Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS  

SciTech Connect (OSTI)

Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

Ibrahim, Essam A

2013-01-09T23:59:59.000Z

2

Performance of Liquid Metals in Natural Circulation Cooled Nuclear Reactors  

SciTech Connect (OSTI)

The inherent safety capability of natural circulation makes reactor design more reliable. Additionally, the construction and operation of a nuclear power plant with natural circulation in the primary cooling circuit is an interesting alternative for nuclear plant designers, due to their lower operational and investment costs obtained by simplifying systems and controls. This paper deals with the feasibility of application of natural circulation in the primary cooling circuit of a liquid metal fast reactor. The methodology employed is a non-dimensional analysis, which describes the relationship between the physical properties and system variables. The performance criterion is bounded by a safety argument, referring to the maximum cladding temperature allowed during operation. The study considers several coolants, which can play a part in reactor cooling systems, such as lead, lead-bismuth and sodium. Bismuth and gallium are included in this analysis, in order to extend the range of properties for reference purposes. The results present a characterization of natural circulation flow in a reactor and compare the cooling capabilities from different liquid metals coolants. (authors)

Ceballos, Carlos; Lathouwers, Danny; Verkooijen, Adrian [Interfacultair Reactor Instituut, Technische Universiteit Delft, Mekelweg 15, Delft (Netherlands)

2004-07-01T23:59:59.000Z

3

A review of existing gas-cooled reactor circulators with application of the lessons learned to the new production reactor circulators  

SciTech Connect (OSTI)

This report presents the results of a study of the lessons learned during the design, testing, and operation of gas-cooled reactor coolant circulators. The intent of this study is to identify failure modes and problem areas of the existing circulators so this information can be incorporated into the design of the circulators for the New Production Reactor (NPR)-Modular High-Temperature Gas Cooled Reactor (MHTGR). The information for this study was obtained primarily from open literature and includes data on high-pressure, high-temperature helium test loop circulators as well as the existing gas cooled reactors worldwide. This investigation indicates that trouble free circulator performance can only be expected when the design program includes a comprehensive prototypical test program, with the results of this test program factored into the final circulator design. 43 refs., 7 tabs.

White, L.S.

1990-07-01T23:59:59.000Z

4

Fundamental demonstration of natural circulation feasibility for an HLMC reactor  

SciTech Connect (OSTI)

Concepts are being developed and evaluated at Argonne National Laboratory for a smaller nuclear steam supply system with proliferation-resistant features targeted for export to developing countries. Specific features of interest here include low reactor power [300 MW(thermal)]; utilization of inert heavy-liquid-metal coolant (HLMC), namely, lead-bismuth eutectic (T{sub mp} = 125 C), eliminating concerns over metal-water reactions; 15-yr core lifetime, enabling access to fissile materials to be restricted by design; and reliance on purely natural-circulation coolant heat transport, eliminating primary system coolant pumps. Evaluation of this concept is being carried out in stages. The stage 1 investigations to which the results presented in this paper belong are directed at establishing the basic feasibility of the concept through the application of first-principles analyses. This approach is warranted while detailed aspects of the core design are yet to be determined. The objective of the present work is to demonstrate at a fundamental level the feasibility of utilizing natural-circulation coolant heat transport with the HLMC.

Sienicki, J.J.; Spencer, B.W.; Farmer, M.T.

1999-07-01T23:59:59.000Z

5

Natural circulating passive cooling system for nuclear reactor containment structure  

DOE Patents [OSTI]

A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

6

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

7

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

8

COBRA-WC model and predictions for a fast-reactor natural-circulation transient. [LMFBR  

SciTech Connect (OSTI)

The COBRA-WC (Whole Core) code has been used to predict the core-wide coolant and rod temperature distribution in a liquid metal fast reactor during the early part (first 220 seconds) of a natural circulation transient. Approximately one-sixth of the core was modeled including bypass flows and the pressure losses above and below the core region. Detailed temperature and flow distributions were obtained for the two test fuel assemblies. The COBRA-WC model, the approach, and predictions of core-wide transient coolant and rod temperatures during a natural circulation transient are presented in this paper.

George, T.L.; Basehore, K.L.; Prather, W.A.

1980-01-01T23:59:59.000Z

9

Circulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibrary Services » Circulation

10

Natural Circulation and Linear Stability Analysis for Liquid-Metal Reactors with the Effect of Fluid Axial Conduction  

SciTech Connect (OSTI)

The effect of fluid axial thermal conduction on one-dimensional liquid metal natural circulation and its linear stability was performed through nondimensional analysis, steady-state assessment, and linear perturbation evaluation. The Nyquist criterion and a root-search method were employed to find the linear stability boundary of both forward and backward circulations. The study provided a relatively complete analysis method for one-dimensional natural circulation problems with the consideration of fluid axial heat conduction. The results suggest that fluid axial heat conduction in a natural circulation loop should be considered only when the modified Peclet number is {approx}1 or less, which is significantly smaller than the practical value of a lead liquid metal-cooled reactor.

Piyush Sabharwall; Qiao Wu; James J. Sienicki

2012-06-01T23:59:59.000Z

11

Continuous production of tritium in an isotope-production reactor with a separate circulation system  

DOE Patents [OSTI]

A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

12

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

a tool for reactor design optimization, and for design ofdesign tool for reactor design optimization, and for designdesign tool for reactor design optimization, and for design

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

13

CD  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesm 3 (D CD ^ Q) r* o' 3 a 3 5"

14

Chimney for enhancing flow of coolant water in natural circulation boiling water reactor  

DOE Patents [OSTI]

A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies is disclosed. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereas access to the fuel assemblies is not obstructed. 11 figs.

Oosterkamp, W.J.; Marquino, W.

1999-01-05T23:59:59.000Z

15

Chimney for enhancing flow of coolant water in natural circulation boiling water reactor  

DOE Patents [OSTI]

A chimney which can be reconfigured or removed during refueling to allow vertical removal of the fuel assemblies. The chimney is designed to be collapsed or dismantled. Collapse or dismantlement of the chimney reduces the volume required for chimney storage during the refueling operation. Alternatively, the chimney has movable parts which allow reconfiguration of its structure. In a first configuration suitable for normal reactor operation, the chimney is radially constricted such that the chimney obstructs vertical removal of the fuel assemblies. In a second configuration suitable for refueling or maintenance of the fuel core, the parts of the chimney which obstruct access to the fuel assemblies are moved radially outward to positions whereat access to the fuel assemblies is not obstructed.

Oosterkamp, Willem Jan (Oosterbeek, NL); Marquino, Wayne (San Jose, CA)

1999-01-05T23:59:59.000Z

16

Analysis of a natural circulation cooldown transients in a Westinghouse Pressurized Water Reactor using TRAC-PF1/MOD1 and TRAC-PF1/MOD2  

E-Print Network [OSTI]

Circulation Cooldown Transient in a Westinghouse Pressurized Water Reactor Using TRAC-PF1/MOD1 and TRAC-PF1/MOD2. (December 1988) Evelyn Marie Breiner, B. S. , Texas AgtM University Chair of Advisory Committee; Dr. B. Nassersharif To perform transient.... 22). The four-loop model differs from the two-loop 35 TABLE 5 Component Actuation Timing Component Action Transient Time (s) 4-Loo Mod 1 Transient Time (s) 2-Loo M 1 4" break occurs CVCS initiation Low pressurizer pressure trip Reactor trip...

Breiner, Evelyn Marie

1988-01-01T23:59:59.000Z

17

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

geothermal reservoir. Greif provides a review of the use of applications of natural circulation to the cooling

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

18

Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.  

SciTech Connect (OSTI)

STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal resistance of a gas-filled gap.

Moisseytsev, A.; Sienicki, J. J.

2007-03-08T23:59:59.000Z

19

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Helium Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect helium power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

20

Plant Design and Cost Estimation of a Natural Circulation Lead-Bismuth Reactor with Steam Power Conversion Cycle  

E-Print Network [OSTI]

The analysis of an indirect steam power conversion system with lead-bismuth natural circulation primary system has been performed. The work of this report is focused on 1) identifying the allowable design region for the ...

Kim, D.

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

Safety. The Accident at TEPCO’s Fukushima Nuclear Power2: Accident and Thermal Fluids Analysis PIRTs. (Nuclearmolten nuclear reactor core debris following accidents such

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

22

Importance of Delayed Neutrons on the Coupled Neutronic-Thermohydraulic Stability of a Natural Circulation Heavy Water-Moderated Boiling Light Water-Cooled Reactor  

SciTech Connect (OSTI)

The coupled neutronic-thermohydraulic stability characteristics of a natural circulation heavy water-moderated boiling light water-cooled reactor was investigated analytically considering the effects of prompt and delayed neutrons. For this purpose, the reactor considered is the Indian Advanced Heavy Water Reactor. The analytical model considers a point kinetics model for the neutron dynamics, a homogeneous two-phase flow model for the coolant thermal hydraulics, and a lumped heat transfer model for the fuel thermal dynamics. A higher mode of oscillation having a frequency much greater than the density-wave oscillation frequency was observed if prompt neutrons alone were considered. The occurrence of a higher mode of oscillation was found to be dependent on the concentration of delayed neutrons, the void reactivity coefficient, and the fuel time constant. The core inlet subcooling is found to have different effects on the decay ratio of the fundamental and higher modes of oscillations. The influences of void reactivity coefficient and fuel time constant on the fundamental and higher modes of oscillations were also found to be opposite in nature.

Nayak, A.K. [Bhaha Atomic Research Centre (India); Aritomi, M. [Tokyo Institute of Technology (Japan); Raj, V. Venkat [Bhaha Atomic Research Centre (India)

2001-07-15T23:59:59.000Z

23

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network [OSTI]

gas reactors with the effective heat transfer of a molten salt coolant and the passive natural circulation safety systems of sodium fast reactors.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

24

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network [OSTI]

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009 and Nuclear Engineering Troy, New York, 12180 D.P. Barry, G. Leinweber, N.J. Drindak (ret.), J.G. Hoole Knolls

Danon, Yaron

25

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network [OSTI]

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009.P. Barry Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute 110 8

Danon, Yaron

26

Natural circulation in simulated LMFBR fuel assemblies  

SciTech Connect (OSTI)

Natural circulation experiments have been performed using simulated liquid metal fast breeder reactor fuel assemblies in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale sodium loop. Objective of these tests has been to provide experimental data under conditions that might be encountered during a partial or total loss of the shutdown heat removal system (SHRS) in a reactor. The experiments have included single- and two-phase tests under quasi-steady and transient conditions, at both nominal and non-nominal system conditions. Results from these test indicate that the potential for reactor damage during degraded SHRS operation is extremely slight, and that natural circulation can be a major contributor to safe operation of the system in both single- and two-phase flow during such operation.

Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

1985-01-01T23:59:59.000Z

27

FLUID FLOW CHARACTERISTICS OF A HEADER FOR A SINGLE-PASS, CIRCULATING...  

Office of Scientific and Technical Information (OSTI)

of a header for a circulating fuel reactor are presented. Description of test equipment and graphical and tabular representation of results are included. (auth) ...

28

FLUID FLOW CHARACTERISTICS OF A HEADER FOR A SINGLE-PASS, CIRCULATING...  

Office of Scientific and Technical Information (OSTI)

of a header for a circulating fuel reactor are presented. Description of test equipment and graphical and tabular representation of results are included. (auth)...

29

Stability analysis of natural circulation in BWRs at high pressure conditions  

E-Print Network [OSTI]

At rated conditions, a natural circulation boiling water reactor (NCBWR) depends completely on buoyancy to remove heat from the reactor core. This raises the issue of potential unstable flow. oscillations. The objective ...

Hu, Rui, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

30

NETL - Chemical Looping Reactor  

ScienceCinema (OSTI)

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2014-06-26T23:59:59.000Z

31

Cryogenic hydrogen circulation system of neutron source  

SciTech Connect (OSTI)

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

2014-01-29T23:59:59.000Z

32

Severe accident natural circulation studies at the INEL  

SciTech Connect (OSTI)

Severe accident natural circulation flows have been investigated at the Idaho National Engineering Laboratory to better understand these flows and their potential impacts on the progression of a pressurized water reactor severe accident. Parameters affecting natural circulation in the reactor vessel and hot legs were identified and ranked based on their perceived importance. Reviews of the scaling of the 1/7-scale experiments performed by Westinghouse were undertaken. RELAP5/MOD3 calculations of two of the experiments showed generally good agreement between the calculated and observed behavior. Analyses of hydrogen behavior in the reactor vessel showed that hydrogen stratification is not likely to occur, and that an initially stratified layer of hydrogen would quickly mix with a recirculating steam flow. An analysis of the upper plenum behavior in the Three Mile Island, Unit 2 reactor concluded that vapor temperatures could have been significantly higher than the temperatures seen by the control rod drive lead screws, supporting the premise that a strong natural circulation flow was likely present during the accident. SCDAP/RELAP5 calculations of a commercial pressurized water reactor severe accident without operator actions showed that the natural circulation flows enhance the likelihood of ex-vessel piping failures long before failure of the reactor vessel lower head.

Bayless, P.D.; Brownson, D.A.; Dobbe, C.A.; Jones, K.R.; O`Brien, J.E.; Pafford, D.J.; Schlenker, L.D.; Tung, V.X.

1995-02-01T23:59:59.000Z

33

Instability of single-phase natural circulation under multiple loops  

SciTech Connect (OSTI)

Natural circulation loop passively conveys heat from heat sources to heat sinks without mechanical pump. Various plants have natural circulation systems, e.g., solar heaters, Light Water Reactor (LWR) and Liquid Metal Fast Breeder Reactor (LMFBR). The core of LMFBR is cooled by forced convection of single-phase liquid sodium in normal operation. After the accident, the decay heat of the core is designed to be cooled by the natural circulation of the liquid sodium. The natural circulation cooling is very important from a viewpoint of passive safety concept. Here, the natural circulation in single loop system had been studied by many researchers. In a multiple loop system, the instability of natural circulation was more complicated because of the interaction between the loops. In this study, the effects of the multiple loop on the natural circulation instability were investigated numerically. The multiple loops system with one heating tube and two cooling tubes were evaluated. The one-dimensional energy and momentum equations were solved using Finite Difference Method. The flow regimes of the instability were evaluated with varying the heat flux. In multiple loop system, the observed flow was classified into five regimes including chaotic regime. The flow regimes were qualitatively explained by the stability of the attractor in the phase space.

Satoh, A.; Okamoto, K.; Madarame, H. [Univ. of Tokyo, Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

1996-08-01T23:59:59.000Z

34

Circulating Fluid Bed Combustor  

E-Print Network [OSTI]

The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

Fraley, L. D.; Do, L. N.; Hsiao, K. H.

1982-01-01T23:59:59.000Z

35

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network [OSTI]

operator such as EDF, the time required to compute nuclear reactor core simulations is rather critical. Introduction As operator of nuclear power plants, EDF needs many nuclear reactor core simulationsInternational Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009

Vialle, Stéphane

36

Portable oven air circulator  

DOE Patents [OSTI]

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

37

GENERAL CIRCULATION Energy Cycle  

E-Print Network [OSTI]

process. PE is useful for global energy balance. Solar radiant energy does not reach the Earth equally everywhere. On average, the tropics receive and absorb far more solar energy annually than the polar regionsGENERAL CIRCULATION Contents Energy Cycle Mean Characteristics Momentum Budget Overview Energy

Grotjahn, Richard

38

Reactor Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor Physics Reactor and nuclear physics is a key area of research at INL. Much of the research done in reactor physics can be separated into one of three categories:...

39

Method for passive cooling liquid metal cooled nuclear reactors, and system thereof  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

1991-01-01T23:59:59.000Z

40

Nuclear divisional reactor  

SciTech Connect (OSTI)

A nuclear divisional reactor including a reactor core having side and top walls, a heat exchanger substantially surrounding the core, the heat exchanger including a plurality of separate fluid holding and circulating chambers each in contact with a portion of the core, control rod means associated with the core and external of the heat exchanger including control rods and means for moving said control rods, each of the chambers having separate means for delivering and removing fluid therefrom, separate means associated with each of the delivering and removing means for producing useable energy external of the chambers, each of the means for producing useable energy having separate variable capacity energy outputs thereby making available a plurality of individual sources of useable energy of varying degrees.

Administratrix, A.P.; Rugh, J.L.

1982-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

B. TRANSPORTATION, CIRCULATION AND PARKING B. TRANSPORTATION, CIRCULATION AND  

E-Print Network [OSTI]

B. TRANSPORTATION, CIRCULATION AND PARKING 231 B. TRANSPORTATION, CIRCULATION AND PARKING on transportation and connectivity issues common to UCSF as a whole. Please refer to Chapter 5, Plans for Existing characteristics specific to each individual UCSF site. DETERMINANTS OF THE 1996 LRDP The transportation

Mullins, Dyche

42

Ocean General Circulation Models  

SciTech Connect (OSTI)

1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

Yoon, Jin-Ho; Ma, Po-Lun

2012-09-30T23:59:59.000Z

43

Accounting for a feature of the configuration of the loops in the primary circuit of VVER-440 reactors  

SciTech Connect (OSTI)

A feature of the configuration of the loops of the primary circuit of VVER-440 reactors and its influence on the characteristics of the main circulation pumps are analyzed. It is proposed that differences in the characteristics of the main reactor circulation pumps be taken account during the design and operation of nuclear power plants.

Khazanov, A. L. [FBU 'Scientific and Engineering Center for Nuclear and Radiation Safety' (FBU 'NTTs YaRB') (Russian Federation)] [FBU 'Scientific and Engineering Center for Nuclear and Radiation Safety' (FBU 'NTTs YaRB') (Russian Federation)

2013-09-15T23:59:59.000Z

44

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

45

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

46

Pressurized reactor system and a method of operating the same  

DOE Patents [OSTI]

A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.

Isaksson, Juhani M. (Karhula, FI)

1996-01-01T23:59:59.000Z

47

Pressurized reactor system and a method of operating the same  

DOE Patents [OSTI]

A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.

Isaksson, J.M.

1996-06-18T23:59:59.000Z

48

Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system  

SciTech Connect (OSTI)

Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

Harto, Andang Widi [Engineering Physics Department, Faculty of Engineering, Gadjah Mada University (Indonesia)

2012-06-06T23:59:59.000Z

49

Apparatus and method for determining solids circulation rate  

DOE Patents [OSTI]

The invention relates to a method of determining bed velocity and solids circulation rate in a standpipe experiencing a moving packed bed flow, such as the in the standpipe section of a circulating bed fluidized reactor The method utilizes in-situ measurement of differential pressure over known axial lengths of the standpipe in conjunction with in-situ gas velocity measurement for a novel application of Ergun equations allowing determination of standpipe void fraction and moving packed bed velocity. The method takes advantage of the moving packed bed property of constant void fraction in order to integrate measured parameters into simultaneous solution of Ergun-based equations and conservation of mass equations across multiple sections of the standpipe.

Ludlow, J. Christopher (Morgantown, WV); Spenik, James L. (Morgantown, WV)

2012-02-14T23:59:59.000Z

50

Shelf circulation patterns off Nigeria  

E-Print Network [OSTI]

. An oil spill occurred in January of 1998, the slick drifted in the opposite direction at twice the speed as was anticipated. It was believed that the heavy discharge from the Niger River Delta would have a strong influence on the near-shore circulation...

Rider, Kelly Elizabeth

2005-08-29T23:59:59.000Z

51

Gas-cooled nuclear reactor  

DOE Patents [OSTI]

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

52

Nuclear reactor engineering  

SciTech Connect (OSTI)

Chapters are presented concerning energy from nuclear fission; nuclear reactions and radiations; diffusion and slowing-down of neutrons; principles of reactor analysis; nuclear reactor kinetics and control; energy removal; non-fuel reactor materials; the reactor fuel system; radiation protection and environmental effects; nuclear reactor shielding; nuclear reactor safety; and power reactor systems.

Glasstone, S.; Sesonske, A.

1981-01-01T23:59:59.000Z

53

Decadal changes in the equatorial Pacific circulation  

E-Print Network [OSTI]

An ocean general circulation model with data assimilation is used to analyze the decadal changes in the tropical Pacific Ocean circulation. Results indicate that the variability in the Equatorial Undercurrent (EUC) and subtropical cells (STC) have...

Urizar, S. Cristina

2002-01-01T23:59:59.000Z

54

Research reactors - an overview  

SciTech Connect (OSTI)

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

55

CdSxTe1-x Alloying in CdS/CdTe Solar Cells  

SciTech Connect (OSTI)

A CdSxTe1-x layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdSxTe1-x layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdSxTe1-x region. Further understanding, however, is essential to predict the role of this CdSxTe1-x layer in the operation of CdS/CdTe devices. In this study, CdSxTe1-x alloy films were deposited by RF magnetron sputtering and co-evaporation from CdTe and CdS sources. Both radio-frequency-magnetron-sputtered and co-evaporated CdSxTe1-x films of lower S content (x<0.3) have a cubic zincblende (ZB) structure akin to CdTe, while those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl2 heat treatment at ~400 degrees C for 5 min. Films sputtered in a 1% O2/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl2 heat treatment (HT). Films sputtered in O2 partial pressure have a much wider bandgap (BG) than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films.

Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

2011-05-01T23:59:59.000Z

56

CdSxTe1-x Alloying in CdS/CdTe Solar Cells  

SciTech Connect (OSTI)

A CdS{sub x}Te{sub 1-x} layer forms by interdiffusion of CdS and CdTe during the fabrication of thin film CdTe photovoltaic (PV) devices. The CdS{sub x}Te{sub 1-x} layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work has indicated that the electrical junction is located in this interdiffused CdS{sub x}Te{sub 1-x} region. Further understanding, however, is essential to predict the role of this CdS{sub x}Te{sub 1-x} layer in the operation of CdS/CdTe devices. In this study, CdS{sub x}Te{sub 1-x} alloy films were deposited by radio-frequency magnetron sputtering and coevaporation from CdTe and CdS sources. Both radio-frequency-magnetron-sputtered and coevaporated CdS{sub x}Te{sub 1-x} films of lower S content (x < 0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl{sub 2} heat treatment at {approx}400 C for 5 min. Films sputtered in a 1% O{sub 2}/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl{sub 2} heat treatment. Films sputtered in O{sub 2} partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously for sputtered oxygenated CdS (CdS:O) films.

Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

2011-01-01T23:59:59.000Z

57

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Light Water Reactor Sustainability Program ACCOMPLISHMENTS REPORT 2013 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

58

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

59

Catalytic reactor  

DOE Patents [OSTI]

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

60

Bioconversion reactor  

DOE Patents [OSTI]

A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

McCarty, Perry L. (Stanford, CA); Bachmann, Andre (Palo Alto, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CdTe, CdTe/CdS Core/Shell, and CdTe/CdS/ZnS Core/Shell/Shell Quantum Dots Study.  

E-Print Network [OSTI]

?? CdTe, CdTe/CdS core/shell, and CdTe/CdS/ZnS core/shell/shell quantum dots (QDs) are potential candidates for bio-imaging and solar cell applications because of some special physical properties… (more)

Yan, Yueran

2012-01-01T23:59:59.000Z

62

Neutronic reactor  

DOE Patents [OSTI]

A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

1983-01-01T23:59:59.000Z

63

LOCA and Air Ingress Accident Analysis of a Pebble Bed Reactor  

E-Print Network [OSTI]

1 LOCA and Air Ingress Accident Analysis of a Pebble Bed Reactor by Tieliang Zhai Submitted...................................................................................................... Prof. Jeffrey A. Coderre Chairman, Department Committee on Graduate Students #12;2 LOCA and Air Ingress a sensitivity study to determine how much air would have to be circulated in the reactor cavity to bring

64

Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel  

DOE Patents [OSTI]

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

Schreiber, Roger B. (Penn Twp., PA); Fero, Arnold H. (New Kensington, PA); Sejvar, James (Murrysville, PA)

1997-01-01T23:59:59.000Z

65

Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel  

DOE Patents [OSTI]

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

Schreiber, R.B.; Fero, A.H.; Sejvar, J.

1997-12-16T23:59:59.000Z

66

Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method  

DOE Patents [OSTI]

An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof.

Ekeroth, Douglas E. (Delmont, PA); Garner, Daniel C. (Murrysville, PA); Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL)

1993-01-01T23:59:59.000Z

67

Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method  

DOE Patents [OSTI]

An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof. 3 figures.

Ekeroth, D.E.; Garner, D.C.; Hopkins, R.J.; Land, J.T.

1993-11-30T23:59:59.000Z

68

Intestinal circulation during inhalation anesthesia  

SciTech Connect (OSTI)

This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of /sub 86/Rb and 9-microns spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO/sub 2/) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines.

Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

1985-04-01T23:59:59.000Z

69

Spectral shift reactor control method  

SciTech Connect (OSTI)

This patent describes the method of operating a pressurized-water fissile-material-fueled spectral-shift nuclear reactor in such manner that short-term reactivity requirement variations can be satisfied without making control rod or chemical shim changes. The reactor includes a pressure vessel enclosing a reactor core and having an inlet and an outlet for circulating a water coolant moderator in heat transfer relationship with the core. The core comprises fuel assemblies disposed therein for generating heat by nuclear fission. The reactor provided with neutron-absorbing control rods which are vertically movable into and out of the core so that movement of the control rods into the core will substantially decrease reactivity and withdrawal of the control rods from the core will substantially increase reactivity. The control rods when inserted into the core displace an equivalent volume of the water coolant moderator. The reactor also provides neutron-spectral-shift rods which have a lower absorptivity for neutrons than the control rods, the neutron-spectral shift rods when inserted into the core displacing an equaivalent volume of the water coolant moderator. The neutron-spectral-shift rods comprises two different types of rods, a first of the different types of the neutron-spectral-shift rods comprising displacer rods which have a low absorptivity for neutrons, the remainder of the neutron-spectral-shift rods comprising gray rods which have an absorption for neutrons which is intermediate the neutron absorption of the control rods and the low neutron absorption of the displacer rods. Each neutron-spectral-shift displacer rod comprises a hollow thin-walled Zircaloy member containing a filling of solid or annular zirconium- or aluminum-containing material for providing internal support and mass for the thin-walled tubular member.

Impink, A.J. Jr.

1987-12-29T23:59:59.000Z

70

CdTe/CdZnTe pixellated radiation detector.  

E-Print Network [OSTI]

??The work in this thesis is focused on the study of CdTe/CdZnTe pixellated detectors. During this research, three main aspects have been covered in the… (more)

Mohd Zain, Rasif

2015-01-01T23:59:59.000Z

71

MODELING STRATEGIES TO COMPUTE NATURAL CIRCULATION USING CFD IN A VHTR AFTER A LOFA  

SciTech Connect (OSTI)

A prismatic gas-cooled very high temperature reactor (VHTR) is being developed under the next generation nuclear plant program (NGNP) of the U.S. Department of Energy, Office of Nuclear Energy. In the design of the prismatic VHTR, hexagonal shaped graphite blocks are drilled to allow insertion of fuel pins, made of compacted TRISO fuel particles, and coolant channels for the helium coolant. One of the concerns for the reactor design is the effects of a loss of flow accident (LOFA) where the coolant circulators are lost for some reason, causing a loss of forced coolant flow through the core. In such an event, it is desired to know what happens to the (reduced) heat still being generated in the core and if it represents a problem for the fuel compacts, the graphite core or the reactor vessel (RV) walls. One of the mechanisms for the transport of heat out of the core is by the natural circulation of the coolant, which is still present. That is, how much heat may be transported by natural circulation through the core and upwards to the top of the upper plenum? It is beyond current capability for a computational fluid dynamic (CFD) analysis to perform a calculation on the whole RV with a sufficiently refined mesh to examine the full potential of natural circulation in the vessel. The present paper reports the investigation of several strategies to model the flow and heat transfer in the RV. It is found that it is necessary to employ representative geometries of the core to estimate the heat transfer. However, by taking advantage of global and local symmetries, a detailed estimate of the strength of the resulting natural circulation and the level of heat transfer to the top of the upper plenum is obtained.

Yu-Hsin Tung; Richard W. Johnson; Ching-Chang Chieng; Yuh-Ming Ferng

2012-11-01T23:59:59.000Z

72

Nuclear reactor with low-level core coolant intake  

DOE Patents [OSTI]

A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

1993-01-01T23:59:59.000Z

73

Downhole material injector for lost circulation control  

DOE Patents [OSTI]

This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

Glowka, D.A.

1991-01-01T23:59:59.000Z

74

Microfluidic Platforms for Capturing Circulating Tumor Cells  

E-Print Network [OSTI]

Microfluidic Platforms for Capturing Circulating Tumor Cells Sweta Gupta, Allison C. Baker-cost microfluidic device that can be used to isolate and capture circulating tumor cells (CTCs) from whole blood. The device was made from polydimethylsiloxane (PDMS) consisting of a microfluidic channel with microposts

Tang, William C

75

Downhole material injector for lost circulation control  

DOE Patents [OSTI]

Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

Glowka, D.A.

1994-09-06T23:59:59.000Z

76

Anatomy of an transparent optical circulator.  

SciTech Connect (OSTI)

An optical circulator is a multi-port, nonreciprocal device that routes light from one specific port to another. Optical circulators have at least 3 or 4 ports, up to 6 port possible (JDS Uniphase, Huihong Fiber) Circulators do not disregard backward propagating light, but direct it to another port. Optical circulators are commonly found in bi-directional transmission systems, WDM networks, fiber amplifiers, and optical time domain reflectometers (OTDRs). 3-Port optical circulators are commonly used in PDV systems. 1550 nm laser light is launched into Port 1 and will exit out of Port 2 to the target. Doppler-shifted light off the moving surface is reflected back into Port 2 and exits out of Port 3. Surprisingly, a circulator requires a large number of parts to operate efficiently. Transparent circulators offer higher isolation than those of the reflective style using PBSs. A lower PMD is obtained using birefringent crystals rather than PBSs due to the similar path lengths between e and o rays. Many various circulator designs exist, but all achieve the same non-reciprocal results.

Podsednik, Jason W.

2010-09-01T23:59:59.000Z

77

Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept.  

SciTech Connect (OSTI)

This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.

Wright, Steven Alan; Parma, Edward J., Jr.; Suo-Anttila, Ahti Jorma (Computational Engineering Analysis, Albuquerque, NM); Al Rashdan, Ahmad (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Vernon, Milton E.; Fleming, Darryn D.; Rochau, Gary Eugene

2011-05-01T23:59:59.000Z

78

Hybrid adsorptive membrane reactor  

DOE Patents [OSTI]

A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

Tsotsis, Theodore T. (Huntington Beach, CA); Sahimi, Muhammad (Altadena, CA); Fayyaz-Najafi, Babak (Richmond, CA); Harale, Aadesh (Los Angeles, CA); Park, Byoung-Gi (Yeosu, KR); Liu, Paul K. T. (Lafayette Hill, PA)

2011-03-01T23:59:59.000Z

79

Nuclear reactor engineering  

SciTech Connect (OSTI)

A book is reviewed which emphasizes topics directly related to the light water reactor power plant and the fast reactor power system. Current real-world problems are addressed throughout the text, and a chapter on safety includes much of the postThree Mile Island impact on operating systems. Topics covered include Doppler broadening, neutron resonances, multigroup diffusion theory, reactor kinetics, reactor control, energy removal, nonfuel materials, reactor fuel, radiation protection, environmental effects, and reactor safety.

Glasstone, S.; Sesonske, A.

1982-07-01T23:59:59.000Z

80

Regulatory function of cytomegalovirus-specific CD4{sup +}CD27{sup -}CD28{sup -} T cells  

SciTech Connect (OSTI)

CMV infection is characterized by high of frequencies of CD27{sup -}CD28{sup -} T cells. Here we demonstrate that CMV-specific CD4{sup +}CD27{sup -}CD28{sup -} cells are regulatory T cells (T{sub R}). CD4{sup +}CD27{sup -}CD28{sup -} cells sorted from CMV-stimulated PBMC of CMV-seropositive donors inhibited de novo CMV-specific proliferation of autologous PBMC in a dose-dependent fashion. Compared with the entire CMV-stimulated CD4{sup +} T-cell population, higher proportions of CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} expressed FoxP3, TGFbeta, granzyme B, perforin, GITR and PD-1, lower proportions expressed CD127 and PD1-L and similar proportions expressed CD25, CTLA4, Fas-L and GITR-L. CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} expanded in response to IL-2, but not to CMV antigenic restimulation. The anti-proliferative effect of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} significantly decreased after granzyme B or TGFbeta inhibition. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} of HIV-infected and uninfected donors had similar phenotypes and anti-proliferative potency, but HIV-infected individuals had higher proportions of CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R}. The CMV-CD4{sup +}CD27{sup -}CD28{sup -} T{sub R} may contribute to the downregulation of CMV-specific and nonspecific immune responses of CMV-infected individuals.

Tovar-Salazar, Adriana; Patterson-Bartlett, Julie; Jesser, Renee [University of Colorado Denver School of Medicine, Aurora, CO (United States); Weinberg, Adriana, E-mail: Adriana.Weinberg@ucdenver.ed [University of Colorado Denver School of Medicine, Aurora, CO (United States)

2010-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RF power recovery feedback circulator  

DOE Patents [OSTI]

A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.

Sharamentov, Sergey I. (Bolingbrook, IL)

2011-03-29T23:59:59.000Z

82

anterior circulation aneurysms: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

97 Circulation (Cont) Means of Transferring Heat Physics Websites Summary: h 12;Earth Global Circulation (Cont.) Note: When a cold air mass and a warm air mass...

83

anterior circulation strokes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

53 Circulation (Cont) Means of Transferring Heat Physics Websites Summary: h 12;Earth Global Circulation (Cont.) Note: When a cold air mass and a warm air mass...

84

arterial coronary circulation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

119 Circulation (Cont) Means of Transferring Heat Physics Websites Summary: h 12;Earth Global Circulation (Cont.) Note: When a cold air mass and a warm air mass...

85

anterior circulation revascularization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A 20 Circulation (Cont) Means of Transferring Heat Physics Websites Summary: h 12;Earth Global Circulation (Cont.) Note: When a cold air mass and a warm air mass...

86

Brain insulin lowers circulating BCAA levels by inducing hepatic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Abstract:...

87

antigen circulating anodic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

introduced to study the role of ocean circulation on the mean climate of the coupled ... Marshall, John C. 409 Upward Shift of the Atmospheric General Circulation under Global...

88

Reactor safety method  

DOE Patents [OSTI]

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

89

SRS Small Modular Reactors  

SciTech Connect (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

90

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

91

Thermohaline circulation stability : a box model  

E-Print Network [OSTI]

A thorough analysis of the stability of uncoupled and coupled versions of an inter-hemispheric 3-box model of Thermohaline Circulation (THC) is presented. The model consists of a northern high latitudes box, a tropical ...

Lucarini, Valerio

2003-01-01T23:59:59.000Z

92

Circulation and convection in the Irminger Sea  

E-Print Network [OSTI]

Aspects of the circulation and convection in the Irminger Sea are investigated using a variety of in-situ, satellite, and atmospheric reanalysis products. Westerly Greenland tip jet events are intense, small-scale wind ...

Vĺge, Kjetil

2010-01-01T23:59:59.000Z

93

Fluorescence relaxation dynamics of CdSe and CdSe/CdS core/shell quantum dots  

SciTech Connect (OSTI)

Time-resolved fluorescence spectra for colloidal CdSe and CdSe/CdS core/shell quantum dots have been investigated to know their electron relaxation dynamics at the maximum steady state fluorescence intensity. CdSe core and CdSe/CdS type I core-shell materials with different shell (CdS) thicknesses have been synthesized using mercaptoacetic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdSe and CdSe/CdS core-shell quantum dots. The fluorescence shows a tri-exponential decay with lifetimes 57.39, 7.82 and 0.96 ns for CdSe quantum dots. The lifetime of each recombination decreased with growth of CdS shell over the CdSe core, with maximum contribution to fluorescence by the fastest transition.

Kaur, Gurvir; Kaur, Harmandeep [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Panjab University, Chandigarh- 160014 (India)

2014-04-24T23:59:59.000Z

94

Nuclear reactor  

DOE Patents [OSTI]

A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

Thomson, Wallace B. (Severna Park, MD)

2004-03-16T23:59:59.000Z

95

General features of direct-cycle, supercritical-pressure, light-water-cooled reactors  

SciTech Connect (OSTI)

The concept of direct-cycle, supercritical-pressure, light-water-cooled reactors is developed. Breeding is possible in the tight lattice core. The power output can be maximized in the fast converter reactor. The gross thermal efficiency of the high temperature reactor adopting Inconel as fuel cladding is expected to be 44.8%. The plant system is similar to the supercritical-fossil-fired power plant which adopts once-through type coolant circulation system. The volume and height of the containment are approximately half of the BWR. The basic safety principles follows those of LWRs. The reactor will solve the economic problems of LWR and LMFBR.

Oka, Y.; Koshizuka, S. [Univ. of Tokyo (Japan). Nuclear Engineering Research Lab.

1996-07-01T23:59:59.000Z

96

Study of natural circulation in a VHTR after a LOFA using different turbulence models  

SciTech Connect (OSTI)

Natural convection currents in the core are anticipated in the event of the failure of the gas circulator in a prismatic gas-cooled very high temperature reactor (VHTR). The paths that the helium coolant takes in forming natural circulation loops and the effective heat transport are of interest. The heated flow in the reactor core is turbulent during normal operating conditions and at the beginning of the LOFA with forced convection, but the flow may significantly be slowed down after the event and laminarized with mixed convection. In the present study, the potential occurrence and effective heat transport of natural circulation are demonstrated using computational fluid dynamic (CFD) calculations with different turbulence models as well as laminar flow. Validations and recommendation on turbulence model selection are conducted. The study concludes that large loop natural convection is formed due to the enhanced turbulence levels by the buoyancy effect and the turbulent regime near the interface of upper plenum and flow channels increases the flow resistance for channel flows entering upper plenum and thus less heat can be removed from the core than the prediction by laminar flow assumption.

Yu-Hsin Tung; Yuh-Ming Ferng; Richard W. Johnson; Ching-Chang Chieng

2013-10-01T23:59:59.000Z

97

Impurity and back contact effects on CdTe/CdS thin film solar cells.  

E-Print Network [OSTI]

??CdTe/CdS thin film solar cells are the most promising cost-effective solar cells. The goal of this project is to improve the performance for CdS/CdTe devices… (more)

Zhao, Hehong

2008-01-01T23:59:59.000Z

98

Luminescence Enhancement of CdTe Nanostructures in LaF3:Ce/CdTe...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancement of CdTe Nanostructures in LaF3:CeCdTe Nanocomposites. Luminescence Enhancement of CdTe Nanostructures in LaF3:CeCdTe Nanocomposites. Abstract: Radiation detection...

99

Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells  

E-Print Network [OSTI]

Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells A a b s t r a c ta r t i c l e i n f o Available online xxxx Keywords: Solar cells CdCl2 CdTe Thin absorbers Due to its high scalability and low production cost, CdTe solar cells have shown a very strong

Romeo, Alessandro

100

A decrease of circulating CD4? T cells in Attwater's prairie chickens infected with reticuloendotheliosis virus  

E-Print Network [OSTI]

antibodies (mAb) was screened for reactivity to prairie chicken leukocytes using indirect fluorescent labeling and bow cytometry analysis. Monoclonal antibodies reactive to prairie chicken leukocytes were used to characterize white blood cells...

Ferro, Pamela Joyce Bloomer

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

102

Isoscalar multipole strength in Cd-110 and Cd-116  

E-Print Network [OSTI]

Isoscalar multipole strength in 110Cd and 116Cd Y.-W. Lui, D. H. Youngblood, Y. Tokimoto, H. L. Clark, and B. John* Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA (Received 6 October 2003; published 24 March 2004... of each multi- pole are shown. The statistical errors are smaller than the data points. LUI, YOUNGBLOOD, TOKIMOTO, CLARK, AND JOHN PHYSICAL REVIEW C 69, 034611 (2004) 034611-2 FIG. 3. Strength distributions obtained for 110Cd are shown...

Lui, YW; Youngblood, David H.; Tokimoto, Y.; Clark, HL; John, B.

2004-01-01T23:59:59.000Z

103

Undergraduate reactor control experiment  

SciTech Connect (OSTI)

A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise.

Edwards, R.M.; Power, M.A.; Bryan, M. (Pennsylvania State Univ., University Park (United States))

1992-01-01T23:59:59.000Z

104

Attrition reactor system  

DOE Patents [OSTI]

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

1993-01-01T23:59:59.000Z

105

Attrition reactor system  

DOE Patents [OSTI]

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

106

Reactor Sharing Program  

SciTech Connect (OSTI)

Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

Vernetson, W.G.

1993-01-01T23:59:59.000Z

107

Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report  

SciTech Connect (OSTI)

A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

Lee, S.K.; Keener, T.C.

1994-10-10T23:59:59.000Z

108

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network [OSTI]

or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

109

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

1993-03-02T23:59:59.000Z

110

Improved vortex reactor system  

DOE Patents [OSTI]

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

111

Advanced Test Reactor Tour  

SciTech Connect (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

112

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

113

High solids fermentation reactor  

DOE Patents [OSTI]

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

114

Hypothetical Reactor Accident Study  

E-Print Network [OSTI]

- W 4 DfcSkoollo Rise-R-427 CARNSORE: Hypothetical Reactor Accident Study O. Walmod-Larsen, N. O: HYPOTHETICAL REACTOR ACCIDENT STUDY O. Walmod-Larsen, N.O. Jensen, L. Kristensen, A. Heide, K.L. NedergĂĄrd, P-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are de- scribed

115

CD54AC04, CD74AC04 HEX INVERTERS  

E-Print Network [OSTI]

°C to 125°C SOIC M Tube CD74AC04M AC04M­55°C to 125°C SOIC ­ M Tape and reel CD74AC04M96 AC04M CDIP-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

116

Development of pyro-processing technology for thorium-fuelled molten salt reactor  

SciTech Connect (OSTI)

The Molten Salt Reactor (MSR) is classified as the non-classical nuclear reactor type based on the specific features coming out from the use of liquid fuel circulating in the MSR primary circuit. Other uniqueness of the reactor type is based on the fact that the primary circuit of the reactor is directly connected with the on-line reprocessing technology, necessary for keeping the reactor in operation for a long run. MSR is the only reactor system, which can be effectively operated within the {sup 232}Th- {sup 233}U fuel cycle as thorium breeder with the breeding factor significantly higher than one. The fuel cycle technologies proposed as ford the fresh thorium fuel processing as for the primary circuit fuel reprocessing are pyrochemical and mainly fluoride. Although these pyrochemical processes were never previously fully verified, the present-day development anticipates an assumption for the successful future deployment of the thorium-fuelled MSR technology. (authors)

Uhlir, J.; Straka, M.; Szatmary, L. [Nuclear Research Inst. ReZ Plc, ReZ 130, Husinec - CZ-250 68 (Czech Republic)

2012-07-01T23:59:59.000Z

117

Neutron behavior, reactor control, and reactor heat transfer. Volume four  

SciTech Connect (OSTI)

Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant).

Not Available

1986-01-01T23:59:59.000Z

118

Reactor vessel support system  

DOE Patents [OSTI]

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

119

Statistical mechanics and ocean circulation Rick Salmon  

E-Print Network [OSTI]

Statistical mechanics and ocean circulation Rick Salmon Scripps Institution of Oceanography, UCSD equilibrium statistical mechanics based upon the conservation of energy and potential enstrophy to the mass. The equilibrium state resembles the buoyancy structure actually observed. Key words: statistical mechanics, ocean

Salmon, Rick

120

Spinning fluids reactor  

DOE Patents [OSTI]

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Determining Reactor Neutrino Flux  

E-Print Network [OSTI]

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2012-03-08T23:59:59.000Z

122

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

Gluntz, D.M.; Taft, W.E.

1994-12-20T23:59:59.000Z

123

Reactor water cleanup system  

DOE Patents [OSTI]

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

124

CdS/CdTe Solar Cells Containing Directly Deposited CdSxTe1-x Alloy Layers: Preprint  

SciTech Connect (OSTI)

A CdSxTe1-x layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdSxTe1-x layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdSxTe1-x region. Further understanding, however, is essential to predict the role of this CdSxTe1-x layer in the operation of CdS/CdTe devices. In this study, CdSxTe1-x alloy films were deposited by radio-frequency (RF) magnetron sputtering and co-evaporation from CdTe and CdS sources. Both RF-magnetron-sputtered and co-evaporated CdSxTe1-x films of lower S content (x<0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl2 heat treatment (HT) at ~400 degrees C for 5 min. Films sputtered in a 1% O2/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl2 HT. Films sputtered in O2 partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films. Initial PV device results show that the introduction of a directly-deposited CdSxTe1-x alloy layer into the device structure produces devices of comparable performance to those without the alloy layer when a CdCl2 HT is performed. Further investigation is required to determine whether the CdCl2 heat treatment step can be altered or eliminated through direct deposition of the alloy layer.

Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

2011-07-01T23:59:59.000Z

125

CdS/CdTe Solar Cells Containing Directly-Deposited CdSxTe1-x Alloy Layers  

SciTech Connect (OSTI)

A CdS{sub x}Te{sub 1-x} layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdS{sub x}Te{sub 1-x} layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdS{sub x}Te{sub 1-x} region. Further understanding, however, is essential to predict the role of this CdS{sub x}Te{sub 1-x} layer in the operation of CdS/CdTe devices. In this study, CdS{sub x}Te{sub 1-x} alloy films were deposited by radio-frequency (RF) magnetron sputtering and co-evaporation from CdTe and CdS sources. Both RF-magnetron-sputtered and co-evaporated CdS{sub x}Te{sub 1-x} films of lower S content (x<;0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl{sub 2} heat treatment (HT) at {approx}400 C for 5 min. Films sputtered in a 1% O{sub 2}/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl{sub 2} HT. Films sputtered in O{sub 2} partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films. Initial PV device results show that the introduction of a directly-deposited CdS{sub x}Te{sub 1-x} alloy layer into the device structure produces devices of comparable performance to those without the alloy layer when a CdCl{sub 2} HT is performed. Further investigation is required to determine whether the CdCl{sub 2} heat treatment step can be altered or eliminated through direct deposition of the alloy layer.

Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

2011-01-01T23:59:59.000Z

126

NREL study may provide future guidance in improving CdS/CdTe photovoltaic device performance.  

E-Print Network [OSTI]

NREL study may provide future guidance in improving CdS/CdTe photovoltaic device performance. The majority of minority carrier lifetime (MCL) studies performed on CdS/CdTe photovoltaic (PV) devices have Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices." Proc. 37th IEEE Photovoltaic

127

Method and apparatus for enhancing reactor air-cooling system performance  

DOE Patents [OSTI]

An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

Hunsbedt, Anstein (Los Gatos, CA)

1996-01-01T23:59:59.000Z

128

Method and apparatus for enhancing reactor air-cooling system performance  

DOE Patents [OSTI]

An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

Hunsbedt, A.

1996-03-12T23:59:59.000Z

129

Liquid uranium alloy-helium fission reactor  

DOE Patents [OSTI]

This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

Minkov, Vladimir (Skokie, IL)

1986-01-01T23:59:59.000Z

130

Improved vortex reactor system  

DOE Patents [OSTI]

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

131

Pressurized fluidized bed reactor  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-03-19T23:59:59.000Z

132

Pressurized fluidized bed reactor  

DOE Patents [OSTI]

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

Isaksson, Juhani (Karhula, FI)

1996-01-01T23:59:59.000Z

133

Tokamak reactor first wall  

DOE Patents [OSTI]

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

134

Next Generation Reactors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Advances We are coordinating the Generation IV Nuclear Systems Initiative - an international effort to develop the next generation of nuclear power reactors. Skip...

135

1. INTRODUCTION CdTe/CdS solar cells are among the most promising  

E-Print Network [OSTI]

Te/CdS SOLAR CELLS A.Romeo, A.N. Tiwari, and H. Zogg Thin Films Physics Group, Institute of Quantum ElectronicsTe/CdS thin film solar cells. The merits of different TCOs and the properties of the CdTe/CdS solar cells1. INTRODUCTION CdTe/CdS solar cells are among the most promising devices for low cost and high

Romeo, Alessandro

136

A CD19/Fc fusion protein for detection of anti-CD19 chimeric antigen receptors  

E-Print Network [OSTI]

buffer (Invitrogen, Carlsbad, CA. ). Protease inhibitorKit (Invitrogen, Carlsbad, CA. ) according to theactivator CD3/CD28 (Invitrogen, Carlsbad, CA) in RPMI medium

De Oliveira, Satiro N; Wang, Jiexin; Ryan, Christine; Morrison, Sherie L; Kohn, Donald B; Hollis, Roger P

2013-01-01T23:59:59.000Z

137

A CD19/Fc fusion protein for detection of anti-CD19 chimeric antigen receptors.  

E-Print Network [OSTI]

buffer (Invitrogen, Carlsbad, CA. ). Protease inhibitorKit (Invitrogen, Carlsbad, CA. ) according to theactivator CD3/CD28 (Invitrogen, Carlsbad, CA) in RPMI medium

De Oliveira, Satiro N; Wang, Jiexin; Ryan, Christine; Morrison, Sherie L; Kohn, Donald B; Hollis, Roger P

2013-01-01T23:59:59.000Z

138

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

139

Brookhaven Graphite Research Reactor Workshop  

Broader source: Energy.gov [DOE]

The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II.  Construction began in 1947 and the reactor started...

140

Portfolio for fast reactor collaboration  

SciTech Connect (OSTI)

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

REACTOR OPERATIONS AND CONTROL  

E-Print Network [OSTI]

REACTOR OPERATIONS AND CONTROL KEYWORDS: core calculations, neural networks, control rod elevation of a control rod, or a group of control rods, is an important parameter from the viewpoint of reactor control DETERMINATION OF PWR CONTROL ROD POSITION BY CORE PHYSICS AND NEURAL NETWORK METHODS NINOS S. GARIS* and IMRE

Pázsit, Imre

142

Reactor & Nuclear Systems Publications | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports | Reactor and Nuclear Systems Publications SHARE Reactor and Nuclear Systems Publications...

143

Reed Reactor Facility. Final report  

SciTech Connect (OSTI)

This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

Frantz, S.G.

1994-12-31T23:59:59.000Z

144

Analysis of nuclear reactor instability phenomena  

SciTech Connect (OSTI)

The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

Lahey, R.T. Jr.

1993-01-01T23:59:59.000Z

145

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

SciTech Connect (OSTI)

This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

146

Carderock Circulating Water Channel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannonCirculating Water Channel Jump to:

147

Reversing the Circulation of Magnetic Vortices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource Program September 2010 B O N NReversing the Circulation

148

Nuclear reactor control column  

DOE Patents [OSTI]

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, Dennis M. (Plum Borough, PA)

1982-01-01T23:59:59.000Z

149

Nuclear reactor control column  

SciTech Connect (OSTI)

The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

Bachovchin, D.M.

1982-08-10T23:59:59.000Z

150

Reactor Safety Research Programs  

SciTech Connect (OSTI)

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01T23:59:59.000Z

151

Nuclear reactor reflector  

DOE Patents [OSTI]

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

1994-01-01T23:59:59.000Z

152

Nuclear reactor reflector  

DOE Patents [OSTI]

A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

Hopkins, R.J.; Land, J.T.; Misvel, M.C.

1994-06-07T23:59:59.000Z

153

Fast Breeder Reactor studies  

SciTech Connect (OSTI)

This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

1980-07-01T23:59:59.000Z

154

Spherical torus fusion reactor  

DOE Patents [OSTI]

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

155

Microfluidic electrochemical reactors  

DOE Patents [OSTI]

A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

2011-03-22T23:59:59.000Z

156

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas in Substitution of CdCl2  

E-Print Network [OSTI]

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas delle Scienze, 37/A-43010 Fontanini, Parma, Italy ABSTRACT: CdTe/CdS thin film solar cells have reached in the preparation of high efficiency CdTe/CdS solar cells is the activation treatment of CdTe film. Most research

Romeo, Alessandro

157

CdTe Photovoltaics: Real and Perceived EHS Risks  

E-Print Network [OSTI]

-making Processes: g Cd/ton Zn (% Cd/Zn) Roast/leach/electrowinning process: 0.2 (0.008 %) Roast/blast furnace Basin: The effect of banning Cd products Cd Use & Disposal in the Rhine Basin: The effect of banning Cd products "So, the ultimate effect of banning Cd products and recycling 50% of disp

Ohta, Shigemi

158

Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors  

SciTech Connect (OSTI)

Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.

Chan, Emory Ming-Yue

2006-12-19T23:59:59.000Z

159

Reactor hot spot analysis  

SciTech Connect (OSTI)

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

160

P Reactor Grouting  

SciTech Connect (OSTI)

Filling the P Reactor with grout. This seals the radioactive material and reduces the environmental footprint left from the Cold War. Project sponsored by the Recovery Act at the Savannah River Site.

None

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

altered circulating levels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

decadal oscillations of the Atlantic meridional overturning circulation in a cold climate oscillations and North Atlantic Oscil- lation (NAO)-like sea level pressure...

162

Fluid Circulation and Heat Extraction from Engineered Geothermal...  

Open Energy Info (EERE)

from Engineered Geothermal Reservoirs Abstract A large amount of fluid circulation and heat extraction (i.e., thermal power production) research and testing has been conducted...

163

Progress in The Lost Circulation Technology Development Program  

SciTech Connect (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

1991-01-01T23:59:59.000Z

164

TRACE Code Validation for Natural Circulation During Small Break LOCA in EPR-Type Reactor.  

E-Print Network [OSTI]

?? The PWR PACTEL test facility was built in Lappeenranta (Finland) to gain experience in thermal-hydraulics behavior of vertical steam generators used by EPR (European… (more)

Bertran Morancho, Joan

2011-01-01T23:59:59.000Z

165

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa  

E-Print Network [OSTI]

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa , Alessio in the fabrication of high efficiency CdTe/CdS thin film solar cells. Usually, it is done first by etching the Cd: Back Contact, CdTe, Thin Film 1 INTRODUCTION The back contact in the CdTe/CdS thin film solar cell

Romeo, Alessandro

166

Nuclear reactor control  

SciTech Connect (OSTI)

A liquid metal cooled fast breeder nuclear reactor has power setback means for use in an emergency. On initiation of a trip-signal a control rod is injected into the core in two stages, firstly, by free fall to effect an immediate power-set back to a safe level and, secondly, by controlled insertion. Total shut-down of the reactor under all emergencies is avoided. 4 claims.

Ingham, R.V.

1980-01-01T23:59:59.000Z

167

Polymerization reactor control  

SciTech Connect (OSTI)

The principal difficulties in achieving good control of polymerization reactors are related to inadequate on-line measurement, a lack of understanding of the dynamics of the process, the highly sensitive and nonlinear behavior of these reactors, and the lack of well-developed techniques for the control of nonlinear processes. Some illustrations of these problems and a discussion of potential techniques for overcoming some of these difficulties is provided.

Ray, W.H.

1985-01-01T23:59:59.000Z

168

Molten metal reactors  

DOE Patents [OSTI]

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

169

F Reactor Inspection  

SciTech Connect (OSTI)

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-10-29T23:59:59.000Z

170

Reactor Safety Research Programs  

SciTech Connect (OSTI)

This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Dotson, CW

1980-08-01T23:59:59.000Z

171

F Reactor Inspection  

ScienceCinema (OSTI)

Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

2014-11-24T23:59:59.000Z

172

Nuclear reactor cooling system decontamination reagent regeneration  

DOE Patents [OSTI]

An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

Anstine, Larry D. (San Jose, CA); James, Dean B. (Saratoga, CA); Melaika, Edward A. (Berkeley, CA); Peterson, Jr., John P. (Livermore, CA)

1985-01-01T23:59:59.000Z

173

Diffusion of Cd vacancy and interstitials of Cd, Cu, Ag, Au and Mo in CdTe: A first principles investigation  

E-Print Network [OSTI]

Diffusion of Cd vacancy and interstitials of Cd, Cu, Ag, Au and Mo in CdTe: A first principles, Au, and Mo in bulk CdTe. The high symmetry Wyckoff position 4(b) is the global minimum energy enhanced the commercial viability of solar cells to generate electricity. Among them, cadmium telluride (CdTe

Khare, Sanjay V.

174

Thermodynamics of atmospheric circulation on hot Jupiters  

E-Print Network [OSTI]

Atmospheric circulation on tidally-locked exoplanets is driven by the absorption and reradiation of heat from the host star. They are natural heat engines, converting heat into mechanical energy. A steady state is possible only if there is a mechanism to dissipate mechanical energy, or if the redistribution of heat is so effective that the Carnot efficiency is driven to zero. Simulations based on primitive, equivalent-barotropic, or shallow-water equations without explicit provision for dissipation of kinetic energy and for recovery of that energy as heat, violate energy conservation. More seriously perhaps, neglect of physical sources of drag may overestimate wind speeds and rates of advection of heat from the day to the night side.

J. Goodman

2008-10-07T23:59:59.000Z

175

Nucla circulating atmospheric fluidized bed demonstration project  

SciTech Connect (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Keith, Raymond E.

1991-10-01T23:59:59.000Z

176

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect (OSTI)

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

177

CD  

Gasoline and Diesel Fuel Update (EIA)

at electric power plants; enclosed structures that are not buildings, such as oil tanks, statues, and monuments; and dilapidated or incompleted buildings missing a roof or a...

178

CD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis ofLink4500-CCCCCHF EnergyCCICD

179

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li

2006-01-01T23:59:59.000Z

180

CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE  

E-Print Network [OSTI]

1 CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE A. Vasilyev1 (Circulation Hydrogen Ultrahigh Purification System) is designed to solve these two tasks: providing, the total level of all contaminants (water, nitrogen, oxygen etc.) has to be lower than 0.01 ppm. Hydrogen

Kammel, Peter

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Numerical Simulation of a Natural Circulation Steam Generator  

E-Print Network [OSTI]

Numerical Simulation of a Natural Circulation Steam Generator W. Linzer \\Lambda , K. Ponweiser circulation steam generator. We focus on a model with a simple geometry consisting of two vertical pipes properties of water and steam. We present a numerical algorithm based on an explicit upwind discretization

WeinmĂĽller, Ewa B.

182

Methanation assembly using multiple reactors  

DOE Patents [OSTI]

A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

Jahnke, Fred C.; Parab, Sanjay C.

2007-07-24T23:59:59.000Z

183

Power Burst Facility (PBF) Reactor Reactor Decommissioning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,Reactor Decommissioning Click here to view

184

Recycling of CdTe photovoltaic waste  

DOE Patents [OSTI]

A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

1999-01-01T23:59:59.000Z

185

indirect LFV Stephan Lammel, Fermilab CD  

E-Print Network [OSTI]

, Fermilab CD Lepton-Photon 2005 Uppsala, June 30th Search for Higgs and New Phenomena at Colliders / #12;Lepton-Photon 2005 Stephan Lammel, Fermilab CD 2005-Jun-30, page 2/28 · Large variety of excellent-Photon 2005 Stephan Lammel, Fermilab CD 2005-Jun-30, page 3/28 Precision EWK/Top and Higgs CDF/D0 mtop went

Fermilab

186

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A reactor and associated power plant designed to produce 1.05 Mwh and 3.535 Mwh of steam for heating purposes are described. The total thermal output of the reactor is 10 Mwh....

187

Heat dissipating nuclear reactor  

DOE Patents [OSTI]

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01T23:59:59.000Z

188

Inexpensive Mini Thermonuclear Reactor  

E-Print Network [OSTI]

This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine,

Alexander Bolonkin; Alexander Bolonkin

189

Nuclear reactor safety device  

DOE Patents [OSTI]

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

190

Fusion reactor control  

SciTech Connect (OSTI)

The plasma kinetic temperature and density changes, each per an injected fuel density rate increment, control the energy supplied by a thermonuclear fusion reactor in a power production cycle. This could include simultaneously coupled control objectives for plasma current, horizontal and vertical position, shape and burn control. The minimum number of measurements required, use of indirect (not plasma parameters) system measurements, and distributed control procedures for burn control are to be verifiable in a time dependent systems code. The International Thermonuclear Experimental Reactor (ITER) has the need to feedback control both the fusion output power and the driven plasma current, while avoiding damage to diverter plates. The system engineering of fusion reactors must be performed to assure their development expeditiously and effectively by considering reliability, availability, maintainability, environmental impact, health and safety, and cost.

Plummer, D.A.

1995-12-31T23:59:59.000Z

191

Thermionic Reactor Design Studies  

SciTech Connect (OSTI)

Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

Schock, Alfred

1994-08-01T23:59:59.000Z

192

Reactor for exothermic reactions  

DOE Patents [OSTI]

A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

1993-01-01T23:59:59.000Z

193

Heat dissipating nuclear reactor  

DOE Patents [OSTI]

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, A.; Lazarus, J.D.

1985-11-21T23:59:59.000Z

194

Reactor for exothermic reactions  

DOE Patents [OSTI]

A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-03-02T23:59:59.000Z

195

CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT  

SciTech Connect (OSTI)

Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

Jukkola, Glen

2010-06-30T23:59:59.000Z

196

p-CdTe/n-CdS photovoltaic cells in the substrate configuration.  

E-Print Network [OSTI]

??In this thesis, p-CdTe/n-CdS solar cells in the substrate configuration have been studied. The focus is on device fabrication, performance optimization, and the development of… (more)

Wu, Hsiang Ning (1984 - )

2014-01-01T23:59:59.000Z

197

Stability Issues in Sputtered CdS/CdTe Solar Cells.  

E-Print Network [OSTI]

?? Magnetron sputtering is a well-established thin-film deposition technique which is particularly well-suited for sub-micron layers. We use this method to deposit ultra-thin CdS/CdTe layers… (more)

Paudel, Naba Raj

2011-01-01T23:59:59.000Z

198

Si, CdTe and CdZnTe radiation detectors for imaging applications.  

E-Print Network [OSTI]

??The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy… (more)

Schulman, Tom

2006-01-01T23:59:59.000Z

199

CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong (China); Yang, Shikuan [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802-6812 (United States); Cao, Bingqiang, E-mail: mse_caobq@ujn.edu.cn [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong (China)

2013-10-15T23:59:59.000Z

200

Multi-Applications Small Light Water Reactor - NERI Final Report  

SciTech Connect (OSTI)

The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gravity Scaling of a Power Reactor Water Shield  

SciTech Connect (OSTI)

Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa{sup n}. These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

Reid, Robert S.; Pearson, J. Boise [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2008-01-21T23:59:59.000Z

202

Fusion reactor pumped laser  

DOE Patents [OSTI]

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

203

Fast quench reactor method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

204

Fast quench reactor method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

1999-08-10T23:59:59.000Z

205

Diagnostics for hybrid reactors  

SciTech Connect (OSTI)

The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

Orsitto, Francesco Paolo [ENEA Unita' Tecnica Fusione , Associazione ENEA-EURATOM sulla Fusione C R Frascati v E Fermi 45 00044 Frascati (Italy)

2012-06-19T23:59:59.000Z

206

Perspectives on reactor safety  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

207

Investigation of vessel exterior air cooling for a HLMC reactor  

SciTech Connect (OSTI)

The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

Sienicki, J. J.; Spencer, B. W.

2000-01-13T23:59:59.000Z

208

Investigation of vessel exterior air cooling for an HLMC reactor  

SciTech Connect (OSTI)

The secure transportable autonomous reactor (STAR) concept under development at Argonne National Laboratory provides a small [300-MW(thermal)] reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100% + natural-circulation heat removal from the low-power-density/low-pressure-drop ultralong lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the reactor exterior cooling system (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the reactor vessel auxiliary cooling system (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

Sienicki, J.J.; Spencer, B.W.

2000-07-01T23:59:59.000Z

209

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

SciTech Connect (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

210

Innovative design of uranium startup fast reactors  

E-Print Network [OSTI]

Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

Fei, Tingzhou

2012-01-01T23:59:59.000Z

211

Reactor operation environmental information document  

SciTech Connect (OSTI)

The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

1989-12-01T23:59:59.000Z

212

Reactor operation safety information document  

SciTech Connect (OSTI)

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

213

Reed Reactor Facility Annual Report  

SciTech Connect (OSTI)

This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

Frantz, Stephen G.

2000-09-01T23:59:59.000Z

214

Thermal Reactor Safety  

SciTech Connect (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

215

Nuclear reactor building  

DOE Patents [OSTI]

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

1994-01-01T23:59:59.000Z

216

Nuclear reactor building  

DOE Patents [OSTI]

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

Gou, P.F.; Townsend, H.E.; Barbanti, G.

1994-04-05T23:59:59.000Z

217

Nuclear Reactors and Technology  

SciTech Connect (OSTI)

This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

Cason, D.L.; Hicks, S.C. [eds.

1992-01-01T23:59:59.000Z

218

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

219

The Role of Eddy-Tansport in the Thermohaline Circulation  

SciTech Connect (OSTI)

Several research themes were developed during the course of this project. (1) Low-frequency oceanic varibility; (2) The role of eddies in the Antarctic Circumpolar Current (ACC) region; (3) Deep stratification and the overturning circulation. The key findings were as follows: (1) The stratification below the main thermocline (at about 500m) is determined in the circumpolar region and then communicated to the enclosed portions of the oceans through the overturning circulation. (2) An Atlantic pole-to-pole overturning circulation can be maintained with very small interior mixing as long as surface buoyancy values are shared between the northern North Atlantic and the ACC region.

Dr. Paola Cessi

2011-11-17T23:59:59.000Z

220

On the World-wide Circulation of the Deeper Waters of the World Ocean  

E-Print Network [OSTI]

circulation of the Pacific Ocean: Flow patterns, tracers,in preparing the figures. Fig. 1 Pacific Ocean winds Fig.2 Pacific Ocean circulation Fig. 4 Pacific Ocean potential

Reid, Joseph L

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - activating blood circulation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System: The Heart Objectives Summary: . Systemic circulation left side of heart pumps blood through body: - left ventricle pumps oxygenated blood... Circulation 14-26 Blood...

222

1. INTRODUCTION CdTe/CdS is one of the most promising solar cell for low  

E-Print Network [OSTI]

with CdTe grown by close space sublimation, electrodeposition, spray pyrolysis, vacuum evaporation and RF conversion of CdTe layers, as well as for the intermixing of CdS-CdTe. An optimum annealing condition is required for the formation of an appropriate CdTe1-x-Sx intermixed interface. It is desirable to separately

Romeo, Alessandro

223

Newport Power Meter Drivers CD Installation Software  

E-Print Network [OSTI]

Newport Power Meter Drivers CD Installation Software Version 2.3.1 Revision Date: October 16, 2008 IMPORTANT NOTES: The USB drivers on your CD must be installed before the Newport Power Meter is connected to your PC (via USB cable). Manual: The latest manuals for the Newport Power Meters can be found

Kleinfeld, David

224

Irradiation behavior of pressurized water reactor control materials  

SciTech Connect (OSTI)

Postirradiation examinations have been conducted as part of an extensive Babcock and Wilcox (B and W) program in reactor control materials performance characterization. These examinations of fixed burnable poison rods and control rods confirmed operational performance and extended the material behavior data base for irradiated absorber materials used in B and W-designed pressurized water reactors. These examinations included visual, dimensional, and destructive examinations. They were conducted at B and W's Lynchburg Research Center hot cell facilities on Ag-In-Cd control rods. Al/sub 2/O/sub 3/-B/sub 4/C burnable poison rods, and B/sub 4/C control rods. The visual and dimensional exams revealed no discernible exterior damage on any of these components. Destructive examinations provided data on absorber swelling, gas release, and open porosity.

Demars, R.V.; Dideon, C.G.; Pardue, E.B.S.; Pavinich, W.A.; Thornton, T.A.; Tulenko, J.S.

1983-07-01T23:59:59.000Z

225

Reactor vessel support system. [LMFBR  

DOE Patents [OSTI]

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, M.P.; Holley, J.C.

1980-05-09T23:59:59.000Z

226

On the Wind Power Input to the Ocean General Circulation  

E-Print Network [OSTI]

The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

Zhai, Xiaoming

227

The biogeochemistry and residual mean circulation of the southern ocean  

E-Print Network [OSTI]

I develop conceptual models of the biogeochemistry and physical circulation of the Southern Ocean in order to study the air-sea fluxes of trace gases and biological productivity and their potential changes over ...

Ito, Takamitsu, 1976-

2005-01-01T23:59:59.000Z

228

Improving Heating System Operations Using Water Re-Circulation  

E-Print Network [OSTI]

In order to solve the imbalance problem of a heating system, brought about by consumer demand and regulation, and save the electricity energy consumed by a circulation pump, a water mixing and pressure difference control heating system is proposed...

Li, F.; Han, J.

2006-01-01T23:59:59.000Z

229

SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1)  

E-Print Network [OSTI]

of autonomous subsurface profiling to include oxygen and turbulence profiling, and implementation of local of subsurface circulation in the wind-driven gyres (section 2), and (2) ventilation/upwelling processes

Talley, Lynne D.

230

Gas phase hydrodynamics inside a circulating fluidized bed  

E-Print Network [OSTI]

Circulating Fluidized Beds (CFB's) offer many advantages over traditional pulverized coal burners in the power generation industry. They operate at lower temperatures, have better environmental emissions and better fuel ...

Moran, James C. (James Christopher)

2001-01-01T23:59:59.000Z

231

atlantic thermohaline circulation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pacific at least as far as the paleolocation of Fe-Mn Crust CLD01 (5N Thomas, Debbie 235 Thermohaline circulation induced by bottom friction in sloping-boundary basins...

232

Buoyancy-driven circulation in the Red Sea  

E-Print Network [OSTI]

This thesis explores the buoyancy-driven circulation in the Red Sea, using a combination of observations, as well as numerical modeling and analytical method. The first part of the thesis investigates the formation mechanism ...

Zhai, Ping, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

233

Research in lost circulation control for geothermal wells  

SciTech Connect (OSTI)

This paper reviews recent progress at Sandia National Laboratories in the area of lost circulation control for geothermal wells. The Lost Circulation Program has three major elements: (1) Detection and characterization of loss zones, (2) Development of new techniques and materials for control of loss zones, and (3) Integration of the first two items for wellsite application. Most of our work to date has been in the area of developing new techniques and materials. We report here on progress that has been made in the past two years in the development of new, pumpable cementitious muds, in situ mixing and placement of polyurethane foams, and fundamental analysis of and materials development for particulate lost circulation materials. Plans for work in the area of zone detection and characterization, including development of a transient, lost circulation hydraulics simulator and field zone characterization using an advanced wellbore televiewer, are discussed.

Ortega, A.; Loeppke, G.E.; Givler, R.C.

1987-01-01T23:59:59.000Z

234

The decadal mean ocean circulation and Sverdrup balance  

E-Print Network [OSTI]

Elementary Sverdrup balance is tested in the context of the time-average of a 16-year duration time-varying ocean circulation estimate employing the great majority of global-scale data available between 1992 and 2007. The ...

Wunsch, Carl

235

A frequency domain finite element model for tidal circulation  

E-Print Network [OSTI]

A highly efficient finite element model has been developed for the numerical prediction of depth average circulation within small scale embayments which are often characterized by irregular boundaries and bottom topography.

Westerink, Joannes J.

1985-01-01T23:59:59.000Z

236

Unique Challenges Accompany Thick-Shell CdSe/nCdS (n > 10) Nanocrystal Synthesis  

SciTech Connect (OSTI)

Thick-shell CdSe/nCdS (n {ge} 10) nanocrystals were recently reported that show remarkably suppressed fluorescence intermittency or 'blinking' at the single-particle level as well as slow rates of Auger decay. Unfortunately, whereas CdSe/nCdS nanocrystal synthesis is well-developed up to n {le} 6 CdS monolayers (MLs), reproducible syntheses for n {ge} 10 MLs are less understood. Known procedures sometimes result in homogeneous CdS nucleation instead of heterogeneous, epitaxial CdS nucleation on CdSe, leading to broad and multimodal particle size distributions. Critically, obtained core/shell sizes are often below those desired. This article describes synthetic conditions specific to thick-shell growth (n {ge} 10 and n {ge} 20 MLs) on both small (sub2 nm) and large (>4.5 nm) CdSe cores. We find added secondary amine and low concentration of CdSe cores and molecular precursors give desired core/shell sizes. Amine-induced, partial etching of CdSe cores results in apparent shell-thicknesses slightly beyond those desired, especially for very-thick shells (n {ge} 20 MLs). Thermal ripening and fast precursor injection lead to undesired homogeneous CdS nucleation and incomplete shell growth. Core/shells derived from small CdSe (1.9 nm) have longer PL lifetimes and more pronounced blinking at single-particle level compared with those derived from large CdSe (4.7 nm). We expect our new synthetic approach will lead to a larger throughput of these materials, increasing their availability for fundamental studies and applications.

Guo, Y; Marchuk, K; Abraham, R; Sampat, S; Abraham, R.; Fang, N; Malko, AV; Vela, J

2011-12-23T23:59:59.000Z

237

On the circulation and stratification of the Weddell Gyre  

E-Print Network [OSTI]

ON THE CIRCULATION AND STRATIFICATION OF THE WEDDELL GYRE A Thesis by ALEIANDRO H. ORSI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1990 Major Subject: Oceanography ON THE CIRCULATION AND STRATIFICATION OF THE WEDDELL GYRE A Thesis by ALE JANDRO H. ORSI Approved as to style and content by: Worth D. No in, Jr. (Chair of Committee) Thomas Whitworth III (Member...

Orsi, Alejandro H.

1990-01-01T23:59:59.000Z

238

Kick circulation analysis for extended reach and horizontal wells  

E-Print Network [OSTI]

KICK CIRCULATION ANALYSIS FOR EXTENDED-REACH AND HORIZONTAL WELLS A Thesis by MAXIMILIAN M. LONG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2004 Major Subject: Petroleum Engineering KICK CIRCULATION ANALYSIS FOR EXTENDED-REACH AND HORIZONTAL WELLS A Thesis by MAXIMILIAN M. LONG Submitted...

Long, Maximilian Mark

2005-02-17T23:59:59.000Z

239

Nuclear reactor construction with bottom supported reactor vessel  

DOE Patents [OSTI]

An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

1987-01-01T23:59:59.000Z

240

Advanced Combustion Modeling with STAR-CD using Transient Flemelet...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Presentation...

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Spherical torus fusion reactor  

DOE Patents [OSTI]

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

242

Nuclear reactor safety device  

DOE Patents [OSTI]

A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

Hutter, E.

1983-08-15T23:59:59.000Z

243

Fusion reactor pumped laser  

DOE Patents [OSTI]

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

244

Investigation of Junction Properties of CdS/CdTe Solar Cells and their Correlation to Device Properties (Presentation)  

SciTech Connect (OSTI)

The objective of the Junction Studies are: (1) understand the nature of the junction in the CdTe/CdS device; (2) correlate the device fabrication parameters to the junction formation; and (3) develop a self consistent device model to explain the device properties. Detailed analysis of CdS/CdTe and SnO{sub 2}/CdTe devices prepared using CSS CdTe is discussed.

Dhere, R. G.; Zhang, Y.; Romero, M. J.; Asher, S. E.; Young, M.; To, B.; Noufi, R.; Gessert, T. A.

2008-05-01T23:59:59.000Z

245

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

246

Recycling of CdTe photovoltaic waste  

DOE Patents [OSTI]

A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

1999-04-27T23:59:59.000Z

247

Recycling of CdTe photovoltaic waste  

DOE Patents [OSTI]

A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

1999-04-27T23:59:59.000Z

248

Thermionic Reactor Design Studies  

SciTech Connect (OSTI)

During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic losses in the electrodes of full-core-height diodes. Moreover, placing the fuel on the outside of the diode makes possible reactors with much higher fuel volume fractions, which enable power-flattened fast reactors scalable to very low power levels without the need for life-limiting hydride moderators or the use of efficiency-limiting driver fuel. In addition, with the fuel on the outside its swelling does not increase the emitter diameter or reduce the interelectrode gap. This should permit long lifetimes even with closer spacings, which can significantly improve the system efficiences. This was confirmed by coupled neutronic, thermal, thermionic, and electrical system analyses - some of which are presented in this paper - and by subsequent experiments. A companion paper presented next describes the fabrication and testing of full-scale converter elements, both fueled and unfueled, and summarizes the test results obtained. There is a duplicate copy in the file.

Schock, Alfred

1994-06-01T23:59:59.000Z

249

CdCl{sub 2} treatment related diffusion phenomena in Cd{sub 1?x}Zn{sub x}S/CdTe solar cells  

SciTech Connect (OSTI)

Utilisation of wide bandgap Cd{sub 1?x}Zn{sub x}S alloys as an alternative to the CdS window layer is an attractive route to enhance the performance of CdTe thin film solar cells. For successful implementation, however, it is vital to control the composition and properties of Cd{sub 1?x}Zn{sub x}S through device fabrication processes involving the relatively high-temperature CdTe deposition and CdCl{sub 2} activation steps. In this study, cross-sectional scanning transmission electron microscopy and depth profiling methods were employed to investigate chemical and structural changes in CdTe/Cd{sub 1?x}Zn{sub x}S/CdS superstrate device structures deposited on an ITO/boro-aluminosilicate substrate. Comparison of three devices in different states of completion—fully processed (CdCl{sub 2} activated), annealed only (without CdCl{sub 2} activation), and a control (without CdCl{sub 2} activation or anneal)—revealed cation diffusion phenomena within the window layer, their effects closely coupled to the CdCl{sub 2} treatment. As a result, the initial Cd{sub 1?x}Zn{sub x}S/CdS bilayer structure was observed to unify into a single Cd{sub 1?x}Zn{sub x}S layer with an increased Cd/Zn atomic ratio; these changes defining the properties and performance of the Cd{sub 1?x}Zn{sub x}S/CdTe device.

Kartopu, G., E-mail: giray.kartopu@glyndwr.ac.uk; Clayton, A. J.; Barrioz, V.; Lamb, D. A.; Irvine, S. J. C. [Centre for Solar Energy Research (CSER), Glynd?r University, OpTIC, St. Asaph Business Park, St. Asaph LL17 0JD (United Kingdom); Taylor, A. A. [Physics Department, Durham University, Durham DH1 3LE (United Kingdom)

2014-03-14T23:59:59.000Z

250

Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two  

SciTech Connect (OSTI)

This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future.

Glasstone, S.; Sesonske, A.

1994-12-31T23:59:59.000Z

251

Designing Reactors to Facilitate Decommissioning  

SciTech Connect (OSTI)

Critics of nuclear power often cite issues with tail-end-of-the-fuel-cycle activities as reasons to oppose the building of new reactors. In fact, waste disposal and the decommissioning of large nuclear reactors have proven more challenging than anticipated. In the early days of the nuclear power industry the design and operation of various reactor systems was given a great deal of attention. Little effort, however, was expended on end-of-the-cycle activities, such as decommissioning and disposal of wastes. As early power and test reactors have been decommissioned difficulties with end-of-the-fuel-cycle activities have become evident. Even the small test reactors common at the INEEL were not designed to facilitate their eventual decontamination, decommissioning, and dismantlement. The results are that decommissioning of these facilities is expensive, time consuming, relatively hazardous, and generates large volumes of waste. This situation clearly supports critics concerns about building a new generation of power reactors.

Richard H. Meservey

2006-06-01T23:59:59.000Z

252

Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113  

SciTech Connect (OSTI)

A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

Rusev, Gencho Y. [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

253

CD54AC08, CD74AC08 QUADRUPLE 2-INPUT POSITIVE-AND GATES  

E-Print Network [OSTI]

SOIC M Tube CD74AC08M AC08M­55°C to 125°C SOIC ­ M Tape and reel CD74AC08M96 AC08M CDIP ­ F Tube CD54AC-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

254

CD54AC02, CD74AC02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES  

E-Print Network [OSTI]

to 125°C SOIC ­ M Tape and reel CD74AC02M96 AC02M CDIP ­ F Tube CD54AC02F3A CD54AC02F3A Package drawings-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

255

CD54AC32, CD74AC32 QUADRUPLE 2-INPUT POSITIVE-OR GATES  

E-Print Network [OSTI]

Tape and reel CD74AC32M96 AC32M CDIP ­ F Tube CD54AC32F3A CD54AC32F3A Package drawings, standard-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

256

CD54ACT00, CD74ACT00 QUADRUPLE 2-INPUT POSITIVE-NAND GATES  

E-Print Network [OSTI]

CD74ACT00E 55°C to 125°C SOIC M Tube CD74ACT00M ACT00M­55°C to 125°C SOIC ­ M Tape and reel CD74ACT00-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance

Kretchmar, R. Matthew

257

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report  

SciTech Connect (OSTI)

The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

Mac Donald, Philip Elsworth

2002-06-01T23:59:59.000Z

258

Fabrication of ultra thin CdS/CdTe solar cells by magnetron sputtering.  

E-Print Network [OSTI]

?? CdTe is a nearly perfect absorber material for second generation polycrystalline solar cells because the bandgap closely matches the peak of the solar spectrum,… (more)

Plotnikov, Victor

2009-01-01T23:59:59.000Z

259

Progress Update: Reactor Disassembly Grouting  

SciTech Connect (OSTI)

Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

Cody, Tom

2010-01-01T23:59:59.000Z

260

Neutrino Oscillation Studies with Reactors  

E-Print Network [OSTI]

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Petr Vogel; Liangjian Wen; Chao Zhang

2015-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Neutrino Oscillation Studies with Reactors  

E-Print Network [OSTI]

Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

Vogel, Petr; Zhang, Chao

2015-01-01T23:59:59.000Z

262

Thermonuclear Reflect AB-Reactor  

E-Print Network [OSTI]

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

Alexander Bolonkin

2008-03-26T23:59:59.000Z

263

Light Water Reactor Sustainability Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydraulics software RELAP-7 (which is under development in the Light Water Reactor Sustainability LWRS Program). A novel interaction between the probabilistic part (i.e., RAVEN)...

264

Light Water Reactor Sustainability Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30-35, August 2012. Clayton, D. A. and M. S. Hileman, 2012, Light Water Reactor Sustainability Non-Destructive Evaluation for Concrete Research and Development Roadmap, ORNLTM-...

265

Progress Update: Reactor Disassembly Grouting  

ScienceCinema (OSTI)

Grouting the P&R reactors in order to remove these basins as an environmental threat. This will end the Cold War legacy and end the environmental footprint.

Cody, Tom

2012-06-14T23:59:59.000Z

266

Two-phase flow instability and dryout in parallel channels in natural circulation  

SciTech Connect (OSTI)

The unique feature of parallel channel flows is that the pressure drop or driving head for the flow is maintained constant across any given channel by the flow in all the others, or by having a large downcomer or bypass in a natural circulation loop. This boundary condition is common in all heat exchangers, reactor cores and boilers, it is well known that the two-phase flow in parallel channels can exhibit both so-called static and dynamic instability. This leads to the question of the separability of the flow and pressure drop boundary conditions in the study of stability and dryout. For the areas of practical interest, the flow can be considered as incompressible. The dynamic instability is characterized by density (kinematic) or continuity waves, and the static instability by inertial (pressure drop) or manometric escalations. The static has been considered to be the zero-frequency or lowest mode of the dynamic case. We briefly review the status of the existing literature on both parallel channel static and dynamic instability, and the latest developments in theory and experiment. The difference between the two derivations lies in the retention of the time-dependent terms in the conservation equations. The effects and impact of design options are also discussed. Since dryout in parallel systems follows instability, it has been traditional to determine the dryout power for a parallel channel by testing a single channel with a given (inlet) flow boundary condition without particular regard for the pressure drop. Thus all modern dryout correlations are based on constant or fixed flow tests, a so-called hard inlet, and subchannel and multiple bundle effects are corrected for separately. We review the thinking that lead to this approach, and suggest that for all multiple channel and natural circulation systems close attention should be paid to the actual (untested) pressure drop conditions. A conceptual formulation is suggested as a basis for discussion.

Duffey, R.B.; Rohatgi, U.S. [Brookhaven National Lab., Upton, NY (United States); Hughes, E.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1993-06-01T23:59:59.000Z

267

Reactor coolant pump flywheel  

DOE Patents [OSTI]

A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

2013-11-26T23:59:59.000Z

268

Reactor refueling containment system  

DOE Patents [OSTI]

A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

Gillett, J.E.; Meuschke, R.E.

1995-05-02T23:59:59.000Z

269

Reactor refueling containment system  

DOE Patents [OSTI]

A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

270

Nuclear reactor control assembly  

SciTech Connect (OSTI)

This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other.

Negron, S.B.

1991-06-11T23:59:59.000Z

271

Nuclear reactor control apparatus  

SciTech Connect (OSTI)

Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additonal magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

Sridhar, B.N.

1981-08-28T23:59:59.000Z

272

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

Scott, C.D.

1993-12-14T23:59:59.000Z

273

Biparticle fluidized bed reactor  

DOE Patents [OSTI]

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

274

Nuclear reactor control apparatus  

DOE Patents [OSTI]

Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-11-01T23:59:59.000Z

275

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect (OSTI)

The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

Not Available

1991-04-01T23:59:59.000Z

276

Modular Pebble Bed Reactor High Temperature Gas Reactor  

E-Print Network [OSTI]

Modular Pebble Bed Reactor High Temperature Gas Reactor Andrew C Kadak Massachusetts Institute For 1150 MW Combined Heat and Power Station Oil Refinery Hydrogen Production Desalinization Plant VHTR/Graphite Discrimination system Damaged Sphere ContainerGraphiteReturn FuelReturn Fresh Fuel Container Spent Fuel Tank #12

277

Optimal control of CPR procedure using hemodynamic circulation model  

DOE Patents [OSTI]

A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.

Lenhart, Suzanne M. (Knoxville, TN); Protopopescu, Vladimir A. (Knoxville, TN); Jung, Eunok (Seoul, KR)

2007-12-25T23:59:59.000Z

278

Methods of forming a fluidized bed of circulating particles  

DOE Patents [OSTI]

There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

Marshall, Douglas W. (Blackfoot, ID)

2011-05-24T23:59:59.000Z

279

Fast Reactor Fuel Type and Reactor Safety Performance  

SciTech Connect (OSTI)

Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

R. Wigeland; J. Cahalan

2009-09-01T23:59:59.000Z

280

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY  

E-Print Network [OSTI]

STRUCTURAL AND CHEMICAL STUDIES ON CdTe/CdS THIN FILM SOLAR CELLS WITH ANALYTICAL TRANSMISSION, A. N. Tiwari Thin Film Physics Group, Laboratory for Solid State Physics, Technopark ETH-Building, Technoparkstr. 1, CH-8005 Zurich, Switzerland ABSTRACT: CdTe/CdS thin ÂŁlm solar cells have been grown by closed

Romeo, Alessandro

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reversible Modification of CdSe-CdS/ZnS Quantum Dot Fluorescence by Surrounding Ca2+  

E-Print Network [OSTI]

Reversible Modification of CdSe-CdS/ZnS Quantum Dot Fluorescence by Surrounding Ca2+ Ions Li Li (3-MPA) coated CdSe-CdS/ZnS core-multishell QDs when free Ca2+ ions were added to and subsequently removed from the QD solution. It was found that QD fluorescence intensity was reduced when Ca2+ ions were

Haviland, David

282

Gaseous reactor control system  

SciTech Connect (OSTI)

This paper describes a nuclear reactor control system for controlling the reactivity of the core of a nuclear reactor. It includes a control gas having a high neutron cross-section; a first tank containing a first supply of the control gas; a first conduit providing a first fluid passage extending into the core, the first conduit being operatively connected to communicate with the first tank; a first valve operatively connected to regulate the flow of the control gas between the first tank and the first conduit; a second conduit concentrically disposed around the first conduit such that a second fluid passage is defined between the outer surface of the first conduit and the inner surface of the second conduit; a second tank containing a second supply of the control gas, the second tank being operatively connected to communicate with the second fluid passage; a second supply valve operatively connected to regulate the flow of the control gas between the second tank and the second fluid passage.

Abdel-Khalik, S.

1991-09-03T23:59:59.000Z

283

Overview of the US stellarator reactor study  

SciTech Connect (OSTI)

This study, which uses a cost-minimization code that incorporates the ARIES costing and reactor component models with a I-D energy transport calculation, shows that a torsatron reactor could be competitive with a tokamak reactor.

Lyon, J.F. [Oak Ridge National Lab., TN (United States); Gulec, K. [Univ. of Tennessee, Knoxville, TN (United States); Miller, R.L. [Los Alamos National Lab., NM (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States)

1993-12-31T23:59:59.000Z

284

Feasibility of natural circulation heat transport in the ENHS.  

SciTech Connect (OSTI)

An analysis has been carried out of natural circulation thermal hydraulics in both the primary and intermediate circuits of the Encapsulated Nuclear Heat Source (ENHS). It is established that natural circulation enhanced by gas injection into the primary coolant above the core, or the intermediate coolant above the heat exchange zone, is effective in transporting the nominal core power to the steam generators without the attainment of excessive system temperatures. Uncertainties in thermophysical properties and wall friction have a relatively small effect upon the calculated best estimate primary and intermediate coolant system temperature rises.

Sienicki, J.J.

2002-02-14T23:59:59.000Z

285

Feasibility of Natural Circulation Heat Transport in the ENHS  

SciTech Connect (OSTI)

An analysis has been carried out of natural circulation thermal hydraulics in both the primary and intermediate circuits of the Encapsulated Nuclear Heat Source (ENHS). It is established that natural circulation enhanced by gas injection into the primary coolant above the core, or the intermediate coolant above the heat exchange zone, is effective in transporting the nominal core power to the steam generators without the attainment of excessive system temperatures. Uncertainties in thermophysical properties and wall friction have a relatively small effect upon the calculated best estimate primary and intermediate coolant system temperature rises. (authors)

Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL 60439 (United States)

2002-07-01T23:59:59.000Z

286

Refractory experience in circulating fluidized bed combustors, Task 7  

SciTech Connect (OSTI)

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

287

Reactor Cost Analysis Brian James  

E-Print Network [OSTI]

Reactor Cost Analysis Brian James Directed Technologies, Inc. 6-7 November 2007 This presentation specification & optimization · Capital cost estimation · Projected hydrogen $/kg #12;Directed Technologies, Inc/WGS Membrane Reactor OTM/ Water-Splitting ANL With WGS #12;Directed Technologies, Inc. 6-7 November 2007 BILIWG

288

Solvent refined coal reactor quench system  

DOE Patents [OSTI]

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

Thorogood, Robert M. (Macungie, PA)

1983-01-01T23:59:59.000Z

289

Solvent refined coal reactor quench system  

DOE Patents [OSTI]

There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

Thorogood, R.M.

1983-11-08T23:59:59.000Z

290

Current Transients in CdS/CdTe Solar Cells Alan Fahrenbruch  

E-Print Network [OSTI]

a red (630 nm) LED with an output equivalent to 1 sun for light data. Red (630 nm) and blue (470 nmCurrent Transients in CdS/CdTe Solar Cells Alan Fahrenbruch Colorado State University Department is completely reversible, with a decay to the DS state. The current/time data were taken using an HP 7090A A

Sites, James R.

291

Investigation of CdS Nanowires and Planar Films for Enhanced Performance as Window Layers in CdS-CdTe Solar Cell Devices.  

E-Print Network [OSTI]

??Cadmium sulfide (CdS) and cadmium telluride (CdTe) are two leading semiconductor materials used in the fabrication of thin film solar cells of relatively high power… (more)

Chen, Jianhao

2013-01-01T23:59:59.000Z

292

CdTe AND CdTe : Hg ALLOYS CRYSTAL GROWTH USING STOICHIOMETRIC AND OFF-STOICHIOMETRIC  

E-Print Network [OSTI]

123 CdTe AND CdTe : Hg ALLOYS CRYSTAL GROWTH USING STOICHIOMETRIC AND OFF-STOICHIOMETRIC ZONE.-Briand, 92190 Meudon/Bellevue, France Résumé. 2014 En vue de la croissance de cristaux de CdTe de haute cristaux semi-isolants Cd0, 9Hg0, 1Te. Abstract. 2014 Some aspects of the thermodynamic state of CdTe

Paris-Sud XI, Université de

293

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells and durabilityand durability  

E-Print Network [OSTI]

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells PV coatings based on CdTe. ...for transparent window PV:...for transparent window PV: , p g · The X26 for ultrathin CdTe · X26 PV window coatings (250 500 nm of CdTe) are attractive very low cost and· X26 PV window

Rollins, Andrew M.

294

Fast reactors and nuclear nonproliferation  

SciTech Connect (OSTI)

Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

Avrorin, E.N. [Russian Federal Nuclear Center - Zababakhin Institute of Applied Physics, Snezhinsk (Russian Federation); Rachkov, V.I.; Chebeskov, A.N. [State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering, Bondarenko Square, 1, Obninsk, Kaluga region, 249033 (Russian Federation)

2013-07-01T23:59:59.000Z

295

Thermal-hydraulic development a small, simplified, proliferation-resistant reactor.  

SciTech Connect (OSTI)

This paper addresses thermal-hydraulics related criteria and preliminary concepts for a small (300 MWt), proliferation-resistant, liquid-metal-cooled reactor system. A main objective is to assess what extent of simplification is achievable in the concepts with the primary purpose of regaining economic competitiveness. The approach investigated features lead-bismuth eutectic (LBE) and a low power density core for ultra-long core lifetime (goal 15 years) with cartridge core replacement at end of life. This potentially introduces extensive simplifications resulting in capital cost and operating cost savings including: (1) compact, modular, pool-type configuration for factory fabrication, (2) 100+% natural circulation heat transport with the possibility of eliminating the main coolant pumps, (3) steam generator modules immersed directly in the primary coolant pool for elimination of the intermediate heat transport system, and (4) elimination of on-site fuel handling and storage provisions including rotating plug. Stage 1 natural circulation model and results are presented. Results suggest that 100+% natural circulation heat transport is readily achievable using LBE coolant and the long-life cartridge core approach; moreover, it is achievable in a compact pool configuration considerably smaller than PRISM A (for overland transportability) and with peak cladding temperature within the existing database range for ferritic steel with oxide layer surface passivation. Stage 2 analysis follows iteration with core designers. Other thermal hydraulic investigations are underway addressing passive, auxiliary heat removal by air cooling of the reactor vessel and the effects of steam generator tube rupture.

Farmer, M. T.; Hill, D. J.; Sienicki, J. J.; Spencer, B. W.; Wade, D. C.

1999-07-02T23:59:59.000Z

296

MOOSE simulating nuclear reactor CRUD buildup  

SciTech Connect (OSTI)

This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

None

2014-02-06T23:59:59.000Z

297

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network [OSTI]

metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

Olander, Donald R.

2013-01-01T23:59:59.000Z

298

MOOSE simulating nuclear reactor CRUD buildup  

ScienceCinema (OSTI)

This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

None

2014-07-21T23:59:59.000Z

299

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM: INTRODUCTION The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1...

300

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network [OSTI]

pebble bed reactor,” Nuclear Engineering and Design, vol.the AVR reactor,” Nuclear Engineering and Design, vol. 121,Operating Experience,” Nuclear Engineering and Design, vol.

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

Wei-Ping Pan; Yan Cao; John Smith

2007-03-31T23:59:59.000Z

302

Automatic reactor power control for a pressurized water reactor  

SciTech Connect (OSTI)

An automatic reactor power control system is presented for a pressurized water reactor (PWR). The associated reactor control strategy is called mode K.' The new system implements a heavy-worth bank dedicated to axial shape control, independent of the existing regulating banks. The heavy bank provides a monotonic relationship between its motion and the axial shape change, which allows automatic control of the axial power distribution. Thus, the mode K enables precise regulation of both the reactivity and the power distribution, by using double closed-loop control of the reactor coolant temperature and the axial power difference. Automatic reactor power control permits the nuclear power plant to accommodate the load-follow operations, including frequency control, to respond to the grid requirements. The mode K reactor control concepts were tested using simulation responses of a Korean standardized 1,000-MW (electric) PWR. The simulation results illustrate that the mode K would be a practical reactor power control strategy for the increased automation of nuclear plants.

Jungin Choi (Kyungwon Univ. (Korea, Republic of)); Yungjoon Hah (Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)); Unchul Lee (Seoul National Univ. (Korea, Republic of))

1993-05-01T23:59:59.000Z

303

Lost circulation in geothermal wells: survey and evaluation of industry experience  

SciTech Connect (OSTI)

Lost circulation during drilling and completion of geothermal wells can be a severe problem, particularly in naturally fractured and/or vugular formations. Geothermal and petroleum operators, drilling service companies, and independent consultants were interviewed to assess the lost circulation problem in geothermal wells and to determine general practices for preventing lost circulation. This report documents the results and conclusions from the interviews and presents recommendations for needed research. In addition, a survey was also made of the lost circulation literature, of currently available lost circulation materials, and of existing lost circulation test equipment.

Goodman, M.A.

1981-07-01T23:59:59.000Z

304

Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report  

SciTech Connect (OSTI)

A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

Lewis, M.R.

2000-01-11T23:59:59.000Z

305

Analysis of nuclear reactor instability phenomena. Progress report  

SciTech Connect (OSTI)

The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

Lahey, R.T. Jr.

1993-03-01T23:59:59.000Z

306

Nuclear reactor control apparatus  

DOE Patents [OSTI]

Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

Sridhar, Bettadapur N. (Cupertino, CA)

1983-10-25T23:59:59.000Z

307

Nuclear reactor control  

DOE Patents [OSTI]

1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

Cawley, William E. (Phoenix, AZ); Warnick, Robert F. (Pasco, WA)

1982-01-01T23:59:59.000Z

308

Nuclear reactor control  

SciTech Connect (OSTI)

In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

Cawley, W.E.; Warnick, R.F.

1982-03-30T23:59:59.000Z

309

RADIOGENIC ISOTOPES: TRACERS OF PAST OCEAN CIRCULATION AND EROSIONAL INPUT  

E-Print Network [OSTI]

in the ocean has varied as a function of changes in paleocircu- lation, source provenances, style and intensity-established paleoceano- graphic tracers such as carbon isotopes. INDEX TERMS: 1040 Geochemistry: Isotopic composition Atlantic Deep Water (NADW) according to latest estimates based on results of the World Ocean Circulation

Jellinek, Mark

310

Integration of Different Wave Forcing Formulations with Nearshore Circulation Models  

E-Print Network [OSTI]

Wave-induced circulation in general coastal environments is simulated by coupling two widely-used finite-element models, namely, a refraction-diffraction-reflection model based on the elliptic mild-slope equation, and a two-dimensional (depth...

Sharma, Abhishek

2012-02-14T23:59:59.000Z

311

Scattering past a cylinder with weak circulation August 25, 2005  

E-Print Network [OSTI]

is the two dimensional velocity vector of the fluid, and h is the density of the gas, or the height as a function of the velocity potential . 158 #12;3 Small amplitude waves 3.1 Time averaged equations WhenScattering past a cylinder with weak circulation John Rudge August 25, 2005 1 Introduction Wave

Rudge, John

312

Innovative Cooling Design Traditional data centers circulate mechanically  

E-Print Network [OSTI]

be circulated through piping under walkways to keep pedestrian areas free of dangerous ice and snow in cold and lower costs for important technologies including solar photovoltaics, wind energy, energy storage and uncertainty that are often barriers to industry adopting new and innovative technologies, thereby accelerating

313

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect (OSTI)

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

314

Climate change impact on the Mediterranean Sea circulation  

E-Print Network [OSTI]

Climate change impact on the Mediterranean Sea circulation: a regional modelling approach Samuel number of studies about the stability of the THC in climate change scenario. A large range of climate Sea (Artegiani et al., 1997) which is the main source of the Eastern Mediterranean Deep Water. Past-climate

Ribes, Aurélien

315

Mercury exosphere I. Global circulation model of its sodium component  

E-Print Network [OSTI]

Mercury exosphere I. Global circulation model of its sodium component Francois Leblanc a,*, R 2010 Accepted 27 April 2010 Available online 5 May 2010 Keywords: Mercury, Atmosphere Aeronomy a b s t r a c t Our understanding of Mercury's sodium exosphere has improved considerably in the last 5

Johnson, Robert E.

316

Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One  

SciTech Connect (OSTI)

This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials.

Glasstone, S.; Sesonske, A.

1994-12-31T23:59:59.000Z

317

University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor  

SciTech Connect (OSTI)

The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

Eric C. Woolstenhulme; Dana M. Hewit

2008-09-01T23:59:59.000Z

318

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect (OSTI)

This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

Not Available

1993-11-01T23:59:59.000Z

319

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

SciTech Connect (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

320

Kinetics of Cd Release from Some Contaminated Calcareous Soils  

SciTech Connect (OSTI)

Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Experimental Studies of NGNP Reactor Cavity Cooling System With Water  

SciTech Connect (OSTI)

This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

Michael Corradini; Mark Anderson; Yassin Hassan; Akira Tokuhiro

2013-01-16T23:59:59.000Z

322

Advanced Core Design And Fuel Management For Pebble-Bed Reactors  

SciTech Connect (OSTI)

A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

2004-10-01T23:59:59.000Z

323

American Nuclear Society 2013 Student Conference Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network [OSTI]

American Nuclear Society 2013 Student Conference ­ Massachusetts Institute of Technology Boston, Massachusetts, USA, April 4-6, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013) A DETECTOR. Troy, NY 12180 mcderb@rpi.edu 1. INTRODUCTION Reactor design and criticality safety calculations

Danon, Yaron

324

Reactor physics design of supercritical CO?-cooled fast reactors  

E-Print Network [OSTI]

Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

Pope, Michael A. (Michael Alexander)

2004-01-01T23:59:59.000Z

325

Reactor protection system design alternatives for sodium fast reactors  

E-Print Network [OSTI]

Historically, unprotected transients have been viewed as design basis events that can significantly challenge sodium-cooled fast reactors. The perceived potential consequences of a severe unprotected transient in a ...

DeWitte, Jacob D. (Jacob Dominic)

2011-01-01T23:59:59.000Z

326

United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support  

SciTech Connect (OSTI)

The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

Douglas Morrell

2011-03-01T23:59:59.000Z

327

Quantification and Modeling of Tripartite CD2-, CD58FC Chimera (Alefacept)-, and CD16-mediated Cell Adhesion*  

E-Print Network [OSTI]

with human IgG1 Fc. Alefacept mediates adhesion by bridging CD2 on T cells to activating Fc receptors- dimensional and three-dimensional parameters can be deter- mined by data fitting. Alefacept competitively) portion is thought to link to immune effector mechanisms to destroy cancer cells and or over

Vale, Ronald D.

328

Nuclear reactor downcomer flow deflector  

DOE Patents [OSTI]

A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

2011-02-15T23:59:59.000Z

329

Closed Brayton cycle power conversion systems for nuclear reactors :  

SciTech Connect (OSTI)

This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

2006-04-01T23:59:59.000Z

330

DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JANUARY 1, 2002 THROUGH MARCH 31, 2002  

SciTech Connect (OSTI)

Direct energy conversion is the only potential means for producing electrical energy from a fission reactor without the Carnot efficiency limitations. This project was undertaken by Sandia National Laboratories, Los Alamos National Laboratories, The University of Florida, Texas A&M University and General Atomics to explore the possibilities of direct energy conversion. Other means of producing electrical energy from a fission reactor, without any moving parts, are also within the statement of proposed work. This report documents the efforts of General Atomics. Sandia National Laboratories, the lead laboratory, provides overall project reporting and documentation. The highlights of this reporting period are: (1) Cooling of the vapor core reactor and the MHD generator was incorporated into the Vapor Core Reactor model using standard heat transfer calculation methods. (2) Fission product removal, previously modeled as independent systems for each class of fission product, was incorporated into the overall fuel recycle loop of the Vapor Core Reactor. The model showed that the circulating activity levels are quite low. (3) Material distribution calculations were made for the ''pom-pom'' style cathode for the Fission Electric Cell. Use of a pom-pom cathode will eliminate the problem of hoop stress in the thin spherical cathode caused by the electric field.

L.C. BROWN

2002-03-31T23:59:59.000Z

331

Passive Safety of the STAR-LM HLMC Natural Convection Reactor  

SciTech Connect (OSTI)

The STAR-LM 300 to 400 MWt class modular, factory fabricated, fully transportable, proliferation resistant, autonomous, reactor system achieves passive safety by taking advantage of the intrinsic benefits of inert lead-bismuth eutectic heavy liquid metal coolant, 100+% natural circulation heat transport, a fast neutron spectrum core utilizing high thermal conductivity transuranic nitride fuel, redundant passive air cooling of the outside of the guard/containment vessel driven by natural circulation, and seismic isolation where required by site conditions. Postulated loss-of-heat sink without scram, overcooling without scram, and unprotected transient overpower accidents are analyzed for the 300 MWt STAR-LM design using a coupled thermal hydraulics-neutron kinetics plant dynamics analysis computer code. In all cases, STAR-LM is calculated to exhibit passive safety with peak cladding and coolant temperatures remaining within the existing database for lead-bismuth eutectic coolant and ferritic steel core materials. (authors)

Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL 60439 (United States); Petkov, Plamen V. [University of Illinois at Urbana Champaign, Urbana, IL 61801 (United States)

2002-07-01T23:59:59.000Z

332

Seasonal Mean Circulation on the Irish Shelf { A Model-Generated Climatology  

E-Print Network [OSTI]

Seasonal Mean Circulation on the Irish Shelf { A Model-Generated Climatology Daniel R. Lynch and interpret the climatological mean circulation in these waters, with emphasis on the Irish Shelf

333

Journal of Climate How ocean circulation can decouple sea surface temperature from global radiative  

E-Print Network [OSTI]

Journal of Climate How ocean circulation can decouple sea surface temperature from global radiative net radiation. The positively- correlated regime is associated with increased Southern Ocean balance and sea surface height --Manuscript Draft-- Manuscript Number: Full Title: How ocean circulation

Gnanadesikan, Anand

334

Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling  

E-Print Network [OSTI]

This paper introduces the technology of re-circulation evaporative cooling (REC), which uses a portion of supply air as secondary air to make cool water used to indirectly cool outside air through a heat exchanger. The circulation volume...

Xiong, J.; Liu, Z.; Wang, C.; Chen, G.

2006-01-01T23:59:59.000Z

335

Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations  

E-Print Network [OSTI]

Many features of the general circulation of the atmosphere shift upward in response to warming in simulations of climate change with both general circulation models (GCMs) and cloud-system-resolving models. The importance ...

Singh, Martin Simran

336

Large scale oceanic circulation and fluxes of freshwater, heat, nutrients and oxygen  

E-Print Network [OSTI]

A new, global inversion is used to estimate the large scale oceanic circulation based on the World Ocean Circulation Experiment and Java Australia Dynamic Experiment hydrographic data. A linear inverse "box" model is used ...

Ganachaud, Alexandre Similien, 1970-

2000-01-01T23:59:59.000Z

337

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect (OSTI)

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

338

Unique features of space reactors  

SciTech Connect (OSTI)

Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K. 8 refs., 3 figs., 1 tab.

Buden, D.

1990-01-01T23:59:59.000Z

339

Nuclear Reactors and Technology; (USA)  

SciTech Connect (OSTI)

Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

Cason, D.L.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

340

Spectral shift reactor control method  

SciTech Connect (OSTI)

The method is described of closely controlling the reactor water coolant temperature of an operating spectral-shift nuclear reactor, the reactor comprising a core formed of fuel assemblies through which the reactor water coolant flows; different types of elongated elements operable to be controllably moved into and out of the core; one type of the elongated elements comprising control rods formed of neutron absorbing material and operable to decrease reactivity through neutron absorption when inserted into the core; another of the types of elongated elements comprising displacer rods formed of material which has a low absorption for neutrons and which have overall neutron-absorbing and moderating characteristics essentially not exceeding those of hollow tubular Zircaloy members with a filling zirconium oxide or aluminum oxide, the displacer rods operating to displace an equivalent volume of water coolant fluid from the core when inserted therein to decrease reactivity and to increase reactivity when moved from the core.

Impink, A.J. Jr.

1987-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Reactor core isolation cooling system  

DOE Patents [OSTI]

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

Cooke, F.E.

1992-12-08T23:59:59.000Z

342

University Reactor Matching Grants Program  

SciTech Connect (OSTI)

During the 2002 Fiscal year, funds from the DOE matching grant program, along with matching funds from the industrial sponsors, have been used to support research in the area of thermal-hydraulics. Both experimental and numerical research projects have been performed. Experimental research focused on two areas: (1) Identification of the root cause mechanism for axial offset anomaly in pressurized water reactors under prototypical reactor conditions, and (2) Fluid dynamic aspects of thin liquid film protection schemes for inertial fusion reactor chambers. Numerical research focused on two areas: (1) Multi-fluid modeling of both two-phase and two-component flows for steam conditioning and mist cooling applications, and (2) Modeling of bounded Rayleigh-Taylor instability with interfacial mass transfer and fluid injection through a porous wall simulating the ''wetted wall'' protection scheme in inertial fusion reactor chambers. Details of activities in these areas are given.

John Valentine; Farzad Rahnema; Said Abdel-Khalik

2003-02-14T23:59:59.000Z

343

Interfacial effects in fast reactors  

E-Print Network [OSTI]

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01T23:59:59.000Z

344

Teaching About Nature's Nuclear Reactors  

E-Print Network [OSTI]

Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

Herndon, J M

2005-01-01T23:59:59.000Z

345

Reactor core isolation cooling system  

DOE Patents [OSTI]

A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

Cooke, Franklin E. (San Jose, CA)

1992-01-01T23:59:59.000Z

346

Reactor physics project final report  

E-Print Network [OSTI]

This is the final report in an experimental and theoretical program to develop and apply single- and few-element methods for the determination of reactor lattice parameters. The period covered by the report is January 1, ...

Driscoll, Michael J.

1970-01-01T23:59:59.000Z

347

observation at CDF Dmitry Litvintsev (Fermilab CD)  

E-Print Network [OSTI]

b observation at CDF Dmitry Litvintsev (Fermilab CD) for CDF June 15, 2007 Special seminar #12 and plans q Conclusion June 15, 2007 Dmitry Litvintsev, Fermilab, CDF 2 #12;Introduction Happy to show, Fermilab, CDF 3 #12;Source of data: CDF II 3 ¡ ¡ ¢ £ ¤ total 2 ¢ ¡ ¢ £ ¤ on tape Analysis uses data

Quigg, Chris

348

The UNEP project CD4CDM Sustainable  

E-Print Network [OSTI]

The UNEP project CD4CDM CDM Sustainable Development Impacts #12;1 CDM Sustainable Development of Foreign Affairs Anne Olhoff Anil Markandya Kirsten Halsnaes Tim Taylor #12;2 CDM Sustainable Development Impacts UNEP Risø Centre on Energy, Climate and Sustainable Development Risø National Laboratory Roskilde

349

Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems: Annual and Final Report  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) contribution to the Nuclear Energy Research Initiative (NERI) project number 2002-005 was divided into reactor physics, and thermal-hydraulics and plant design. The research targeted credible physics and thermal-hydraulics models for a gas-cooled fast reactor, analyzing various fuel and in-core fuel cycle options to achieve a true breed and burn core, and performing a design basis Loss of Coolant Accident (LOCA) analysis on that design. For the physics analysis, a 1/8 core model was created using different enrichments and simulated equilibrium fuel loadings. The model was used to locate the hot spot of the reactor, and the peak to average energy deposition at that location. The model was also used to create contour plots of the flux and energy deposition over the volume of the reactor. The eigenvalue over time was evaluated using three different fuel configurations with the same core geometry. The breeding capabilities of this configuration were excellent for a 7% U-235 model and good in both a plutonium model and a 14% U-235 model. Changing the fuel composition from the Pu fuel which provided about 78% U-238 for breeding to the 14% U-235 fuel with about 86% U-238 slowed the rate of decrease in the eigenvalue a noticeable amount. Switching to the 7% U-235 fuel with about 93% U-238 showed an increase in the eigenvalue over time. For the thermal-hydraulic analysis, the reactor design used was the one forwarded by the MIT team. This reactor design uses helium coolant, a Brayton cycle, and has a thermal power of 600 MW. The core design parameters were supplied by MIT; however, the other key reactor components that were necessary for a plausible simulation of a LOCA were not defined. The thermal-hydraulic and plant design research concentrated on determining reasonable values for those undefined components. The LOCA simulation was intended to provide insights on the influence of the Reactor Cavity Cooling System (RCCS), the containment building, and a Decay Heat Removal System (DHRS) on the natural circulation heat transfer of the core's decay heat. A baseline case for natural circulation had to be established in order to truly understand the impact of the added safety systems. This baseline case did not include a DHRS, although the current MIT design does have a DHRS that features the highly efficient Printed Circuit Heat Exchangers (PCHEs). The initial LOCA analysis revealed that the RCCS was insufficient to maintain the reactor core below the fuel matrix decomposition temperature. A guard containment was added to the model in order to maintain a prescribed backpressure during the LOCA to enhance the natural circulation. The backpressure approach did provide satisfactory natural convection during the LOCA. The necessary backpressure was 1.8 MPa, which was not especially different from the values reported by other gas fast reactor researchers. However, as the model evolved to be more physically representative of a nuclear reactor, i.e., it included radial peaking factors, inlet plenum orificing, and the degradation of SiC thermal properties as a result of irradiation, the LOCA-induced fuel temperatures were not consistently below the decomposition limit.

Kevan D. Weaver; Theron Marshall; James Parry

2005-10-01T23:59:59.000Z

350

Automatic safety rod for reactors  

DOE Patents [OSTI]

An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

Germer, John H. (San Jose, CA)

1988-01-01T23:59:59.000Z

351

Computer aided nuclear reactor modeling  

E-Print Network [OSTI]

CHAPTER Page IV ALPHA ARCHITECTURE Design Philosophy Abstract Data Type Based Modules Grouping by Functions Miscellaneous Design Influences Architecture . . X Window System . Editor Library Model Library User Interface Library . V CONCLUSIONS... Connected Model . . . . , . . . 31 12 13 Header Section Editor Editing a "Choice" Attribute A Table of Vectors . 32 33 . 34 14 15 16 Current Reactor Modeling Schematic Reactor Modeling Schematic with Alpha Public Header File of Vertex Module...

Warraich, Khalid Sarwar

1995-01-01T23:59:59.000Z

352

Fast quench reactor and method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

353

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

354

Solar solids reactor  

DOE Patents [OSTI]

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

355

Novel Catalytic Membrane Reactors  

SciTech Connect (OSTI)

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

356

Nuclear reactor control rod  

SciTech Connect (OSTI)

This patent describes a vertically oriented bottom entry control rod from a nuclear reactor: a frame including an elongated central spine of cruciform cross section connected between an upper support member and a lower support member both of cruciform shape having four laterally extending arms. The arms are in alignment with the arms of the lower support member and each aligned upper and lower support members has a sheath extending between; absorber plates of neutron absorber material, different from the material of the frame, one of the absorber plates is positioned within a sheath beneath each of the arms; attachment means suspends the absorber plates from the arms of the upper support member within a sheath; elongated absorber members positioned within a sheath between each of the suspended absorber plates and an arm of the lower support member; and joint means between the upper ends of the absorber members and the lower ends of the suspended absorber plates for minimizing gaps; the sheath means encloses the suspended absorber plates and the absorber members extending between aligned arms of the upper and lower support members and secured.

Cearley, J.E.; Izzo, K.R.

1987-06-30T23:59:59.000Z

357

Reactor pressure vessel nozzle  

DOE Patents [OSTI]

A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

Challberg, R.C.; Upton, H.A.

1994-10-04T23:59:59.000Z

358

THE DEFECT STRUCTURE OF CdTe (*) F. A. KRGER  

E-Print Network [OSTI]

THE DEFECT STRUCTURE OF CdTe (*) F. A. KR�GER David Packard Professor of Electrical Engineering haute résistivité. Abstract. 2014 Evidence concerning the defect structure of CdTe is reviewed

Paris-Sud XI, Université de

359

ag cd cu: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kretchmar, R. Matthew 122 p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells Physics Websites Summary: May 2010 Keywords: CdTe p-Doping Hole...

360

Ocean Circulation During the Last Glacial Maximum Simulated by PMIP3 Climate Models  

E-Print Network [OSTI]

in the intensity of the Atlantic Overturning Circulation (distinguished by the local maximum at approximately 30 N %. In the plot corresponding to the World Ocean Circulation, an increase in the Deep Circulation, associated of the water masses as well as the impact on ocean carbon storage. References: [1] Godfrey J. S., Geophysics

Schmittner, Andreas

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering  

SciTech Connect (OSTI)

Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV.

Marwoto, Putut; Made, D. P. Ngurah; Sugianto [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)] [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Wibowo, Edy; Astuti, Santi Yuli; Aryani, Nila Prasetya [Materials Research Group, Laboratory of Thin Film, Department of Physics, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)] [Materials Research Group, Laboratory of Thin Film, Department of Physics, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Othaman, Zulkafli [Departement of Physics, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru (Malaysia)] [Departement of Physics, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru (Malaysia)

2013-09-03T23:59:59.000Z

362

Propellant actuated nuclear reactor steam depressurization valve  

DOE Patents [OSTI]

A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

1992-01-01T23:59:59.000Z

363

When Do Commercial Reactors Permanently Shut Down?  

Reports and Publications (EIA)

For those wishing to obtain current data, the following resources are available: U.S. reactors, go to the Energy Information Administration's nuclear reactor shutdown list. (Note: As of April 30, 2010, the last U.S. reactor to permanently shut down was Big Rock Point in 1997.) Foreign Reactors, go to the Power Reactor Information System (PRIS) on the International Atomic Energy Agency's website.

2011-01-01T23:59:59.000Z

364

Studies of sputtered CdTe and CdSe solar cells.  

E-Print Network [OSTI]

??CdTe has recently become the most commercially successful polycrystalline thin filmsolar module material. Its low cost, large-area solar module is reshaping the silicondominatedsolar panel market;… (more)

Kwon, Dohyoung

2012-01-01T23:59:59.000Z

365

Photoluminescence studies of type-II CdSe/CdTe superlattices  

SciTech Connect (OSTI)

CdSe/CdTe type-II superlattices grown on GaSb substrates by molecular beam epitaxy are studied using time-resolved and steady-state photoluminescence (PL) spectroscopy at 10 K. The relatively long carrier lifetime of 188 ns observed in time-resolved PL measurements shows good material quality. The steady-state PL peak position exhibits a blue shift with increasing excess carrier concentration. Self-consistent solutions of the Schroedinger and Poisson equations show that this effect can be explained by band bending as a result of the spatial separation of electrons and holes, which is critical confirmation of a strong type-II band edge alignment between CdSe and CdTe.

Li Jingjing; Johnson, Shane R.; Wang Shumin; Ding Ding; Ning Cunzheng; Zhang Yonghang [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287-5706 (United States); School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Yin Leijun [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287-5706 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Skromme, B. J. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Liu Xinyu; Furdyna, Jacek K. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

2012-08-06T23:59:59.000Z

366

CdTe/CdS Thin Film Solar Cells Fabricated on Flexible Substrates.  

E-Print Network [OSTI]

??Cadmium Telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal bandgap of 1.45 eV and its high optical absorption… (more)

Palekis, Vasilios

2011-01-01T23:59:59.000Z

367

PARS II Process Document – Project Phasing (Multiple CD-2 from Single CD-1)  

Broader source: Energy.gov [DOE]

This document details the process by which projects that adopted Phasing approach (different phases of the same larger project are treated as separate sub-projects, resulting in multiple CD-2...

368

Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2  

SciTech Connect (OSTI)

The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

2005-12-01T23:59:59.000Z

369

Good and bad features of Ni-Cd cell designs  

SciTech Connect (OSTI)

Processes for spacecraft Ni-Cd cells are reviewed. Mechanical impregnation is compared against chemical and thermochemical impregnation.

Gross, S.

1996-02-01T23:59:59.000Z

370

Electronuclear ion fusion in an ion cyclotron resonance reactor  

SciTech Connect (OSTI)

A method and apparatus for generating nuclear fusion by ion cyclotron resonance in an ion trap reactor. The reactor includes a cylindrical housing having an axial axis, an internal surface, and first and second ends. First and second end plates that are charged are respectively located at the first and second ends of the cylindrical housing. A gas layer is adsorbed on the internal surface of the cylindrical housing. Ions are desorbed from the gas layer, forming a plasma layer adjacent to the cylindrical housing that includes first ions that have a same charge sign as the first and second end plates. A uniform magnetic field is oriented along the axial axis of the cylindrical housing. Second ions, that are unlike the first ions, but have the same charge sign, are injected into the cylindrical housing along the axial axis of the cylindrical housing. A radio frequency field resonantly accelerates the injected second ions at the cyclotron resonance frequency of the second ions. The second ions circulate in increasing helical orbits and react with the first ions, at the optimum energy for nuclear fusion. The amplitude of the radio frequency field is adjusted to accelerate the second ions at a rate equal to the rate of tangential energy loss of the second ions by nuclear scattering in the first ions, causing the ions to continually interact until fusion occurs.

Cowgill, Donald F.

1996-12-01T23:59:59.000Z

371

Meridional Circulation in Solar and Stellar Convection Zones  

E-Print Network [OSTI]

We present a series of 3-D nonlinear simulations of solar-like convection, carried out using the Anelastic Spherical Harmonic (ASH) code, that are designed to isolate those processes that drive and shape meridional circulations within stellar convection zones. These simulations have been constructed so as to span the transition between solar-like differential rotation (fast equator/slow poles) and ``anti-solar' differential rotation (slow equator/fast poles). Solar-like states of differential rotation, arising when convection is rotationally constrained, are characterized by a very different convective Reynolds stress than anti-solar regimes, wherein convection only weakly senses the Coriolis force. We find that the angular momentum transport by convective Reynolds stress plays a central role in establishing the meridional flow profiles in these simulations. We find that the transition from single-celled to multi-celled meridional circulation profiles in strong and weak regimes of rotational constraint is lin...

Featherstone, Nicholas A

2015-01-01T23:59:59.000Z

372

COBRA-WC pretest predictions and post-test analysis of the FOTA temperature distribution during FFTF natural-circulation transients  

SciTech Connect (OSTI)

The natural circulation tests of the Fast Flux Test Facility (FFTF) demonstrated a safe and stable transition from forced convection to natural convection and showed that natural convection may adequately remove decay heat from the reactor core. The COBRA-WC computer code was developed by the Pacific Northwest laboratory (PNL) to account for buoyancy-induced coolant flow redistribution and interassembly heat transfer, effects that become important in mitigating temperature gradients and reducing reactor core temperatures when coolant flow rate in the core is low. This report presents work sponsored by the US Department of Energy (DOE) with the objective of checking the validity of COBRA-WC during the first 220 seconds (sec) of the FFTF natural-circulation (plant-startup) tests using recorded data from two instrumented Fuel Open Test Assemblies (FOTAs). Comparison of COBRA-WC predictions of the FOTA data is a part of the final confirmation of the COBRA-WC methodology for core natural-convection analysis.

Khan, E.U.; George, T.L.; Rector, D.R.

1982-06-23T23:59:59.000Z

373

Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project  

SciTech Connect (OSTI)

Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

1995-04-01T23:59:59.000Z

374

PRESENT LIMITATIONS OF CdTe DETECTORS IN NUCLEAR MEDICINE  

E-Print Network [OSTI]

365 PRESENT LIMITATIONS OF CdTe DETECTORS IN NUCLEAR MEDICINE R. ALLEMAND, P. BOUTEILLER, M. LAVAL quality criteria, it is necessary to compare Cd-Te detectors results (or estimated characteristics) with other methods (i. e. 8cintillation cameras) in order to know the effective interest of Cd-Te in nuclear

Boyer, Edmond

375

3-DIMENSIONAL COMPACT DISC (CD) MICROFLUIDIC PLATFORM Presented to the  

E-Print Network [OSTI]

3-DIMENSIONAL COMPACT DISC (CD) MICROFLUIDIC PLATFORM _______________ A Thesis Presented OF THE THESIS 3-Dimensional Compact Disc (CD) Microfluidic Platform by Nitin Edmund Harwood Master of Science in a compact disc (CD) microfluidics platform involving two or more layers. The traditional 2-Dimensional

Kassegne, Samuel Kinde

376

CdSe/CdTe type-II superlattices grown on GaSb (001) substrates by molecular beam epitaxy  

SciTech Connect (OSTI)

CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray diffraction measurements and cross-sectional transmission electron microscopy images indicate high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as 0.63 {+-} 0.06 eV by fitting the measured PL peak positions using the envelope function approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices are promising candidates for multi-junction solar cells and other optoelectronic devices based on GaSb substrates.

Li Jingjing; Liu Shi; Wang Shumin; Ding Ding; Johnson, Shane R.; Zhang Yonghang [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States); School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Liu Xinyu; Furdyna, Jacek K. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Smith, David J. [Center for Photonics Innovation, Arizona State University, Tempe, Arizona 85287 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

2012-03-19T23:59:59.000Z

377

E-Print Network 3.0 - anti-cd34 antibody functionalized Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cell Summary: , CA, USA), phycoerythrin (PE) conjugated anti-CD34 (BD- Phamingen, Palo Alto, CA, USA), anti-CD105... for the monoclonal antibodies against MSCs, CD166 and CD105,...

378

Mechanical and Electrical Properties of CdTe Tetrapods Studied by Atomic Force Microscopy  

E-Print Network [OSTI]

Electrical Properties of CdTe Tetrapods Studied by Atomicelectrical properties of CdTe tetrapod-shaped nanocrystalsIntroduction CdSe and CdTe nanocrystals possess interesting

2008-01-01T23:59:59.000Z

379

Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors  

SciTech Connect (OSTI)

Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

Su'ud, Zaki, E-mail: szaki@fi.itba.c.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) (Indonesia); Sekimoto, H., E-mail: hsekimot@gmail.com [Research Lab. For Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo (Japan)

2014-09-30T23:59:59.000Z

380

Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System  

SciTech Connect (OSTI)

One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions between the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very effective in removing decay heat. By removing the limit on the decay heat removal capability due to the limited available surface area as in a RVACS, the reactor power and power density can be significantly increased, without losing the passive heat removal feature. This paper will introduce the concept of using DRACS to enhance VHTR passive safety and economics. Three design options will be discussed, depending on the cooling pipe locations. Analysis results from a lumped volume based model and CFD simulations will be presented.

Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

2002-02-26T23:59:59.000Z

382

Stability Analysis on Single-Phase Natural Circulation in Argonne Lead Loop Facility  

SciTech Connect (OSTI)

One-dimensional linear stability analysis was performed for single-phase lead-bismuth eutectic natural circulation. The Nyquist criterion and a root search method were employed to find the linear stability boundary of both forward and backward circulations. It was found that the natural circulations could be linearly unstable in a high Reynolds number region. Increasing loop friction makes a forward circulation more stable, but destabilizes the corresponding backward circulation under the same heating/cooling conditions. The characteristic wavelength of an unstable disturbance is roughly equal to the entire loop length. (authors)

Wu, Qiao [Oregon State University, Corvallis, OR 97331-4501 (United States); Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL 60439 (United States)

2002-07-01T23:59:59.000Z

383

Anisotropy in CdSe quantum rods  

SciTech Connect (OSTI)

The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough concentration. The preparation of the stable liquid crystalline solution of CdSe nanorods is described, as well as the large-scale alignment of the nanorods by taking advantage of the long-range orientational correlation in the liquid crystals. In addition, we investigated the phase diagram of the nanorod solution, as a step toward understanding the possible role of the long-range attractive interaction between the nanorods in the formation of lyotropic liquid crystals.

Li, Liang-shi

2003-09-01T23:59:59.000Z

384

ROLE OF COPPER IN THE PERFORMANCE OF CdS/CdTe SOLAR CELLS * , D. Albin2  

E-Print Network [OSTI]

simulations to reproduce and explain some of the experimental results. Introduction The performance of CdTe Cucd in CdTe [1,2]. Cu can also migrate along grain boundaries toward the main junction. The standard with a relatively simpler one in which Cu metal of varying thickness is evaporated on Te-rich CdTe surfaces

Sites, James R.

385

A study of the back contacts on CdTe/CdS solar cells D.L. Batznera  

E-Print Network [OSTI]

Institute of Technology, ZuĂ?rich, Technoparkstr. 1, 8005 ZuĂ?rich, Switzerland b ANTEC GmbH, Industriestrasse 2-4, 65779 Kelkheim, Germany Abstract Conventional back contacts on CdTe/CdS solar cells layer thickness and stability issues have been studied. Different etchants not only clean the Cd

Romeo, Alessandro

386

Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002  

SciTech Connect (OSTI)

The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

2003-01-01T23:59:59.000Z

387

Fast reactor safety: proceedings of the international topical meeting. Volume 1  

SciTech Connect (OSTI)

The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 1 include: impact of safety and licensing considerations on fast reactor design; safety aspects of innovative designs; intra-subassembly behavior; operational safety; design accommodation of seismic and other external events; natural circulation; safety design concepts; safety implications derived from operational plant data; decay heat removal; and assessment of HCDA consequences.

Not Available

1985-07-01T23:59:59.000Z

388

Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors  

SciTech Connect (OSTI)

An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

2008-09-01T23:59:59.000Z

389

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

390

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

391

PIA - Advanced Test Reactor National Scientific User Facility...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

392

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network [OSTI]

selected as part of the Generation IV reactors .. - 4 -The development of Generation IV fast reactors can make aconcepts selected for the Generation IV reactors, three,

Heidet, Florent

2010-01-01T23:59:59.000Z

393

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network [OSTI]

Model; 3-D; Monolith; Reactor; Optimization Introduction TheAngeles Global Optimization of Chemical Reactors and KineticGlobal Optimization of Chemical Reactors and Kinetic

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

394

UCLA program in reactor studies: The ARIES tokamak reactor study  

SciTech Connect (OSTI)

The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D-{sup 3}He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs.

Not Available

1991-01-01T23:59:59.000Z

395

files between "helped" and "unhelped" memory CD8 T cells to better understand  

E-Print Network [OSTI]

265 files between "helped" and "unhelped" memory CD8 T cells to better understand how memory CD8 the presence of CD4 help during "unhelped" memory CD8 T cell recall responses could not rem- edy their proliferative defects; and vice versa, the lack of CD4 help during "helped" memory CD8 T cell recall re- sponses

396

International Research Reactor Decommissioning Project  

SciTech Connect (OSTI)

Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

Leopando, Leonardo [Philippine Nuclear Research Institute, Quezon City (Philippines); Warnecke, Ernst [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

397

Rapid starting methanol reactor system  

DOE Patents [OSTI]

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

398

Imaging Fukushima Daiichi reactors with muons  

SciTech Connect (OSTI)

A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lukic, Zarija [Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Masuda, Koji [University of New Mexico, Albuquerque, NM 87131 (United States); Perry, John O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States)

2013-05-15T23:59:59.000Z

399

Double beta decays of {sup 106}Cd  

SciTech Connect (OSTI)

The two-neutrino (2{nu}2{beta}) and neutrinoless (0{nu}2{beta}) double beta decays of {sup 106}Cd are studied for the transitions to the ground state 0{sub gs}{sup +} and 0{sup +} and 2{sup +} excited states in {sup 106}Pd by using realistic many-body wave functions calculated in the framework of the quasiparticle random-phase approximation. Effective, G-matrix-derived nuclear forces are used in realistic single-particle model spaces. All the possible channels, {beta}{sup +}{beta}{sup +}, {beta}{sup +}EC, and ECEC, are discussed for both the 2{nu}2{beta} and 0{nu}2{beta} decays. The associated half-lives are computed and particular attention is devoted to the study of the detectability of the resonant neutrinoless double electron capture (R0{nu}ECEC) process in {sup 106}Cd. The calculations of the present article constitute the thus far most complete and up-to-date investigation of the double-beta-decay properties of {sup 106}Cd.

Suhonen, Jouni [Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyvaeskylae (Finland)

2011-12-16T23:59:59.000Z

400

Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor  

DOE Patents [OSTI]

The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)

2010-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

liquid flibe, a high Prandtl number coolant with high volumetric heat capacity,liquid flibe, a high Prandtl number coolant with high volumetric heat capacityliquid fluoride salts, which are high Pradtl number fluids with high volumetric heat capacity,

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

402

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

system areas, Nuclear Heat Supply and Heat Transport, areand Subsystems AREAS Nuclear Heat Supply Heat Transport Main

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

403

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

a needle valve to replicate the friction coefficient of avalves 76 have Reynolds- independent friction coefficient.3 /s) and C v the flow coefficient. Valve curves provided by

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

404

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

decommissioning. For example, methodologies that are common practice for the safety analysis of nuclear

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

405

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

Next Generation Nuclear Plant Phenomena Identification andNext Generation Nuclear Plant Phenomena Identification andAP1000 Advanced Nuclear Plant. Plant Description. (

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

406

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

of Insights from the Fukushima Dai-Ichi Accident. (U.S.The Accident at TEPCO’s Fukushima Nuclear Power Stations. (Department o o Studied Fukushima Daiichi Unit 1 accident

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

407

Reactor control rod timing system  

SciTech Connect (OSTI)

A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (Above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

Wu, P.T.

1982-02-09T23:59:59.000Z

408

Reactor control rod timing system  

DOE Patents [OSTI]

A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

Wu, Peter T. K. (Clifton Park, NY)

1982-01-01T23:59:59.000Z

409

Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.  

SciTech Connect (OSTI)

This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics computer codes and methodologies applied to SSTAR. Another section of the report details the SSTAR safety design approach which is based upon defense-in-depth providing multiple levels of protection against the release of radioactive materials and how the inherent safety features of the lead coolant, nitride fuel, fast neutron spectrum core, pool vessel configuration, natural circulation, and containment meet or exceed the requirements for each level of protection. The report also includes recent results of a systematic analysis by LANL of data on corrosion of candidate cladding and structural material alloys of interest to SSTAR by LBE and Pb coolants; the data were taken from a new database on corrosion by liquid metal coolants created at LANL. The analysis methodology that considers penetration of an oxidation front into the alloy and dissolution of the trailing edge of the oxide into the coolant enables the long-term corrosion rate to be extracted from shorter-term corrosion data thereby enabling an evaluation of alloy performance over long core lifetimes (e.g., 30 years) that has heretofore not been possible. A number of candidate alloy specimens with special treatments or coatings which might enhance corrosion resistance at the temperatures at which SSTAR would operate were analyzed following testing in the DELTA loop at LANL including steels that were treated by laser peening at LLNL; laser peening is an approach that alters the oxide-metal bonds which could potentially improve corrosion resistance. LLNL is also carrying out Multi-Scale Modeling of the Fe-Cr system with the goal of assisting in the development of cladding and structural materials having greater resistance to irradiation.

Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

2008-06-23T23:59:59.000Z

410

The Long-Life Core Encapsulated Nuclear Heat Source (ENHS) Generation IV Reactor  

SciTech Connect (OSTI)

The long-life core for the Encapsulated Nuclear Heat Source (ENHS) reactor has been redesigned so as to provide for fuel rod clad integrity up to the discharge burnup design goal. It was found feasible to design a nearly zero burnup reactivity swing long-life core that will maintain the fuel rod integrity up to the peak discharge burnup while enabling to handle the rated power using natural circulation. The core life is limited by radiation damage to its structural material. The core power shape is exceptionally constant throughout the core life. The new reference core design can deliver 125 MW{sub th} while having very generous margins for maximum acceptable temperatures or temperature differences. Using a cover-gas lift-pump it may be possible to design an ENHS module to deliver {approx}50% more power than the set goal. Briefly reviewed are unique features of the ENHS reactor along with the potential of this reactor to meet the goals set for Generation IV reactors. (authors)

Greenspan, E.; Barak, A.; Saphier, D. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Buongiorno, J. [Idaho National Engineering and Environmental Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Brown, N.W.; Hossain, Q. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Carelli, M.D.; Conway, L.; Dzodzo, M. [Westinghouse Electric Co., Sci. and Tech., 1344 Beulah Rd., Pittsburgh, PA 15235 (United States); Feldman, E.; Sienicki, J.J.; Sofu, T.; Wade, D.C. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hong, S.G.; Kim, Y.I. [Korea Atomic Energy Research Institute, Yusong, Taejon 305-600, Rep. of Korea (Korea, Republic of)

2002-07-01T23:59:59.000Z

411

DOE's way-out reactors  

SciTech Connect (OSTI)

The SP-100 reactor, envisioned long before Star Wars, was to power civilian structures such as the space station and orbiting commercial labs. According to the SDI Organization, it will be the cornerstone for SDI, used as a no-maintenance, general source of energy for the military's infrastructure - weapons scale power will come later. DOE wants to spend $72 in FY 1977 to design and build these reactors. Funding problems with Congress, as well as some of the technology and timetables are discussed here.

Marshall, E.

1986-03-21T23:59:59.000Z

412

Nuclear reactor safety heat transfer  

SciTech Connect (OSTI)

Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

Jones, O.C.

1982-07-01T23:59:59.000Z

413

Luminescence Enhancement of CdTe Nanostructures in LaF3:Ce/CdTe Nanocomposites  

SciTech Connect (OSTI)

Radiation detection demands new scintillators with high quantum efficiency, high energy resolution and short luminescence lifetimes. Nanocomposites consisting of quantum dots and Ce3+ doped nanophosphors may be able to meet these requirements. Here we report the luminescence of LaF3:Ce/CdTe nanocomposites which were synthesized by a wet chemistry method. In LaF3:Ce/CdTe nanocomposites the CdTe quantum dots are converted into nanowires, while in LaF3/CdTe nanocomposites no such conversion is observed. The CdTe luminescence in LaF3:Ce/CdTe nanocomposites is enhanced about 5 times, while in LaF3/CdTe nanocomposites no enhancement was observed. Energy transfer, light-re-absorption and surface passivation are likely the reasons for the luminescence enhancement.

Yao, Mingzhen; Zhang, Xing; Ma, Lun; Chen, Wei; Joly, Alan G.; Huang, Jinsong; Wang, Qingwu

2010-11-15T23:59:59.000Z

414

Open-circuit voltage, fill factor, and efficiency of a CdS/CdTe solar cell  

SciTech Connect (OSTI)

The dependences of the open-circuit voltage, fill factor, and efficiency of the thin-film CdS/CdTe solar cell on the resistivity {rho} and carrier lifetime {tau} in the absorbing CdTe layer were studied. In the common case in which the uncompensated acceptor concentration and the electron lifetime in the CdTe layer are within 10{sup 15}-10{sup 16} cm{sup -3} and 10{sup -10}-10{sup -9} s, the calculation results correspond to the achieved efficiency of the best thin-film CdS/CdTe solar cells. It was shown that, by decreasing {rho} and increasing {tau} in the absorbing CdTe layer, the open-circuit voltage, fill factor, and efficiency can be substantially increased, with their values approaching the theoretical limit for such devices.

Kosyachenko, L. A., E-mail: lakos@chv.ukrpack.net; Grushko, E. V. [Yuriy Fedkovych Chernivtsi National University (Ukraine)

2010-10-15T23:59:59.000Z

415

DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS  

SciTech Connect (OSTI)

The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

Showman, Adam P.; Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States)] [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Shabram, Megan, E-mail: showman@lpl.arizona.edu [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)] [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)

2013-01-01T23:59:59.000Z

416

Spatial Correlations in General Circulation Models and Observation Reanalysis  

E-Print Network [OSTI]

Comprehensive Ocean-Atmosphere Data Set CCSM4 Community Climate System Model Version 4 CM3 Climate Model Version 3 Mk3 Mark 3.0 CM5A Climate Model Version 5A ESM Earth System Model OBS Observations REA Reanalysis picontrol Pre-Industrial Control Run GCM General... ESM 1.9? × 1.9? 1000 IPSL CM5A 1.9? × 3.75? 1000 CSIRO MK3 3.2? × 5.6? 1000 NCDC OBS 5? × 5? - NCEP REA 2.5? × 2.5? 65 3.1 General Circulation Models GCMs are useful tools for understanding the roles of the major climate system components. Analyses...

Sansom, Taylor Lee

2014-06-19T23:59:59.000Z

417

Four Rivers second generation pressurized circulating fluidized bed combustion project  

SciTech Connect (OSTI)

Air Products has been selected in the DOE Clean Coal Technology Round 5 program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The Four Rivers Energy Project (Four Rivers) will produce approximately 70 MW electricity, and will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Wedel, G. von; Richardson, K.W.; Morehead, H.T.

1995-12-31T23:59:59.000Z

418

Pressurized circulating fluidized-bed combustion for power generation  

SciTech Connect (OSTI)

Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

Weimer, R.F.

1995-08-01T23:59:59.000Z

419

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988  

SciTech Connect (OSTI)

This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

420

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

reactors are determined from thermal power measure- ments and ?ssion rate calculations.of a reactor’s ther- mal power is given by a calculation ofCALCULATIONS During the power cycle of a nuclear reactor,

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network [OSTI]

Gas Expansion Module Gas-cooled Fast Reactor High Enrichedfast reactors: gas-cooled fast reactor (GFR), sodium-cooledderived from the Gas cooled Fast Reactor (GFR). This core

Heidet, Florent

2010-01-01T23:59:59.000Z

422

Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor  

E-Print Network [OSTI]

High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

Gandhir, Akshay

2012-10-19T23:59:59.000Z

423

Reactivity control assembly for nuclear reactor  

DOE Patents [OSTI]

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01T23:59:59.000Z

424

Reactor accelerator coupling experiments: a feasability study  

E-Print Network [OSTI]

The Reactor Accelerator Coupling Experiments (RACE) are a set of neutron source driven subcritical experiments under temperature feedback conditions. These experiments will involve coupling an accelerator driven neutron source to a TRIGA reactor...

Woddi Venkat Krishna, Taraknath

2006-08-16T23:59:59.000Z

425

New fast-reactor approach. [LMFBR  

SciTech Connect (OSTI)

The design parameters for a 1000 MW LMFBR type reactor are presented. The design requires the multiple primary coolant pumps and heat exchangers to be located around the core within the reactor vessel.

Folkrod, J.R.; Kann, W.J.; Klocksieben, R.H.

1983-01-01T23:59:59.000Z

426

Stability analysis of supercritical water cooled reactors  

E-Print Network [OSTI]

The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

427

Digital computer operation of a nuclear reactor  

DOE Patents [OSTI]

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, Robert W. (Richland, WA)

1984-01-01T23:59:59.000Z

428

Digital computer operation of a nuclear reactor  

DOE Patents [OSTI]

A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

Colley, R.W.

1982-06-29T23:59:59.000Z

429

Liquid metal cooled nuclear reactor plant system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

430

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

431

Light Water Reactor Sustainability (LWRS) Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light Water Reactor Sustainability (LWRS) Program Login Instructions go here. User ID: Password: Log In Forgot your password?...

432

How far is a Fusion Power Reactor from an Experimental Reactor?  

E-Print Network [OSTI]

be able to move directly and safely to a "first of a kind" reactor. The main conditions to be satisfied / experimental evidence. To assess the reactor relevance of ITER, rather than a comparison between ITER and one1 How far is a Fusion Power Reactor from an Experimental Reactor? R. Toschi(1) , P. Barabaschi(2

433

Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells  

SciTech Connect (OSTI)

Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was ??=?2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (?{sub B}?=?0.52?eV) and low shunt resistances (R{sub SH}?

Williams, B. L.; Phillips, L.; Major, J. D.; Durose, K. [Stephenson Institute for Renewable Energy, University of Liverpool, Chadwick Building, Peach St., Liverpool L69 7ZF (United Kingdom); Taylor, A. A.; Mendis, B. G.; Bowen, L. [G. J. Russell Microscopy Facility, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

2014-02-03T23:59:59.000Z

434

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network [OSTI]

Physics Optimization of Breed and Burn Fast Reactor Systems.reactors: Fabrication and properties and their optimization.

Heidet, Florent

2010-01-01T23:59:59.000Z

435

MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION  

E-Print Network [OSTI]

for the Coal Slurry Reactor Calculations are shown here for= Total reactor pressure, psi. The calculation is iterative,

Joyce, Peter James

2011-01-01T23:59:59.000Z

436

D Ris-R-406 Department of Reactor  

E-Print Network [OSTI]

of a Nuclear District Heating Reactor ... 17 3. REACTOR PHYSICS AND DYNAMICS 13 3.1. Core Follow Studies: Bti

437

Interdisciplinary Institute for Innovation Nuclear reactors' construction  

E-Print Network [OSTI]

Interdisciplinary Institute for Innovation Nuclear reactors' construction costs: The role of lead@mines-paristech.fr hal-00956292,version1-6Mar2014 #12;hal-00956292,version1-6Mar2014 #12;Nuclear reactors' construction reactor construction costs in France and the United States. Studying the cost of nuclear power has often

Paris-Sud XI, Université de

438

The Reactor An ObjectOriented Framework  

E-Print Network [OSTI]

The Reactor An Object­Oriented Framework for Event Demultiplexing and Event Handler Dispatching Douglas C. Schmidt 1 Overview ffl The Reactor is an object­oriented frame­ work that encapsulates OS event demul­ tiplexing mechanisms -- e.g., the Reactor API runs transparently atop both Wait

Schmidt, Douglas C.

439

International Journal of Chemical Reactor Engineering  

E-Print Network [OSTI]

International Journal of Chemical Reactor Engineering Volume 3 2005 Article A17 Optimal Operation, a single re- action takes place in the reactor and the operational objective is to compute the optimal feed is illustrated via simulation of two semi-batch reactor applications. KEYWORDS: Dynamic Optimization, Batch

Palanki, Srinivas

440

Laminar Entrained Flow Reactor (Fact Sheet)  

SciTech Connect (OSTI)

The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

Not Available

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

Sisson, W.G.; Basaran, O.A.; Harris, M.T.

1995-11-07T23:59:59.000Z

442

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

1998-06-02T23:59:59.000Z

443

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.

Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.

1996-04-02T23:59:59.000Z

444

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

Sisson, W.G.; Basaran, O.A.; Harris, M.T.

1998-04-14T23:59:59.000Z

445

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

1995-01-01T23:59:59.000Z

446

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

447

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)

1998-01-01T23:59:59.000Z

448

Nozzle for electric dispersion reactor  

DOE Patents [OSTI]

A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

449

Nuclear Reactor Safety Design Criteria  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

1993-01-19T23:59:59.000Z

450

Starfire - a commercial tokamak reactor  

SciTech Connect (OSTI)

The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. 10 refs.

Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Kokoszenski, J.; Graumann, D.

1981-01-01T23:59:59.000Z

451

Relations between structural parameters and physical properties in CdTe and Cd0.96Zn0.04Te alloys  

E-Print Network [OSTI]

481 Relations between structural parameters and physical properties in CdTe and Cd0.96Zn0.04Te cristaux de CdTe et de Cd0,96Zn0,04Te, de densité de dislocations variant entre 5 x 104 et 6 x 105 cm-2. La and photoluminescence experiments were performed on several CdTe and Cd0.96Zn0.04Te crystals with dislocation density

Paris-Sud XI, Université de

452

Development of CdS/CdTe Tin Film Devices for St. Gobain Coated Glass: Cooperative Research and Development Final Report, CRADA Number CRD-08-317  

SciTech Connect (OSTI)

Research performed at NREL to produce CdS/CdTe devices on St. Gobain coated-glass material to establish a baseline CdS/CdTe device process and determine baseline device performance parameters on St. Gobain material. Performance of these baseline devices compared to similar devices produced by applying the established baseline CdS/CdTe process on alternative St. Gobain coated-glass materials.

Gessert, T.

2012-04-01T23:59:59.000Z

453

Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina)  

E-Print Network [OSTI]

Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Sandia of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being

Gratta, Giorgio

454

Dynamic simulation of a circulating fluidized bed boiler of low circulating ratio with wide particle size distributions  

SciTech Connect (OSTI)

A steady state model of a coal fired CFB boiler considering the hydrodynamics, heat transfer and combustion is presented. This model predicts the flue gas temperature, the chemical gas species (O{sub 2}, H{sub 2}O, CO, CO{sub 2} and SO{sub 2}) and char concentration distributions in both the axial and radial location along the furnace including the bottom and upper portion. The model was validated against experimental data generated in a 35 t/h commercial CFB boiler with low circulating ratio.

Lu Huilin; Yang Lidan; Bie Rushan; Zhao Guangbo

1999-07-01T23:59:59.000Z

455

Heterogeneous Recycling in Fast Reactors  

SciTech Connect (OSTI)

Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

2012-07-30T23:59:59.000Z

456

Control of reactor coolant flow path during reactor decay heat removal  

DOE Patents [OSTI]

An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

Hunsbedt, Anstein N. (Los Gatos, CA)

1988-01-01T23:59:59.000Z

457

Spectroscopic Analysis of Impurity Precipitates in CdS Films  

SciTech Connect (OSTI)

Impurities in cadmium sulfide (CdS) films are a concern in the fabrication of copper (indium, gallium) diselenide (CIGS) and cadmium telluride (CdTe) photovoltaic devices. Devices incorporating chemical-bath-deposited (CBD) CdS are comparable in quality to devices incorporating purer CdS films grown using vacuum deposition techniques, despite the higher impurity concentrations typically observed in the CBD CdS films. In this paper, we summarize and review the results of Fourier transform infrared (FTIR), Auger, electron microprobe, and X-ray photoelectron spectroscopic (XPS) analyses of the impurities in CBD CdS films. We show that these impurities differ as a function of substrate type and film deposition conditions. We also show that some of these impurities exist as 10{sup 2} micron-scale precipitates.

Webb, J. D.; Keane, J.; Ribelin, R.; Gedvilas, L.; Swartzlander, A.; Ramanathan, K.; Albin, D. S.; Noufi, R.

1999-10-31T23:59:59.000Z

458

CD DVD Retrieval | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route Segments (notCAMDL20-000'IUDeputyofRank: 14CD DVD

459

cd ordering | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean CoalCoal-Biomass12Fermi NationalCD-DVD

460

Fast-acting nuclear reactor control device  

DOE Patents [OSTI]

A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Shutdown system for a nuclear reactor  

DOE Patents [OSTI]

An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

1984-06-05T23:59:59.000Z

462

Shutdown system for a nuclear reactor  

DOE Patents [OSTI]

An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

Groh, Edward F. (Naperville, IL); Olson, Arne P. (Western Springs, IL); Wade, David C. (Naperville, IL); Robinson, Bryan W. (Oak Lawn, IL)

1984-01-01T23:59:59.000Z

463

Self isolating high frequency saturable reactor  

DOE Patents [OSTI]

The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

Moore, James A. (Powell, TN)

1998-06-23T23:59:59.000Z

464

Industrial Upscaling of CdTe/CdS Thin Film Solar Cells , A. Bosioa  

E-Print Network [OSTI]

, with the participation of the Marcegaglia industrial group, IFIS Bank of Venice, the contribution of Ministry 905223. E-mail address: Nicola.Romeo@unipr.it (Nicola Romeo). 1 INTRODUCTION CdTe with its energy gap" which means that only a few microns of the material are needed to absorb 90% of photons with energy

Romeo, Alessandro

465

Microsoft Word - 911138_0_SSC-6 Helium Circulator Test Plan_rel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Revision 0 ENGINEERING SERVICES FOR THE NEXT GENERATION NUCLEAR PLANT (NGNP) WITH HYDROGEN PRODUCTION Test Plan for Helium Circulators (PHTS, SCS, SHTS) Prepared by General...

466

E-Print Network 3.0 - assisted circulation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of symmetric instability formed by the Delta... -M adjustment process. The numerical simulation shows the coexistence of two pairs of slantwise circulations Source: Reading,...

467

E-Print Network 3.0 - air circulation wall Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Prerequisites: Control Systems I & II, System Modeling, MATLABSimulink Summary: Incorporation of a Suction Model in a Mock Circulation...

468

Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.  

E-Print Network [OSTI]

??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design… (more)

Ekvall, Thomas

2011-01-01T23:59:59.000Z

469

E-Print Network 3.0 - analyzing naturally circulating Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Electrical Engineering and Computer Science & Physics, Massachusetts Institute of Technology (MIT) Collection: Engineering ; Physics 4 DECADAL CHANGES IN THE HADLEY CIRCULATION...

470

Savannah River Site production reactor technical specifications. K Production Reactor  

SciTech Connect (OSTI)

These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

NONE

1996-02-01T23:59:59.000Z

471

Consideration of the theoretical possibility of regulating the nuclear reactor by changing a fraction of delayed neutrons  

SciTech Connect (OSTI)

A lot of theoretical and experimental studies devoted to the effect of external electromagnetic fields and ionization on the beta-decay probability have been published in the past years. The possibility of using this physical effect as the main reactor-regulation mechanism is investigated in this study. A set of equations allowing the operation of a nuclear reactor to be described when the probability for the beta decay of precursors of delayed neutrons and, hence, the fraction of delayed neutrons are functions of time is written and investigated. It is shown that, if the fraction of the delayed neutrons does not change, the proposed set of equations coincides with the generally known one. As follows from the analysis of the solutions to the new set of equations, the proposed reactor-regulation method does not allow reactor runaway driven by prompt neutrons even theoretically. The application of the proposed control method to a circulating-fuel liquid-type reactor is briefly considered.

Filippov, D. V., E-mail: filippov-atom@ya.ru; Urutskoev, L. I., E-mail: urleon@ya.r [Moscow State University of Printing Arts (Russian Federation); Rachkov, V. I. [State Atomic Energy Corporation 'Rosatom' (Russian Federation); Gadzaova, O. E. [Moscow State University of Printing Arts (Russian Federation); Lebedev, L. A. [State Research and Development Center for Expertise of Project and Technologies (Russian Federation)

2010-01-15T23:59:59.000Z

472

Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test  

SciTech Connect (OSTI)

One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2004-02-04T23:59:59.000Z

473

Research Program of a Super Fast Reactor  

SciTech Connect (OSTI)

Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

474

Safety control circuit for a neutronic reactor  

DOE Patents [OSTI]

A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

Ellsworth, Howard C. (Richland, WA)

2004-04-27T23:59:59.000Z

475

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents [OSTI]

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

476

Fast-acting nuclear reactor control device  

SciTech Connect (OSTI)

A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position.

Kotlyar, O.M.; West, P.B.

1993-08-03T23:59:59.000Z

477

Recrystallization in CdTe/CdS A. Romeo, D.L. Batzner, H. Zogg, A.N. Tiwari*  

E-Print Network [OSTI]

¯uence on the microstructure of CdTe and photovoltaic properties. Solar cells with ef®ciency of 11.2 and 2.5% are obtainedTe/CdS photovoltaic devices have been obtained with different growth methods [1±3]. Recrys- tallization treatments. Therefore PVD grown CdS layers are used for better reliability despite of the opti- cal losses due to large

Romeo, Alessandro

478

Nuclear reactor alignment plate configuration  

DOE Patents [OSTI]

An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

2014-01-28T23:59:59.000Z

479

Modeling of a coal-fired natural circulation boiler  

SciTech Connect (OSTI)

Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

2007-06-15T23:59:59.000Z

480

Options for Cryogenic Load Cooling with Forced Flow Helium Circulation  

SciTech Connect (OSTI)

Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

Peter Knudsen, Venkatarao Ganni, Roberto Than

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactor cd circulating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

SciTech Connect (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

482

Parallel Monte Carlo reactor neutronics  

SciTech Connect (OSTI)

The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved.

Blomquist, R.N.; Brown, F.B.

1994-03-01T23:59:59.000Z

483

Spectral shift reactor control method  

SciTech Connect (OSTI)

A method of operating a pressurized water nuclear reactor is described which comprises the determining of the present core power and reactivity levels and predicting the change in such levels due to displacer rod movements. Groups or single clusters of displacer rods can be inserted or withdrawn based on the predicted core power and reactivity levels to change the core power level and power distribution thereby providing load follow capability, without changing control rod positions or coolant boron concentrations.

Impink, A.J. Jr.

1984-02-21T23:59:59.000Z

484

Reactor safeguards against insider sabotage  

SciTech Connect (OSTI)

A conceptual safeguards system is structured to show how both reactor operations and physical protection resources could be integrated to prevent release of radioactive material caused by insider sabotage. Operational recovery capabilities are addressed from the viewpoint of both detection of and response to disabled components. Physical protection capabilities for preventing insider sabotage through the application of work rules are analyzed. Recommendations for further development of safeguards system structures, operational recovery, and sabotage prevention are suggested.

Bennett, H.A.

1982-03-01T23:59:59.000Z

485

Dynamic analysis of a circulating fluidized bed riser  

SciTech Connect (OSTI)

A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solids fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.

Panday, Rupen [REM Engineering PLLC; Shadle, Lawrence J. [U.S. DOE; Guenther, Chris [U.S. DOE

2012-01-01T23:59:59.000Z

486

Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.  

SciTech Connect (OSTI)

This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

2007-06-30T23:59:59.000Z

487

Nuclear power reactor education and training at the Ford nuclear reactor  

SciTech Connect (OSTI)

Since 1977, staff members of the University of Michigan's Ford nuclear reactor have provided courses and reactor laboratory training programs for reactor operators, engineers, and technicians from seven electric utilities, including Cleveland Electric Illuminating, Consumers Power, Detroit Edison, Indiana and Michigan Electric, Nebraska Public Power, Texas Utilities Generating Company, and Toledo Edison. Reactor laboratories, instrument technician training, and reactor physics courses have been conducted at the university. Courses conducted at plant sites include reactor physics, thermal sciences, materials sciences, and health physics and radiation protection.

Burn, R.R.

1989-01-01T23:59:59.000Z

488

Updating reactor control: mini-computers  

SciTech Connect (OSTI)

An aging reactor control console and a limited operating budget have impeded many research projects in the TRIGA reactor facility at the University of Utah. The, University's present console is Circa 1959 vintage and repairs to the console are frequently required which present many electronic problems to a staff with little electronic training. As an alternative to a single function control console we are developing a TRIGA control system based upon a mini-computer. The system hardware has been specified and the hardware is currently being acquired. The software will be programmed by the staff to customize the system to the reactor's physical systems and technical specifications. The software will be designed to monitor and control all reactor functions, control a pneumatic sample transfer system, acquire and analyze neutron activation data, provide reactor facility security surveillance, provide reactor documentation including online logging of physical parameters, and record regularly scheduled reactor calibrations and laboratory accounting procedures. The problem of hardware rewiring and changing technical specifications and changing safety system characteristics can be easily handled in the software. Our TRIGA reactor also functions as a major educational resource using available reactor based software. The computer control system can be employed to provide on-line training in reactor physics and kinetics. (author)

Crawford, K.C.; Sandquist, G.M. [University of Utah, Salt Lake City, UT (United States)

1984-07-01T23:59:59.000Z

489

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect (OSTI)

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

490

Reference worldwide model for antineutrinos from reactors  

E-Print Network [OSTI]

Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

Marica Baldoncini; Ivan Callegari; Giovanni Fiorentini; Fabio Mantovani; Barbara Ricci; Virginia Strati; Gerti Xhixha

2015-02-16T23:59:59.000Z

491

On the Wind Power Input to the Ocean General Circulation XIAOMING ZHAI  

E-Print Network [OSTI]

On the Wind Power Input to the Ocean General Circulation XIAOMING ZHAI Atmospheric, Oceanic January 2012, in final form 3 May 2012) ABSTRACT The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using

Johnson, Helen

492

PECS 2004 MRIDA -MXICO Simulations of the Influence of the West Caribbean Sea Circulation and  

E-Print Network [OSTI]

PECS 2004 ­ M�RIDA - M�XICO Simulations of the Influence of the West Caribbean Sea Circulation of South Carolina, Columbia, SC 29208, USA. email: bjorn@msci.sc.edu Keywords: Caribbean Sea; Meso by variations of the flow near the reef and the transports between the MBRS and the Caribbean Sea circulation

Ezer,Tal

493

Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations  

E-Print Network [OSTI]

, including upward shifts in the ver- tical velocities and distributions of cloud water and ice as the seaUpward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations circulation of the atmosphere shift upward in response to warming in simu- lations of climate change with both

O'Gorman, Paul

494

Wind- and Buoyancy-modulated Along-shore Circulation over the Texas-Louisiana Shelf  

E-Print Network [OSTI]

Numerical experiments are used to study the wind- and buoyancy-modulated along-shore circulation over the Texas-Louisiana continental shelf inshore of 50-m water depth. Most attention is given to circulation in the non-summer flow regime. A major...

Zhang, Zhaoru

2013-07-22T23:59:59.000Z

495

Seasonal Mean Circulation in the Yellow Sea A ModelGenerated Climatology  

E-Print Network [OSTI]

Seasonal Mean Circulation in the Yellow Sea ­ A Model­Generated Climatology Christopher E. Naimie 1://www­nml.dartmouth.edu/Publications/external publications/PUB­00­1 email: d.r.lynch@dartmouth.edu Abstract The three­dimensional climatological circulation

496

Design of quantum Fourier transforms and quantum algorithms by using circulant Hamiltonians  

E-Print Network [OSTI]

We propose a technique for design of quantum Fourier transforms, and ensuing quantum algorithms, in a single interaction step by engineered Hamiltonians of circulant symmetry. The method uses adiabatic evolution and is robust against fluctuations of the interaction parameters as long as the Hamiltonian retains a circulant symmetry.

B. T. Torosov; N. V. Vitanov

2009-10-06T23:59:59.000Z

497

A numerical ocean circulation model of the Norwegian and Greenland Seas  

E-Print Network [OSTI]

A numerical ocean circulation model of the Norwegian and Greenland Seas DAVID P STEVENS School of the Norwegian and Greenland Seas are investigated using a three-dimensional primitive equation ocean circulation and seasonally varying wind and thermohalme forcing. The connections of the Norwegian and Greenland Seas

Stevens, David

498

Vertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing  

E-Print Network [OSTI]

suggest that heat can be pumped downward by the upper limb of the meridional overturning circulation the earth's climate, with the upper 2.5 m of the ocean able to store as much heat as the entire atmosphereVertical Heat Transport by Ocean Circulation and the Role of Mechanical and Haline Forcing JAN D

England, Matthew

499

1 Drivers of the projected changes to the Pacific Ocean 2 equatorial circulation  

E-Print Network [OSTI]

1 Drivers of the projected changes to the Pacific Ocean 2 equatorial circulation 3 A. Sen Gupta,1 A), 29 Drivers of the projected changes to the Pacific Ocean equatorial 30 circulation, Geophys. Res. Lett., 39, LXXXXX, doi:10.1029/ 31 2012GL051447. 32 1. Introduction 33 [2] The equatorial Pacific Ocean

Paris-Sud XI, Université de

500

Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans  

E-Print Network [OSTI]

Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model

Jensen, Tommy