached rock masses is replaced by a ground reaction design approach. Here, the goal is to match the support characteristics to the ground response, and not to try and overpower the ground forces with some massive support capability. The ground reaction concept embodies both the force and displacement controlled loading aspects, and therefore provides a more accurate representation of the support loading requirements. 7 figs.

Barczak, T.M.; Tadolini, S.C. [NIOSH-PRL, Pittsburgh, PA (United States)

2008-05-15T23:59:59.000Z

149

Shielded serpentine traveling wave tube deflection structure  

DOE Patents (OSTI)

A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

Hudson, Charles L. (Santa Barbara, CA); Spector, Jerome (Berkeley, CA)

1994-01-01T23:59:59.000Z

150

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

151

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

152

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon  

E-Print Network (OSTI)

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites Ning (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI

Gao, Hongjun

153

Graphene shield enhanced photocathodes and methods for making the same  

SciTech Connect

Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.

Moody, Nathan Andrew

2014-09-02T23:59:59.000Z

154

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

155

MicroShield/ISOCS gamma modeling comparison.  

SciTech Connect

Quantitative radiological analysis attempts to determine the quantity of activity or concentration of specific radionuclide(s) in a sample. Based upon the certified standards that are used to calibrate gamma spectral detectors, geometric similarities between sample shape and the calibration standards determine if the analysis results developed are qualitative or quantitative. A sample analyzed that does not mimic a calibrated sample geometry must be reported as a non-standard geometry and thus the results are considered qualitative and not quantitative. MicroShieldR or ISOCSR calibration software can be used to model non-standard geometric sample shapes in an effort to obtain a quantitative analytical result. MicroShieldR and Canberra's ISOCSR software contain several geometry templates that can provide accurate quantitative modeling for a variety of sample configurations. Included in the software are computational algorithms that are used to develop and calculate energy efficiency values for the modeled sample geometry which can then be used with conventional analysis methodology to calculate the result. The response of the analytical method and the sensitivity of the mechanical and electronic equipment to the radionuclide of interest must be calibrated, or standardized, using a calibrated radiological source that contains a known and certified amount of activity.

Sansone, Kenneth R

2013-08-01T23:59:59.000Z

156

System for imaging plutonium through heavy shielding  

SciTech Connect

A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi /sup 57/Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% /sup 240/Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures.

Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

1984-04-01T23:59:59.000Z

157

Liquid Vortex Shielding for Fusion Energy Applications  

SciTech Connect

Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

2005-05-15T23:59:59.000Z

158

Light Water Reactor Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

159

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initial Assessment of Thermal Annealing Needs and Challenges Initial Assessment of Thermal Annealing Needs and Challenges Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement (decreased toughness) , as shown in Fig. 1.1, and extending operation from 40y to 80y implies a doubling of the neutron exposure for the RPV. Thus,

160

Tokamak fusion reactors with less than full tritium breeding  

SciTech Connect

A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed.

Evans, K. Jr.; Gilligan, J.G.; Jung, J.

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Spherical torus fusion reactor  

DOE Patents (OSTI)

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

162

Nuclear Reactors and Technology; (USA)  

SciTech Connect

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

163

Light Water Reactor Sustainability Technical Documents | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Light Water Reactor Initiatives » Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents September 30, 2011 Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Initial Assessment of Thermal Annealing Needs and Challenges The most life-limiting structural component in light-water reactors (LWR) is the reactor pressure vessel (RPV) because replacement of the RPV is not considered a viable option at this time. LWR licenses are now being extended from 40y to 60y by the U.S. Nuclear Regulatory Commission (NRC) with intentions to extend licenses to 80y and beyond. The RPV materials exhibit varying degrees of sensitivity to irradiation-induced embrittlement

164

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

165

Simulations of Magnetic Shields for Spacecraft Simon G. Shepherd  

E-Print Network (OSTI)

Simulations of Magnetic Shields for Spacecraft Simon G. Shepherd Thayer School of Engineering Brian Need GV potentials!! Brehmsstrahlung radiation is potentially lethal #12;Magnetostatic Shields F=qvÃ?B et al. 1997 a = 10 km KE = ?? eV Cst = 5 m I = "transistor radio battery" Note also that: B ~ I : B

Shepherd, Simon

166

Nuclear Reactor Safety Design Criteria  

Directives, Delegations, and Requirements

The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

1993-01-19T23:59:59.000Z

167

Shielding Integral Benchmark Archive and Database (SINBAD)  

SciTech Connect

The Shielding Integral Benchmark Archive and Database (SINBAD) collection of benchmarks was initiated in the early 1990 s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development s Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD is a major attempt to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD is also a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories fission, fusion, and accelerator benchmarks. Where possible, each experiment is described and analyzed using deterministic or probabilistic (Monte Carlo) radiation transport software.

Kirk, Bernadette Lugue [ORNL; Grove, Robert E [ORNL; Kodeli, I. [International Atomic Energy Agency (IAEA); Sartori, Enrico [ORNL; Gulliford, J. [OECD Nuclear Energy Agency

2011-01-01T23:59:59.000Z

168

Shielding integral benchmark archive and database (SINBAD)  

SciTech Connect

The shielding integral benchmark archive and database (SINBAD) collection of experiments descriptions was initiated in the early 1990s. SINBAD is an international collaboration between the Organization for Economic Cooperation and Development's Nuclear Energy Agency Data Bank (OECD/NEADB) and the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL). SINBAD was designed to compile experiments and corresponding computational models with the goal of preserving institutional knowledge and expertise that need to be handed down to future scientists. SINBAD can serve as a learning tool for university students and scientists who need to design experiments or gain expertise in modeling and simulation. The SINBAD database is currently divided into three categories - fission, fusion, and accelerator experiments. Many experiments are described and analyzed using deterministic or stochastic (Monte Carlo) radiation transport software. The nuclear cross sections also play an important role as they are necessary in performing computational analysis. (authors)

Kirk, B.L.; Grove, R.E. [Radiation Safety Information Computational Center RSICC, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6171 (United States); Kodeli, I. [Josef Stefan Inst., Jamova 39, 1000 Ljubljana (Slovenia); Gulliford, J.; Sartori, E. [OECD NEA Data Bank, Bd des Iles, 92130 Issy-les-Moulineaux (France)

2011-07-01T23:59:59.000Z

169

Fan-fold shielded electrical leads  

DOE Patents (OSTI)

Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

Rohatgi, R.R.; Cowan, T.E.

1996-06-11T23:59:59.000Z

170

Analytic flux formulas and tables of shielding functions  

SciTech Connect

Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments.

Wallace, O.J.

1981-06-01T23:59:59.000Z

171

Expandable Metal Liner For Downhole Components  

DOE Patents (OSTI)

A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

Hall, David R. (Provo, UT); Fox, Joe R. (Provo, UT)

2004-10-05T23:59:59.000Z

172

RELATIVE ATTENUATION CHARACTERISTICS OF SOME SHIELDING MATERIALS FOR PuB NEUTRONS  

E-Print Network (OSTI)

1: Polyethylene Water Spodumene-gypsum Gypsum, wet and dryconstituents of the spodumene-gypsum, and gypsum shields.SPODUMENK·,GYPSUM SHIELD 30% Spodumene by weight 40% Gypsum

Bringham, P.S.

2010-01-01T23:59:59.000Z

173

Polyethylene as a Radiation Shielding Standard in Simulated Cosmic-Ray Environments  

E-Print Network (OSTI)

on the ISS through polyethylene shielding augmentation ofnucleon Iron-56 in Polyethylene. II. , Comparisons betweenPolyethylene as a Radiation Shielding Standard in Simulated

2006-01-01T23:59:59.000Z

174

E-Print Network 3.0 - analytical shielding calculations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Magnetic and Electrically Conductive Fillers in a Polymer Matrix for Electromagnetic Interference Shielding Summary: for Electromagnetic Interference Shielding JUNHUA WU1,2...

175

A robust and well shielded thermal conductivity device for low temperature measurements  

SciTech Connect

We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

Toews, W. H.; Hill, R. W. [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)] [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2014-04-15T23:59:59.000Z

176

DARHT : integration of shielding design and analysis with facility design /  

SciTech Connect

The design of the interior portions of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility incorporated shielding and controls from the beginning of the installation of the Accelerators. The purpose of the design and analysis was to demonstrate the adequacy of shielding or to determine the need for additional shielding or controls. Two classes of events were considered: (1) routine operation defined as the annual production of 10,000 2000-ns pulses of electrons at a nominal energy of 20 MeV, some of which are converted to the x-ray imaging beam consisting of four nominal 60-ns pulses over the 2000-ns time frame, and (2) accident case defined as up to 100 2000-ns pulses of electrons accidentally impinging on some metallic surface, thereby producing x rays. Several locations for both classes of events were considered inside and outside of the accelerator hall buildings. The analysis method consisted of the definition of a source term for each case studied and the definition of a model of the shielding and equipment present between the source and the dose areas. A minimal model of the fixed existing or proposed shielding and equipment structures was used for a first approximation. If the resulting dose from the first approximation was below the design goal (1 rem/yr for routine operations, 5 rem for accident cases), then no further investigations were performed. If the result of the first approximation was above our design goals, the model was refined to include existing or proposed shielding and equipment. In some cases existing shielding and equipment were adequate to meet our goals and in some cases additional shielding was added or administrative controls were imposed to protect the workers. It is expected that the radiation shielding design, exclusion area designations, and access control features, will result in low doses to personnel at the DARHT Facility.

Boudrie, R. L. (Richard L.); Brown, T. H. (Thomas H.); Gilmore, W. E. (Walter E.); Downing, J. N. (James N.), Jr.; Hack, Alan; McClure, D. A. (Donald A.); Nelson, C. A. (Christine A.); Wadlinger, E. Alan; Zumbro, M. V. (Martha V.)

2002-01-01T23:59:59.000Z

177

Evaluation of Torsatrons as reactors  

SciTech Connect

Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors. This scoping study, which uses an integrated cost-minimization code that incorporates costing and reactor component models self-consistently with a 1-D energy transport calculation, shows that a torsatron reactor could also be economically competitive with a tokamak reactor. The projected cost of electricity (COE) estimated using the Advanced Reactor Innovation and Evaluation Studies (ARIES) costing algorithms is 65.6 mill/kW(e)h in constant 1992 dollars for a reference 1-GW(e) Compact Torsatron reactor case. The COE is relatively insensitive (<10% variation) over a wide range of assumptions, including variations in the maximum field allowed on the coils, the coil elongation, the shape of the density profile, the beta limit, the confinement multiplier, and the presence of a large loss region for alpha particles. The largest variations in the COE occur for variations in the electrical power output demanded and the plasma-coil separation ratio.

Lyon, J.F. [Oak Ridge National Lab., TN (United States); Gulec, K. [Univ. of Tennessee, Knoxville, TN (United States); Miller, R.L. [Los Alamos National Lab., NM (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States)

1994-03-01T23:59:59.000Z

178

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

179

Space-reactor electric systems: subsystem technology assessment  

SciTech Connect

This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

Anderson, R.V.; Bost, D.; Determan, W.R.

1983-03-29T23:59:59.000Z

180

Electric field shielding in dielectric nanosolutions  

E-Print Network (OSTI)

To gain some insight into electrochemical activity of dielectric colloids of technical and biomedical interest we investigate a model of dielectric nanosolution whose micro-constitution is dominated by dipolarions -- positively and negatively charged spherically symmetric nano-structures composed of ionic charge surrounded by cloud of radially polarized dipoles of electrically neutral molecules of solvent. Combing the standard constitutive equations of an isotropic dielectric liquid with Maxwell equation of electrostatics and presuming the Boltzmann shape of the particle density of bound-charge we derive equation for the in-medium electrostatic field. Particular attention is given to numerical analysis of obtained analytic solutions of this equation describing the exterior fields of dipolarions with dipolar atmospheres of solvent molecules endowed with either permanent or field-induced dipole moments radially polarized by central symmetric field of counterions. The presented computations show that the electric field shielding of dipolarions in dielectric nanosolutions is quite different from that of counterionic nano-complexes of Debye-H\\"uckel theory of electrolytes.

Sergey Bastrukov; Pik-Yin Lai; Irina Molodtsova

2014-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Neutron shielding and activation of the MASTU device and surrounds  

E-Print Network (OSTI)

A significant functional upgrade is planned for the Mega Ampere Spherical Tokamak (MAST) device, located at Culham in the UK, including the implementation of a notably greater neutral beam injection power. This upgrade will cause the emission of a substantially increased intensity of neutron radiation for a substantially increased amount of time upon operation of the device. Existing shielding and activation precautions are shown to prove insufficient in some regards, and recommendations for improvements are made, including the following areas: shielding doors to MAST shielded facility enclosure (known as "the blockhouse"); north access tunnel; blockhouse roof; west cabling duct. In addition, some specific neutronic dose rate questions are addressed and answered; those discussed here relate to shielding penetrations and dose rate reflected from the air above the device ("skyshine").

Taylor, David; Turner, Andrew; Davis, Andrew

2014-01-01T23:59:59.000Z

182

Method for the construction of x-ray shielding masks  

SciTech Connect

A method is described for the production of a rigid model of a patient's face onto which lead shielding sheets may be contoured. The model is cast in Lipowitz's metal using a plaster mold.

Canup, D.; Ekstrand, K.E.

1982-03-01T23:59:59.000Z

183

A Magnetic Shielding Type Superconducting Fault-Current Limiter  

Science Journals Connector (OSTI)

In a Magnetic Shielding type Fault-Current Limiter (MSFCL), the characteristics of the magnetic ... ) is an important factor in limiting the current flow. In this study, to improve the efficiency of the fault current

N. Miyauchi; H. Nakane; S. Haseyama; S. Yoshizawa

1999-01-01T23:59:59.000Z

184

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER: A RESOURCE FOR REACTOR DOSIMETRY SOFTWARE AND NUCLEAR DATA  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC) was established in 1963 to collect and disseminate computational nuclear technology in the form of radiation transport, shielding and safety software and corresponding nuclear cross sections. Approximately 1700 nuclear software and data packages are in the RSICC collection, and the majority are applicable to reactor dosimetry.

Kirk, Bernadette Lugue [ORNL] [ORNL

2009-01-01T23:59:59.000Z

185

Photocatalytic reactor  

DOE Patents (OSTI)

A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

1999-01-19T23:59:59.000Z

186

Effectiveness of the thyroid shield in dental radiology  

SciTech Connect

The effectiveness of the thyroid shield in reducing patient exposure during routine dental radiographic examinations was studied. A nonscreen film and two film-screen combinations were used as dosimeters and to show the spatial distribution of x-ray exposure. The error in the absolute accuracy of the film dosimeter and the error in the reproducibility of the film-screen combinations were less than +/- 10%. Measurements of thyroid exposure and exposure distribution, with and without the shield, were made on a Rando phantom and on patients. In the phantom study, the reduction by the shield of exposure to the thyroid from primary beam and from scatter was found to be highly dependent on the position of the primary beam relative to the thyroid gland but independent of kVp. Exposure reduction by the shield varied from 5% to 56% for a complete-mouth survey, 2% to 18% for a bitewing survey, and 10% to 79% for a panoramic survey. In the patient study, thyroid skin exposures measured on adults were 33% to 84% lower in offices in which the shield was used as compared to offices in which it was not used. Thyroid skin exposures measured on children were 63% to 92% lower. In accordance with the ALARA principle, these results support the routine use of the thyroid shield for all dental radiography.

Sikorski, P.A.; Taylor, K.W.

1984-08-01T23:59:59.000Z

187

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

188

Materials Degradation in Light Water Reactors: Life After 60 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Materials Degradation in Light Water Reactors: Life After 60 Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the

189

Health physics research reactor reference dosimetry  

SciTech Connect

Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

Sims, C.S.; Ragan, G.E.

1987-06-01T23:59:59.000Z

190

A Basic LEGO Reactor Design for the Provision of Lunar Surface Power  

SciTech Connect

A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.

John Darrell Bess

2008-06-01T23:59:59.000Z

191

Hybrid adsorptive membrane reactor  

DOE Patents (OSTI)

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

192

GEN-IV Reactors  

Science Journals Connector (OSTI)

Generation-IV reactors are a set of nuclear reactors currently being developed under international collaborations targeting ... economics, proliferation resistance, and physical protection of nuclear energy. Nuclear

Taek K. Kim

2013-01-01T23:59:59.000Z

193

The Netherlands Reactor Centre  

Science Journals Connector (OSTI)

... Two illustrated brochures in English have recently J. been issued by the Netherlands Reactor Centre ( ... Centre (Reactor Centrum Nederland). The first* gives a general survey of the ...

S. WEINTROUB

1964-04-04T23:59:59.000Z

194

Radiation effects on reactor pressure vessel supports  

SciTech Connect

The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

1996-05-01T23:59:59.000Z

195

Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).  

SciTech Connect

The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

Parma, Edward J., Jr.

2009-06-01T23:59:59.000Z

196

Hanford Waste Treatment Plant Sets Massive Protective Shield door in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Sets Massive Protective Shield door Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The 102-ton shield door measures 52 feet wide and 15 feet tall The 102-ton shield door measures 52 feet wide and 15 feet tall The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December.

197

SRS Small Modular Reactors  

SciTech Connect

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

198

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

199

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16T23:59:59.000Z

200

Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material  

SciTech Connect

Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22 (used for the waste package outer barrier) and Titanium Grade 7 (used for the drip shield) that are subjected to the effects of stress corrosion cracking. The use of laser peening or other residual stress mitigation techniques is considered as a means of mitigating stress corrosion cracking in the waste package final closure lid weld.

G. Gordon

2004-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Savannah River Site Removes Dome, Opening Reactor for Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Removes Dome, Opening Reactor for Recovery Act Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning American Recovery and Reinvestment Act workers achieved a significant milestone in the decommissioning of a Cold War reactor at the Savannah River Site this month after they safely removed its rusty, orange, 75-foot-tall dome. With the help of a 660-ton crane and lifting lugs, the workers pulled the 174,000-pound dome off the Heavy Water Components Test Reactor, capping more than 16 months of preparations. Savannah River Site Removes Dome, Opening Reactor for Recovery Act Decommissioning More Documents & Publications Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Workers Add Time Capsule Before Sealing Reactor for Hundreds

202

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program The Department of Energy's (DOE's) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operation of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging

203

Fault current limiter with shield and adjacent cores  

DOE Patents (OSTI)

In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

2013-10-22T23:59:59.000Z

204

A Toroidal Magnetic Spacecraft Shield Simon G. Shepherd  

E-Print Network (OSTI)

A Toroidal Magnetic Spacecraft Shield Simon G. Shepherd Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 03755 John P. G. Shepherd Department of Physics, University of Wisconsin potential angle around spacecraft cross-section a radius of coil B magnetic flux density Bin vector

Shepherd, Simon

205

NASA TM-2012-217361 Evaluating Shielding Approaches to Reduce  

E-Print Network (OSTI)

NASA TM-2012-217361 Evaluating Shielding Approaches to Reduce Space Radiation Cancer Risks Francis A. Cucinotta NASA Lyndon B. Johnson Space Center Houston, Texas Myung-Hee Y. Kim U.S.R.A., Division, Texas May 2012 #12;THE NASA STI PROGRAM OFFICE . . . IN PROFILE Since its founding, NASA has been

Rathbun, Julie A.

206

Spin-rotation and NMR shielding constants in HCl  

SciTech Connect

The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = ?53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, ?(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find ?(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

Jaszu?ski, Micha?, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland)] [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway)] [Centre for Theoretical and Computational Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Garbacz, Piotr; Jackowski, Karol; Makulski, W?odzimierz [Laboratory of NMR Spectroscopy, Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)] [Laboratory of NMR Spectroscopy, Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

2013-12-21T23:59:59.000Z

207

Prediction of effective atomic number (Z) for laminated shielding material  

E-Print Network (OSTI)

, buildup factors were calculated for different mean free paths (mfp) for point isotropic sources emitting 0.5, 1, and 3 Mev photons. Some calculations were performed for double layered shields and some for three layers using spherical geometry. For two...

Sarder, Md. Maksudur Rahaman

2012-06-07T23:59:59.000Z

208

A Note on Hamilton Cycles in Kneser Graphs Ian Shields  

E-Print Network (OSTI)

A Note on Hamilton Cycles in Kneser Graphs Ian Shields IBM P.O. Box 12195 Research Triangle Park) have Hamilton cycles when n #20; 27. A similar result is shown for bipartite Kneser graphs. 1 for Hamilton cycles in Kneser graphs, K(n; k), and bipartite Kneser graphs, H(n; k). With the exception

Savage, Carla D.

209

High-performance simulations for atmospheric pressure plasma reactor  

Science Journals Connector (OSTI)

Plasma-assisted processing and deposition of materials is an important component of modern industrial applications, with plasma reactors sharing 30% to 40% of manufacturing steps in microelectronics production. Development of new flexible electronics ...

Svyatoslav Chugunov / Iskander Akhatov

2012-01-01T23:59:59.000Z

210

Near field coupling to shielded cable due to switching operation in substation  

Science Journals Connector (OSTI)

It is vital to study the electromagnetic coupling to shielded cable for improving electromagnetic antiinterference ability of secondary equipment in a substation. As a hybrid of method of moment ... shielded cabl...

Lei Qi; Xiang Cui

2008-09-01T23:59:59.000Z

211

PERGAMON Carbon 39 (2001) 279285 Electromagnetic interference shielding effectiveness of carbon  

E-Print Network (OSTI)

PERGAMON Carbon 39 (2001) 279­285 Review Electromagnetic interference shielding effectiveness materials for electromagnetic interference (EMI) shielding are reviewed. They include composite materials-structural and structural composites, colloi- dal graphite, as well as EMI gasket materials. Electromagnetic interference

Chung, Deborah D.L.

212

Direct Synthesis of 1-Butanol from Ethanol in a Plug Flow Reactor: Reactor and Reaction Kinetics Modeling  

Science Journals Connector (OSTI)

Bio-ethanol is well known for its use as ... continuous reactor technology and heterogeneous alumina catalysts, ethanol can be upgraded to 1-butanol in ... feasible properties as fuel component in comparison to ethanol

T. Riittonen; T. Salmi; J.-P. Mikkola; J. Wärnå

2014-11-01T23:59:59.000Z

213

System modeling and reactor design studies of the Advanced Thermionic Initiative space nuclear reactor  

SciTech Connect

In-core thermionic space reactor design concepts that operate at a nominal power output range of 20 to 50 kW(electric) are described. Details of the neutronic, thermionic, thermal hydraulics, and shielding performance are presented. Because of the strong absorption of thermal neutrons by natural tungsten and the large amount of natural tungsten within the reactor core, two designs are considered. An overall system design code has been developed at Oregon State University to model advanced in-core thermionic energy conversion-based nuclear reactor systems for space applications. The results show that the driverless single-cell Advanced Thermionic Initiative (ATI) configuration, which does not have driver fuel rods, proved to be more efficient than the driven core, which has driver rods. The results also show that the inclusion of the true axial and radial power distribution decrease the overall conversion efficiency. The flattening of the radial power distribution by three different methods would lead to a higher efficiency. The results show that only one TFE works at the optimum emitter temperature; all other TFEs are off the optimum performance and result in a 40% decrease of the efficiency of the overall system. The true axial profile is significantly different as there is a considerable amount of neutron leakage out of the top and bottom of the reactor. The analysis reveals that the axial power profile actually has a chopped cosine shape. For this axial profile, the reactor core overall efficiency for the driverless ATI reactor version is found to be 5.84% with a total electrical power of 21.92 kW(electric). By considering the true axial power profile instead of the uniform power profile, each TFE loses {approximately}80 W(electric).

Lee, H.H.; Abdul-Hamid, S.; Klein, A.C. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center] [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering Radiation Center

1996-07-01T23:59:59.000Z

214

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

215

Electromagnetic interference shielding reaching 70 dB in steel fiber cement  

E-Print Network (OSTI)

Electromagnetic interference shielding reaching 70 dB in steel fiber cement Sihai Wen, D.D.L. Chung; Silica fume; Shielding 1. Introduction Electromagnetic interference (EMI) shielding [1­4] is in critical, NY 14260-4400, USA Received 9 January 2002; accepted 14 August 2003 Abstract An electromagnetic

Chung, Deborah D.L.

216

Procedures for application of Don Cossairt's CASIM calculations in TM-1140 to bulk shielding  

SciTech Connect

As part of the methodology documentation for the site-wide radiation shielding assessment, these two related notes were written showing how to apply the CASIM calculations of TM-1140 to determine required shielding for various beam intensities and steel-soil composites. These notes have been reviewed by the Fermilab ES H Section and approved for use in evaluating shielding requirements.

Garbincius, P.H.

1991-02-01T23:59:59.000Z

217

Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor  

E-Print Network (OSTI)

of the reactor so that control and sensing are a basic component of the optimal design e#orts for the reactor. WeReduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor H.T. Banks and H processing approaches with ad­ vanced mathematical modeling, optimization, and control theory to guide

218

Reduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor  

E-Print Network (OSTI)

of the reactor so that control and sensing are a basic component of the optimal design efforts for the reactorReduced Order Based Compensator Control of Thin Film Growth in a CVD Reactor H.T. Banks and H processing approaches with ad- vanced mathematical modeling, optimization, and control theory to guide

219

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

220

Elementary Reactor Physics  

Science Journals Connector (OSTI)

... THERE are few subjects which have developed at the rate at which reactor physics and ... physics and reactor theory have done. This, of course, is largely due to the circumstances in ...

J. F. HILL

1962-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Colliding Beam Fusion Reactors  

Science Journals Connector (OSTI)

The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker–Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are ... the rec...

Norman Rostoker; Artan Qerushi; Michl Binderbauer

2003-06-01T23:59:59.000Z

222

Advanced thermionic reactor systems design code  

SciTech Connect

An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance.

Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C. (Department of Nuclear Engineering, Radiation Center, C116, Oregon State University, Corvallis, Oregon 97331-5902 (US))

1991-01-01T23:59:59.000Z

223

Fluid sampling system for a nuclear reactor  

DOE Patents (OSTI)

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

1994-01-01T23:59:59.000Z

224

An overview of the current status of resonance theory in reactor physics applications  

SciTech Connect

The neutron resonance phenomena constitute one of the most fundamental subjects in nuclear physics as well as in reactor physics. It is the area where the concepts of nuclear interaction and the treatment of the neutronic balance in reactor lattices become intertwined. The later requires the detailed knowledge of resonance structures of many nuclide of practical interest to the development of nuclear energy. The key issue of the resonance treatment in reactor applications is directly associated with the use of the microscopic cross sections in the macroscopic reactor cells with a wide range of composition, temperature,and geometric configurations. It gives rise to the so called self-shielding effect. The accurate estimations of such a effect is essential not only in the calculation of the criticality of a reactor but also from the point of view of safety considerations. The latter manifests through the Doppler effect particularly crucial to the fast reactor development. The task of accurate treatment of the self-shielding effect, however, is by no means simple. In fact, it is perhaps the most complicated problem in neutron physics which, strictly speaking, requires the dependence of many physical variables. Two important elements of particular interest are : (1) a concise description of the resonance cross sections as a function of energy and temperature; (2) accurate estimation of the corresponding neutron flux where appropriate. These topics will be discussed from both the historical as well as the state-of-art perspectives.

Hwang, R.N.

1993-12-31T23:59:59.000Z

225

Constraints on target chamber first wall and target designs that will enable NIF debris shields to survive  

SciTech Connect

The National Ignition Facility target chamber interior materials and target designs themselves have to be compatible with survival of the final-optics debris shields. To meet the planned maintenance and refinishing rate, the contamination of the debris shields cannot exceed about 1 nm equivalent thickness per shot of total material. This implies that the target mass must be limited to no more than 1 gram and the ablated mass released to the chamber from all other components must not exceed 3 grams. In addition, the targets themselves must either completely vaporize or send any minor amounts of shrapnel towards the chamber waist to prevent excessive cratering of the debris shields. The constraints on the first-wall ablation require that it be louvered to provide passive collection of remobilized contamination, because the expected target debris will remobilize at a rate fast enough to require cleaning every 3 weeks, about three times more frequent than possible with planned robotics. Furthermore, a comparison of ablatants from B{sub 4}C and stainless-steel louvers suggests that remobilization of target debris by x rays will be greater than of the base material in both cases, thereby reducing the performance advantage of clean B{sub 4}C over much-cheaper stainless steel. Neutronics calculations indicate that activation of thin Ni-free stainless steel is not a significant source of maintenance personnel radiation dose. Consequently, the most attractive first wall design consists of stainless-steel louvers. Evaluation of various unconverted-light beam dump designs indicates that stainless steel louvers generate no more debris than other materials, so one single design can serve as both first wall and beam dumps, eliminating beam steering restrictions caused by size and location of the beam dumps. One reservation is that the allowable contamination rate of the debris shield is not yet completely understood.

Hibbard,W.; Burnham, A. K.; Curran, D. R; Genin, F. Y.; Gerassimenko, M.; Latkowski, J. F.; Peterson, P. F.; Scott, J. M.; Tokheim, R. E.; Whitman, P. K.

1998-07-09T23:59:59.000Z

226

Prospects for spheromak fusion reactors  

Science Journals Connector (OSTI)

The reactor study of Hagenson and Krakowski demonstrated the attractiveness of the spheromak as a compact fusion reactor, based on...

T. K. Fowler; D. D. Hua

1995-06-01T23:59:59.000Z

227

Flow Simulation and Optimization of Plasma Reactors for Coal Gasification  

Science Journals Connector (OSTI)

This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

Ji Chunjun; Zhang Yingzi; Ma Tengcai

2003-01-01T23:59:59.000Z

228

Advanced Test Reactor Tour  

SciTech Connect

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

229

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

230

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

231

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

232

Component failures at pressurized water reactors. Final report  

SciTech Connect

Objective of this study was to identify those systems having major impact on safety and availability. This report consists of appendices: systems descriptions and profiles, year data tables, problem profiles, valve experience, trip reports, cost benefit model, assumed values used in model, SIGMA code, and projected fuel costs and sensitivity curves. (DLC)

Not Available

1980-10-01T23:59:59.000Z

233

Reactor vessel support system  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

234

Validation of nuclear models used in space radiation shielding applications  

SciTech Connect

A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

Norman, Ryan B., E-mail: Ryan.B.Norman@nasa.gov [NASA Langley Research Center, Hampton, VA 23681 (United States); Blattnig, Steve R. [NASA Langley Research Center, Hampton, VA 23681 (United States)] [NASA Langley Research Center, Hampton, VA 23681 (United States)

2013-01-15T23:59:59.000Z

235

Secret key distillation from shielded two-qubit states  

E-Print Network (OSTI)

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Joonwoo Bae

2008-03-03T23:59:59.000Z

236

Secret key distillation from shielded two-qubit states  

SciTech Connect

The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

2010-05-15T23:59:59.000Z

237

The effect of electrostatic shielding using invisibility cloak  

Science Journals Connector (OSTI)

The effect of electrostatic shielding for a spherical invisibility cloak with arbitrary charges inside is investigated. Our result reveals that the charge inside the cloak is a crucial factor to determine the detection. When charged bodies are placed inside the cloak with an arbitrary distribution the electric fields outside are purely determined by the total charges just as the fields of a point charge at the center of the cloak. As the total charges reduce to zero the bodies can not be detected. On the other hand if the total charges are nonzero the electrostatic potential inside an ideal cloak tends to infinity. For unideal cloaks this embarrassment is overcome while they still have good behaviors of shielding. In addition the potential across the inner surface of an ideal cloak is discontinuous due to the infinite polarization of the dielectric however it can be alternatively interpreted as the dual Meissner effect of a dual superconductive layer with a surface magnetic current.

Ruo-Yang Zhang; Qing Zhao; Mo-Lin Ge

2011-01-01T23:59:59.000Z

238

SATIF-2 shielding aspects of accelerators, targets and irradiation facilities  

SciTech Connect

Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field.

NONE

1995-12-31T23:59:59.000Z

239

SEU43 fuel bundle shielding analysis during spent fuel transport  

SciTech Connect

The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

Margeanu, C. A.; Ilie, P.; Olteanu, G. [Inst. for Nuclear Research Pitesti, No. 1 Campului Street, Mioveni 115400, Arges County (Romania)

2006-07-01T23:59:59.000Z

240

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

242

Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport  

E-Print Network (OSTI)

Conducting Magnets in Fusion Reactor Applications," J. Nucl.of the Consequences in Fusion Reactor Applications," UWFDM-Radiation Effects in Fusion Reactors," Fusion Technology,

Sawan, M.E.; Peterson, R.R.; Yu, S.

2000-01-01T23:59:59.000Z

243

ACCURATE TEMPERATURE MEASUREMENTS IN A NATURALLY-ASPIRATED RADIATION SHIELD  

SciTech Connect

Experiments and calculations were conducted with a 0.13 mm fine wire thermocouple within a naturally-aspirated Gill radiation shield to assess and improve the accuracy of air temperature measurements without the use of mechanical aspiration, wind speed or radiation measurements. It was found that this thermocouple measured the air temperature with root-mean-square errors of 0.35 K within the Gill shield without correction. A linear temperature correction was evaluated based on the difference between the interior plate and thermocouple temperatures. This correction was found to be relatively insensitive to shield design and yielded an error of 0.16 K for combined day and night observations. The correction was reliable in the daytime when the wind speed usually exceeds 1 m s{sup -1} but occasionally performed poorly at night during very light winds. Inspection of the standard deviation in the thermocouple wire temperature identified these periods but did not unambiguously locate the most serious events. However, estimates of sensor accuracy during these periods is complicated by the much larger sampling volume of the mechanically-aspirated sensor compared with the naturally-aspirated sensor and the presence of significant near surface temperature gradients. The root-mean-square errors therefore are upper limits to the aspiration error since they include intrinsic sensor differences and intermittent volume sampling differences.

Kurzeja, R.

2009-09-09T23:59:59.000Z

244

Ra: A high efficiency, D-/sup 3/He, tandem mirror fusion reactor: Appendix C  

SciTech Connect

The Ra tandem mirror fusion reactor concept features inherent safety, high net plant efficiency, low cost of electricity, low radioactive waste generation, low activation, highly efficient direct conversion, thin radiation shields, and axisymmetric magnets. The safety and environmental features are achieved through the use of D/He-3 fuel, while the high efficiency derives from a new operating mode. ICRF stabilization allows an axisymmetric magnet set. 11 refs., 5 figs., 3 tabs.

Santarius, J.F.; Attaya, H.; Corradini, M.L.; El-Guebaly, L.A.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Musicki, Z.; Sawan, M.E.

1987-01-01T23:59:59.000Z

245

WAPDEG Analysis of Waste Package and Drip shield Degradation  

SciTech Connect

As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of scale in Section 6.3.4). The weld flaw portion of this report takes input from an engineering calculation (BSC 2004 [DIRS 170024]) and uses standard mathematical methods to enable easier implementation. The IWPD analysis also provides guidance on implementation of early failures (importance sampling and multinomial distribution usage). These manipulations are evident from standard scientific practices, approaches, or methods and do not require changes to the previously validated models. The IWPD analysis itself (Section 6.4), not the resultant curves from executing the IWPD analysis presented in Section 6.5 (which are for illustrative purposes), is used directly in total system performance assessment (TSPA). The IWPD analysis simulates general corrosion and stress corrosion cracking of the waste package outer barrier and general corrosion of the drip shield. The effects of igneous and seismic events and localized corrosion on drip shield and waste package performance are not evaluated in this report. The outputs of this report are inputs and methodologies used by TSPA to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. The analyses presented in this report are for the current repository design (BSC 2004 [DIRS 168489]).

K. Mon

2004-09-29T23:59:59.000Z

246

Ultrasafe Reactors, Anyone?  

Science Journals Connector (OSTI)

...competitors on fuel efficiency, a factor that...in an underground swimming pool and shield-ed...Institute for Energy Analysis, Oak Ridge...machine sits in a pool of borat-ed water...improve-ments in fuel efficiency, these new con-cepts...

ELIOT MARSHALL

1983-01-21T23:59:59.000Z

247

A NEW ALGORITHM FOR RADIOISOTOPE IDENTIFICATION OF SHIELDED AND MASKED SNM/RDD MATERIALS  

SciTech Connect

Detection and identification of shielded and masked nuclear materials is crucial to national security, but vast borders and high volumes of traffic impose stringent requirements for practical detection systems. Such tools must be be mobile, and hence low power, provide a low false alarm rate, and be sufficiently robust to be operable by non-technical personnel. Currently fielded systems have not achieved all of these requirements simultaneously. Transport modeling such as that done in GADRAS is able to predict observed spectra to a high degree of fidelity; our research is focusing on a radionuclide identification algorithm that inverts this modeling within the constraints imposed by a handheld device. Key components of this work include incorporation of uncertainty as a function of both the background radiation estimate and the hypothesized sources, dimensionality reduction, and nonnegative matrix factorization. We have partially evaluated performance of our algorithm on a third-party data collection made with two different sodium iodide detection devices. Initial results indicate, with caveats, that our algorithm performs as good as or better than the on-board identification algorithms. The system developed was based on a probabilistic approach with an improved approach to variance modeling relative to past work. This system was chosen based on technical innovation and system performance over algorithms developed at two competing research institutions. One key outcome of this probabilistic approach was the development of an intuitive measure of confidence which was indeed useful enough that a classification algorithm was developed based around alarming on high confidence targets. This paper will present and discuss results of this novel approach to accurately identifying shielded or masked radioisotopes with radiation detection systems.

Jeffcoat, R.

2012-06-05T23:59:59.000Z

248

2013 R&D 100 Award: 'SHIELD' protects NIF optics from harmful pulses  

SciTech Connect

In the past, it took as long as 12 hours to manually screen 48 critical checkpoints at the National Ignition Facility (NIF) for harmful laser pulses. The screening equipment had to be moved from point to point throughout a facility the size of three football fields. Now with a new technology, called Laser SHIELD (Screening at High-throughput to Identify Energetic Laser Distortion), and with the push of a button, the screening can be done in less than one second. Proper screening of pulses is critical for the operation of high-energy lasers to ensure that the laser does not exceed safe operating conditions for optics. The energetic beams of light are so powerful that, when left uncontrolled, they can shatter the extremely valuable glass inside the laser. If a harmful pulse is found, immediate adjustments can be made in order to protect the optics for the facility. Laser SHIELD is a custom-designed high-throughput screening system built from low-cost and commercially available components found in the telecommunications industry. Its all-fiber design makes it amenable to the unique needs of high-energy laser facilities, including routing to intricate pick-off locations, immunity to electromagnetic interference and low-loss transport (up to several kilometers). The technology offers several important benefits for NIF. First, the facility is able to fire more shots in less time-an efficiency that saves the facility millions of dollars each year. Second, high-energy lasers are more flexible to wavelength changes requested by target physicists. Third, by identifying harmful pulses before they damage the laser's optics, the facility potentially saves hundreds of thousands of dollars in maintenance costs each year.

Chou, Jason

2014-04-03T23:59:59.000Z

249

Generation -IV Reactor Concepts  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

250

Power Reactor Progress  

Science Journals Connector (OSTI)

Argonne kicks off EBWR; Allis-Chalmers plans power reactor using both nuclear and conventional fuels ... NUCLEAR POWER took two giant steps last week. ... Just as the first nuclear power system in the U. S. designed and built solely for the generation of electric power went into full operation at Argonne, Allis-Chalmers came up with a new twist in power reactors—a controlled recirculation boiling reactor (CRBR) using both nuclear and conventional fuels (C&EN, Feb. 18, page 7). ...

1957-02-25T23:59:59.000Z

251

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

252

AEC Pushes Fusion Reactors  

Science Journals Connector (OSTI)

AEC Pushes Fusion Reactors ... Project Sherwood, as the study program is called, began in 1951-52 soon after the first successful thermonuclear explosion in the Pacific. ...

1955-10-10T23:59:59.000Z

253

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

254

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

255

Effects of light water reactor coolant environment on the fatigue lives of  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of light water reactor coolant environment on the fatigue lives of Effects of light water reactor coolant environment on the fatigue lives of reactor materials July 8, 2013 A metal component can become progressively degraded, and its structural integrity can be adversely impacted when it is subjected to repeated fluctuating loads, or fatigue loading. Fatigue loadings on nuclear reactor pressure vessel components can occur because of changes in pressure and temperature caused by transients during operation, such as reactor startup or shutdown and turbine trip events. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code recognizes fatigue as a possible cause of failure of reactor materials and provides rules for designing nuclear power plant components to avoid fatigue failures. For various materials, the ASME Code defines the

256

Tritium issues in commercial pressurized water reactors  

SciTech Connect

Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

Jones, G. [Constellation Energy Group, R.E. Ginna Nuclear Power Plant, Ontario, NY (United States)

2008-07-15T23:59:59.000Z

257

Dose estimates in a loss of lead shielding truck accident.  

SciTech Connect

The radiological transportation risk & consequence program, RADTRAN, has recently added an updated loss of lead shielding (LOS) model to it most recent version, RADTRAN 6.0. The LOS model was used to determine dose estimates to first-responders during a spent nuclear fuel transportation accident. Results varied according to the following: type of accident scenario, percent of lead slump, distance to shipment, and time spent in the area. This document presents a method of creating dose estimates for first-responders using RADTRAN with potential accident scenarios. This may be of particular interest in the event of high speed accidents or fires involving cask punctures.

Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John (Alion Science & Technology Albuquerque, NM)

2009-08-01T23:59:59.000Z

258

A new radiation shielding block material for radiation therapy  

SciTech Connect

In recent years, lead has been recognized as a source of environmental pollution; this includes lead use for radiation shielding in radiotherapy. We looked for a new material that could be a lead substitute. We chose a material composed of tungsten and resin. We compared the attenuation coefficient of the material with those of lead and Lipowitz's metal, and found the material has a higher attenuation coefficient than the other two. The material may be used as a substitute for lead because it is easy to fabricate and friendly to the environment.

Tajiri, Minoru; Sunaoka, Masayoshi; Fukumura, Akifumi; Endo, Masahiro [Radiological Technology Office, National Institute of Radiological Sciences 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Medical Physics, National Institute of Radiological Sciences 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

2004-11-01T23:59:59.000Z

259

Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube  

SciTech Connect

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

Bucholz, J.A.

2000-07-01T23:59:59.000Z

260

Submicron carbon filament cement-matrix composites for electromagnetic interference shielding  

SciTech Connect

Carbon filaments of diameter 0.1 mm were found to be a much more effective additive than conventional carbon fibers of diameter 10 mm in providing cement pastes capable of electromagnetic interference shielding. With 0.54 vol. % filaments and a shield thickness of 4 mm, a shielding effectiveness of 30 dB was attained at 1--2 GHz. However, the filaments were less effective than the fibers for reinforcing and for providing strain sensing cement-matrix composites.

Fu, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.] [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New Six-Layer Magnetically-Shielded Room for MEG D. Cohen1,2  

E-Print Network (OSTI)

by Imedco, to house a 4-D MEG system, containing both gradiometers and magnetometers (Vectorview of the passive shielding factor yield 1,630 (64dB), 3,600 (71dB), 240,000 (107dB) , and 78,000,000 (158d of 0.010 to 0.10 Hz. The 78 dB was to combine 58 dB of passive shielding with 20 dB of active shielding

262

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

263

Portfolio for fast reactor collaboration  

SciTech Connect

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

264

Instrumented, Shielded Test Canister System for Evaluation of Spent Nuclear Fuel in Dry Storage  

SciTech Connect

This document describes the development of an instrumented, shielded test canister system to store and monitor aluminum-based spent nuclear duel under dry storage conditions.

Sindelar, R.L.

1999-10-21T23:59:59.000Z

265

E-Print Network 3.0 - advanced shielding systems Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Engineering, University of Rochester Collection: Engineering 77 Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix...

266

1. Shielding against Electromagnetic Interference With telecommunication networks connecting wireless devices around the globe, there  

E-Print Network (OSTI)

#12;1. Shielding against Electromagnetic Interference With telecommunication networks connecting electromagnetic interference (EMI) across the airwaves. These communication networks are ubiquitous and dynamic

Rincon-Mora, Gabriel A.

267

Power System Feedback from High-Tc Superconductor Shielded Core Fault Current Limiter  

Science Journals Connector (OSTI)

The shielded core fault current limiter is attractive with high critical temperature superconductors. ... acts during normal operation as an ideally shorted current transformer; the secondary superconducting loop...

J. Gerhold

1998-01-01T23:59:59.000Z

268

Fast reactor safety  

Science Journals Connector (OSTI)

... SIR, - In his article on fast reactor safety (26 July, page 270) Norman Dombey claims to introduce to non-specialists ... , page 270) Norman Dombey claims to introduce to non-specialists some features of fast reactors that are not available outside the technical literature. The non-specialist would do well ...

R.D. SMITH

1979-08-23T23:59:59.000Z

269

Instrumentation of Nuclear Reactors  

Science Journals Connector (OSTI)

... s Lecture Theatre on January 8, a symposium of papers on the instrumentation of nuclear reactors was organized, at which about five hundred members and visitors attended, including guests from ... the Institution, took the chair and introduced Sir John Cockcroft, whose lecture on "Nuclear Reactors and their Applications" provided a general background for the three specialized papers which followed. ...

1953-03-07T23:59:59.000Z

270

Nuclear Research Reactors  

Science Journals Connector (OSTI)

... their countries for the advent of nuclear power. A few countries had built large research reactors for the production of isotopes and to study the behaviour of nuclear fuel, but ... production of isotopes and to study the behaviour of nuclear fuel, but the small training reactor had not been developed. Since then, research ...

T. E. ALLIBONE

1963-07-20T23:59:59.000Z

271

Two component-three dimensional catalysis  

DOE Patents (OSTI)

This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.

Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

2002-01-01T23:59:59.000Z

272

Canadian university research reactors  

SciTech Connect

In Canada there are seven university research reactors: one medium-power (2-MW) swimming pool reactor at McMaster University and six low-power (20-kW) SLOWPOKE reactors at Dalhousie University, Ecole Polytechnique, the Royal Military College, the University of Toronto, the University of Saskatchewan, and the University of Alberta. This paper describes primarily the McMaster Nuclear Reactor (MNR), which operates on a wider scale than the SLOWPOKE reactors. The MNR has over a hundred user groups and is a very broad-based tool. The main applications are in the following areas: (1) neutron activation analysis (NAA); (2) isotope production; (3) neutron beam research; (4) nuclear engineering; (5) neutron radiography; and (6) nuclear physics.

Ernst, P.C.; Collins, M.F.

1989-11-01T23:59:59.000Z

273

Risk Management for Sodium Fast Reactors.  

SciTech Connect

Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

Denman, Matthew R; Groth, Katrina; Cardoni, Jeffrey N; Wheeler, Timothy A.

2015-01-01T23:59:59.000Z

274

Reactor & Nuclear Systems Publications | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications...

275

Nuclear reactor with low-level core coolant intake  

DOE Patents (OSTI)

A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

1993-01-01T23:59:59.000Z

276

Process simulation of refinery units including chemical reactors  

Science Journals Connector (OSTI)

Process simulation methods for design and operation of refinery units are well established as long as no chemical reactors are included. The feedstocks are divided into pseudo-components which enables calculation of phase equilibria and transport properties. When chemical reactors are present some chemical conversion takes place which obviously affects the nature of the pseudo-components and their properties. The stream leaving the reactor will not only be of a different composition than the stream entering the reactor but in addition, the pseudo-components making up the outlet stream will also have other physical properties than the ones in the inlet stream. These changes affect not only the reactor unit but also the simulation of the whole flow-sheet. The paper presents a detailed model for an adiabatic distillate hydrotreater which takes into account the elemental composition of the feed. A special simulation strategy has been developed to incorporate such reactor units into process simulators. Finally, the simulation strategy is illustrated for a hydrotreating plant.

Jens A. Hansen; Barry H. Cooper

1992-01-01T23:59:59.000Z

277

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

278

Nuclear reactor control column  

DOE Patents (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

279

Reactor Safety Research Programs  

SciTech Connect

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01T23:59:59.000Z

280

Nuclear reactor reflector  

DOE Patents (OSTI)

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Testing and examination of TMI-2 electrical components and discrete devices  

SciTech Connect

This report discusses the approach and results of the in situ test conducted on TMI-2 reactor building electrical components and discrete devices. Also included are the necessary presumptions and assumptions to correlate observed anomalies to the accident.

Soberano, F.T.

1982-11-01T23:59:59.000Z

282

Simbol-X Mirror Module Thermal Shields: I - Design and X-Ray Transmission  

SciTech Connect

The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

Collura, A.; Varisco, S. [INAF-OAPA Via G.F. Ingrassia, 31 90123 Palermo (Italy); Barbera, M. [INAF-OAPA Via G.F. Ingrassia, 31 90123 Palermo (Italy); DSFA Universita di Palermo, Via Archirafi 36, 90123 Palermo (Italy); Basso, S.; Pareschi, G.; Tagliaferri, G. [INAF-OAB, via E. bianchi 46, 23807 Merate (Italy); Ayers, T. [Luxel Corporation, Friday Harbor, WA 98250 (United States)

2009-05-11T23:59:59.000Z

283

Lunar soil as shielding against space radiation J. Miller a,*, L. Taylor b  

E-Print Network (OSTI)

Lunar soil as shielding against space radiation J. Miller a,*, L. Taylor b , C. Zeitlin c , L Sciences, Chiba 263-8555, Japan a r t i c l e i n f o Article history: Received 6 August 2008 Accepted 28 January 2009 Keywords: Lunar soil Lunar regolith Space radiation shielding Galactic cosmic radiation (GCR

Perfect, Ed

284

Combined Use of Magnetic and Electrically Conductive Fillers in a Polymer Matrix for Electromagnetic Interference Shielding  

E-Print Network (OSTI)

for Electromagnetic Interference Shielding JUNHUA WU1,2 and D.D.L. CHUNG1,3 1.--Composite Materials Research for electromagnetic interference shielding than the use of a highly magnetic filler alone or the use of a highly, magnetic, electrical resistivity, nickel, mumetal, graphite INTRODUCTION Electromagnetic interference (EMI

Chung, Deborah D.L.

285

The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding  

E-Print Network (OSTI)

The influence of single-walled carbon nanotube structure on the electromagnetic interference.01­15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X and aerospace sectors with uses such as electrostatic dissipation, electromagnetic interference (EMI) shielding

Gao, Hongjun

286

Shielding-Effectiveness Modeling of Carbon-Fiber/Nylon-6,6 Composites  

E-Print Network (OSTI)

Shielding-Effectiveness Modeling of Carbon-Fiber/Nylon- 6,6 Composites Nicholas B. Janda,1 Jason M for various amounts of Thermal- Graph DKD X carbon fiber within nylon 6,6. The theory predicts that the most important parameters for the shield- ing effectiveness of a sample are the carbon-fiber volume percentage

Perger, Warren F.

287

IComposite Structures -ManufacturingAdvanced Radiation Shielding Materials and Structures Technical Abstract  

E-Print Network (OSTI)

and instruments and survivability require effective radiation protection. There is also the desire to reduce several compositions that provide optimum radiation shielding. We plan to address specific NASA missionSBIR SBIR 54 55 IComposite Structures - ManufacturingAdvanced Radiation Shielding Materials

288

Turbo Pump Magnetic Shielding Analysis NSTX-CALC-24-04-00  

E-Print Network (OSTI)

NSTX Turbo Pump Magnetic Shielding Analysis NSTX-CALC-24-04-00 March 16, 2011 Prepared By turbo pump to reduce the fringe field from NSTX coils at the pump location to below 50 gauss shield is below 50 G and overall Lorentz force on the pump is below 50 pound. 3) Although the magnetic

Princeton Plasma Physics Laboratory

289

High conduction neutron absorber to simulate fast reactor environment in an existing test reactor  

SciTech Connect

A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

Donna Post Guillen; Larry R. Greenwood; James R. Parry

2014-10-01T23:59:59.000Z

290

Shielding requirements for K Basin waste transfer line  

SciTech Connect

K-East Basin sludge, mixed with water, is to be transported to the tank farms using a high integrity container mounted on a trailer. Load considerations preclude driving the truck directly to the tank opening. Thus, it is envisioned that a transfer line will run from a tanker unloading point to a point where the waste can be injected into a waste tank. It is presently envisioned that the waste will be pumped from the truck to the tank in a three inch pipe which is encased inside a six inch pipe. The transfer line will be shielded by either berming earth with a density of approximately 2.00 g/cm{sup 3} (125 lb/ft{sup 3}) around the line, or constructing a concrete raceway.

Goldberg, H.J.

1996-04-01T23:59:59.000Z

291

UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS  

E-Print Network (OSTI)

1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault of Nuclear Power Plants (NPPs) [Cheon et al., 1993; Kim et al., 1996; Reifman, 1997; Zio et al., 2006a; Zio

Boyer, Edmond

292

Large Magnetic Shielding Factor Measured by Nonlinear Magneto-optical Rotation  

E-Print Network (OSTI)

A passive magnetic shield was designed and constructed for magnetometer tests for the future neutron electric dipole moment experiment at TRIUMF. The axial shielding factor of the magnetic shield was measured using a magnetometer based on non-linear magneto-optical rotation of the plane of polarized laser light upon passage through a paraffin-coated vapour cell containing natural Rb at room temperature. The laser was tuned to the Rb D1 line, near the $^{85}$Rb $F=2\\rightarrow 2,3$ transition. The shielding factor was measured by applying an axial field externally and measuring the magnetic field internally using the magnetometer. The axial shielding factor was determined to be $(1.3\\pm 0.1)\\times 10^{7}$, from an applied axial field of 1.45~$\\mu$T in the background of Earth's magnetic field.

Jeffery W. Martin; Russell R. Mammei; Wolfgang Klassen; Cameron Cerasani; Taraneh Andalib; Christopher P. Bidinosti; Michael Lang; David Ostapchuk

2014-11-07T23:59:59.000Z

293

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

294

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

295

Molten metal reactors  

DOE Patents (OSTI)

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

296

F Reactor Inspection  

ScienceCinema (OSTI)

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-11-24T23:59:59.000Z

297

F Reactor Inspection  

SciTech Connect

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-10-29T23:59:59.000Z

298

Electronic Component Obsolescence  

SciTech Connect

Electronic component obsolescence occurs when parts are no longer available to support the manufacture and/or repair of equipment still in service. Future instrumentation containing complex components WILL face obsolescence issues as technology advances. This paper describes hardware and software obsolescence as well as factors to consider when designing new instrumentation.

Sohns, Carl William [ORNL; Ward, Christina D [ORNL

2010-01-01T23:59:59.000Z

299

Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.  

SciTech Connect

In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

2008-05-05T23:59:59.000Z

300

Compact-Toroid Fusion Reactor (CTOR) based on the Field-Reversed Theta Pinch  

SciTech Connect

Scoping studies of a translating Compact Torus Reactor (CTOR) have been made on the basis of a dynamic plasma model and an overall systems approach. This CTOR embodiment uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plamoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radition shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15.

Hagenson, R.L.; Krakowski, R.A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Adiabatic Demagnetization Refrigerator Field Mapping and Shielding Models for a 70 mK Superconducting Transition Edge Sensor Array and Associated Electronics  

SciTech Connect

An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager -- ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at {approx}70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st ({approx}70 mK) and 2nd ({approx}2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.

Ladner, D. R. [N-Science Corporation, Arvada, CO 80002 (United States); Martinez-Galarce, D. S. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); McCammon, D. [University of Wisconsin, Madison, WI 53706 (United States)

2006-04-27T23:59:59.000Z

302

Use of fly ash as an admixture for electromagnetic interference shielding Jingyao Cao, D.D.L. Chung*  

E-Print Network (OSTI)

Use of fly ash as an admixture for electromagnetic interference shielding Jingyao Cao, D.D.L. Chung The use of fly ash as an admixture results in enhancement of the electromagnetic interference (EMI of fly ash as an admixture for enhancing the electromagnetic interference (EMI) shielding. EMI shielding

Chung, Deborah D.L.

303

Method for reliability analysis of complex reactor systems. [LMFBR  

SciTech Connect

A method and a computer code for efficient and accurate reliability analyses of complex reactor systems are described and illustrated through an example. The method permits realistic analyses through its ability to accurately model and evaluate instantaneous and average unavailabilities for large systems with dependencies. The component models can include continuously monitored, non-repairable, and periodically tested components which are subject to failures resulting from components which are subject to failures resulting from component demands, stand-by conditions, human errors associated with testing and repair, as well as failures during actual operation. The numerical process used is efficient and allows analysis of general system configurations with arbitrary scheduling of maintenance operations.

Elerath, J.G.; Vaurio, J.K.; Wood, A.P.

1982-01-01T23:59:59.000Z

304

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

305

Reactor Safety Planning for Prometheus Project, for Naval Reactors Information  

SciTech Connect

The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

P. Delmolino

2005-05-06T23:59:59.000Z

306

B Reactor | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » B Reactor B Reactor B Reactor Completed in September 1944, the B Reactor was the world's first large-scale plutonium production reactor. As at Oak Ridge, the need for labor turned Hanford into an atomic boomtown, with the population reaching 50,000 by summer 1944. Similar to the X-10 Graphite Reactor at Oak Ridge in terms of loading and unloading fuel, the B Reactor was built on a much larger scale and used water rather than air as a coolant. Whereas the X-10 had an initial design output of 1,000 kilowatts, the B Reactor was designed to operate at 250,000 kilowatts. Consisting of a 28- by 36-foot, 1,200-ton graphite cylinder lying on its side, the reactor was penetrated through its

307

Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems  

SciTech Connect

A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

Karpov, A. S. [St Petersburg State Polytechnical University, JSC 'System Operator of the United Power System', Leningradskoe RDU (Russian Federation)] [St Petersburg State Polytechnical University, JSC 'System Operator of the United Power System', Leningradskoe RDU (Russian Federation)

2013-01-15T23:59:59.000Z

308

Innovative fusion reactor design analysis: Annual performance report, May 15, 1988--January 31, 1989  

SciTech Connect

This report discusses the following topics on fusion reactor component design: FLiBe intermediate heat exchanger design analysis; FLiBe properties; design methodology; FLiBe system steam generator freezeup; FLiBe reactor systems studies; tritium breeding ratio control; analysis of original objectives; and budget analysis. 15 refs., 13 figs., 3 tabs. (LSP)

Klein, A.C.

1989-01-31T23:59:59.000Z

309

Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities  

SciTech Connect

The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

Macek, R.J.

1994-07-01T23:59:59.000Z

310

Plasma-Sprayed Beryllium on Macro-Roughened Substrates for Fusion Reactor High Heat Flux Applications  

Science Journals Connector (OSTI)

The development of beryllium first wall (FW) plasma facing components for future magnetic confinement fusion experiments, such as the International Thermonuclear Experimental Reactor (ITER), is a topic of great.....

Kendall J. Hollis; Brian D. Bartram; Manfred Roedig…

2007-03-01T23:59:59.000Z

311

Building and Connecting Components  

Science Journals Connector (OSTI)

While equations are an essential part of model development, it quickly becomes tedious to write out all the equations for the components in a system. In this chapter, we show how to reuse constitutive equation...

Michael Tiller Ph.D.

2001-01-01T23:59:59.000Z

312

Integrating Program Component Executables  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrating Integrating Program Component Executables on Distributed Memory Architectures via MPH Chris Ding and Yun He Computational Research Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA chqding@lbl.gov, yhe@lbl.gov Abstract A growing trend in developing large and complex ap- plications on today's Teraflop computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the climate system model which consists of atmosphere, ocean, land-surface and sea-ice. Each component is semi- independent and has been developed at different institu- tions. We study how this multi-component multi-executable application can run effectively on distributed memory archi- tectures. We identify five effective execution modes and de- velop the MPH library to support

313

LMFBR fuel component costs  

SciTech Connect

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

314

Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements  

SciTech Connect

The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

Barbera, M. [Universita degli Studi di Palermo, Dip. di Scienze Fisiche ed Astronomiche, Palermo (Italy); Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Palermo G.S. Vaiana, Palermo (Italy); Ayers, T. [Luxel Corporation, Friday Harbor (WA) (United States); Collura, A. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Palermo G.S. Vaiana, Palermo (Italy); Nasillo, G. [Universita degli Studi di Palermo, Centro Grandi Apparecchiature, Palermo (Italy); Pareschi, G.; Tagliaferri, G. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Brera, Merate (Italy)

2009-05-11T23:59:59.000Z

315

The use of isotopically tailored boron for advanced neutron shielding and moderating applications  

E-Print Network (OSTI)

cm. The incident neutron flux was measured first without any shielding slab between the source and the detector. The first slab of shielding material was then placed nearest to the source and the transmitted intensity was measured by the detector... effects of nuclear radiation. This analysis examined the use of isotopically tailored boron for the purpose of moderating, reflecting and shielding neutrons. The source of neutrons in this study varied in energy from 0. 2 keV to 14 MeV. The material...

Deere, Laura Marie

2012-06-07T23:59:59.000Z

316

Steam generator for liquid metal fast breeder reactor  

DOE Patents (OSTI)

Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

1985-01-01T23:59:59.000Z

317

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations, which govern the operation of commercial nuclear power plants, require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including

318

Reactor for exothermic reactions  

DOE Patents (OSTI)

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02T23:59:59.000Z

319

Thermionic Reactor Design Studies  

SciTech Connect

Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

Schock, Alfred

1994-08-01T23:59:59.000Z

320

Pressurized reactor system and a method of operating the same  

DOE Patents (OSTI)

A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.

Isaksson, Juhani M. (Karhula, FI)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pressurized reactor system and a method of operating the same  

DOE Patents (OSTI)

A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.

Isaksson, J.M.

1996-06-18T23:59:59.000Z

322

Methods for quantifying uncertainty in fast reactor analyses.  

SciTech Connect

Liquid-metal-cooled fast reactors in the form of sodium-cooled fast reactors have been successfully built and tested in the U.S. and throughout the world. However, no fast reactor has operated in the U.S. for nearly fourteen years. More importantly, the U.S. has not constructed a fast reactor in nearly 30 years. In addition to reestablishing the necessary industrial infrastructure, the development, testing, and licensing of a new, advanced fast reactor concept will likely require a significant base technology program that will rely more heavily on modeling and simulation than has been done in the past. The ability to quantify uncertainty in modeling and simulations will be an important part of any experimental program and can provide added confidence that established design limits and safety margins are appropriate. In addition, there is an increasing demand from the nuclear industry for best-estimate analysis methods to provide confidence bounds along with their results. The ability to quantify uncertainty will be an important component of modeling that is used to support design, testing, and experimental programs. Three avenues of UQ investigation are proposed. Two relatively new approaches are described which can be directly coupled to simulation codes currently being developed under the Advanced Simulation and Modeling program within the Reactor Campaign. A third approach, based on robust Monte Carlo methods, can be used in conjunction with existing reactor analysis codes as a means of verification and validation of the more detailed approaches.

Fanning, T. H.; Fischer, P. F.

2008-04-07T23:59:59.000Z

323

Light Water Reactor Sustainability Program: Materials Aging and Degradation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Aging and Materials Aging and Degradation Technical Program Plan Light Water Reactor Sustainability Program: Materials Aging and Degradation Technical Program Plan Components serving in a nuclear reactor plant must withstand a very harsh environment including extended time at temperature, neutron irradiation, stress, and/or corrosive media. The many modes of degradation are complex and vary depending on location and material. However, understanding and managing materials degradation is a key for the continued safe and reliable operation of nuclear power plants. Extending reactor service to beyond 60 years will increase the demands on materials and components. Therefore, an early evaluation of the possible effects of extended lifetime is critical. The recent NUREG/CR-6923 gives a

324

High Flux Beam Reactor | Environmental Restoration Projects | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Complex Description Complex Description Current HFBR Complex The HFBR complex consists of multiple structures and systems that were necessary to operate and maintain the reactor. The most recognizable features of the complex are the domed reactor confinement building and the distinctive red-and-white stack. Portions of the complex building structures, systems, and components, some of which are underground, were contaminated with radionuclides and chemicals as a result of previous HFBR and Brookhaven Graphite Research Reactor (BGRR) operations. A number of decommissioning and preparation for long-term safe storage actions have been taken including the removal of contaminated structures, hazardous materials, and contaminated equipment and components. The structures and systems, both current and former, are

325

Diagnostics for hybrid reactors  

SciTech Connect

The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

Orsitto, Francesco Paolo [ENEA Unita' Tecnica Fusione , Associazione ENEA-EURATOM sulla Fusione C R Frascati v E Fermi 45 00044 Frascati (Italy)

2012-06-19T23:59:59.000Z

326

Environmentally assisted cracking of light-water reactor materials  

SciTech Connect

Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

1996-02-01T23:59:59.000Z

327

Natural circulating passive cooling system for nuclear reactor containment structure  

DOE Patents (OSTI)

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

328

Passive cooling system for nuclear reactor containment structure  

DOE Patents (OSTI)

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1989-01-01T23:59:59.000Z

329

Thermionic reactor module with thermal-storage reservoir  

SciTech Connect

A thermionic energy conversion system assembly is described, which comprises a fissionable nuclear fuel that surrounds a cylindrical arrangement of thermionic-emitter electrodes that surround corresponding collector electrodes, which in turn surround a cylindrical container of a heat-sink material such as lithium hydride, which can absorb large amounts of waste heat energy through a phase change. The heat-sink material may also act as a nuclear moderator to reduce the amount of required nuclear fuel. A heat pipe is enclosed within the container of heat-sink material to remove waste heat stored in the material. A thermionic energy-conversion module is described which comprises 100 stacked-in-series thermionic-converter assemblies. A complete space-based thermionic nuclear reactor is described which comprises an array of 91 thermionic-converter modules wherein the heat pipes connect to a lithium hydride radiation shield which acts as a further heat sink. The radiation shield connects to radiators to remove the waste heat to space.

Kennel, E.B.

1987-03-11T23:59:59.000Z

330

Structural materials for fusion reactors  

Science Journals Connector (OSTI)

Fusion Reactors will require specially engineered structural materials, which ... on safety considerations. The fundamental differences between fusion and other nuclear reactors arise due to the 14MeV neutronics ...

P. M. Raole; S. P. Deshpande

2009-04-01T23:59:59.000Z

331

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

332

Summary of Blast Shield and Material Testing for Development of Solid Debris Collection at the National Ignition Facility (NIF)  

SciTech Connect

The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10{sup 15} atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactions can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten of these pieces were fielded at the equator and one was fielded on the pole. The shields were analyzed using a combination of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF), neutron activation analysis (NAA) and chemical leaching followed by mass spectrometry. On each shield, gold debris originating from the gold hohlraum was observed, as well as large quantities of debris that were present in the center of the target chamber at the time of the shot (i.e., stainless steel, indium, copper, etc.) Debris was visible in the SEM as large blobs or splats of material that had encountered the surface of the aluminum and stuck. The aluminum itself had obviously melted and condensed, and some of the large debris splats arrived after the surface had already hardened. Melt depth was determined by cross sectioning the pieces and measuring the melted surface layers via SEM. After the SEM analysis was completed, the pieces were sent for NAA at the USGS reactor and were analyzed by U. Greife at the Colorado School of Mines. The NAA showed that the majority of gold mass present on the shields was not in the form of large blobs and splats, but was present as small particulates that had most likely formed as condensed vapor. Further analysis showed that the gold was entrained in the melted aluminum surface layers and did not extend down into the bulk of the aluminum. Once the gold mass was accounted for from the NAA, it was determined that the aluminum fielded at the equator was collecting a fraction of the total gold hohlraum mass equivalent to 120% {+-} 10% of the solid angle subtended by the shield. The attached presentation has more information on the results of the aluminum blast shield analysis. In addition to the information given in the presentation, the surfaces of the shields have been chemically leached and submitted for mass spectrometric analysis. The results from that analysis are expected to arrive after the due date of this report and will be written up at a later time. Based on the results of the aluminum b

Shaughnessy, D A; Gostic, J M; Moody, K J; Grant, P M; Lewis, L A; Hutcheon, I D

2011-11-21T23:59:59.000Z

333

STATEMENT OF CONSIDERATIONS REQUEST BY RED SHIELD ACQUISITION, LLC FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RED SHIELD ACQUISITION, LLC FOR AN ADVANCE WAIVER OF RED SHIELD ACQUISITION, LLC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO. DE-EE0003364 W(A) 2010-030 The Petitioner, Red Shield Acquisition, LLC. (Red Shield), has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above-referenced award entitled "Demonstration ofan Integrated Biorefinery at Old Town, Maine." The University of Maine is a subawardee. and is not subject to this waiver request. The objective ofthis award is to develop a prototype demonstration cellulosic biorefinery that will establish and validate, on a pre-commercial scale, the extraction of hemicelluloses from wood chips and the process to convert the resultant lignocellulosic extract to biofuels and other

334

SHIELDING ESTIMATES FOR THE ANL 6.0 GeV SYNCHROTRON LIGHT SOURCE  

NLE Websites -- All DOE Office Websites (Extended Search)

SHIELDING ESTIMATES FOR THE ANL 6.0 GeV SHIELDING ESTIMATES FOR THE ANL 6.0 GeV SYNCHROTRON LIGHT SOURCE H. J. Moe V. R. Veluri LS-55-Revised Harch 1987 2 1.0 Introduction Shielding estimates for the linac, positron converter, booster synchrotron and the positron storage ring have been computed using preliminary design information. Calculations have been made of the resulting radiation for several types of operations involving normal beam loss, as well as, certain accidental beam losses. When available, experimental data from existing accelerator and light source facilities have been used in lieu of theoretical estimates. 2.0 Shielding Design Objective The Department of Energy's basic occupational exposure limit is 5 rem per year (DOE 81). However, in its guidance for maintaining exposures "as

335

Radiation protection of staff in 111In radionuclide therapy—is the lead apron shielding effective?  

Science Journals Connector (OSTI)

......trained in basic radiation safety, including the...minimise their radiation dose. Within a...the LTM Windows software, Version 1.20...shield for the radiation. Calculations...done using MatLab software. The final voxel......

M. Lyra; P. Charalambatou; M. Sotiropoulos; S. Diamantopoulos

2011-09-01T23:59:59.000Z

336

Solar shield: forecasting and mitigating space weather effects on high-voltage power transmission systems  

Science Journals Connector (OSTI)

In this paper, central elements of the Solar Shield project, launched to design and establish ... about space weather conditions to the member power utilities. EPRI also evaluates the economic impacts of ... tran...

Antti Pulkkinen; Michael Hesse; Shahid Habib; Luke Van der Zel…

2010-05-01T23:59:59.000Z

337

E-Print Network 3.0 - analytic shielding optimization Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

of California at San Diego Collection: Plasma Physics and Fusion 57 Electromagnetic interference shielding reaching 70 dB in steel fiber cement Summary: content of 0.72...

338

D0 Solenoid Upgrade Project: Chimney LN2 Radiation Shield Attachment Area Calculation  

SciTech Connect

A short calculation was done to check the attachment method of the radiation shield to it's LN2 cooling tubes. The case considered was only for the obround chimney section. The proposed attachment method was to use 1/8-inch plug welds spaced every 5-inch along the length of the shield. The calculations were done conservatively for 6-inch spacing between plug welds. The criteria used was that the LN2 shield warmest temperature be less than 2 K above the temperature of the LN2 fluid. Using a very conservative heat transfer model. the calculations predict that the warmest temperature on the radiation shield will be < 1.4 K warmer than the LN2 fluid temperature.

Rucinski, R.; /Fermilab

1993-05-26T23:59:59.000Z

339

Polyethylene as a Radiation Shielding Standard in Simulated Cosmic-Ray Environments  

E-Print Network (OSTI)

High-Energy Iron Ions: Dependence on Shielding Thickness and Material,effectiveness of materials against high-energy beams (600of high-energy heavy ions than do other materials. It is

2006-01-01T23:59:59.000Z

340

Direct path from microscopic mechanics to Debye shielding, Landau damping, and wave-particle interaction  

E-Print Network (OSTI)

The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newton's second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.

Dominique F. Escande; Yves Elskens; Fabrice Doveil

2014-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geochronology of Gran Canaria, Canary Islands: Age of shield building volcanism and other magmatic phases  

Science Journals Connector (OSTI)

Forty-six new K-Ar age determinations are presented on whole rock samples and mineral separates from volcanic and subvolcanic rocks of Gran Canaria. The main subaerial shield building basaltic volcanism...3 was c...

I. McDougall; H. -U. Schmincke

1976-01-01T23:59:59.000Z

342

Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.  

E-Print Network (OSTI)

's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

343

Reactor Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits Crosscutting Technology Development Reactor Materials Advanced Sensors and Instrumentation Proliferation and Terrorism Risk Assessment Advanced Methods for Manufacturing...

344

Reactor operation safety information document  

SciTech Connect

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

345

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

346

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-02-13T23:59:59.000Z

347

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

348

Transport reactor development status  

SciTech Connect

This project is part of METC`s Power Systems Development Facility (PSDF) located at Wilsonville, Alabama. The primary objective of the Advanced Gasifier module is to produce vitiated gases for intermediate-term testing of Particulate Control Devices (PCDs). The Transport reactor potentially allows particle size distribution, solids loading, and particulate characteristics in the off-gas stream to be varied in a number of ways. Particulates in the hot gases from the Transport reactor will be removed in the PCDs. Two PCDs will be initially installed in the module; one a ceramic candle filter, the other a granular bed filter. After testing of the initial PCDs they will be removed and replaced with PCDs supplied by other vendors. A secondary objective is to verify the performance of a Transport reactor for use in advanced Integrated Gasification Combined Cycle (IGCC), Integrated Gasification Fuel Cell (IG-FC), and Pressurized Combustion Combined Cycle (PCCC) power generation units. This paper discusses the development of the Transport reactor design from bench-scale testing through pilot-scale testing to design of the Process Development Unit (PDU-scale) facility at Wilsonville.

Rush, R.E.; Fankhanel, M.O.; Campbell, W.M.

1994-10-01T23:59:59.000Z

349

Thermal Reactor Safety  

SciTech Connect

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

350

NETL - Chemical Looping Reactor  

ScienceCinema (OSTI)

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2014-06-26T23:59:59.000Z

351

MODELING OF DAMAGE AND LIFETIME ANALYSIS OF PLASMA FACING COMPONENTS DURING PLASMA INSTABILITIES IN TOKAMAKS  

E-Print Network (OSTI)

MODELING OF DAMAGE AND LIFETIME ANALYSIS OF PLASMA FACING COMPONENTS DURING PLASMA INSTABILITIES reliability and characterize the performance of this key component. A novel particle-in-cell (PIC) technique) as consequence of plasma instabilities in tokamak reactors still represents the biggest obstacle

Harilal, S. S.

352

Packaging and Disposal of a Radium-beryllium Source using Depleted Uranium Polyethylene Composite Shielding  

SciTech Connect

Two, 111-GBq (3 Curie) radium-beryllium (RaBe) sources were in underground storage at the Brookhaven National Laboratory (BNL) since 1988. These sources originated from the Princeton Plasma Physics Laboratory (PPPL) where they were used to calibrate neutron detection diagnostics. In 1999, PPPL and BNL began a collaborative effort to expand the use of an innovative pilot-scale technology and bring it to full-scale deployment to shield these sources for eventual transport and burial at the Hanford Burial site. The transport/disposal container was constructed of depleted uranium oxide encapsulated in polyethylene to provide suitable shielding for both gamma and neutron radiation. This new material can be produced from recycled waste products (depleted uranium and polyethylene), is inexpensive, and can be disposed with the waste, unlike conventional lead containers, thus reducing exposure time for workers. This paper will provide calculations and information that led to the initial design of the shielding. We will also describe the production-scale processing of the container, cost, schedule, logistics, and many unforeseen challenges that eventually resulted in the successful fabrication and deployment of this shield. We will conclude with a description of the final configuration of the shielding container and shipping package along with recommendations for future shielding designs.

Keith Rule; Paul Kalb; Pete Kwaschyn

2003-02-11T23:59:59.000Z

353

The Climate Sensitivity of the Community Climate System Model Version 3 (CCSM3) JEFFREY T. KIEHL, CHRISTINE A. SHIELDS, JAMES J. HACK, AND WILLIAM D. COLLINS  

E-Print Network (OSTI)

, CHRISTINE A. SHIELDS, JAMES J. HACK, AND WILLIAM D. COLLINS National Center for Atmospheric Research

Bretherton, Chris

354

Spectral Effects on Stress Relaxation of Inconel X-750 Springs in CANDU Reactors  

SciTech Connect

CANDU reactors have been operating for periods up to about 25 years. During this time there are changes to the nuclear reactor core components that are a function of operating environment and time. It is important to know how the properties of critical core components are likely to change over the life of a reactor and therefore their behaviours are characterised long before the end of the reactor design life. Tests are typically conducted in materials test reactors. The behaviour of a material is often characterised as a function of fast neutron fluence and the expected effect of operating time is established by simply extrapolating as a function of fluence. This may be appropriate when the neutron energy spectrum for the materials test reactor matches closely the neutron spectrum where the component resides in the power reactor. However, in cases where the spectrum is very different one has to convert the accumulated dose into a unit that is common in its effect on the material properties. For many property changes in nuclear reactor cores this unit is displacements per atom (dpa).

Griffiths, M.; Butcher, F. J.; Ariani, I.; Douglas, S.; Garner, Francis A.; Greenwood, Lawrence R.

2008-11-16T23:59:59.000Z

355

Reactor vessel support system. [LMFBR  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, M.P.; Holley, J.C.

1980-05-09T23:59:59.000Z

356

BWR In-Core Monitor Housing Replacement Under Dry Condition of Reactor Pressure Vessel  

SciTech Connect

A new method of In-Core Monitor Housing replacement has been successfully applied to Tokai Unit 2 (BWR with 1100 MWe) in April of 2001. It was designed to replace a housing under dry condition of reactor pressure vessel (RPV): this enabled the elimination of water filled-up and drained processes during the replacement procedure resulting in the reduction of implementation schedule. To realize the dry condition, the radiation shields were placed in the RPV and the hollow guide pipe (GP) was adopted to transfer the apparatuses from the top to the bottom work area. (authors)

Tatsuo Ishida; Shoji Yamamoto; Fujitoshi Eguchi [Japan Atomic Power Company (Japan); Motomasa Fuse; Kouichi Kurosawa; Sadato Shimizu; Minoru Masuda [Hitachi Ltd. (Japan); Shinya Fujii; Junji Tanaka [General Electric International Inc. (Japan); Jacobson, Bryce A. [General Electric Company (United States)

2002-07-01T23:59:59.000Z

357

Nuclear reactor construction with bottom supported reactor vessel  

DOE Patents (OSTI)

An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

1987-01-01T23:59:59.000Z

358

Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona  

SciTech Connect

The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

Nick A. Altic

2011-11-11T23:59:59.000Z

359

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project February 1, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The landscape of the Savannah River Site (SRS) is a little flatter and a little less colorful with the removal today of the 75-foot-tall rusty-orange dome from the Cold War-era test reactor. This $25-million reactor decommissioning and deactivation project is funded By the American Recovery and Reinvestment Act. Affectionately known by SRS employees as "Hector," the iconic Heavy Water Components Test Reactor (HWCTR) has stood in the Site's B Area since 1959

360

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework  

SciTech Connect

This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Toloczko, Mychailo B.; Johnson, Kenneth I.; Sanborn, Scott E.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

BNL CRCR LEAF Components  

NLE Websites -- All DOE Office Websites (Extended Search)

A detailed description of the LEAF facility is given in Rev. Sci. Inst. 75, A detailed description of the LEAF facility is given in Rev. Sci. Inst. 75, 4359-4366 (2004), which can be found by following this link. Accelerator System Components The LEAF facility layout indicates the locations of the laser system, the RF components, the electron gun and the beam lines. RF System The modulator cabinet and S-band (2.856 GHz) klystron are located in the laser room. A copper waveguide carries the 15 MW RF pulse from the klystron to the electron gun in the accelerator vault. (A klystron is a high-power RF amplifier. You can visit the ALS MicroWorlds site for more information on klystrons and the principles of RF particle acceleration.) Electron Gun Accelerator and Beam Line 5 psec beam line The electron gun (link to picture) is located in the southwest corner of

362

Injection molded component  

DOE Patents (OSTI)

An intermediate component includes a first wall member, a leachable material layer, and a precursor wall member. The first wall member has an outer surface and first connecting structure. The leachable material layer is provided on the first wall member outer surface. The precursor wall member is formed adjacent to the leachable material layer from a metal powder mixed with a binder material, and includes second connecting structure.

James, Allister W; Arrell, Douglas J

2014-09-30T23:59:59.000Z

363

Nuclear divisional reactor  

SciTech Connect

A nuclear divisional reactor including a reactor core having side and top walls, a heat exchanger substantially surrounding the core, the heat exchanger including a plurality of separate fluid holding and circulating chambers each in contact with a portion of the core, control rod means associated with the core and external of the heat exchanger including control rods and means for moving said control rods, each of the chambers having separate means for delivering and removing fluid therefrom, separate means associated with each of the delivering and removing means for producing useable energy external of the chambers, each of the means for producing useable energy having separate variable capacity energy outputs thereby making available a plurality of individual sources of useable energy of varying degrees.

Administratrix, A.P.; Rugh, J.L.

1982-11-02T23:59:59.000Z

364

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

365

Density dependence of reactor performance with thermal confinement scalings  

SciTech Connect

Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research.

Stotler, D.P.

1992-03-01T23:59:59.000Z

366

Integrated intelligent systems in advanced reactor control rooms  

SciTech Connect

An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

Beckmeyer, R.R.

1989-01-01T23:59:59.000Z

367

EIS-0259 Final Environmental Impact Statement On The Disposal Of Decommissioned, Defueled Cruiser, Ohio Class, And Los Angeles Class Naval Reactor Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

... -. FEASIBILITY STUDY FOR LEAD REMOVAL FROM AND STRUCTURAL RESTORATION OF CRUISER, OHIO, AND LOS ANGELES CLASS REACTOR COMPARTMENT DISPOSAL PACWGES Appendix A A-i . Table of Contents E~CUT~ S~Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A.3 1. ~TRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .." . . . . . . . . . . . . . . . ..A.3 2. DESCR~TION OF S~ELD~G LEAD CONTmD ~ REACTOR commmm PAcmGEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A.4 2.1 PermanentSMeldingLead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A-4 2.2 MisceUaneousLead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..A-5 2.3 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................"A-5 2.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................A-5 3. SHIELD~G LEAD REMOVQ

368

Rancho Seco-Planning for Large Components  

SciTech Connect

The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of Safestor to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful work to date, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and the Auxiliary Building and should be completed by mid 2003. The Spent Fuel is currently being moved to dry storage in an onsite ISFSI, with completion scheduled for late 2002. The personnel resources on site are currently assigned to support both the dry fuel project and the dismantlement of the facility. Once fuel movement is complete more resources will be provided for dismantlement. Characterization of major components other than the vessel is complete and planning for their removal is in progress with various cut-up and/or shipping options being evaluated. Planning for the vessel and internals removal is being performed. The relatively slow pace of the work allows careful evaluation of cost-effective options as they become available in the industry.

Gardiner, D. E.; Newey, J. M; Snyder, M. W.

2002-02-27T23:59:59.000Z

369

Thermionic Reactor Design Studies  

SciTech Connect

During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

Schock, Alfred

1994-06-01T23:59:59.000Z

370

Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)  

SciTech Connect

The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum of the individual components equaling the measured values.

Shaver, Mark W.; Lanning, Donald D.

2010-02-01T23:59:59.000Z

371

Tritium Removal from Carbon Plasma Facing Components  

SciTech Connect

Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating.

C.H. Skinner; J.P. Coad; G. Federici

2003-11-24T23:59:59.000Z

372

Biological shield design and analysis of KIPT accelerator-driven subcritical facility.  

SciTech Connect

Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

2009-12-01T23:59:59.000Z

373

Massive Hanford Test Reactor Removed - Plutonium Recycle Test...  

Office of Environmental Management (EM)

Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed...

374

Development of imaging bolometers for magnetic fusion reactors (invited)  

SciTech Connect

Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.

Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawashima, Hisato; Konoshima, Shigeru [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Kostryukov, Artem Yu.; Miroshnikov, Igor V. [St. Petersburg State Technical University, St. Petersburg 195251 (Russian Federation); Seo, Dongcheol [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Omori, T. [Graduate University for Advanced Studies, Toki 509-5292 (Japan)

2008-10-15T23:59:59.000Z

375

Three-dimensional imaging and precision metrology for liquid-salt-cooled reactors  

SciTech Connect

The liquid-salt-cooled very high temperature reactor, also called the Advanced High-Temperature Reactor (AHTR), is a new large high-temperature reactor concept that combines in a novel way four established technologies: (1) coated-particle graphite-matrix nuclear fuels, (2) Brayton power cycles, (3) passive safety systems and plant designs previously developed for liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants. The AHTR will require refueling, in-service inspection, and maintenance (RIM) with supporting instrumentation systems. The fluoride salts that are being evaluated as potential reactor coolants have melting points between 350 and 500 deg. C, values that imply minimum RIM temperatures between 400 and 550 deg. C. These salts are transparent over a wider range of the light spectrum than is water. The high temperatures, the optical characteristics of the coolant, and advances in metrology may enable the use of lasers to create three-dimensional images of the reactor interior to assist refueling, monitor vibrations in components, map fluid flow, and enable inspections of internal reactor components. A description of the reactor and an initial evaluation of the use of optical techniques for AHTR instrumentation are provided. (authors)

Forsberg, C. W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States); Varma, V. K.; Burgess, T. W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6304 (United States)

2006-07-01T23:59:59.000Z

376

Burnup concept for a long-life fast reactor core using MCNPX.  

SciTech Connect

This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

2013-02-01T23:59:59.000Z

377

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

378

Thermonuclear Reflect AB-Reactor  

E-Print Network (OSTI)

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

Alexander Bolonkin

2008-03-26T23:59:59.000Z

379

Light Water Reactor Sustainability Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

380

Factsheet Overview The Savannah River National Laboratory's Shielded Cells Facility gives the  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The Savannah River National Laboratory's Shielded Cells Facility gives the laboratory the ability to safely work with a wide variety of highly radioactive samples and items in support of various research and development initiatives. Skilled operators, standing safely outside the cells, use manipulator arms to perform work inside the cells. The facility consists of sixteen 6-foot by 6-foot work stations or cells with the following features: The exterior walls of the facility are made of 3-foot-thick high-density * concrete with a 1/8-inch thick stainless steel liner. Each cell has a 3' x3' shielding window. Shielding windows are 3-foot thick * leaded glass, filled with mineral oil for optimal viewing capabilities.

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A large-scale magnetic shield with 10^6 damping at milli-Hertz frequencies  

E-Print Network (OSTI)

A magnetically shielded environment with a damping factor larger than one million at the milli-Hertz frequency regime and an extremely low field and gradient over an extended volume is presented. This extraordinary shielding perfomance is to our knowledge unprecedented and represents an improvement of the state of the art in damping the difficult regime of very low-frequency distortions by more than an order of magnitude. Thus, a new generation of high precision measurements in fundamental physics and metrology is enabled with this technology, particularly suitable to find traces of new physics far beyond the reach of accelerator based physics. The technical realization of the shield with its improvements in design is discussed.

Altarev, I; Beck, D H; Chupp, T; Fierlinger, K; Fierlinger, P; Kuchler, F; Lins, T; Marino, M G; Niessen, B; Petzoldt, G; Singh, J T; Schläpfer, U; Schnabel, A; Stoepler, R; Stuiber, S; Strum, M; Taubenheim, B; Voigt, J

2015-01-01T23:59:59.000Z

382

Reactor coolant pump flywheel  

DOE Patents (OSTI)

A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

2013-11-26T23:59:59.000Z

383

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

384

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1996-02-27T23:59:59.000Z

385

Nuclear reactor control apparatus  

DOE Patents (OSTI)

Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-11-01T23:59:59.000Z

386

Multi-physics Reactor Performance and Safety Simulations - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Computation Engineering Computation and Design > Multi-physics Reactor Performance and Safety Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Multi-physics Reactor Performance and Safety Simulations Bookmark and Share Contact Keith S. Bradley, Ph.D. Technical Director, Nuclear Engineering Division Argonne National Laboratory Email address protected by JavaScript. Please enable JavaScript The SHARP simulation suite development team, led by Argonne National Laboratory, includes other leading national laboratories and research universities. SHARP is developed under the auspices of the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation Program (NEAMS).

387

NEUTRON RADIOGRAPHY (NRAD) REACTOR 64-ELEMENT CORE UPGRADE  

SciTech Connect

The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately +/-1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

John D. Bess

2014-03-01T23:59:59.000Z

388

Metrology/viewing system for next generation fusion reactors  

SciTech Connect

Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system.

Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M. [Oak Ridge National Lab., TN (United States); Dagher, M.A. [Boeing Rocketdyne Div., Canoga Park, CA (United States)

1997-02-01T23:59:59.000Z

389

Modular Pebble Bed Reactor High Temperature Gas Reactor  

E-Print Network (OSTI)

Modular Pebble Bed Reactor High Temperature Gas Reactor Andrew C Kadak Massachusetts Institute For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR/Graphite Discrimination system Damaged Sphere ContainerGraphiteReturn FuelReturn Fresh Fuel Container Spent Fuel Tank #12

390

Component failure data handbook  

SciTech Connect

This report presents generic component failure rates that are used in reliability and risk studies of commercial nuclear power plants. The rates are computed using plant-specific data from published probabilistic risk assessments supplemented by selected other sources. Each data source is described. For rates with four or more separate estimates among the sources, plots show the data that are combined. The method for combining data from different sources is presented. The resulting aggregated rates are listed with upper bounds that reflect the variability observed in each rate across the nuclear power plant industry. Thus, the rates are generic. Both per hour and per demand rates are included. They may be used for screening in risk assessments or for forming distributions to be updated with plant-specific data.

Gentillon, C.D.

1991-04-01T23:59:59.000Z

391

Sprayed skin turbine component  

DOE Patents (OSTI)

Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

Allen, David B

2013-06-04T23:59:59.000Z

392

Precision Cleaning Titanium Components  

SciTech Connect

Clean bond surfaces are critical to the operation of diffusion bonded titanium engine components. These components can be contaminated with machining coolant, shop dirt, and fingerprints during normal processing and handling. These contaminants must be removed to achieve acceptable bond quality. As environmental concerns become more important in manufacturing, elimination of the use of hazardous materials is desired. For this reason, another process (not using nitric-hydrofluoric acid solution) to clean titanium parts before bonding was sought. Initial cleaning trials were conducted at Honeywell to screen potential cleaning techniques and chemistries. During the initial cleaning process screening phase, Pratt and Whitney provided Honeywell with machined 3 inch x 3 inch x 1 inch titanium test blocks. These test blocks were machined with a water-based machining coolant and exposed to a normal shop environment and handling. (Honeywell sectioned one of these blocks into smaller samples to be used for additional cleanliness verification analyses.) The sample test blocks were ultrasonically cleaned in alkaline solutions and AUGER analysis was used by Honeywell FM and T to validate their cleanliness. This information enabled selection of final cleaning techniques and solutions to be used for the bonding trials. To validate Honeywell's AUGER data and to verify the cleaning processes in actual situations, additional sample blocks were cleaned (using the chosen processes) and then bonded. The bond quality of the test blocks was analyzed according to Pratt and Whitney's requirements. The Charpy impact testing was performed according to ASTM procedure {number_sign}E-23. Bond quality was determined by examining metallographic samples of the bonded test blocks for porosity along the bondline.

Hand, T.E.; Bohnert, G.W.

2000-02-02T23:59:59.000Z

393

Oxy-nitroso shielding burst model of cold atmospheric plasma therapeutics  

Science Journals Connector (OSTI)

Abstract It is postulated that cold atmospheric plasma (CAP) can trigger a therapeutic shielding response in tissue by creating a time- and space-localized, burst-like form of oxy-nitrosative stress on near-surface exposed cells through the flux of plasma-generated reactive oxygen and nitrogen species (RONS). RONS-exposed surface layers of cells communicate to the deeper levels of tissue via a form of the ‘bystander effect,’ similar to responses to other forms of cell stress. In this proposed model of CAP therapeutics, the plasma stimulates a cellular survival mechanism through which aerobic organisms shield themselves from infection and other challenges.

David B Graves

2014-01-01T23:59:59.000Z

394

Evaluation of the effectiveness of shielding and filtering of HVDC converter stations  

SciTech Connect

The electromagnetic interference (EMI) generated by the periodic turn-on and turn-off of the valves is an important consideration in the design of HVDC converter stations. Remedial measures such as shielding the valve hall and filtering have been used in order to reduce the interference levels to acceptable values. The application of recently-developed Numerical Electromagnetic Code (NEC) to the problem of EMI from HVDC converter stations is investigated in this paper, with particular emphasis on evaluating the effectiveness of valve hall shielding and filtering.

Dallaire, R.D.; Maruvada, P.S.

1989-04-01T23:59:59.000Z

395

Graphite-ceramic rf Faraday-thermal shield and plasma limiter  

DOE Patents (OSTI)

The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.

Hwang, D.L.Q.; Hosea, J.C.

1983-05-05T23:59:59.000Z

396

Nucleonic analysis of a preliminary design for the ETF neutral-beam-injector duct shielding  

SciTech Connect

A nucleonic analysis of the Engineering Test Facility Neutral-Beam-Injector duct shielding has been made using a hybrid Monte Carlo/discrete-ordinates method. This method used Monte Carlo to determine internal and external boundary surface sources for a subsequent discrete-ordinates calculation of the neutron and gamma-ray transport through the shield. The analysis also included determination of the energy and angular distribution of neutrons and gamma rays entering the duct from the torus plasma chamber. Confidence in the hybrid method and the results obtained were provided through a comparison with three-dimensional Monte Carlo results.

Urban, W.T.; Seed, T.J.; Dudziak, D.J.

1980-01-01T23:59:59.000Z

397

Containment at the Source during Waste Volume Reduction of Large Radioactive Components Using Oxylance High-Temperature Cutting Equipment - 13595  

SciTech Connect

As a waste-volume reduction and management technique, highly contaminated Control Element Drive Mechanism (CEDM) housings were severed from the Reactor Pressure Vessel Head (RPVH) inside the San Onofre Unit 2 primary containment utilizing Oxylance high-temperature cutting equipment and techniques. Presented are relevant data concerning: - Radiological profiles of the RPVH and individual CEDMs; - Design overviews of the engineering controls and the specialized confinement housings; - Utilization of specialized shielding; - Observations of apparent metallurgical-contamination coalescence phenomena at high temperatures resulting in positive control over loose-surface contamination conditions; - General results of radiological and industrial hygiene air sampling and monitoring; - Collective dose and personnel contamination event statistics; - Lessons learned. (author)

Keeney, G. Neil [Health Physicist, HazMat CATS, LLC (United States)] [Health Physicist, HazMat CATS, LLC (United States)

2013-07-01T23:59:59.000Z

398

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of High Value Surveillance Materials Assessment of High Value Surveillance Materials Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Assessment of High Value Surveillance Materials The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely

399

DOE Drops Plan to Restart Reactor  

Science Journals Connector (OSTI)

...longer in flux. Hanford research reactor...decision to scrap the Hanford reactor, which...research. At public meetings, however...decision to scrap the Hanford reactor, which...research. At public meetings, however, FFTF...

Robert F. Service

2000-12-01T23:59:59.000Z

400

Operational Analysis of Multiregional Nuclear Reactor Kinetics  

Science Journals Connector (OSTI)

......Operational Analysis of Multiregional Nuclear Reactor Kinetics NASSAR H. S. HAIDAR...analytically for a multiregional nuclear reactor whose subregions are of arbitrary...Operational Analysis of Multiregional Nuclear Reactor Kinetics NASSAU H. S. HAIDAR......

NASSAR H. S. HAIDAR

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solvent refined coal reactor quench system  

DOE Patents (OSTI)

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

Thorogood, R.M.

1983-11-08T23:59:59.000Z

402

Phanerozoic tectonothermal history of the ArabianNubian shield in the Eastern Desert of Egypt: evidence from fission track  

E-Print Network (OSTI)

Phanerozoic tectonothermal history of the Arabian­Nubian shield in the Eastern Desert of Egypt were performed in the Eastern Desert of Egypt. The results provide insights into the processes driving reserved. Keywords: Phanerozoic; Fission track thermochronology; Palaeostress; Arabian­Nubien shield; Egypt

Fritz, Harald

403

Temperature effects on chemical reactor  

Science Journals Connector (OSTI)

In this paper we had to study some characteristics of the chemical reactors from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature it is a mathematical processing of a chemical problem that was already studied but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid?gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology especially in our century.

M. Azzouzi

2008-01-01T23:59:59.000Z

404

REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.  

SciTech Connect

The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have been systematically upgraded to a 5 Mw power facility to further enhance its experimental capability while still maintaining its safe margin as designed.

HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

2005-05-08T23:59:59.000Z

405

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network (OSTI)

metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

Olander, Donald R.

2013-01-01T23:59:59.000Z

406

Nuclear reactors in the United States  

Science Journals Connector (OSTI)

Nuclear reactors in the United States ... A chart listing the operating and planned nuclear reactors in the United States. ... Nuclear / Radiochemistry ...

Hubert N. Alyea

1956-01-01T23:59:59.000Z

407

Advanced Reactor Research and Development Funding Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE)...

408

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

409

MOOSE simulating nuclear reactor CRUD buildup  

SciTech Connect

This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

None

2014-02-06T23:59:59.000Z

410

Advanced Reactor Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Reactor Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Office of Nuclear Energy (NE) will pursue these advancements through RD&D activities at the Department of Energy (DOE) national laboratories and U.S. universities, as well as through collaboration with industry and international partners. These activities will focus on advancing scientific

411

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

pebble bed reactor,” Nuclear Engineering and Design, vol.the AVR reactor,” Nuclear Engineering and Design, vol. 121,Operating Experience,” Nuclear Engineering and Design, vol.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

412

F Reactor Inspection | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspection F Reactor Inspection Addthis Description Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor last week before...

413

REACTOR REFUELING - INTERIM DECAY STORAGE (FFTF)  

SciTech Connect

The IDS facility is located between the CLEM rails and within the FFTF containment building. It is located in a rectangular steel-lined concrete cell which lies entirely below the 550 ft floor level with the top flush with the 550 ft floor level. The BLTC rails within containment traverse the IDS cover (H-4-38001). The facility consists of a rotatable storage basket submerged in liquid sodium which is contained in a stainless steel tank. The storage positions within the basket are arranged so that it is not physically possible to achieve a critical array. The primary vessel is enclosed in a secondary guard tank of such size and arrangement that, should a leak develop in the primary tank, the sodium level would not fall below the top of the fueled section of the stored core components or test assemblies. The atmosphere outside the primary vessel, but within the concrete cell, is nitrogen which also serves as a heat transfer medium to control the cell temperature. To provide space for the storage of test assemblies such as the OTA and CLIRA, 10 storage tubes (each approximately 43-1/4 ft long) are included near the center of the basket. This arrangement requires that the center of the primary vessel be quite deep. In this region, the primary vessel extends downward to elevation 501 ft 6 inches while the guard tank reaches 500 ft 4 inches. The floor of the cell is at 499 ft a inches which is 51 ft below the operating room floor. Storage positions are provided for 112 core components in the upper section of the storage basket. These positions are arranged in four circles, all of which are concentric with the test element array and the storage basket. The primary vessel and the guard tank are shaped to provide the necessary space with a minimum of excess volume. Both these vessels have a relatively small cylindrical lower section connected to a larger upper cylinder by a conical transition. The primary vessel is supported from a top flange by a vessel support structure. The guard tank is supported by a skirt which rests on a ledge at elevation 527 ft 2 inches. The skirt is an extension of the upper cylinder of the guard tank. The storage basket is supported by a gear-driven, mechanically indexed, ball bearing that rests on the bearing support, which in turn rests on the vessel support structure. The interior of the primary vessel above the sodium level is blanketed with argon at 6 inches of water gage pressure. The vessel is designed to allow the pressure to be increased to 3 psig to assist drainage of the sodium from the vessel. The structure which supports the primary vessel also serves as the cover to the IDS cell. The support structure rests on a shelf cast into the cell wall at the 544 ft 6 inch level. In addition to supporting the primary vessel and the storage basket bearing, this structure also provides support for the top shield which is a 16 inch thick by 15 ft 10 inch diameter laminated steel assembly, which in turn supports the impact absorber neutron shield, and the BLTC tracks where they cross the IDS. Storage position access ports are provided on the centerline of the IDS facility between the BLTC rails. Basket rotation and indexing allows any storage position to be located in alignment with its proper access port. Double buffered seals are provided for the removable plugs and removable lids for all components and access ports where necessary to seal between the vessel cover gas and the FFTF containment atmosphere. Buffering gas for these seals is argon. Capability of a 10 cfm argon purge rate is provided although normal argon flow into the cover gas cavity will be less than 1 cfm. Argon cover gas exits through a vapor trap located in the southwest corner of the support structure and then to the Cell Atmosphere Processing System. Vessel overpressure protection is provided by rupture discs on the inlet and outlet argon piping. Rupture discs vent to the IDS cell. Biological shielding is provided to maintain the radiation contribution in the operating area below 0.2 mrem/h. The primary gamma shield directly above

MCFADDEN NR; OMBERG RP

1990-06-18T23:59:59.000Z

414

Physics of nuclear reactor safety  

Science Journals Connector (OSTI)

Provides a concise review of the physical aspects of safety of nuclear fission reactors. It covers the developments of roughly the last decade. The introductory chapter contains an analysis of the changes in safety philosophy that are characteristic of the last decade and that have given rise to an increased importance of physical aspects because of the emphasis on passive or natural safety. The second chapter focuses on the basics of reactor safety, identifying the main risk sources and the main principles for a safe design. The third chapter concerns a systematic treatment of the physical processes that are fundamental for the properties of fission chain reacting processes and the control of those processes. Because of the rather specialized nature of the field of reactor physics, each paragraph contains a very concise description of the theory of the phenomenon under consideration, before presenting a review of the developments. Chapter 4 contains a short review of the thermal aspects of reactor safety, restricted to those aspects that are characteristic of the nuclear reactor field, because thermal hydraulics of fission reactors is not principally different from that of other physical systems. In chapter 5 the consequences of the physics treated in the preceding chapters for the dynamics and safety of actual reactors are reviewed. The systematics of the treatment is mainly based on a division of reactors into three categories according to the type of coolant, which to a large extent determines the safety properties of the reactors. The last chapter contains a physical analysis of the Chernobyl accident that occurred in 1986. The reason for an attempt to give a review of this accident, as complete as possible within the space limits set by the editors, is twofold: the Chernobyl accident is the most severe accident in history and physical properties of the reactor played a decisive role, thereby serving as an illustration of the material of the preceding chapters.

H van Dam

1992-01-01T23:59:59.000Z

415

Aerosol Resuspension Model for MELCOR for Fusion and Very High Temperature Reactor Applications  

SciTech Connect

Dust is generated in fusion reactors from plasma erosion of plasma facing components within the reactor’s vacuum vessel (VV) during reactor operation. This dust collects in cooler regions on interior surfaces of the VV. Because this dust can be radioactive, toxic, and/or chemically reactive, it poses a safety concern, especially if mobilized by the process of resuspension during an accident and then transported as an aerosol though out the reactor confinement building, and possibly released to the environment. A computer code used at the Idaho National Laboratory (INL) to model aerosol transport for safety consequence analysis is the MELCOR code. A primary reason for selecting MELCOR for this application is its aerosol transport capabilities. The INL Fusion Safety Program (FSP) organization has made fusion specific modifications to MELCOR. Recent modifications include the implementation of aerosol resuspension models in MELCOR 1.8.5 for Fusion. This paper presents the resuspension models adopted and the initial benchmarking of these models.

B.J. Merrill

2011-01-01T23:59:59.000Z

416

High flux isotope reactor. Quarterly report, January-March 1982  

SciTech Connect

Routine reactor operation with four end-of-cycle shutdowns and one scheduled shutdown for training purposes resulted in an on-stream time of 92.1% for the quarter. The outer control plates were changed. The control plate track guide bearings, the control plate extension tubes, and the shock absorbers were replaced and a semiannual core component inspection was made. Cracks were discovered in the outermost ring of the beryllium reflector.

Corbett, B.L.; Poteet, K.H.

1982-06-01T23:59:59.000Z

417

GCRA review and appraisal of HTGR reactor-core-design program. [HTGR-SC, -R, -NHSDR  

SciTech Connect

The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation.

Not Available

1980-09-01T23:59:59.000Z

418

13 - Generation IV reactor designs, operation and fuel cycle  

Science Journals Connector (OSTI)

Abstract: This chapter looks at Generation IV nuclear reactors, such as the very high-temperature reactor (VHTR), the supercritical water reactor (SCWR), the molten salt reactor (MSR), the sodium-cooled fast reactor (SFR), the lead-cooled fast reactor (LFR) and the gas-cooled fast reactor (GFR). Reactor designs and fuel cycles are also described.

N. Cerullo; G. Lomonaco

2012-01-01T23:59:59.000Z

419

Experimental Test of Self-Shielding in VUV Photodissociation of CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Test of Self-Shielding in VUV Photodissociation of CO Print Experimental Test of Self-Shielding in VUV Photodissociation of CO Print One way to test models of the solar system's formation is to compare the isotopic abundances of the elements found in its constituent bodies. A case in point is oxygen with three stable isotopes dominated by oxygen-16, with minute fractions of oxygen-17 and oxygen-18. Primitive objects whose formation predates the Earth's, such as the calcium-aluminum-rich inclusions in the Allende meteorite, have relatively lower fractions of the two heavier isotopes than does the Earth's crust. Among the numerous explanations that have been proposed is the notion that chemical processes within the early solar nebula gave rise to the oxygen ratios, a leading candidate being a process called isotope self-shielding. But researchers at the University of California, San Diego, and Berkeley Lab have now shown that photodissociation of carbon monoxide (CO) caused by vacuum-ultraviolet (VUV) light from the early sun could generate reservoirs of the heavier isotopes in the solar nebula without the help of self-shielding.

420

Experimental Test of Self-Shielding in VUV Photodissociation of CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Test of Self-Shielding in VUV Photodissociation of CO Print Experimental Test of Self-Shielding in VUV Photodissociation of CO Print One way to test models of the solar system's formation is to compare the isotopic abundances of the elements found in its constituent bodies. A case in point is oxygen with three stable isotopes dominated by oxygen-16, with minute fractions of oxygen-17 and oxygen-18. Primitive objects whose formation predates the Earth's, such as the calcium-aluminum-rich inclusions in the Allende meteorite, have relatively lower fractions of the two heavier isotopes than does the Earth's crust. Among the numerous explanations that have been proposed is the notion that chemical processes within the early solar nebula gave rise to the oxygen ratios, a leading candidate being a process called isotope self-shielding. But researchers at the University of California, San Diego, and Berkeley Lab have now shown that photodissociation of carbon monoxide (CO) caused by vacuum-ultraviolet (VUV) light from the early sun could generate reservoirs of the heavier isotopes in the solar nebula without the help of self-shielding.

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Experimental Test of Self-Shielding in VUV Photodissociation of CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Test of Experimental Test of Self-Shielding in VUV Photodissociation of CO Experimental Test of Self-Shielding in VUV Photodissociation of CO Print Wednesday, 25 March 2009 00:00 One way to test models of the solar system's formation is to compare the isotopic abundances of the elements found in its constituent bodies. A case in point is oxygen with three stable isotopes dominated by oxygen-16, with minute fractions of oxygen-17 and oxygen-18. Primitive objects whose formation predates the Earth's, such as the calcium-aluminum-rich inclusions in the Allende meteorite, have relatively lower fractions of the two heavier isotopes than does the Earth's crust. Among the numerous explanations that have been proposed is the notion that chemical processes within the early solar nebula gave rise to the oxygen ratios, a leading candidate being a process called isotope self-shielding. But researchers at the University of California, San Diego, and Berkeley Lab have now shown that photodissociation of carbon monoxide (CO) caused by vacuum-ultraviolet (VUV) light from the early sun could generate reservoirs of the heavier isotopes in the solar nebula without the help of self-shielding.

422

Experimental Test of Self-Shielding in VUV Photodissociation of CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Test of Self-Shielding in VUV Photodissociation of CO Print Experimental Test of Self-Shielding in VUV Photodissociation of CO Print One way to test models of the solar system's formation is to compare the isotopic abundances of the elements found in its constituent bodies. A case in point is oxygen with three stable isotopes dominated by oxygen-16, with minute fractions of oxygen-17 and oxygen-18. Primitive objects whose formation predates the Earth's, such as the calcium-aluminum-rich inclusions in the Allende meteorite, have relatively lower fractions of the two heavier isotopes than does the Earth's crust. Among the numerous explanations that have been proposed is the notion that chemical processes within the early solar nebula gave rise to the oxygen ratios, a leading candidate being a process called isotope self-shielding. But researchers at the University of California, San Diego, and Berkeley Lab have now shown that photodissociation of carbon monoxide (CO) caused by vacuum-ultraviolet (VUV) light from the early sun could generate reservoirs of the heavier isotopes in the solar nebula without the help of self-shielding.

423

Experimental Test of Self-Shielding in VUV Photodissociation of CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Test of Self-Shielding in VUV Photodissociation of CO Print Experimental Test of Self-Shielding in VUV Photodissociation of CO Print One way to test models of the solar system's formation is to compare the isotopic abundances of the elements found in its constituent bodies. A case in point is oxygen with three stable isotopes dominated by oxygen-16, with minute fractions of oxygen-17 and oxygen-18. Primitive objects whose formation predates the Earth's, such as the calcium-aluminum-rich inclusions in the Allende meteorite, have relatively lower fractions of the two heavier isotopes than does the Earth's crust. Among the numerous explanations that have been proposed is the notion that chemical processes within the early solar nebula gave rise to the oxygen ratios, a leading candidate being a process called isotope self-shielding. But researchers at the University of California, San Diego, and Berkeley Lab have now shown that photodissociation of carbon monoxide (CO) caused by vacuum-ultraviolet (VUV) light from the early sun could generate reservoirs of the heavier isotopes in the solar nebula without the help of self-shielding.

424

SPACE WEATHER, VOL. ???, XXXX, DOI:10.1029/, Stormer Theory Applied to Magnetic Spacecraft Shielding  

E-Print Network (OSTI)

Shielding S. G. Shepherd1 and B. T. Kress2 Abstract. The existence of a toroidal region from which charged of a deployed su- perconducting coil is in error [c.f., Shepherd and Kress, 2007]. The authors of these studies

Shepherd, Simon

425

Progress In Electromagnetics Research B, Vol. 15, 197215, 2009 MODELING OF SHIELDING COMPOSITE MATERIALS  

E-Print Network (OSTI)

Progress In Electromagnetics Research B, Vol. 15, 197­215, 2009 MODELING OF SHIELDING COMPOSITE B. Archambeault IBM Co. Research Triangle Park, NC, USA Abstract--Composites containing conducting structures are studied, with both absorbing and reflecting composite layers. In this paper, fiber

Koledintseva, Marina Y.

426

Nicole Hudson Sillerman Center Summer Internship at the Blue Cross Blue Shield of Massachusetts Foundation  

E-Print Network (OSTI)

Foundation Reflection Paper As a result of the generosity of the Sillerman Center for the Advancement of Philanthropy, I had the privilege of interning at The Blue Cross Blue Shield of Massachusetts Foundation (the Foundation) during the summer of 2011. The Foundation was founded in 2001 with an endowment from Blue Cross

Snider, Barry B.

427

Stratigraphy of small shield volcanoes on Venus: Criteria for determining stratigraphic relationships and assessment of relative  

E-Print Network (OSTI)

than about 20 km, are common and sometimes very abundant features on the plains of Venus. Typically plains of Venus. Did the eruption style of small shields occur repeatedly throughout the visible part plains with wrinkle ridges. Fifteen fields ($11%) appear to be synchronous with regional plains

Head III, James William

428

The City of Vancouver's Approach to Electric Vehicles: Malcolm Shield, Climate Policy Manager  

E-Print Network (OSTI)

' Drives, Community Events, EV Ambassadors #12;Thank-you! 10 10 Questions? #12;Electric Vehicles: Timeline1 The City of Vancouver's Approach to Electric Vehicles: 7 Pillars Malcolm Shield, Climate Policy. Integrated EV Charging and Cellular Infrastructure Trial 6 #12;5. CoV Fleet EVs 7 · First Mitsubishi Electric

California at Davis, University of

429

Shielding Evaluation of Plutonium and Uranium Contents in 9975 Shipping Containers  

SciTech Connect

Shielding evaluations were performed in support of developing the Safety Analysis Report for Packagings (SARP) for the 9975 Shipping container. The objective of these evaluations was to demonstrate compliance with the performance requirements specified in federal regulations for each content envelope.

Vincent, A.

2003-01-27T23:59:59.000Z

430

Summary of Surface Swipe Sampling for Beryllium on Lead Bricks and Shielding  

SciTech Connect

Approximately 25,000 lbs of lead bricks at Site 300 were assessed by the Site 300 Industrial Hygienis tand Health Physicist for potential contamination of beryllium and radiation for reuse. These lead bricks and shielding had been used as shielding material during explosives tests that included beryllium and depleted uranium. Based on surface swipe sampling that was performed between July 26 and October 11, 2010, specifically for beryllium, the use of a spray encapsulant was found to be an effective means to limit removable surface contamination to levels below the DOE release limit for beryllium, which is 0.2 mcg/100 cm{sup 2}. All the surface swipe sampling data for beryllium and a timeline of when the samples were collected (and a brief description) are presented in this report. On December 15, 2010, the lead bricks and shielding were surveyed with an ion chamber and indicated dose rates less than 0.05 mrem per hour on contact. This represents a dose rate consistent with natural background. An additional suevey was performed on February 8, 2011, using a GM survey instrument to estimate total activity on the lead bricks and shielding, confirming safe levels of radioactivity. The vendor is licensed to possess and work with radioactive material.

Paik, S Y; Barron, D A

2011-08-03T23:59:59.000Z

431

Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams  

E-Print Network (OSTI)

Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams (Received 24 March 2010; published 14 October 2010) We investigate the use of energetic electron beams beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through

Umstadter, Donald

432

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing  

E-Print Network (OSTI)

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing generating a data patch or a vulnerability signature for an unknown vulnerability, given a zero-day attack. In this paper, we aim to automate this process and enable fast, patch-level pro- tection generation

Locasto, Michael E.

433

Numerical techniques for coupled neutronic/thermal-hydraulic reactor calculations  

SciTech Connect

The solution of coupled neutronic/thermal-hydraulic nuclear reactor calculations is achieved through an iterative procedure that treats the components of the calculations in a relatively decoupled fashion. This entails an alternation between the neutronic and thermal-hydraulic components of the calculation while using the most recent estimates of the neutron cross sections, as determined by the thermal-hydraulic feedback relationships. Although this decoupled approach is typically convergent, it has been demonstrated that the rate of convergence is quite inconsistent. As a result of these limitations, an effort has been directed toward the development of numerical techniques that more closely approximate a truly coupled solution.

Betts, C.M.; Kulas, M.M.; Klein, A.C. [Oregon State Univ., Corvallis, OR (United States)] [and others

1995-12-31T23:59:59.000Z

434

Characterization of decommissioned reactor internals: Direct-assay method assessment  

SciTech Connect

This study describes the direct-assay technique for measuring activation levels of irradiated reactor component hardware. It also compares the direct-assay technique with calculational analysis methods that predict activation levels. Direct assay is performed in four steps: (a) planning and component selection, (b) onsite measurements, (c) radiochemical analysis, and (d) data analysis and classification. Uncertainties are estimated for each step of this process, and an overall uncertainty in the classification accuracy is calculated as about {plus_minus}35%. Numerous research ideas are identified to help reduce the uncertainty level; many of these ideas would improve activation determinations performed by either direct assay or by calculational analysis methods.

Cline, J.E.

1993-03-01T23:59:59.000Z

435

University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor  

SciTech Connect

The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

Eric C. Woolstenhulme; Dana M. Hewit

2008-09-01T23:59:59.000Z

436

Optimized optomechanical crystal cavity with acoustic radiation shield Jasper Chan, Amir H. Safavi-Naeini, Jeff T. Hill, Sen Meenehan, and Oskar Painter  

E-Print Network (OSTI)

Optimized optomechanical crystal cavity with acoustic radiation shield Jasper Chan, Amir H. Safavi://apl.aip.org/about/rights_and_permissions #12;Optimized optomechanical crystal cavity with acoustic radiation shield Jasper Chan, Amir H. Safavi

Painter, Oskar

437

Radiation attenuation by lead and nonlead materials used in radiation shielding garments  

SciTech Connect

The attenuating properties of several types of lead (Pb)-based and non-Pb radiation shielding materials were studied and a correlation was made of radiation attenuation, materials properties, calculated spectra and ambient dose equivalent. Utilizing the well-characterized x-ray and gamma ray beams at the National Research Council of Canada, air kerma measurements were used to compare a variety of commercial and pre-commercial radiation shielding materials over mean energy ranges from 39 to 205 keV. The EGSnrc Monte Carlo user code cavity.cpp was extended to provide computed spectra for a variety of elements that have been used as a replacement for Pb in radiation shielding garments. Computed air kerma values were compared with experimental values and with the SRS-30 catalogue of diagnostic spectra available through the Institute of Physics and Engineering in Medicine Report 78. In addition to garment materials, measurements also included pure Pb sheets, allowing direct comparisons to the common industry standards of 0.25 and 0.5 mm 'lead equivalent'. The parameter 'lead equivalent' is misleading, since photon attenuation properties for all materials (including Pb) vary significantly over the energy spectrum, with the largest variations occurring in the diagnostic imaging range. Furthermore, air kerma measurements are typically made to determine attenuation properties without reference to the measures of biological damage such as ambient dose equivalent, which also vary significantly with air kerma over the diagnostic imaging energy range. A single material or combination cannot provide optimum shielding for all energy ranges. However, appropriate choice of materials for a particular energy range can offer significantly improved shielding per unit mass over traditional Pb-based materials.

McCaffrey, J. P.; Shen, H.; Downton, B.; Mainegra-Hing, E. [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

2007-02-15T23:59:59.000Z

438

Enabling Technologies for Ceramic Hot Section Components  

SciTech Connect

Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

Venkat Vedula; Tania Bhatia

2009-04-30T23:59:59.000Z

439

Nuclear reactor downcomer flow deflector  

DOE Patents (OSTI)

A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

2011-02-15T23:59:59.000Z

440

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics-Based Stress Corrosion Cracking Component Reliability Model Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Physics-Based Stress Corrosion Cracking Component Reliability Model cast in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics-Based Stress Corrosion Cracking Component Reliability Model Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). The methodology emerging from the RISMC pathway is not a conventional probabilistic risk assessment (PRA)-based one; rather, it relies on a reactor systems simulation framework in which

442

Neutron scattering instrumentation at reactor based installations  

Science Journals Connector (OSTI)

During the past decade neutron scattering techniques have been applied to an increasingly wide range of scientific problems. Concurrently a number of substantial improvements of neutron scattering instrumentation have occurred to stimulate this trend. In this article several such developments which have occurred at reactor?based installations are described. Individual spectrometer components which are discussed in some detail include: neutron?optical devices such as guide tubes supermirrors and multilayer systems; neutronmonochromators with optimum reflectivity mosaic and focusing characteristics; position?sensitive detectors of several types; and equipment required for neutronpolarizationanalysis. Several novel spectrometers which have enhanced the role of neutron scattering during the past ten years are also described. These include spectrometers for small?angle scattering backscattering and neutron spin echo. An extensive bibliography is included which covers both early and more recent developments.

Roger Pynn

1984-01-01T23:59:59.000Z

443

Reactor vessel annealing system  

DOE Patents (OSTI)

A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

Miller, Phillip E. (Greensburg, PA); Katz, Leonoard R. (Pittsburgh, PA); Nath, Raymond J. (Murrysville, PA); Blaushild, Ronald M. (Export, PA); Tatch, Michael D. (Randolph, NJ); Kordalski, Frank J. (White Oak, PA); Wykstra, Donald T. (Pittsburgh, PA); Kavalkovich, William M. (Monroeville, PA)

1991-01-01T23:59:59.000Z

444

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

445

Tritium diagnostics in a fusion reactor  

Science Journals Connector (OSTI)

Methods for controlling tritium in a fusion reactor are reviewed. The characteristic features of the...

A. I. Markin; N. I. Syromyatnikov; A. M. Belov

2010-05-01T23:59:59.000Z

446

Combustion synthesis continuous flow reactor  

DOE Patents (OSTI)

The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

1998-01-01T23:59:59.000Z

447

Interfacial effects in fast reactors  

E-Print Network (OSTI)

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01T23:59:59.000Z

448

Unique features of space reactors  

SciTech Connect

Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K. 8 refs., 3 figs., 1 tab.

Buden, D.

1990-01-01T23:59:59.000Z

449

Reactor physics project final report  

E-Print Network (OSTI)

This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, ...

Driscoll, Michael J.

1970-01-01T23:59:59.000Z

450

Alternate-fuel reactor studies  

SciTech Connect

A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

1983-02-01T23:59:59.000Z

451

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

452

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

453

Novel Catalytic Membrane Reactors  

SciTech Connect

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

454

Durability of ACERT Engine Components  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

strength data from with FE model "load factors" and stress field to estimate fast fracture strength and fatigue resistance of design component Determination of FE model "load...

455

When Do Commercial Reactors Permanently Shut Down?  

Reports and Publications (EIA)

For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

2011-01-01T23:59:59.000Z

456

Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m  

Science Journals Connector (OSTI)

Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, a lower density limit margin reduces the external heating power and over 300?s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils.

O. Mitarai; A. Sagara; H. Chikaraishi; S. Imagawa; K. Watanabe; A.A. Shishkin; O. Motojima

2007-01-01T23:59:59.000Z

457

Physics-Based Stress Corrosion Cracking Component Reliability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Physics-Based Stress Corrosion Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework Draft Report Supporting Technology Inputs to the Risk- Informed Safety Margin Characterization Pathway of the DOE Light Water Reactor Sustainability Program Stephen D. Unwin Kenneth I. Johnson Robert F. Layton Peter P. Lowry Scott E. Sanborn Mychailo B. Toloczko PNNL-20596 July 2011 Physics-Based SCC Reliability Model in a Cumulative Damage Framework 2 Physics-Based SCC Reliability Model in a Cumulative Damage Framework 3 Table of Contents Executive Summary............................................................................... 4 1. Introduction .......................................................................... 5

458

Space radiation shielding analysis and dosimetry for the space shuttle program  

Science Journals Connector (OSTI)

Active and passive radiation dosimeters have been flown on every Space Shuttle mission to measure the naturally?occurring background Van Allen and galactic cosmic radiation doses that astronauts and radiation?sensitive experiments and payloads receive. A review of the various models utilized at the NASA/Johnson Space Center Radiation Analysis and Dosimetry is presented. An analytical shielding model of the Shuttle was developed as an engineering tool to aid in making premission radiation dose calculations and is discussed in detail. The anatomical man models are also discussed. A comparison between the onboard dosimeter measurements for the 24 Shuttle missions to date and the dose calculations using the radiation environment and shielding models is presented.

William Atwell; E. R. Beever; A. C. Hardy; R. G. Richmond; B. L. Cash

1989-01-01T23:59:59.000Z

459

On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas  

SciTech Connect

The shielding effects of ablation cloud around a small dust grain composed of iron, molybdenum, or tungsten in fusion plasmas are considered. These include collisional dissipation of momentum flux of impinging plasma ions, heat transfer by secondary plasma created due to electron impact ionization of the ablated atoms, and radiative plasma power losses in the ablation cloud. The maximum radius, which limits applicability of existing dust-plasma interaction models neglecting the cloud shielding effects, for dust grains of the considered high-Z metals is calculated as function of plasma parameters. The thermal bifurcation triggered by thermionic electron emission from dust grains, observed for some of the considered materials, is analyzed. The results are compared with previous calculations for dust composed of low-Z fusion related materials, i.e., lithium, beryllium, and carbon.

Brown, B. T.; Smirnov, R. D., E-mail: rsmirnov@ucsd.edu; Krasheninnikov, S. I. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0411 (United States)] [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0411 (United States)

2014-02-15T23:59:59.000Z

460

Process for producing an aggregate suitable for inclusion into a radiation shielding product  

SciTech Connect

The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

Lessing, Paul A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor components shield" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Active Interrogation Observables for Enrichment Determination of DU Shielded HEU Metal Assemblies with Limited Geometrical Information  

SciTech Connect

Determining the enrichment of highly enriched uranium (HEU) metal assemblies shielded by depleted uranium (DU) proves a unique challenge to currently employed measurement techniques. Efforts to match time-correlated neutron distributions obtained through active interrogation to Monte Carlo simulations of the assemblies have shown promising results, given that the exact geometries of both the HEU metal assemblies and DU shields are known from imaging and fission site mapping. In certain situations, however, it is desirable to obtain enrichment with limited or no geometrical information of the assemblies being measured. This paper explores the possibility that the utilization of observables in the interrogation of assemblies by time-tagged D-T neutrons, including time-correlated distribution of neutrons and gammas using liquid scintillators operating on the fission chain time scale, can lead to enrichment determination without a complete set of geometrical information.

Pena, Kirsten E [ORNL] [ORNL; McConchie, Seth M [ORNL] [ORNL; Crye, Jason Michael [ORNL] [ORNL; Mihalczo, John T [ORNL] [ORNL

2011-01-01T23:59:59.000Z

462

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

463

Semi-flexible gas-insulated transmission line using electric field stress shields  

DOE Patents (OSTI)

A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

Cookson, Alan H. (Churchill Borough, PA); Dale, Steinar J. (Monroeville, PA); Bolin, Philip C. (Wilkins Township, Allegheny County, PA)

1982-12-28T23:59:59.000Z

464

(Liquid metal reactor/fast breeder reactor research and development)  

SciTech Connect

The second meeting of the UJCC was held in Japan on June 6--8, 1990. The first day was devoted to presentations of the status of the US and Japanese Fast Breeder Reactor (FBR) programs and the status of specific areas of cooperative work. Briefly, the Japanese are following the FBR development program which has been in place since the 1970s. This program includes an FBR test reactor (JOYO), a pilot-scale reactor (MONJU), a demonstration-scale plant, and commercial-scale plants by about 2020. The US program has been redirected toward an actinide recycle mission using metal fuel and pyroprocessing of spent fuel to recovery both Pu and the higher actinides for return to the Liquid Metal Reactor (LMR). The second day was spent traveling from Tokyo to Tsuruga for a tour of the MONJU reactor. The tour was especially interesting. The third day was spent writing the minutes of the meeting and the return trip to Tokyo.

Homan, F.J.

1990-06-20T23:59:59.000Z

465

Shielded coherent synchrotron radiation and its possible effect in the next linear collider  

SciTech Connect

Shielded coherent synchrotron radiation is discussed in two cases: (1) a beam following a curved path in a plane midway between two parallel, perfectly conducting plates, and (2) a beam circulating in a toroidal chamber with resistive walls. Wake fields and the radiated energy are computed with parameters for the high-energy bunch compressor of the Next Linear Collider. 5 refs., 4 figs., 1 tab.

Warnock, R.L.

1991-05-01T23:59:59.000Z

466

IDS120h GEOMETRY WITH SHIELDING VESSELS ENERGY FLOW ANALYSIS CONTINUED  

E-Print Network (OSTI)

AREAS Np = 100,000 AND 500,000 EVENTS Np = 100,000 (1) Np = 500,000 (2) (1) SH#1-4: 1684.27 kW --> 1603/g PEAK VALUE FOR 8-10 cm LENGTH JUST AFTER BP1 SECTION, BUT IT IS ISOLATED ONLY ALONG -x AXIS REGION BEADS/He SHIELDING. 9 BP1 (~50 cm), BP2 (~10 cm) Be SECTIONS WORK STILL IN PROGRESS. #12;

McDonald, Kirk

467

EMI shield enhancement through the addition of copper coated glass fibers  

E-Print Network (OSTI)

E. , University of Wisconsin-Madison Chair of Committee: Dr. G. W. Halldin This research investigated the feasibility of using copper coated glass fibers to increase the EMI shielding characteristics of vinyl ester thermosetting resin. The