Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DIESEL OXIDATION CATALYST CONTROL OF HYDROCARBON AEROSOLS FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) is a novel combustion process that utilizes two fuels with different reactivity to stage and control combustion and enable homogeneous combustion. The technique has been proven experimentally in previous work with diesel and gasoline fuels; low NOx emissions and high efficiencies were observed from RCCI in comparison to conventional combustion. In previous studies on a multi-cylinder engine, particulate matter (PM) emission measurements from RCCI suggested that hydrocarbons were a major component of the PM mass. Further studies were conducted on this multi-cylinder engine platform to characterize the PM emissions in more detail and understand the effect of a diesel oxidation catalyst (DOC) on the hydrocarbon-dominated PM emissions. Results from the study show that the DOC can effectively reduce the hydrocarbon emissions as well as the overall PM from RCCI combustion. The bimodal size distribution of PM from RCCI is altered by the DOC which reduces the smaller mode 10 nm size particles.

Prikhodko, Vitaly Y [ORNL; Parks, II, James E [ORNL; Barone, Teresa L [ORNL; Curran, Scott [ORNL; Cho, Kukwon [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

2

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

3

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

4

ENGINE COMBUSTION CONTROL VIA FUEL REACTIVITY ...  

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a ...

5

Engine combustion control via fuel reactivity stratification  

Science Conference Proceedings (OSTI)

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

6

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL; Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Sluder, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

7

Reactivity control assembly for nuclear reactor  

DOE Patents (OSTI)

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01T23:59:59.000Z

8

Nuclear engine flow reactivity shim control  

DOE Patents (OSTI)

A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

Walsh, J.M.

1973-12-11T23:59:59.000Z

9

Nuclear reactivity control using laser induced polarization  

DOE Patents (OSTI)

A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

Bowman, Charles D. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

10

Nuclear reactivity control using laser induced polarization  

DOE Patents (OSTI)

A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

Bowman, Charles D. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

11

Nuclear reactivity control using laser induced polarization  

DOE Patents (OSTI)

A control element for reactivity control of a fission source provides an atomic density of {sup 3}He in a control volume which is effective to control criticality as the {sup 3}He is spin-polarized. Spin-polarization of the {sup 3}He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the {sup 3}He for spin-polarizing the {sup 3}He. An alkali-metal vapor may be included with the {sup 3}He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with {sup 3}He to spin-polarize the {sup 3}He atoms. 5 figs.

Bowman, C.D.

1989-05-26T23:59:59.000Z

12

Reactivity control assembly for nuclear reactor. [LMFBR  

DOE Patents (OSTI)

This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

Bollinger, L.R.

1982-03-17T23:59:59.000Z

13

Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch  

SciTech Connect

First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

Guo, Jiquan; Tantawi, Sami; /SLAC

2007-01-10T23:59:59.000Z

14

Data sampling control, compression and query in sensor networks  

Science Conference Proceedings (OSTI)

Nodes in wireless sensor networks have very limited storage capacity, computing ability and battery power. Node failure and communication link disconnection occur frequently, which means weak services of the network layer. Sensed data is inaccurate which ... Keywords: data accuracy, data compression, data sampling, energy efficiency, power limitation, query, sampling frequency control, sensor networks

Jinbao Li; Jianzhong Li

2007-04-01T23:59:59.000Z

15

Reactivity Control Schemes for Fast Spectrum Space Nuclear Reactors  

Science Conference Proceedings (OSTI)

Several different reactivity control schemes are considered for future space nuclear reactor power systems. Each of these control schemes uses a combination of boron carbide absorbers and/or beryllium oxide reflectors to achieve sufficient reactivity swing to keep the reactor subcritical during launch and to provide sufficient excess reactivity to operate the reactor over its expected 7–15 year lifetime. The size and shape of the control system directly impacts the size and mass of the space reactor's reflector and shadow shield

Aaron E. Craft; Jeffrey C. King

2008-01-01T23:59:59.000Z

16

Dynamic Reactive Power Control of Isolated Power Systems  

E-Print Network (OSTI)

This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally or due to a fault. Isolated power systems experience fast transients due to lack of an infinite bus capable of dictating the voltage and frequency reference. This dissertation only focuses on reactive control of islanded MicroGrids and AC/DC shipboard power systems. The problem is tackled using a Model Predictive Control (MPC) method, which uses a simplified model of the system to predict the voltage behavior of the system in future. The MPC method minimizes the voltage deviation of the predicted bus voltage; therefore, it is inherently robust and stable. In other words, this method can easily predict the behavior of the system and take necessary control actions to avoid instability. Further, this method is capable of reaching a smooth voltage profile and rejecting possible disturbances in the system. The studied MicroGrids in this dissertation integrate intermittent distributed energy resources such as wind and solar generators. These non-dispatchable sources add to the uncertainty of the system and make voltage and reactive control more challenging. The model predictive controller uses the capability of these sources and coordinates them dynamically to achieve the voltage goals of the controller. The MPC controller is implemented online in a closed control loop, which means it is self-correcting with the feedback it receives from the system.

Falahi, Milad

2012-12-01T23:59:59.000Z

17

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

18

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

2010-08-04T23:59:59.000Z

19

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

20

Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression  

DOE Patents (OSTI)

A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

Douglas, David R. (Newport News, VA); Tennant, Christopher D. (Williamsburg, VA)

2012-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Etching radical controlled gas chopped deep reactive ion etching  

DOE Patents (OSTI)

A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

2013-10-01T23:59:59.000Z

22

An approach for modeling the valve train system to control the homogeneous combustion in a compression ignition engine  

Science Conference Proceedings (OSTI)

This paper presents an approach for modeling the valve train system to obtain a homogeneous charge compression ignition (HCCI) engine from a gasoline engine. The HCCI engines use different indirect strategies to control the start of the combustion. The ... Keywords: exhaust gas recirculation, homogeneous charge compression ignition, variable valve timing

Radu Cosgarea; Corneliu Cofaru; Mihai Aleonte; Maria Luminita Scutaru; Liviu Jelenschi; Gabriel Sandu

2011-04-01T23:59:59.000Z

23

Cost of Providing Ancillary Services from Power Plants: Reactive Supply and Voltage Control  

Science Conference Proceedings (OSTI)

This report provides a methodology for determining the variable costs of generating and supplying reactive power to a transmission system, via the generator step-up transformer, for system voltage control. The report examines the costs of additional energy losses, maintenance, repair, and plant aging associated with the generation of reactive power. TR-107270-V3SI contains System of International units.

1997-09-02T23:59:59.000Z

24

Joint optimization algorithm for network reconfiguration and reactive power control of wind farm in distribution system  

Science Conference Proceedings (OSTI)

In recent years, the number of small size wind farms used as DG sources located within the distribution system are rapidly increasing. Wind farm made up with doubly fed induction generators (DFIG) is proposed in this paper as the continuous reactive ... Keywords: DFIG wind turbine, network reconfiguration, particle swarm optimization, reactive power control, wind farm

Jingjing Zhao; Xin Li; Jiping Lu; Congli Zhang

2009-02-01T23:59:59.000Z

25

Nonlinear model predictive control of a reactive distillation column.  

E-Print Network (OSTI)

??Model Predictive Control (MPC) is an optimal-control based method to select control inputs by minimizing the predicted error from setpoint for the future. Industrially popular… (more)

Kawathekar, Rohit

2004-01-01T23:59:59.000Z

26

Distributed control for optimal reactive power compensation in smart microgrids  

E-Print Network (OSTI)

We consider the problem of optimal reactive power compensation for the minimization of power distribution losses in a smart microgrid. We first propose an approximate model for the power distribution network, which allows us to cast the problem into the class of convex quadratic, linearly constrained, optimization problems. We also show how this model provides the tools for a distributed approach, in which agents have a partial knowledge of the problem parameters and state, and can only perform local measurements. Then, we design a randomized, gossip-like optimization algorithm, providing conditions for convergence together with an analytic characterization of the convergence speed. The analysis shows that the best performance can be achieved when we command cooperation among agents that are neighbors in the smart microgrid topology. Numerical simulations are included to validate the proposed model and to confirm the analytic results about the performance of the proposed algorithm.

Bolognani, Saverio

2011-01-01T23:59:59.000Z

27

Anode reactive bleed and injector shift control strategy  

DOE Patents (OSTI)

A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

2012-01-03T23:59:59.000Z

28

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling  

E-Print Network (OSTI)

Understanding of the time-dependent behavior of the neutron population in nuclear reactor in response to either a planned or unplanned change in the reactor conditions, is a great importance to the safe and reliable operation of the reactor. In the present work, the point kinetics equations are solved numerically using stiffness confinement method (SCM). The solution is applied to the kinetics equations in the presence of different types of reactivities and is compared with different analytical solutions. This method is also used to analyze reactivity induced accidents in two reactors. The first reactor is fueled by uranium and the second is fueled by plutonium. This analysis presents the effect of negative temperature feedback with the addition positive reactivity of control rods to overcome the occurrence of control rod ejection accident and damaging of the reactor. Both power and temperature pulse following the reactivity- initiated accidents are calculated. The results are compared with previous works and...

Saad, Hend Mohammed El Sayed; Wahab, Moustafa Aziz Abd El

2013-01-01T23:59:59.000Z

29

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling  

E-Print Network (OSTI)

Understanding of the time-dependent behavior of the neutron population in nuclear reactor in response to either a planned or unplanned change in the reactor conditions, is a great importance to the safe and reliable operation of the reactor. In the present work, the point kinetics equations are solved numerically using stiffness confinement method (SCM). The solution is applied to the kinetics equations in the presence of different types of reactivities and is compared with different analytical solutions. This method is also used to analyze reactivity induced accidents in two reactors. The first reactor is fueled by uranium and the second is fueled by plutonium. This analysis presents the effect of negative temperature feedback with the addition positive reactivity of control rods to overcome the occurrence of control rod ejection accident and damaging of the reactor. Both power and temperature pulse following the reactivity- initiated accidents are calculated. The results are compared with previous works and satisfactory agreement is found.

Hend Mohammed El Sayed Saad; Hesham Mohammed Mohammed Mansour; Moustafa Aziz Abd El Wahab

2013-06-05T23:59:59.000Z

30

Application of Newton's optimal power flow in voltage/reactive power control  

Science Conference Proceedings (OSTI)

This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))

1990-11-01T23:59:59.000Z

31

Identification of Critical Voltage Control Areas and Determination of Required Reactive Power Reserves  

Science Conference Proceedings (OSTI)

The objective of this research project is to investigate and devise a methodology for identifying areas in power systems that are prone to voltage instability under particular operating conditions and contingencies. These areas, which are prone to instability due to their lack of reactive power reserves, are referred to as critical voltage control areas (VCAs). Once VCAs are identified, methods of determining their adequate reactive power reserve requirements to ensure secure system operation under all c...

2008-12-09T23:59:59.000Z

32

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

E-Print Network (OSTI)

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any com...

Turitsyn, Konstantin; Backhaus, Scott; Chertkov, Michael

2009-01-01T23:59:59.000Z

33

Control and Optimization of Vapor Compression Cycles Using Recursive Least Squares Estimation  

E-Print Network (OSTI)

Vapor compression cycles are the primary method by which refrigeration and air-conditioning systems operate, and thus constitute a significant portion of commercial and residential building energy consumption. This thesis presents a data-driven approach to find the optimal operating conditions of a multi-evaporator system in order to minimize the energy consumption while meeting operational requirements such as constant cooling or constant evaporator outlet temperature. The experimental system used for controller evaluation is a custom built small-scale water chiller with three evaporators; each evaporator services a separate body of water, referred to as a cooling zone. The three evaporators are connected to a single condenser and variable speed compressor, and feature variable water flow and electronic expansion valves. The control problem lies in development of a control architecture that will minimize the energy consumed by the system without prior information about the system in the form of performance maps, or complex mathematical models. The control architecture explored in this thesis relies on the data collected by sensors alone to formulate a function for the power consumption of the system in terms of controlled variables, namely, condenser and evaporator pressures, using recursive least squares estimation. This cost function is then minimized to attain optimal set points for the pressures which are fed to local controllers.

Rani, Avinash

2012-08-01T23:59:59.000Z

34

A method of reactive zoom control from uncertainty in tracking  

Science Conference Proceedings (OSTI)

The tuning of a constant velocity Kalman filter, used for tracking by a camera fitted with a variable focal-length lens, is shown to be preserved under a scale change in process noise if accompanied by an inverse scaling in the focal length, provided ... Keywords: Active vision, Visual tracking, Zoom control

B. J. Tordoff; D. W. Murray

2007-02-01T23:59:59.000Z

35

Reactivity estimation and validation for the control of reactor neutronic power. Master's thesis  

SciTech Connect

From July 1986 to July 1991, a joint MIT-SNL research team developed a controller capable of safely raising reactor power by approximately five orders of magnitude in a few seconds. This controller was experimentally demonstrated on the MIT Research Reactor (MITR-II) as well as on the 'Sandia National Laboratories' Annular Core Research Reactor (ACRR). This controller's intended application is for the control of spacecraft nuclear reactors. However, it also has direct application for the control of military, commercial, and research reactors. This report is concerned with a method for enhancing the controller's performance through the development of an improved model to validate estimates of the magnitude of reactivity feedback effects. The focus is on the Doppler effect but the resulting model is applicable to other types of reactivity feedback such as that associated with the thermal effects of a hydrogen coolant.

Lasota, C.S.

1993-05-01T23:59:59.000Z

36

Journey to Flexible, Reliable, Laboratory Platform for Simultaneous Control of Multiple Reactive Power Producing Devices  

SciTech Connect

Herein is discussed the instrumentation and control requirements for achieving the goal of operating multiple Distributed Energy (DE) devices in parallel to regulate local voltage. The process for establishing the flexible laboratory control and data acquisition system that allows for the integration of multiple Distributed Energy (DE) devices in XXXX Laboratory's Distributed Energy - Communications and Controls Laboratory (DECC) is discussed. The DE devices control local distribution system voltage through dynamic reactive power production. Although original efforts were made to control the reactive power (RP) output using information from commercially available meters specifically designed for monitoring and analyzing electric power values, these "intelligent" meters did not provide the flexibility needed. A very flexible and capable real-time monitoring and control system was selected after the evaluation of various methods of data acquisition (DAQ) and control. The purpose of this paper is to describe the DAQ and controls system development. The chosen controller is a commercially available real-time controller from dSPACE. This controller has many excellent features including a very easy programming platform through Simulink and Matlab's Real Time Workshop. The dSPACE system proved to provide both the flexibility and expandability needed to integrate and control the RP producing devices under consideration. The desire was to develop controls with this flexible laboratory instrumentation and controls setup that could be eventually be included in an embedded controller on a DE device. Some experimental results are included that clearly show that some functional control strategies are currently being tested.

Foster, Jason [ORNL; Rizy, D Tom [ORNL; Kueck, John D [ORNL

2007-01-01T23:59:59.000Z

37

GE Energy Coupled Microgirid Project -University of Notre Dame -April 7, 2011 Distributive Reactive Control in Coupled Microgrids  

E-Print Network (OSTI)

Reactive Control in Coupled Microgrids Task Objectives and Approach simPower Model of MV Network CERTS Microgrid Models Reactive Control of Voltage Rise Deliverables Schedule Distributed Event-Triggered Control of Coupled Microgrids #12;Task Objectives and Approach Task will develop distributed methods to maximize

Lemmon, Michael

38

Compressed air energy storage (CAES) environmental control concerns and program plan  

DOE Green Energy (OSTI)

This report assesses the required environmental research and recommends a program plan to assist DOD's Environmental Control Technology Division (ECT) in performing its mission of ensuring that the procedures, processes, systems, and strategies necessary to minimize any adverse environmental impacts of compressed air energy storage (CAES) are developed in a timely manner so as not to delay implementation of the technology. To do so, CAES technology and the expected major environmental concerns of the technology are described. Second, ongoing or planned research in related programs and the applicability of results from these programs to CAES environmental research are discussed. Third, the additional research and development required to provide the necessary environmental data base and resolve concerns in CAES are outlined. Finally, a program plan to carry out this research and development effort is presented.

Beckwith, M.A.; Boehm, D.W.

1980-06-01T23:59:59.000Z

39

Gas conditioning and processing. Volume II. Absorption and fractionation; pumping, compression and expansion; refrigeration; hydrate inhibition, dehydration and process control  

SciTech Connect

Volume II of a two volume publication is presented in which aspects of conditioning and/or processing of natural gas for sale are examined. Chapters are included on absorption and fractionation, compression and expansion of fluids, refrigeration systems, liquefaction processes, water-hydrocarbon system behavior, dehydration and sweetening, adsorption processing, sulfur recovery, process control, and cost estimation. (JRD)

Campbell, J.M.

1976-01-01T23:59:59.000Z

40

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

SciTech Connect

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Sule, Petr [NEW MEXICO CONSORTIUM

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration  

SciTech Connect

We show how distributed control of reactive power can serve to regulate voltage and minimize resistive losses in a distribution circuit that includes a significant level of photovoltaic (PV) generation. To demonstrate the technique, we consider a radial distribution circuit with a single branch consisting of sequentially-arranged residential-scale loads that consume both real and reactive power. In parallel, some loads also have PV generation capability. We postulate that the inverters associated with each PV system are also capable of limited reactive power generation or consumption, and we seek to find the optimal dispatch of each inverter's reactive power to both maintain the voltage within an acceptable range and minimize the resistive losses over the entire circuit. We assume the complex impedance of the distribution circuit links and the instantaneous load and PV generation at each load are known. We compare the results of the optimal dispatch with a suboptimal local scheme that does not require any communication. On our model distribution circuit, we illustrate the feasibility of high levels of PV penetration and a significant (20% or higher) reduction in losses.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Sule, Petr [NEW MEXICO CONSORTIUM

2009-01-01T23:59:59.000Z

42

The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems  

SciTech Connect

In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

Guo, Jiquan; /SLAC

2009-03-20T23:59:59.000Z

43

PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage Control in Distribution  

E-Print Network (OSTI)

PAPER ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, Nov. 2008 1 Reactive Power and Voltage) problem associated with reactive power and voltage control in distribution systems to minimize daily on the number of switching operations of transformer load tap changers (LTCs) and capacitors, which are modeled

Cañizares, Claudio A.

44

Development of dynamic models of reactive distillation columns for simulation and determination of control  

E-Print Network (OSTI)

Dynamic models of a reactive distillation column have been developed and implemented in this work. A model describing the steady state behavior of the system has been built in a first step. The results from this steady state model have been compared to data provided from an industrial collaborator and the reconciled model formed the basis for the development of a dynamic model. Four controlled and four manipulated variables have been determined in a subsequent step and step tests for the manipulated variables were simulated. The data generated by the step responses was used for fitting transfer functions between the manipulated and the controlled variables. RGA analysis was performed to find the optimal pairing for controller design. Feedback controllers of PID type were designed between the paired variables found from RGA and the controllers were implemented on the column model. Both servo and regulatory problems have been considered and tested.

Chakrabarty, Arnab

2004-12-01T23:59:59.000Z

45

Emissions from premixed charge compression ignition (PCCI) combustion and affect on emission control devices  

DOE Green Energy (OSTI)

A light-duty diesel engine has been operated in advanced combustion modes known generally as premixed charge compression ignition (PCCI). The emissions have been characterized for several load and speed combinations. Fewer NO{sub x} and particulate matter (PM) emissions are produced by PCCI, but higher CO and hydrocarbon (HC) emissions result. In addition, the nature of the PM differs from conventional combustion; the PM is smaller and has a much higher soluble organic fraction (SOF) content (68% vs. 30% for conventional combustion). Three catalyst technologies were studied to determine the affects of HECC on catalyst performance; the technologies were a lean NO{sub x} trap (LNT), diesel oxidation catalyst (DOC), and diesel particulate filter (DPF). The LNT benefited greatly from the reduced NO{sub x} emissions associated with PCCI. NO{sub x} capacity requirements are reduced as well as overall tailpipe NO{sub x} levels particularly at low load and temperature conditions where regeneration of the LNT is difficult. The DOC performance requirements for PCCI are more stringent due to the higher CO and HC emissions; however, the DOC was effective at controlling the higher CO and HC emissions at conditions above the light-off temperature. Below light-off, CO and HC emissions are problematic. The study of DPF technology focused on the fuel penalties associated with DPF regeneration or 'desoot' due to the different PM loading rates from PCCI vs. conventional combustion. Less frequent desoot events were required from the lower PM from PCCI and, when used in conjunction with an LNT, the lower PM from less frequent LNT regeneration. The lower desoot frequency leads a {approx}3% fuel penalty for a mixture of PCCI and conventional loads vs. {approx}4% for conventional only combustion.

Parks, II, James E [ORNL; Kass, Michael D [ORNL; Huff, Shean P [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Prikhodko, Vitaly Y [ORNL; Storey, John Morse [ORNL

2010-01-01T23:59:59.000Z

46

Trends vs. reactor size of passive reactivity shutdown and control performance  

SciTech Connect

The focus of the US advanced reactor program since the cancellation of CRBR has been on inherent safety and cost reduction. The notion is to so design the reactor that in the event of an off normal condition, it brings itself to a safe shutdown condition and removes decay heat by reliance on ''inherent processes'' i.e., without reliance on devices requiring switching and outside sources of power. Such a reactor design would offer the potential to eliminate costly ''Engineered Safety Features,'' to lower capital costs, and to assuage public unease concerning reactor safety. For LMR concepts, the goal of passive reactivity shutdown has been approached in the US by designing the reactors for favorable relationships among the power, power/flow, and inlet temperature coefficients of reactivity, for high internal conversion ratio (yielding small burnup control swing), and for a primary pump coastdown time appropriately matched to the delayed neutron hold back of power decay upon negative reactivity input. The use of sodium bonded metallic fuel pins has facilitated the achievement of the passive shutdown design goals as a consequence of their high thermal conductivity and high effective heavy metal density. Alternately, core designs based on derated oxide pins may be able to achieve the passive shutdown features at the cost of larger core volume and increased initial fissile inventory. 8 refs., 12 figs., 1 tab.

Wade, D.C.; Fujita, E.K.

1988-01-01T23:59:59.000Z

47

DYNAMIC MODELING AND CONTROL OF REACTIVE DISTILLATION FOR HYDROGENATION OF BENZENE  

E-Print Network (OSTI)

This work presents a modeling and control study of a reactive distillation column used for hydrogenation of benzene. A steady state and a dynamic model have been developed to investigate control structures for the column. The most important aspects of this control problem are that the purity of the product streams regarding benzene need to be met. At the same time as little toluene as possible should be converted. The former is a constraint imposed by EPA regulations while the latter is tied to process economics due to the high octane number of toluene. It is required to satisfy both of these objectives even under the influence of disturbances, as the feed composition changes on a regular basis. The dynamic model is used for developing transfer function models of two potential control structures. Pairing of inputs and outputs is performed based upon the Relative Gain Array (RGA) and PI controllers were designed for each control structure. The controller performance was then compared in simulation studies. From our results, control structure 2 performed better than control structure 1. The main advantage of CS2 over CS1 is noticed in the simulation of feed composition disturbance rejection, where CS2 returns all variables back to steady state within 3 hrs while it take CS1 more than 20 hrs to return the temperature variables back to steady state.

Aluko, Obanifemi

2008-08-01T23:59:59.000Z

48

Detailed Analysis and Control Issues of Homogeneous Charge Compression Ignition (HCCI)  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work.

Aceves, Salvador M.; Flowers, Daniel L.; Martinez-Frias, Joel; Espinosa-Loza, Francisco; Dibble, Robert

2002-08-25T23:59:59.000Z

49

Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Round 1 Emissions Results from Compressed Round 1 Emissions Results from Compressed Natural Gas Vans and Gasoline Controls Operating in the U.S. Federal Fleet Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Leslie Eudy ManTech Environmental Technology, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc.

50

Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study  

Science Conference Proceedings (OSTI)

This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

Not Available

2002-01-01T23:59:59.000Z

51

Integrated Control of Active and Reactive Power Flow Controllers to Optimize Transmission System Utilization  

Science Conference Proceedings (OSTI)

Optimized power system control requires oversight of numerous control elements to efficiently and reliably transfer power across the system. The objective of this project was to minimize losses in the Consolidated Edison Electric power system via modification of control variables available to the system operator. These variables include generator voltages, transformer voltage/phase angle tap set points, and switched shunt status. System constraints include bus voltages, branch/interface flow limits, ...

2012-11-08T23:59:59.000Z

52

Experimental Verification of Discretely Variable Compression Braking Control for Heavy Duty Vehicles  

E-Print Network (OSTI)

and Control, [11] T.R. Fortescue, L.S. Kershenbaum, and B.E.scheme is proposed by Fortescue et al. [11] in which a time-

Vahidi, Ardalan; Stefanopoulou, Anna G.; Farias, Phil; Tsao, Tsu Chin

2003-01-01T23:59:59.000Z

53

Voltage/Pitch Control for Maximization and Regulation of Active/Reactive Powers in Wind Turbines with Uncertainties  

E-Print Network (OSTI)

This paper addresses the problem of controlling a variable-speed wind turbine with a Doubly Fed Induction Generator (DFIG), modeled as an electromechanically-coupled nonlinear system with rotor voltages and blade pitch angle as its inputs, active and reactive powers as its outputs, and most of the aerodynamic and mechanical parameters as its uncertainties. Using a blend of linear and nonlinear control strategies (including feedback linearization, pole placement, uncertainty estimation, and gradient-based potential function minimization) as well as time-scale separation in the dynamics, we develop a controller that is capable of maximizing the active power in the Maximum Power Tracking (MPT) mode, regulating the active power in the Power Regulation (PR) mode, seamlessly switching between the two modes, and simultaneously adjusting the reactive power to achieve a desired power factor. The controller consists of four cascaded components, uses realistic feedback signals, and operates without knowledge of the C_p-...

Guo, Yi; Jiang, John N; Tang, Choon Yik; Ramakumar, Rama G

2010-01-01T23:59:59.000Z

54

Combining thorium with burnable poison for reactivity control of a very long cycle BWR  

E-Print Network (OSTI)

The effect of utilizing thorium together with gadolinium, erbium, or boron burnable absorber in BWR fuel assemblies for very long cycle is investigated. Nuclear characteristics such as reactivity and power distributions ...

Inoue, Yuichiro, 1969-

2004-01-01T23:59:59.000Z

55

Study on Reactive Power and Voltage Control of Power Grid with Small Hydropower  

Science Conference Proceedings (OSTI)

When it is in the wet season and the load is low, reactive power surplus and voltage rise are caused by high-efficiency power generation of small hydropower and load reduction in Linjiang region, Baishan city, JiLin province. These problems, which exist ... Keywords: small hydro power, vally load, reactive power balance, the rise in voltage, generator in leading power factor on operation

Yaopeng Bai; Lijie Xu; Wei Wang

2010-06-01T23:59:59.000Z

56

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

DOE Green Energy (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

57

Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability  

Science Conference Proceedings (OSTI)

Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

Li, Huijuan [ORNL; Xu, Yan [ORNL; Adhikari, Sarina [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Irminger, Philip [ORNL

2012-01-01T23:59:59.000Z

58

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI  

Science Conference Proceedings (OSTI)

On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naptha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated. The increased pumping work from throttling was minimal compared to the efficiency increases that were the result of lower unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. Low temperature heat release was present for all the fuels, but could be suppressed with a higher intake air temperature. Results will be used to design future fuels and combustion studies with this research platform.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2007-01-01T23:59:59.000Z

59

Catalysis and Reactivity  

NLE Websites -- All DOE Office Websites (Extended Search)

understanding of basic principles of surface reactivity and its control by surface modification, on identification of active sites and full characterization of their electronic...

60

Compressed Air 101: Getting Compressed Air to Work  

E-Print Network (OSTI)

"Air compressors are a significant industrial energy user. Based on a survey (conducted by Oregon State University and the Bonneville Power Administration) of energy audit reports from 125 plants, air compressors account for roughly 10% of total plant energy use. Furthermore, air compression is inefficient with up to 95% of compressor power dissipated as heat. Thus even minor improvements in system operation, control strategies, and efficiency can yield large energy savings and significant non-energy or productivity benefits from reliable compressed air. Compressed air is often called the ""fourth utility"" in industrial facilities after electricity, natural gas, and water. It provides motive power for machinery, cooling, materials handling, and hand tools. It is a safe, flexible, and powerful resource, but one that is seldom run for low operating costs or best productivity. Learning the basics of compressed air systems represents the beginning of both reducing energy costs and enjoying the productive benefits of reliable compressed air. Compressed air management systems, including a system approach to managing demand, stabilizing pressure, reducing leaks and compressor controls, can allow the industrial end user to save 20% - 50% of their air compressor electricity usage. The monitoring capabilities of compressed air management systems provide a useful tool through power, pressure and flow trending to maintain both the energy savings and increased system reliability. More efficiently managed compressed air systems are less costly to maintain and have less impact on the environment. The most important issues of industrial compressed air in relation to energy efficiency and management are: 1. Compressed air is an essential industrial utility; 2. Compressing air is a fundamentally inefficient energy transformation process; 3. Optimal operation of compressed air systems in industrial plants is seldom a priority and adequate management infonnation is rare, resulting in negative impacts on production and even less efficiency."

Burke, J. J.; Bessey, E. G.

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE  

SciTech Connect

This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

2005-12-01T23:59:59.000Z

62

Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines  

Science Conference Proceedings (OSTI)

This article describes modular neural control structures for different walking machines utilizing discrete-time neurodynamics. A simple neural oscillator network serves as a central pattern generator producing the basic rhythmic leg movements. Other ... Keywords: Central pattern generator, Neural control, Omnidirectional walking, Sensor-driven behavior, Walking machines

P. Manoonpong; F. Pasemann; F. Wörgötter

2008-03-01T23:59:59.000Z

63

Reactive power control of grid-connected wind farm based on adaptive dynamic programming  

E-Print Network (OSTI)

of wind farm with doubly fed induction generators (DFIG). Specifically, we investigate the on-cage induction generator, permanent magnet synchronous generator and doubly fed induction generator (DFIG). DFIG of DFIG are high efficiency, flexible control and low investment. The stator of DFIG is directly connected

He, Haibo

64

Identification of Critical Voltage Control Areas and Determination of Required Reactive Power Reserves  

Science Conference Proceedings (OSTI)

This Technical Update reports on the development of a highly automated method for identifying Voltage Control Areas (VCAs), areas prone to voltage instability in practical power system models. For a wide range of system conditions and contingencies, the technique can identify the buses in each VCA and identify VCAs that are common for a set of contingencies and/or conditions. In addition, the method identifies the generators that are critical to maintaining stability for a given VCA. The methods develope...

2007-09-24T23:59:59.000Z

65

Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens  

Science Conference Proceedings (OSTI)

The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

2011-08-02T23:59:59.000Z

66

Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems  

Science Conference Proceedings (OSTI)

This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.

Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

2008-06-30T23:59:59.000Z

67

Grid Shunt Reactive Power Compensation  

Science Conference Proceedings (OSTI)

This report provides essential information on transmission grid shunt reactive power compensation, with particular focus on controllable reactive power sources such as the static var controller (SVC). Applying the information presented in this report can help electric utilities planning grid shunt reactive power compensation strategies or operating shunt reactive power compensation equipment to increase grid reliability, improve grid performance and prevent costly cascading outages. The report is intende...

2008-11-26T23:59:59.000Z

68

Tension-Compression Testing  

Science Conference Proceedings (OSTI)

Tension-Compression Testing. ... version of the tension-compression test, to enable ... loading around draw-beads, where calibration tests must include ...

2013-04-10T23:59:59.000Z

69

General Compression | Open Energy Information  

Open Energy Info (EERE)

Compression Compression Jump to: navigation, search Name General Compression Place Newton, Massachusetts Zip 2458 Product Massachusetts-based developer of compressed air energy storage systems. Coordinates 43.996685°, -87.803724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996685,"lon":-87.803724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Molecular Control of the Nanoscale: Effect of Phosphine–Chalcogenide Reactivity on CdS–CdSe Nanocrystal Composition and Morphology  

Science Conference Proceedings (OSTI)

We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS–CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine–chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR (31P and 77Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine–chalcogenide precursor reactivity increases in the order: TPPE CdSe, and CdS1–xSex quantum rods were synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PS–R3PSe mixture to cadmium–phosphonate at 320 or 250 °C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R3PE precursor reactivity. Purposely matching or mismatching R3PS–R3PSe precursor reactivity leads to CdS1–xSex nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable “bottom-up” programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.

Ruberu, T. Purnima A.; Albright, Haley R.; Callis, Brandon; Ward, Brittney; Cisneros, Joana; Fan, Hua-Jun; Vela, Javier

2012-04-22T23:59:59.000Z

71

Reactive and Catalytic Air Purification Materials - Energy ...  

Biomass and Biofuels; Building Energy Efficiency; Electricity Transmission; ... Target selectivity can be controlled through selection of reactive components.

72

Partnering Today: Technology Transfer Highlights Reactive ...  

THE LLNL TECHNOLOGY COMPANY PRODUCT Partnering Today: Technology Transfer Highlights Reactive NanoTechnologies Inc.: Temperature-controlled Precision Bonding

73

Conducting fiber compression tester  

DOE Patents (OSTI)

The invention measures the resistance across a conductive fiber attached to a substrate place under a compressive load to determine the amount of compression needed to cause the fiber to fail. 3 figs.

DeTeresa, S.J.

1989-12-07T23:59:59.000Z

74

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

75

Reactive Power Compensator.  

DOE Patents (OSTI)

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

1992-07-28T23:59:59.000Z

76

Reactive power compensator  

DOE Patents (OSTI)

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

1992-01-01T23:59:59.000Z

77

Secure Compressed Reading in Smart Grids  

E-Print Network (OSTI)

Smart Grids measure energy usage in real-time and tailor supply and delivery accordingly, in order to improve power transmission and distribution. For the grids to operate effectively, it is critical to collect readings from massively-installed smart meters to control centers in an efficient and secure manner. In this paper, we propose a secure compressed reading scheme to address this critical issue. We observe that our collected real-world meter data express strong temporal correlations, indicating they are sparse in certain domains. We adopt Compressed Sensing technique to exploit this sparsity and design an efficient meter data transmission scheme. Our scheme achieves substantial efficiency offered by compressed sensing, without the need to know beforehand in which domain the meter data are sparse. This is in contrast to traditional compressed-sensing based scheme where such sparse-domain information is required a priori. We then design specific dependable scheme to work with our compressed sensing based ...

Cai, Sheng; Chen, Minghua; Yan, Jianxin; Jaggi, Sidharth

2012-01-01T23:59:59.000Z

78

NETL: CO2 Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Compression CO2 Compression The CO2 captured from a power plant will need to be compressed from near atmospheric pressure to a pressure between 1,500 and 2,200 psi in order to be transported via pipeline and then injected into an underground sequestration site. Read More! CO2 Compression The compression of CO2 represents a potentially large auxiliary power load on the overall power plant system. For example, in an August 2007 study conducted for DOE/NETL, CO2 compression was accomplished using a six-stage centrifugal compressor with interstage cooling that required an auxiliary load of approximately 7.5 percent of the gross power output of a subcritical pressure, coal-fired power plant. As a result, DOE/NETL is sponsoring R&D to develop novel methods that can significantly decrease the

79

Modeling Compressed Turbulence  

Science Conference Proceedings (OSTI)

From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

Israel, Daniel M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

80

ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)  

SciTech Connect

The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.

Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Compressed Sensing in Astronomy  

E-Print Network (OSTI)

Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper we investigate how compressed sensing (CS) can provide new insights into astronomical data compression and more generally how it paves the way for new conceptions in astronomical remote sensing. We first give a brief overview of the compressed sensing theory which provides very simple coding process with low computational cost, thus favoring its use for real-time applications often found on board space mission. We introduce a practical and effective recovery algorithm for decoding compressed data. In astronomy, physical prior information is often crucial for devising effective signal processing methods. We particularly point out that a CS-based compression scheme is flexible enough to account for such information. In this context, compressed sensing is a new framework in which data acquisition and data processing are merged. We show also that CS provides a new fantastic way to handle multiple observations of the same field view, allowing us to recover information at very low signal-to-noise ratio, which is impossible with standard compression methods. This CS data fusion concept could lead to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments on board the Herschel spacecraft which will be launched in 2008.

J. Bobin; J-L Starck; R. Ottensamer

2008-02-01T23:59:59.000Z

82

Magnetic nuclear core restraint and control  

DOE Patents (OSTI)

A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

Cooper, Martin H. (Monroeville, PA)

1979-01-01T23:59:59.000Z

83

A Tariff for Reactive Power  

DOE Green Energy (OSTI)

Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

2008-07-01T23:59:59.000Z

84

Envera Variable Compression Ratio Engine  

DOE Green Energy (OSTI)

Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new technologies are packaged together to provide the greatest gains at the least cost. Aggressive engine downsiz

Charles Mendler

2011-03-15T23:59:59.000Z

85

AFIS data compression: an example of how domain specific compression algorithms can produce very high compression ratios  

Science Conference Proceedings (OSTI)

This article describes the development and implementation of a data compression algorithm designed specifically for fingerprints, referred to as GBP compression. The algorithm is herein discussed. Data Compression algorithms can be designed for general ... Keywords: AFIS, automated fingerprint identification systems, compatibility, compression, data compression, data encryption, data integrity, double compression, fingerprinting, graphics, image compression, image quality, limits of compression, portability, retrofitting, serial compression, software engineering

Givon Zirkind

2007-11-01T23:59:59.000Z

86

Compressed Gas Cylinder Policy  

E-Print Network (OSTI)

, storage, and usage of compressed gas cylinders. 2.0 POLICY Colorado School of Mines ("Mines" or "the, storage, and usage requirements outlined below. This policy is applicable school-wide including all, or electrical circuits. Flammable gas cylinders must be stored in the building's gas cylinder storage cage until

87

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

88

Functional compression : theory and application  

E-Print Network (OSTI)

We consider the problem of functional compression. The objective is to separately compress possibly correlated discrete sources such that an arbitrary deterministic function of those sources can be computed given the ...

Doshi, Vishal D. (Vishal Devendra)

2008-01-01T23:59:59.000Z

89

Available Technologies: Compression Ratio Dehumidification  

The Compression Ratio Dehumidification technology will address a growing concern since energy efficiency standards became broadly adopted nationwide.

90

Compressed Air System Maintenance Guide  

Science Conference Proceedings (OSTI)

The "Compressed Air System Maintenance Guide" provides fossil plant personnel with information on the operation and maintenance of the compressed air system. The contents of this guide will assist personnel in improving performance of the compressed air system, reducing maintenance costs, and increasing air system reliability.

2002-11-27T23:59:59.000Z

91

220-MW compressed air storage  

Science Conference Proceedings (OSTI)

SOYLAND Power Cooperative, Inc., a Decatur, Illinois based co-op, could get reasonably priced baseload power from neighboring utilities, had a plant of its own planned for the near future as well as a share in another, but peaking power, generated by oil and gas, to meet surges in demand, was very costly. The co-op's solution, first in the U.S., is a 220-megawatt compressed air energy storage system (CAES), which the electric utility industry is watching with great interest. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal or nuclear power plants runs a combination motor-generator in motor mode which, in turn, operates a compressor. The compressed air is cooled and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet (about 610 m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

92

Improving Floating Point Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

93

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

94

Quantifying Silica Reactivity in Subsurface Environments: Reaction Affinity and Solute Matrix Controls on Quartz and SiO2 Glass Dissolution Kinetics  

DOE Green Energy (OSTI)

During the three years of this project, Professor Dove's laboratory made tremendous progress in understanding controls on amorphous silica dissolution kinetics in aqueous solutions. Our findings have already received considerable attention. In hydrothermal and low temperature studies, the work focused on determining quantitative and mechanistic controls on the most abundant silica polymorphs in Earth environments--quartz and amorphous silica. Our studies achieved goals set forth in the original proposal to establish a new quantitative understanding of amorphous silica dissolution. This support has resulted in 10 journal, 12 abstracts and 2 thesis publications. The PI and students were also recognized with 6 awards during this period. The 1998 EMSP conference in Chicago was an important meeting for our project. The symposium, enabled P.I. Dove to establish valuable contacts with ''users'' having specific needs for the findings of our EMSP project related to the urgency of problems in the Tanks Focus Area (TFA). Since that time, our working relations developed as Dove interacted with TFA scientists and engineers on the problems of waste glass properties. These interactions refined our experimental objectives to better meet their needs. Dove presented the results of EMSP research findings to a TFA subgroup at a Product Acceptance Workshop held in Salt Lake City during December 1998. The travel costs to attend this unanticipated opportunity were paid from EMSP project funds. In January 2000, Dove also attended a similar meeting in Atlanta with PNNL, SRL and BNF scientists/engineers to discuss new issues and make another level of decisions on the Product Acceptance goals. Our EMSP-funded research interfaced very well with the ongoing studies of Dr. Pete McGrail and colleagues in the Applied Geochemistry Group at PNNL. The value of our work to ''users'' was further demonstrated when Dove's EMSP-funded Postdoc, Dr. Jonathan Icenhower was hired by the same PNNL group. With the Icenhower move from postdoc in the Dove lab to a senior scientist position at PNNL, we directly facilitated information transfer from the ''university to user'' environment. Icenhower brought experience in silica-water reactivity and the experimental expertise in high-quality methods of mineral-water reaction kinetics to the PNNL waste clean-up effort. In a further interaction, M.S. student Troy Lorier was hired at the Savannah River Laboratory for a staff position with the Bill Holtzcheiter glass group. His research meshed well with on-going efforts at SRL. In short, our EMSP project went well beyond the academic goals of producing high quality scientific knowledge to establish connections with on-site users to solve problems in TFA. This project also produced new talent for the waste immobilization effort. This EMSP project was highly successful and we thank our sponsors for the opportunity to advance scientific knowledge in this important area of research.

Patricia M. Dove

2000-12-13T23:59:59.000Z

95

Two-stage Ignition as an Indicator of Low Temperature Combustion in a Late Injection Pre-mixed Compression Ignition Control Strategy  

E-Print Network (OSTI)

Internal combustion engines have dealt with increasingly restricted emissions requirements. After-treatment devices are successful in bringing emissions into compliance, but in-cylinder combustion control can reduce their burden by reducing engine out emissions. For example, oxides of nitrogen (NOx) are diesel combustion exhaust species that are notoriously difficult to remove by after-treatment. In-cylinder conditions can be controlled for low levels of NOx, but this produces high levels of soot potentially leading to increased particulate matter (PM). The simultaneous reduction of NOx and PM can be realized through a combustion process known as low temperature combustion (LTC). In this study, the typical definition of LTC as the defeat of the inverse relationship between soot and NOx is not applicable as a return to the soot-NOx tradeoff is observed with increasing exhaust gas recirculation (EGR). It is postulated that this effect is the result of an increase in the hot ignition equivalence ratio, moving the combustion event into a slightly higher soot formation region. This is important because a simple emissions based definition of LTC is no longer helpful. In this study, the manifestation of LTC in the calculated heat release profile is investigated. The conditions classified as LTC undergo a two-stage ignition process. Two-stage ignition is characterized by an initial cool-flame reaction followed by typical hot ignition. In traditional combustion conditions, the ignition is fast enough that a cool-flame is not observed. By controlling initial conditions (pressure, temperature, and composition), the creation and duration of the cool-flame event is predictable. Further, the effect that injection timing and the exhaust gas recirculation level have on the controlling factors of the cool-flame reaction is well correlated to the duration of the cool-flame event. These two results allow the postulation that the presence of a sufficiently long cool-flame reaction indicates a combustion event that can be classified as low temperature combustion. A potential method for identifying low temperature combustion events using only the rate of heat release profile is theorized. This study employed high levels of EGR and late injection timing to realize the LTC mode of ordinary petroleum diesel fuel. Under these conditions, and based on a 90 percent reduction in nitric oxide and no increase in smoke output relative to the chosen baseline condition, a two part criteria is developed that identifies the LTC classified conditions. The criteria are as follow: the combustion event of conventional petroleum diesel fuel must show a two-stage ignition process; the first stage (cool-flame reaction) must consume at least 2 percent of the normalized fuel energy before the hot ignition commences.

Bittle, Joshua

2010-12-01T23:59:59.000Z

96

System for reactivating catalysts  

DOE Patents (OSTI)

A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

2010-03-02T23:59:59.000Z

97

Photon compression in cylinders  

DOE Green Energy (OSTI)

It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10/sup 14/ watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10/sup 5/ joules cm/sup -2/ and powers of >10/sup 13/ watts cm/sup -2/ are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling.

Ensley, D.L.

1977-01-12T23:59:59.000Z

98

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

Mechanical compression heat pumping is not new in industrial applications. In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical foundation for heat pumps and present the mechanical and thermal requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel demand paths. The case history will examine the system flexibility and the economic advantages realized in a barley malting process.

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

1986-06-01T23:59:59.000Z

99

Shock compression of precompressed deuterium  

DOE Green Energy (OSTI)

Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

2011-07-31T23:59:59.000Z

100

Combustion dynamics in steady compressible flows  

E-Print Network (OSTI)

We study the evolution of a reactive field advected by a one-dimensional compressible velocity field and subject to an ignition-type nonlinearity. In the limit of small molecular diffusivity the problem can be described by a spatially discretized system, and this allows for an efficient numerical simulation. If the initial field profile is supported in a region of size l < lc one has quenching, i.e., flame extinction, where lc is a characteristic length-scale depending on the system parameters (reacting time, molecular diffusivity and velocity field). We derive an expression for lc in terms of these parameters and relate our results to those obtained by other authors for different flow settings.

S. Berti; D. Vergni; A. Vulpiani

2008-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Compressed String Dictionaries  

E-Print Network (OSTI)

The problem of storing a set of strings --- a string dictionary --- in compact form appears naturally in many cases. While classically it has represented a small part of the whole data to be processed (e.g., for Natural Language processing or for indexing text collections), more recent applications in Web engines, Web mining, RDF graphs, Internet routing, Bioinformatics, and many others, make use of very large string dictionaries, whose size is a significant fraction of the whole data. Thus novel approaches to compress them efficiently are necessary. In this paper we experimentally compare time and space performance of some existing alternatives, as well as new ones we propose. We show that space reductions of up to 20% of the original size of the strings is possible while supporting fast dictionary searches.

Brisaboa, Nieves R; Martínez-Prieto, Miguel A; Navarro, Gonzalo

2011-01-01T23:59:59.000Z

102

Data Compression with Prime Numbers  

E-Print Network (OSTI)

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

103

Signal compression by subband coding  

Science Conference Proceedings (OSTI)

This is a survey/tutorial paper on data compression using the technique of subband coding. This is widely used in practice, for example, in the MPEG audio coder. A subband coder has two main components: a filter bank that decomposes the source into components, ... Keywords: Compression, Filter banks, Subband coding

Bruce Francis; Soura Dasgupta

1999-12-01T23:59:59.000Z

104

Streaming Compression of Hexahedral Meshes  

Science Conference Proceedings (OSTI)

We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

Isenburg, M; Courbet, C

2010-02-03T23:59:59.000Z

105

SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) 2013  

SciTech Connect

There is a significant need to protect the nation’s energy infrastructures from malicious actors using cyber methods. Supervisory, Control, and Data Acquisition (SCADA) systems may be vulnerable due to the insufficient security implemented during the design and deployment of these control systems. This is particularly true in older legacy SCADA systems that are still commonly in use. The purpose of INL’s research on the SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) project was to determine if and how data compression techniques could be used to identify and protect SCADA systems from cyber attacks. Initially, the concept was centered on how to train a compression algorithm to recognize normal control system traffic versus hostile network traffic. Because large portions of the TCP/IP message traffic (called packets) are repetitive, the concept of using compression techniques to differentiate “non-normal” traffic was proposed. In this manner, malicious SCADA traffic could be identified at the packet level prior to completing its payload. Previous research has shown that SCADA network traffic has traits desirable for compression analysis. This work investigated three different approaches to identify malicious SCADA network traffic using compression techniques. The preliminary analyses and results presented herein are clearly able to differentiate normal from malicious network traffic at the packet level at a very high confidence level for the conditions tested. Additionally, the master dictionary approach used in this research appears to initially provide a meaningful way to categorize and compare packets within a communication channel.

Gordon Rueff; Lyle Roybal; Denis Vollmer

2013-01-01T23:59:59.000Z

106

Treating water-reactive wastes  

DOE Green Energy (OSTI)

Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated.

Lussiez, G.W.

1993-01-01T23:59:59.000Z

107

Treating water-reactive wastes  

DOE Green Energy (OSTI)

Some compounds and elements, such as lithium hydride, magnesium, sodium, and calcium react violently with water to generate much heat and produce hydrogen. The hydrogen can ignite or even form an explosive mixture with air. Other metals may react rapidly only if they are finely divided. Some of the waste produced at Los Alamos National Laboratory includes these metals that are contaminated with radioactivity. By far the greatest volume of water-reactive waste is lithium hydride contaminated with depleted uranium. Reactivity of the water-reactive wastes is neutralized with an atmosphere of humid nitrogen, which prevents the formation of an explosive mixture of hydrogen and air. When we adjust the temperature of the nitrogen and the humidifier, the nitrogen can be more or less humid, and the rate of reaction can be adjusted and controlled. Los Alamos has investigated the rates of reaction of lithium hydride as a function of the temperature and humidity, and, as anticipated, they in with in temperature and humidity. Los Alamos will investigate other variables. For example, the nitrogen flow will be optimized to conserve nitrogen and yet keep the reaction rates high. Reaction rates will be determined for various forms of lithium waste, from small chips to powder. Bench work will lead to the design of a skid-mounted process for treating wastes. Other water-reactive wastes will also be investigated.

Lussiez, G.W.

1993-05-01T23:59:59.000Z

108

Advances in compressible turbulent mixing  

Science Conference Proceedings (OSTI)

This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

1992-01-01T23:59:59.000Z

109

Fuel Cell Technologies Office: Hydrogen Compression, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Compression, Storage, and Dispensing Cost...

110

New Regenerative Cycle for Vapor Compression Refrigeration  

SciTech Connect

The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

Mark J. Bergander

2005-08-29T23:59:59.000Z

111

Hydrogen Delivery Liquefaction and Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

to Praxair Hydrogen Liquefaction Hydrogen Compression 3 Praxair at a Glance The largest industrial gas company in North and South America Only U.S. Hydrogen Supplier in All Sizes...

112

High compression rate text summarization  

E-Print Network (OSTI)

This thesis focuses on methods for condensing large documents into highly concise summaries, achieving compression rates on par with human writers. While the need for such summaries in the current age of information overload ...

Branavan, Satchuthananthavale Rasiah Kuhan

2008-01-01T23:59:59.000Z

113

Normalized Compression Distance of Multiples  

E-Print Network (OSTI)

Normalized compression distance (NCD) is a parameter-free similarity measure based on compression. The NCD between pairs of objects is not sufficient for all applications. We propose an NCD of finite multisets (multiples) of objacts that is metric and is better for many applications. Previously, attempts to obtain such an NCD failed. We use the theoretical notion of Kolmogorov complexity that for practical purposes is approximated from above by the length of the compressed version of the file involved, using a real-world compression program. We applied the new NCD for multiples to retinal progenitor cell questions that were earlier treated with the pairwise NCD. Here we get significantly better results. We also applied the NCD for multiples to synthetic time sequence data. The preliminary results are as good as nearest neighbor Euclidean classifier.

Cohen, Andrew R

2012-01-01T23:59:59.000Z

114

Carbon Dioxide Compression and Transportation  

Science Conference Proceedings (OSTI)

This report summarizes the state of the art regarding carbon dioxide CO2 compression and transportation in the United States and Canada. The primary focus of the report was on CO2 compression because it is a significant cost and energy penalty in carbon capture and storage CCS. The secondary focus of the report was to document the state of the art of CO2 pipeline transportation in the United States and Canada.

2008-12-23T23:59:59.000Z

115

Dictionary Design for Text Image Compression with JBIG2  

E-Print Network (OSTI)

The JBIG2 standard for lossy and lossless bi-level image coding is a very flexible encoding strategy based on pattern matching techniques. This paper addresses the problem of compressing text images with JBIG2. For text image compression, JBIG2 allows two encoding strategies: SPM and PM&S. We compare in detail the lossless and lossy coding performance using the SPM-based and PM&S-based JBIG2, including their coding efficiency, reconstructed image quality and system complexity. For the SPM-based JBIG2, we discuss the bit rate trade-off associated with symbol dictionary design. We propose two symbol dictionary design techniques: the class-based and tree-based techniques. Experiments show that the SPM-based JBIG2 is a more efficient lossless system, leading to 8% higher compression ratios on average. It also provides better control over the reconstructed image quality in lossy compression. However, SPM's advantages come at the price of higher encoder complexity. The proposed class-based and tree-based symbol dictionary designs outperform simpler dictionary formation techniques by 8% for lossless and 16-18% for lossy compression. Keywords Bi-level image coding, text image compression, JBIG2, soft pattern matching, symbol dictionary. 1 1

Yan Ye; Pamela Cosman

2001-01-01T23:59:59.000Z

116

Proposed generation and compression of a target plasma for MTF  

SciTech Connect

Magnetized target fusion (MTF), in which a magnetothermally insulated plasma is hydrodynamically compressed to fusion conditions, represents an approach to controlled fusion which avoids difficulties of both traditional inertial confinement and magnetic confinement approaches. The authors are proposing to demonstrate the feasibility of magnetized target fusion by: (1) creating a suitable magnetized target plasma, (2) performing preliminary liner compression experiments using existing pulsed power facilities and demonstrated liner performance. Once the target plasma and the means for its generation have been optimized, the authors plan to conduct preliminary liner compression experiments aimed at demonstrating the near-adiabatic compression of the target plasma desired for MTF. Relevant liner compression experiments have been performed at Los Alamos in the Scyllac Fast Liner Program and, more recently, in the Pegasus facility and the Procyon explosive pulsed power program. In a series of liner experiments they plan to map out the dependence of temperature and neutron production as functions of the initial plasma conditions and the liner compression achieved. With the above research program, they intend to demonstrate most of the key principles involved in magnetized target fusion, and develop the experimental and theoretical tools needed to design and execute fully integrated MTF ignition experiments.

Kirkpatrick, R.C.; Thurston, R.S.; Chrien, R.E. [and others

1995-09-01T23:59:59.000Z

117

Hybrid Vapor Compression Adsorption System: Thermal Storage Using Hybrid Vapor Compression Adsorption System  

SciTech Connect

HEATS Project: UTRC is developing a new climate-control system for EVs that uses a hybrid vapor compression adsorption system with thermal energy storage. The targeted, closed system will use energy during the battery-charging step to recharge the thermal storage, and it will use minimal power to provide cooling or heating to the cabin during a drive cycle. The team will use a unique approach of absorbing a refrigerant on a metal salt, which will create a lightweight, high-energy-density refrigerant. This unique working pair can operate indefinitely as a traditional vapor compression heat pump using electrical energy, if desired. The project will deliver a hot-and-cold battery that provides comfort to the passengers using minimal power, substantially extending the driving range of EVs.

None

2012-01-04T23:59:59.000Z

118

Intracellular calcium-expression-display (ICED) device operated by compressive stimulation of cells  

Science Conference Proceedings (OSTI)

The effects of steady compressive stimulation on intracellular calcium expression in MG-63 human osteoblast-like bone cells were examined using a fabricated micro cell chip with a microchannel array. A computer-controlled pneumatic system was used to ... Keywords: Cell chip, Compressive stress, Intracellular calcium-expression-display (ICED)

Tae Kyung Kim; Ok Chan Jeong

2012-10-01T23:59:59.000Z

119

Slope preserving lossy terrain compression  

Science Conference Proceedings (OSTI)

Accurate terrain representation with appropriate preservation of important terrain characteristics, especially slope steepness, is becoming more crucial and fundamental as the geographical models are becoming more complex. Based on our earlier success ... Keywords: GIS, PDE solver, terrain elevation data set compression, terrain modeling

Zhongyi Xie; W. Randolph Franklin; Daniel M. Tracy

2010-11-01T23:59:59.000Z

120

Environmental monitoring via compressive sensing  

Science Conference Proceedings (OSTI)

Environmental monitoring aims to describe the state of the environment. It identifies environmental issues to show us how well our environmental objectives are being met. Traditional large-scale sensor networks for environmental monitoring suffers from ... Keywords: compressive sensing, environmental monitoring, information management, sensor networks

Shulin Yan; Chao Wu; Wei Dai; Moustafa Ghanem; Yike Guo

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Application of genetic algorithms for optimal reactive power planning of doubly fed induction generators  

Science Conference Proceedings (OSTI)

This paper describes optimal reactive power control of a doubly fed induction generator (DFIG), which is widely used in a distributed generating plant. Although its structure is similar to that of induction motors, its reactive power control is more ... Keywords: doubly fed induction generator, genetic algorithms, optimal reactive power planning, optimization

P. Sangsarawut; A. Oonsivilai; T. Kulworawanichpong

2010-03-01T23:59:59.000Z

122

Optimal reactive power planning of doubly fed induction generators using genetic algorithms  

Science Conference Proceedings (OSTI)

This paper describes optimal reactive power control of a doubly fed induction generator (DFIG), which is widely used in a distributed generating plant. Although its structure is similar to that of an induction motor, its reactive power control is more ... Keywords: doubly fed induction generator, genetic algorithms, optimal reactive power planning, optimization

P. Sangsarawut; A. Oonsivilai; T. Kulworawanichpong

2010-02-01T23:59:59.000Z

123

Environmental concerns related to compressed air energy storage  

DOE Green Energy (OSTI)

The report describes the technologies of compressed air energy storage and some of the environmental concerns associated with siting, construction, operation and decommissioning of such a system. Also described is an ongoing research program, the goal of which is to evaluate methods to control the effects of these environmental factors.

Stottlemyre, J. A.; Craig, R. A.; Loscutoff, W. V.; Boehm, D. W.; Chang, G. C.

1978-01-01T23:59:59.000Z

124

Prius: generic hybrid trace compression for wireless sensor networks  

Science Conference Proceedings (OSTI)

Several diagnostic tracing techniques (e.g., event, power, and control-flow tracing) have been proposed for run-time debugging and postmortem analysis of wireless sensor networks (WSNs). Traces generated by such techniques can become large, defying the ... Keywords: compression, sensor networks, tracing

Vinaitheerthan Sundaram; Patrick Eugster; Xiangyu Zhang

2012-11-01T23:59:59.000Z

125

SP-59: Rheological Performance and Compressive Strength of ...  

Science Conference Proceedings (OSTI)

Stage III studies the 90 days compressive strengths (Sc) of mortar cubes at w/b= 0.35, ... SEM examinations show that Sc was controlled by densification of the ITZ . ... Properties in the Nickel-Titanium-Hafnium System for Shape-Memory Optimization · SP-45: Design of pH and Thermal Sensitive Hydrogels for Catheter Based ...

126

Oxyferryl Heme Reactivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxyferryl Heme Reactivity Using both Radiation and Photochemical Oxyferryl Heme Reactivity Using both Radiation and Photochemical Techniques A. M. English, T. Fox, G. Tsaprailis, C. W. Fenwick, J. F. Wishart, J. T. Hazzard, and G. Tollin Adv. Chem. Ser. 254, Ch. 6, pp. 81-98 Abstract: Flash photolysis and pulse radiolysis were used to generate reductants in situ to study the electron-transfer (ET) reactivity of the FeIV=O heme centers in myoglobin and cytochrome c peroxidase. Reduction of a5RuIII groups covalently bound to surface histidines allowed intramolecular RuII --> FeIV=O ET rates to be measured. Protonation of the oxene ligand was found to be largely rate determining in myoglobin, consistent with the lack of proton donors in its heme pocket. The large distance (21-23 Ă…) between surface histidines and the heme in wild-type

127

Reactivity of Acid Generators  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactivity of Acid Generators for Chemically Amplified Resists with Reactivity of Acid Generators for Chemically Amplified Resists with Low-Energy Electrons Atsuro Nakano, Takahiro Kozawa, Seiichi Tagawa, Tomasz Szreder, James F. Wishart, Toshiyuki Kai and Tsutomu Shimokawa Jpn. J. Appl. Phys., 45, L197-L200 (2006). [Find paper at the Japanese Journal of Applied Physics] Abstract: In chemically amplified resists for ionizing radiations such as electron beams and extreme ultraviolet (EUV), low-energy electrons play an important role in the pattern formation processes. The reactivity of acid generators with low-energy electrons was evaluated using solvated electrons in tetrahydrofuran, which were generated by a pulsed electron beam. The rate constants of acid generators with the solvated electrons ranged from 0.6 to 1.9 x 1011 M-1s-1

128

SEED BANKS FOR MAGNETIC FLUX COMPRESSION GENERATORS  

DOE Green Energy (OSTI)

In recent years the Lawrence Livermore National Laboratory (LLNL) has been conducting experiments that require pulsed high currents to be delivered into inductive loads. The loads fall into two categories (1) pulsed high field magnets and (2) the input stage of Magnetic Flux Compression Generators (MFCG). Three capacitor banks of increasing energy storage and controls sophistication have been designed and constructed to drive these loads. One bank was developed for the magnet driving application (20kV {approx} 30kJ maximum stored energy.) Two banks where constructed as MFCG seed banks (12kV {approx} 43kJ and 26kV {approx} 450kJ). This paper will describe the design of each bank including switching, controls, circuit protection and safety.

Fulkerson, E S

2008-05-14T23:59:59.000Z

129

Fact Sheet: Isothermal Compressed Air Energy Storage (October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) SustainX will demonstrate an isothermal compressed air...

130

Used Fuel Disposition Campaign Phase I Ring Compression Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression...

131

Stream programming for image and video compression  

E-Print Network (OSTI)

Video playback devices rely on compression algorithms to minimize storage, transmission bandwidth, and overall cost. Compression techniques have high realtime and sustained throughput requirements, and the end of CPU clock ...

Drake, Matthew Henry

2006-01-01T23:59:59.000Z

132

Hydrostatic Adjustment in Nonhydrostatic, Compressible Mesoscale Models  

Science Conference Proceedings (OSTI)

The ability of various numerical techniques used in compressible, nonhydrostatic models to handlehydrostatic adjustment is intercompared. The exact solution of a linearized model of an isothermal, compressible, nonrotating atmosphere is compared ...

Dean G. Duffy

1997-12-01T23:59:59.000Z

133

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network (OSTI)

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006* U.S. Department of Energy Hydrogen Program *Revised June, 2008 #12;Table of Contents Introduction .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems

134

Flux compression generators as plasma compression power sources  

SciTech Connect

A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches.

Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

1979-01-01T23:59:59.000Z

135

Measuring Devices: Compressed Natural Gas Retail Motor ...  

Science Conference Proceedings (OSTI)

Compressed Natural Gas Retail Motor-Fuel Dispensers. ... Hydrogen Measuring Devices; Liquefied Petroleum Gas Liquid-Measuring Devices; ...

2010-10-05T23:59:59.000Z

136

Tunable Compression of Wind Tunnel Data  

Science Conference Proceedings (OSTI)

Tunable Compression of Wind Tunnel Data. Summary: Measurements of pressures exerted by wind on buildings, as are ...

2010-09-12T23:59:59.000Z

137

Compression and Hydration Effects of PFSA Membranes  

E-Print Network (OSTI)

compression requires a testing system that is more sophisticated than the conventional methods (such as weight balance or vapor

Kusoglu, Ahmet

2013-01-01T23:59:59.000Z

138

Beam Compression in Heavy-Ion Induction Linacs  

SciTech Connect

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the LBNL Neutralized Drift Compression Experiment (NDCX) experiment with controlled ramps and forced neutralization. The achieved peak beam current and energy can be used in experiments to heat targets and create warm dense matter. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50x current amplification and simultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss experiments that are under development to reach the necessary higher beam intensities and the associated beam diagnostics.

Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Calanog, J.; Chen, A.X.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.K.; Van den Bogert, K.; Waldron, W.L.; Welch, D.R.

2009-01-01T23:59:59.000Z

139

Extents of alkane combustion during rapid compression leading to single and two stage ignition  

DOE Green Energy (OSTI)

Extents of reactant consumption have been measured during the course of spontaneous ignition following rapid compression of N-pentane and N-heptane and also of PRF 60 (N-heptane = i-octane, 2.2.4 trimethylpentane) in stoichiometric mixtures with air. Compressed gas temperatures of 720-750 K and 845-875 K were studied at reactant densities of 131 mol m{sup minus 3}. At the lower gas temperature there was no evidence of reactant consumption during the course of the compression stroke. Two-stage ignition occurred at these temperatures, but only modest proportions of n-pentane were consumed during the first stage (< 15%) whereas about 40% of proportions of n- heptane reacted under the same conditions. At the higher compressed gas temperature the oxidation of n-pentane began only after the piston had stopped, whereas more than 30% of the n-heptane had already been consumed in the final stage of the compression stroke. The behavior of the PRF 60 mixture differed somewhat from that of N- pentane despite the similarly of the research octane numbers. Although there was a preferential oxidation of n-heptane at T{sub c} = 850K, which persisted throughout the early development of spontaneous ignition during the post-compression period, oxidation of both components of the PRF 60 mixture began before the piston had stopped. Numerical simulations of the spontaneous ignition under conditions resembling those of the rapid compression experiments show that the predicted reactivity from detailed kinetics are consistent with the observed features. Insights into the kinetic interactions that give rise to the relative reactivities of the primary reference fuel components are established

Cox, A.; Griffiths, J.F.; Mohamed, C. [Leeds Univ. (United Kingdom). School of Chemistry; Curran, H.; Pitz, W.J.; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1996-02-01T23:59:59.000Z

140

Differential evolution approach for optimal reactive power dispatch  

Science Conference Proceedings (OSTI)

Differential evolution based optimal reactive power dispatch for real power loss minimization in power system is presented in this paper. The proposed methodology determines control variable settings such as generator terminal voltages, tap positions ... Keywords: Differential evolution, Loss minimization, Optimal power flow, Penalty function, Reactive power dispatch

M. Varadarajan; K. S. Swarup

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reactive Power Compensating System.  

DOE Patents (OSTI)

The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

1985-01-04T23:59:59.000Z

142

Reactive power compensating system  

DOE Patents (OSTI)

The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)

1987-01-01T23:59:59.000Z

143

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

144

Bit-Optimal Lempel-Ziv compression  

E-Print Network (OSTI)

One of the most famous and investigated lossless data-compression scheme is the one introduced by Lempel and Ziv about 40 years ago. This compression scheme is known as "dictionary-based compression" and consists of squeezing an input string by replacing some of its substrings with (shorter) codewords which are actually pointers to a dictionary of phrases built as the string is processed. Surprisingly enough, although many fundamental results are nowadays known about upper bounds on the speed and effectiveness of this compression process and references therein), ``we are not aware of any parsing scheme that achieves optimality when the LZ77-dictionary is in use under any constraint on the codewords other than being of equal length'' [N. Rajpoot and C. Sahinalp. Handbook of Lossless Data Compression, chapter Dictionary-based data compression. Academic Press, 2002. pag. 159]. Here optimality means to achieve the minimum number of bits in compressing each individual input string, without any assumption on its ge...

Ferragina, Paolo; Venturini, Rossano

2008-01-01T23:59:59.000Z

145

Reactive Air Aluminization  

DOE Green Energy (OSTI)

Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

2011-10-28T23:59:59.000Z

146

Controlling uranium reactivity March 18, 2008  

E-Print Network (OSTI)

. Redistribution of depleted uranium (DU soils and water at two US Army proving grounds. Ann. M Health Phys. SocRemediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction ElizabethJ.P.Phillips, Edward R. Landa and DerekR. Lovley Key words: Bioremediation; Uranium; Mill tailings

Meyer, Karsten

147

CONTROL ROD  

DOE Patents (OSTI)

This patent shows a method of making a fuel or control rod for a nuclear reactor. Fuel or control material is placed within a tube and plugs of porous metal wool are inserted at both ends. The metal wool is then compacted and the tube compressed around it as by swaging, thereby making the plugs liquid- impervious but gas-pervious. (AEC)

Walker, D.E.; Matras, S.

1963-04-30T23:59:59.000Z

148

Reactive Maintenance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactive Maintenance Reactive Maintenance Reactive Maintenance October 7, 2013 - 9:40am Addthis Reactive maintenance follows a run-it-until-it-breaks strategy where no actions or efforts are taken to maintain equipment as intended by the manufacturer. Studies indicate this is still the predominant mode of maintenance for Federal facilities. Advantages Reactive maintenance advantages are a double-edged sword. Federal agencies following a purely reactive maintenance strategy can expect little expenditures for manpower or system upkeep until something breaks. However, systems do break. With new equipment, Federal agencies can expect minimal incidents of failure. However, older equipment often experiences higher failure incidents and costlier repairs. Other advantages of reactive maintenance are:

149

Industrial Compressed Air System Energy Efficiency Guidebook.  

DOE Green Energy (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

150

24 Hour Day-Ahead Reactive Power Forecasting and Optimal Scheduling  

Science Conference Proceedings (OSTI)

Reactive power management affects not only the system voltage profiles but also system efficiencies. Changes in the flow of reactive power have an influence on system losses. Reactive power forecasting and optimal scheduling of power system control elements can be conducted to efficiently and reliably transfer power across the system. The tool discussed in this report optimizes the power system to produce a security-constrained case, reduce losses, increase reactive reserve, and securely maintain ...

2013-12-29T23:59:59.000Z

151

Compressed sensing for multidimensional electronic spectroscopy experiments  

E-Print Network (OSTI)

Compressed sensing is a processing method that significantly reduces the number of measurements needed to accurately resolve signals in many fields of science and engineering. We develop a two-dimensional (2D) variant of compressed sensing for multidimensional electronic spectroscopy and apply it to experimental data. For the model system of atomic rubidium vapor, we find that compressed sensing provides significantly better resolution of 2D spectra than a conventional discrete Fourier transform from the same experimental data. We believe that by combining powerful resolution with ease of use, compressed sensing can be a powerful tool for the analysis and interpretation of ultrafast spectroscopy data.

J. N. Sanders; S. Mostame; S. K. Saikin; X. Andrade; J. R. Widom; A. H. Marcus; A. Aspuru-Guzik

2012-07-16T23:59:59.000Z

152

Compressed Air Energy Storage Act (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out regulations for the local authorities related to site selection, design, operation and monitoring for underground storage of compressed air.

153

Fuel Cell Technologies Office: Hydrogen Compression, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's (DOE's) Argonne National Laboratory (ANL) held a Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop on March 20-21, 2013, in Argonne, Illinois....

154

Advanced Manufacturing Office: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

training and other resources Training Calendar Events Calendar Tools Tools to Assess Your Energy System AIRMaster+ Tool Scorecards and Simple Calculators Compressed Air Scorecard...

155

Optimization of Storage vs. Compression Capacity  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100...

156

Coordination of reactive power scheduling in a multi-area power system operated by independent utilities.  

E-Print Network (OSTI)

??This thesis addresses the problem of reactive power scheduling in a power system with several areas controlled by independent transmission system operators (TSOs). To design… (more)

Phulpin, Yannick

157

Active high-power RF switch and pulse compression system  

DOE Patents (OSTI)

A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

1998-01-01T23:59:59.000Z

158

Compressed Beamforming in Ultrasound Imaging  

E-Print Network (OSTI)

Emerging sonography techniques often require increasing the number of transducer elements involved in the imaging process. Consequently, larger amounts of data must be acquired and processed. The significant growth in the amounts of data affects both machinery size and power consumption. Within the classical sampling framework, state of the art systems reduce processing rates by exploiting the bandpass bandwidth of the detected signals. It has been recently shown, that a much more significant sample-rate reduction may be obtained, by treating ultrasound signals within the Finite Rate of Innovation framework. These ideas follow the spirit of Xampling, which combines classic methods from sampling theory with recent developments in Compressed Sensing. Applying such low-rate sampling schemes to individual transducer elements, which detect energy reflected from biological tissues, is limited by the noisy nature of the signals. This often results in erroneous parameter extraction, bringing forward the need to enhan...

Wagner, Noam; Feuer, Arie; Friedman, Zvi

2012-01-01T23:59:59.000Z

159

Compressed Air Audits using AIRMaster  

E-Print Network (OSTI)

Air compressors are a significant industrial energy user and therefore a prime target for industrial energy audits. The project goal was to develop a software tool, AIRMaster, and supporting methodology for performing compressed air system audits. Seven field audits were conducted to refine the software and methodology as well as assess the savings potential of six common Operation and Maintenance measures. Audit results yielded significant savings with short payback periods. Total estimated savings for the project were 4,056,000 kWh or 49.2% of annual compressor energy for a cost savings of $152,000. Total implementation costs were $94,700 for a project payback period of 0.6 years. Capital benefits of delaying or avoiding the cost of a new compressor might double the energy benefits if a new compressor is being considered. The methodology proved to be a simple and effective audit tool.

Wheeler, G. M.; McGill, R. D.; Bessey, E. G.; Vischer, K.

1997-04-01T23:59:59.000Z

160

Compression molding of aerogel microspheres  

DOE Patents (OSTI)

An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

1998-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Compression molding of aerogel microspheres  

DOE Patents (OSTI)

An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

Pekala, R.W.; Hrubesh, L.W.

1998-03-24T23:59:59.000Z

162

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

163

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

164

Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Compressed Natural Gas Stations

165

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Deregulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Deregulation

166

High dynamic range texture compression for graphics hardware  

Science Conference Proceedings (OSTI)

In this paper, we break new ground by presenting algorithms for fixed-rate compression of high dynamic range textures at low bit rates. First, the S3TC low dynamic range texture compression scheme is extended in order to enable compression of HDR data. ... Keywords: graphics hardware, high dynamic range images, image compression, texture compression

Jacob Munkberg; Petrik Clarberg; Jon Hasselgren; Tomas Akenine-Möller

2006-07-01T23:59:59.000Z

167

Lossless Data Compression with Error Detection using Cantor Set  

E-Print Network (OSTI)

In 2009, a lossless compression algorithm based on 1D chaotic maps known as Generalized Lur\\"{o}th Series (or GLS) has been proposed. This algorithm (GLS-coding) encodes the input message as a symbolic sequence on an appropriate 1D chaotic map (GLS) and the compressed file is obtained as the initial value by iterating backwards on the map. For ergodic sources, it was shown that GLS-coding achieves the best possible lossless compression (in the noiseless setting) bounded by Shannon entropy. However, in the presence of noise, even small errors in the compressed file leads to catastrophic decoding errors owing to sensitive dependence on initial values. In this paper, we first show that Repetition codes $\\mathcal{R}_n$ (every symbol is repeated $n$ times, where $n$ is a positive odd integer), the oldest and the most basic error correction and detection codes in literature, actually lie on a Cantor set with a fractal dimension of $\\frac{1}{n}$, which is also the rate of the code. Inspired by this, we incorporate error detection capability to GLS-coding by ensuring that the compressed file (initial value on the map) lies on a Cantor set of measure zero. Even a 1-bit error in the initial value will throw it outside the Cantor set which can be detected while decoding. The error detection performance (and also the rate of the code) can be controlled by the fractal dimension of the Cantor set and could be suitably adjusted depending on the noise level of the communication channel.

Nithin Nagaraj

2013-08-10T23:59:59.000Z

168

Compression techniques for fast external sorting  

Science Conference Proceedings (OSTI)

External sorting of large files of records involves use of disk space to store temporary files, processing time for sorting, and transfer time between CPU, cache, memory, and disk. Compression can reduce disk and transfer costs, and, in the case of external ... Keywords: External sorting, Query evaluation, Semi-static compression, Sorting

John Yiannis; Justin Zobel

2007-04-01T23:59:59.000Z

169

Evolutionary lossless compression with GP-zip  

E-Print Network (OSTI)

In recent research we proposed GP-zip, a system which uses evolution to find optimal ways to combine standard compression algorithms for the purpose of maximally losslessly compressing files and archives. The system divides files into blocks of predefined length. It then uses a linear, fixed-length representation where each primitive indicates what compression algorithm to use for a specific data block. GP-zip worked well with heterogonous data sets, providing significant improvements in compression ratio compared to some of the best standard compression algorithms. In this paper we propose a substantial improvement, called GP-zip*, which uses a new representation and intelligent crossover and mutation operators such that blocks of different sizes can be evolved. Like GP-zip, GP-zip * finds what the best compression technique to use for each block is. The compression algorithms available in the primitive set of GP-zip* are: Arithmetic coding (AC), Lempel-Ziv-Welch (LZW), Unbounded Prediction by Partial Matching (PPMD), Run Length Encoding (RLE), and Boolean Minimization. In addition, two transformation techniques are available: the Burrows-Wheeler Transformation (BWT) and Move to Front (MTF). Results show that GP-zip* provides improvements in compression ratio ranging from a fraction to several tens of percent over its predecessor.

Ahmad Kattan; Riccardo Poli

2008-01-01T23:59:59.000Z

170

A compressible flow model with capillary effects  

Science Conference Proceedings (OSTI)

A quasi-conservative formulation for compressible flows with interfaces including both capillary and viscous effects is developed. The model involves: (i) acoustic and convective transport; (ii) surface tension effects introduced as an extension of the ... Keywords: break-up, coalescence, compressibility, conservative formulation, interface capturing, mixture thermodynamics, surface tension, two-phase flows, viscosity

Guillaume Perigaud; Richard Saurel

2005-10-01T23:59:59.000Z

171

Discriminative sentence compression with conditional random fields  

Science Conference Proceedings (OSTI)

The paper focuses on a particular approach to automatic sentence compression which makes use of a discriminative sequence classifier known as Conditional Random Fields (CRF). We devise several features for CRF that allow it to incorporate information ... Keywords: Conditional random fields, Machine learning, Natural language syntax, RSS, Sentence compression, Sequence alignment

Tadashi Nomoto

2007-11-01T23:59:59.000Z

172

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

173

Reactive rules on the web  

Science Conference Proceedings (OSTI)

Reactive rules are used for programming rule-based, reactive systems, which have the ability to detect events and respond to them automatically in a timely manner. Such systems are needed on the Web for bridging the gap between the existing, passive ...

Bruno Berstel; Philippe Bonnard; François Bry; Michael Eckert; Paula-Lavinia P?trânjan

2007-09-01T23:59:59.000Z

174

Federal Energy Management Program: Reactive Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Reactive Maintenance to someone by E-mail Share Federal Energy Management Program: Reactive Maintenance on Facebook Tweet about Federal Energy Management Program: Reactive Maintenance on Twitter Bookmark Federal Energy Management Program: Reactive Maintenance on Google Bookmark Federal Energy Management Program: Reactive Maintenance on Delicious Rank Federal Energy Management Program: Reactive Maintenance on Digg Find More places to share Federal Energy Management Program: Reactive Maintenance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Computerized Maintenance Management Systems Maintenance Types Reactive Preventive Predictive Reliability-Centered Major Equipment Types

175

Novel concept for pulse compression via structured spatial energy distribution  

E-Print Network (OSTI)

We present a novel concept for pulse compression scheme applicable at RF, microwave and possibly to optical frequencies based on structured energy distribution in cavities supporting degenerate band-edge (DBE) modes. For such modes a significant fraction of energy resides in a small fraction of the cavity length. Such energy concentration provides a basis for superior performance for applications in microwave pulse compression devices (MPC) when compared to conventional cavities. The novel design features: far larger loaded quality factor of the cavity and stored energy compared to conventional designs, energy feeding and extraction at the cavity center, substantial reduction of the cavity size by use of equivalent lumped circuits for low energy sections of the cavity, controlled pulse shaping via engineered extraction techniques. The presented concepts are general, in terms of equivalent transmission lines, and can be applied to a variety of realistic guiding structures.

Tamma, Venkata Ananth; Capolino, Filippo

2013-01-01T23:59:59.000Z

176

Compatibility Analysis on Existing Reactivity Devices in CANDU 6 Reactors for DUPIC Fuel Cycle  

Science Conference Proceedings (OSTI)

The performance of reactivity devices for a Canada deuterium uranium (CANDU) 6 reactor loaded with Direct Use of Spent Pressurized Water Reactor Fuel In CANDU reactors (DUPIC) fuel is assessed. The reactivity devices studied are the zone controller units, the adjuster rods, and the mechanical control absorbers. For the zone controller system, the bulk reactivity control, spatial power control, and damping capability for spatial oscillation are investigated. For the adjusters, the xenon override, restart after a poison-out, shim operation, and power step-back capabilities are confirmed. The mechanical control absorber is assessed for the function of compensating temperature reactivity feedback following a power reduction. This study shows that the current reactivity device system of a CANDU 6 reactor is compatible with DUPIC fuel for normal and transient operations.

Jeong, Chang-Joon; Choi, Hangbok [Korea Atomic Energy Research Institute (Korea, Republic of)

2000-03-15T23:59:59.000Z

177

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Aftermarket Conversion Requirements on Digg Find More places to share Alternative Fuels Data Center: Compressed

178

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Rebate - Metropolitan Utilities District on Digg Find More places to share Alternative Fuels Data Center: Compressed

179

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Development on AddThis.com...

180

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Fueling Infrastructure Inspection to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Fueling Infrastructure Inspection on AddThis.com...

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific...

182

Microsoft Word - inactive 40915_Ramgen_Shock Wave Compression...  

NLE Websites -- All DOE Office Websites (Extended Search)

to decouple compression, combustion and propulsion, and reduce the scale of the engine to 400kW. Subsequently, this decoupling led to recognition that the compression aspect...

183

Understanding the Effects of Compression and Constraint on Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Effects of Compression and Constraint on Water Uptake of Fuel-Cell Membranes Title Understanding the Effects of Compression and Constraint on Water Uptake of...

184

State Energy Program Helping Arkansans Convert to Compressed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Helping Arkansans Convert to Compressed Natural Gas State Energy Program Helping Arkansans Convert to Compressed Natural Gas January 25, 2012 - 4:30pm Addthis...

185

COMPRESSIVE STRESS SYSTEM FOR A GAS TURBINE ENGINE - Energy ...  

The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket ...

186

An efficient compression scheme for bitmap indices  

Science Conference Proceedings (OSTI)

When using an out-of-core indexing method to answer a query, it is generally assumed that the I/O cost dominates the overall query response time. Because of this, most research on indexing methods concentrate on reducing the sizes of indices. For bitmap indices, compression has been used for this purpose. However, in most cases, operations on these compressed bitmaps, mostly bitwise logical operations such as AND, OR, and NOT, spend more time in CPU than in I/O. To speedup these operations, a number of specialized bitmap compression schemes have been developed; the best known of which is the byte-aligned bitmap code (BBC). They are usually faster in performing logical operations than the general purpose compression schemes, but, the time spent in CPU still dominates the total query response time. To reduce the query response time, we designed a CPU-friendly scheme named the word-aligned hybrid (WAH) code. In this paper, we prove that the sizes of WAH compressed bitmap indices are about two words per row for large range of attributes. This size is smaller than typical sizes of commonly used indices, such as a B-tree. Therefore, WAH compressed indices are not only appropriate for low cardinality attributes but also for high cardinality attributes.In the worst case, the time to operate on compressed bitmaps is proportional to the total size of the bitmaps involved. The total size of the bitmaps required to answer a query on one attribute is proportional to the number of hits. These indicate that WAH compressed bitmap indices are optimal. To verify their effectiveness, we generated bitmap indices for four different datasets and measured the response time of many range queries. Tests confirm that sizes of compressed bitmap indices are indeed smaller than B-tree indices, and query processing with WAH compressed indices is much faster than with BBC compressed indices, projection indices and B-tree indices. In addition, we also verified that the average query response time is proportional to the index size. This indicates that the compressed bitmap indices are efficient for very large datasets.

Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

2004-04-13T23:59:59.000Z

187

Reactivity of heat treated chars  

DOE Green Energy (OSTI)

Reactivities of a number of chars produced from American coals varying in rank from lignite to anthracite have been measured in air, CO/sub 2/, steam and H/sub 2/. The variables chosen for the study were: rank of the parent coal, inorganic matter content, particle size, reaction temperature and pressure as well as heat treatment conditions used during char preparation. In all gasification atmospheres studied, reactivity plots for different chars are essentially of the same general shape and have three distinct regions. The reaction rate first increases slowly with time. The plot then goes through a maximum in slope, followed by a lengthy region of decreasing slope as burn-off approaches 100 percent. The shape of the burn-off curves can be explained on the basis of what is known about the development of porosity and surface area in microporous chars as they undergo gasification. Using an adjustable time parameter, equations have been developed which successfully correlate the reactivity data. Char reactivity decreases, in general, with increase in rank of the parent coal. Reactivities of chars in air, CO/sub 2/ and steam increase over 150-fold in going from a low volatile bituminous to a lignite parent coal; the spread in char reactivities in H/sub 2/ is only 30-fold. Removal of inorganic matter from coal precursors prior to their charring or from chars produced from the raw coals has a marked effect on char reactivity and surface area. Removal of inorganic matter (by acid washing) decreases, in general, reactivity of chars produced from lower rank coals, whereas reactivities of chars derived from higher rank coals increase.

Mahajan, O. P.; Walker, Jr., P. L.

1977-01-01T23:59:59.000Z

188

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

189

Method for compression of binary data  

DOE Patents (OSTI)

The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression.

Berlin, Gary J. (Beech Island, SC)

1996-01-01T23:59:59.000Z

190

Increased demand spurs gas compression industry  

Science Conference Proceedings (OSTI)

The increasing demand for natural gas in the last five years has led to dynamic development in the gas compression industry as producers and transmission companies expand operations to supply gas. To handle the increase, for example, transmission companies have been steadily adding new lines to the pipeline infrastructure--3,437 miles in 1995 and an estimated 4,088 miles in 1997. New compression for pipelines has also increased from 212,637 horsepower added in 1989 to an estimated 311,685 horsepower to be added in 1997. Four key trends which influence the gas compression business have developed since the mid 1980s: first, a steady resurgence of demand for natural gas each year; second, a phenomenal number of mergers and buyouts among gas compression companies; third, an alarming drop in average daily gas production per well since 1972; and fourth, high drilling activity in the Gulf of Mexico.

Honea, M. [Weatherford Enterra, Inc., Houston, TX (United States)

1997-10-01T23:59:59.000Z

191

Free energy and shock compression of diamond  

Science Conference Proceedings (OSTI)

The new approach has been developed to calculate the free energy in quasiharmonic approximation for homogeneous condensed matter. Common result has been demonstrated on an example of solid and liquid diamond at high pressures and temperatures of shock compression.

A. M. Molodets; M. A. Molodets; S. S. Nabatov

1998-01-01T23:59:59.000Z

192

Seneca Compressed Air Energy Storage (CAES) Project  

DOE Green Energy (OSTI)

This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

None

2012-11-30T23:59:59.000Z

193

Method for compression of binary data  

DOE Patents (OSTI)

The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression.

Berlin, G.J.

1994-12-31T23:59:59.000Z

194

Pulse compression and prepulse suppression apparatus  

DOE Patents (OSTI)

A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).

Dane, C.B.; Hackel, L.A.; George, E.V.; Miller, J.L.; Krupke, W.F.

1993-11-09T23:59:59.000Z

195

Method for compression of binary data  

DOE Patents (OSTI)

The disclosed method for compression of a series of data bytes, based on LZSS-based compression methods, provides faster decompression of the stored data. The method involves the creation of a flag bit buffer in a random access memory device for temporary storage of flag bits generated during normal LZSS-based compression. The flag bit buffer stores the flag bits separately from their corresponding pointers and uncompressed data bytes until all input data has been read. Then, the flag bits are appended to the compressed output stream of data. Decompression can be performed much faster because bit manipulation is only required when reading the flag bits and not when reading uncompressed data bytes and pointers. Uncompressed data is read using byte length instructions and pointers are read using word instructions, thus reducing the time required for decompression. 5 figs.

Berlin, G.J.

1996-03-26T23:59:59.000Z

196

Effects of Sequence Partitioning on Compression Rate  

E-Print Network (OSTI)

In the paper, a theoretical work is done for investigating effects of splitting data sequence into packs of data set. We proved that a partitioning of data sequence is possible to find such that the entropy rate at each subsequence is lower than entropy rate of the source. Effects of sequence partitioning on overall compression rate are argued on the bases of partitioning statistics, and then, an optimization problem for an optimal partition is defined to improve overall compression rate of a sequence.

Alagoz, B Baykant

2010-01-01T23:59:59.000Z

197

Market Analysis for Natural Gas Compression Technologies  

Science Conference Proceedings (OSTI)

The natural gas compression market offers huge growth potential for the electric utility industry. As utilities search for ways to expand electricity sales, a combination of economic, environmental, and regulatory factors are further encouraging the use of electric motors in a market that has long been dominated by gas-driven systems. This report provides information and strategies that can help utilities capture a larger share of the gas compression market.

1997-03-21T23:59:59.000Z

198

Parametric internal waves in a compressible fluid  

E-Print Network (OSTI)

We describe the effect of vibration on a confined volume of fluid which is density stratified due to its compressibility. We show that internal gravity-acoustic waves can be parametrically destabilized by the vibration. The resulting instability is similar to the classic Faraday instability of surface waves, albeit modified by the compressible nature of the fluid. It may be possible to observe experimentally near a gas-liquid critical point.

Kausik S. Das; Stephen W. Morris; A. Bhattacharyay

2007-10-11T23:59:59.000Z

199

Parametric internal waves in a compressible fluid  

E-Print Network (OSTI)

We describe the effect of vibration on a confined volume of fluid which is density stratified due to its compressibility. We show that internal gravity-acoustic waves can be parametrically destabilized by the vibration. The resulting instability is similar to the classic Faraday instability of surface waves, albeit modified by the compressible nature of the fluid. It may be possible to observe experimentally near a gas-liquid critical point.

Das, Kausik S; Bhattacharyay, A

2007-01-01T23:59:59.000Z

200

Determination of Friction Coefficient in Unconfined Compression of Brain Tissue  

E-Print Network (OSTI)

Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow for homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient mu of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that mu was equal to 0.09 +/- 0.03, 0.18 +/- 0.04, 0.18 +/- 0.04 and 0.20 +/- 0.02 at strain rates of...

Rashid, Badar; Gilchrist, Michael; 10.1016/j.jmbbm.2012.05.001

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lossless compression of instrumentation data. Final report  

Science Conference Proceedings (OSTI)

This is our final report on Sandia National Laboratories Laboratory- Directed Research and Development (LDRD) project 3517.070. Its purpose has been to investigate lossless compression of digital waveform and image data, particularly the types of instrumentation data generated and processed at Sandia Labs. The three-year project period ran from October 1992 through September 1995. This report begins with a descriptive overview of data compression, with and without loss, followed by a summary of the activities on the Sandia project, including research at several universities and the development of waveform compression software. Persons who participated in the project are also listed. The next part of the report contains a general discussion of the principles of lossless compression. Two basic compression stages, decorrelation and entropy coding, are described and discussed. An example of seismic data compression is included. Finally, there is a bibliography of published research. Taken together, the published papers contain the details of most of the work and accomplishments on the project. This final report is primarily an overview, without the technical details and results found in the publications listed in the bibliography.

Stearns, S.D.

1995-11-01T23:59:59.000Z

202

Time-compression: systems concerns, usage, and benefits  

Science Conference Proceedings (OSTI)

With the proliferation of online multimedia content and the popularity of multimedia streaming systems, it is increasingly useful to be able to skim and browse multimedia quickly. A key technique that enables quick browsing of multimedia is time-compression. ... Keywords: compression granularity, compression rate, latency, multimedia, time-compression, video browsing

Nosa Omoigui; Liwei He; Anoop Gupta; Jonathan Grudin; Elizabeth Sanocki

1999-05-01T23:59:59.000Z

203

Steam compression with inner evaporative spray cooling: a case study  

Science Conference Proceedings (OSTI)

An adiabatic dry saturated steam compression process with inner evaporative spray cooling in screw compressors for steam heat pump systems is studied. Thermodynamic model and simulation of this variable-mass compression process are devised. Differential ... Keywords: inner evaporative spray cooling, screw compressors, simulation, steam compression, steam heat pumps, thermodynamic modelling, variable-mass compression, water injection

Jian Qui; Zhaolin Gu; Guoguang Cai

2004-12-01T23:59:59.000Z

204

Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL to someone by E-mail Share Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Facebook Tweet about Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Twitter Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Google Bookmark Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Delicious Rank Alternative Fuels Data Center: Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL on Digg Find More places to share Alternative Fuels Data Center: Reduced

205

Modeling of homogeneous charge compression ignition (HCCI) of methane  

DOE Green Energy (OSTI)

The operation of piston engines on a compression ignition cycle using a lean, homogeneous charge has many potential attractive features. These include the potential for extremely low NO{sub x} and particulate emissions while maintaining high thermal efficiency and not requiring the expensive high pressure injection system of the typical modem diesel engine. Using the HCT chemical kinetics code to simulate autoignition of methane-air mixtures, we have explored the ignition timing, burn duration, NO{sub x} production, indicated efficiency and power output of an engine with a compression ratio of 15:1 at 1200 and 2400 rpm. HCT was modified to include the effects of heat transfer. This study used a single control volume reaction zone that varies as a function of crank angle. The ignition process is controlled by varying the intake equivalence ratio and varying the residual gas trapping (RGT). RGT is internal exhaust gas recirculation which recycles both heat and combustion product species. It is accomplished by varying the timing of the exhaust valve closure. Inlet manifold temperature was held constant at 330 Kelvins. Results show that there is a narrow range of operational conditions that show promise of achieving the control necessary to vary power output while keeping indicated efficiency above 50% and NO{sub x} levels below 100 ppm.

Smith, J.R.; Aceves, S.M.; Westbrook, C.; Pitz, W.

1997-05-01T23:59:59.000Z

206

Non-US data compression and coding research. FASAC Technical Assessment Report  

Science Conference Proceedings (OSTI)

This assessment of recent data compression and coding research outside the United States examines fundamental and applied work in the basic areas of signal decomposition, quantization, lossless compression, and error control, as well as application development efforts in image/video compression and speech/audio compression. Seven computer scientists and engineers who are active in development of these technologies in US academia, government, and industry carried out the assessment. Strong industrial and academic research groups in Western Europe, Israel, and the Pacific Rim are active in the worldwide search for compression algorithms that provide good tradeoffs among fidelity, bit rate, and computational complexity, though the theoretical roots and virtually all of the classical compression algorithms were developed in the United States. Certain areas, such as segmentation coding, model-based coding, and trellis-coded modulation, have developed earlier or in more depth outside the United States, though the United States has maintained its early lead in most areas of theory and algorithm development. Researchers abroad are active in other currently popular areas, such as quantizer design techniques based on neural networks and signal decompositions based on fractals and wavelets, but, in most cases, either similar research is or has been going on in the United States, or the work has not led to useful improvements in compression performance. Because there is a high degree of international cooperation and interaction in this field, good ideas spread rapidly across borders (both ways) through international conferences, journals, and technical exchanges. Though there have been no fundamental data compression breakthroughs in the past five years--outside or inside the United State--there have been an enormous number of significant improvements in both places in the tradeoffs among fidelity, bit rate, and computational complexity.

Gray, R.M.; Cohn, M.; Craver, L.W.; Gersho, A.; Lookabaugh, T.; Pollara, F.; Vetterli, M.

1993-11-01T23:59:59.000Z

207

compressed natural gas | OpenEI  

Open Energy Info (EERE)

compressed natural gas compressed natural gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (3 years ago) Date Updated December 13th, 2010 (3 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics

208

Energy Efficiency in Compressed Air Systems  

E-Print Network (OSTI)

Energy use in compressed air systems accounts for typically 10% of the total industrial electricity consumption. It also accounts for close to 99% of the CO2 footprint of an air compressor and approximately 80% of the life cycle costs of a compressor, over its lifetime. Considering these facts, it is sometimes surprising to see the lack of attention to compressed air systems in industry. This paper attempts to create awareness as to how a great deal of energy can be saved through a conscious process of selection and use of compressed air systems, bringing substantial benefits in economics and the environment. It also attempts to highlight the relative importance of energy savings over the costs of investments made in energy saving features and processes.

Hingorani, A.; Pavlov, A.

2010-01-01T23:59:59.000Z

209

Dictionary Approaches To Image Compression And Reconstruction  

E-Print Network (OSTI)

This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as f g , are discrete time signals, where g represents the dictionary index. A dictionary with a collection of these waveforms is typically complete or overcomplete. Given such a dictionary, the goal is to obtain a representation image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise. Keywords: Image coding and compression, Medical Image Processing, Signal Reconstruction, Wavelets Prepared through collaborative participation in the Advanced Telecommunications/Information Distribution Research Program (ATIRP) Consortiu...

Nigel A. Ziyad; Erwin T. Gilmore; Mohamed F. Chouikha

1998-01-01T23:59:59.000Z

210

DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY  

DOE Patents (OSTI)

A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

Dessauer, G.

1960-05-10T23:59:59.000Z

211

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax CNG is taxed at a rate of $0.10 per gallon when used as a motor fuel. CNG

212

Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Compressed Natural Gas (CNG) Study to someone by E-mail Share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Facebook Tweet about Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Twitter Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Google Bookmark Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Delicious Rank Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on Digg Find More places to share Alternative Fuels Data Center: State Compressed Natural Gas (CNG) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Compressed Natural Gas (CNG) Study At the direction of the Alaska Legislature, the Department of

213

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

214

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

215

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Permit Anyone dispensing CNG for use in vehicles must obtain a permit from the

216

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

217

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Dealer Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Dealer Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Dealer Permit

218

Lattice-Strain Control of Exceptional Activity in Dealloyed Core-Shell Fuel Cell Catalysts  

DOE Green Energy (OSTI)

We present a combined experimental and theoretical approach to demonstrate how lattice strain can be used to continuously tune the catalytic activity of the oxygen reduction reaction (ORR) on bimetallic nanoparticles that have been dealloyed. The sluggish kinetics of the ORR is a key barrier to the adaptation of fuel cells and currently limits their widespread use. Dealloyed Pt-Cu bimetallic nanoparticles, however, have been shown to exhibit uniquely high reactivity for this reaction. We first present evidence for the formation of a core-shell structure during dealloying, which involves removal of Cu from the surface and subsurface of the precursor nanoparticles. We then show that the resulting Pt-rich surface shell exhibits compressive strain that depends on the composition of the precursor alloy. We next demonstrate the existence of a downward shift of the Pt d-band, resulting in weakening of the bond strength of intermediate oxygenated species due to strain. Finally, we combine synthesis, strain, and catalytic reactivity in an experimental/theoretical reactivity-strain relationship which provides guidelines for the rational design of strained oxygen reduction electrocatalysts. The stoichiometry of the precursor, together with the dealloying conditions, provides experimental control over the resulting surface strain and thereby allows continuous tuning of the surface electrocatalytic reactivity - a concept that can be generalized to other catalytic reactions.

Strasser, Peter

2011-08-19T23:59:59.000Z

219

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

Rushford, Michael C. (Livermore, CA)

1989-01-01T23:59:59.000Z

220

Techniques for optically compressing light intensity ranges  

DOE Patents (OSTI)

A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

Rushford, M.C.

1989-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Spectral broadening and compression of high-intensity laser pulses in quasi-periodic systems with Kerr nonlinearity  

SciTech Connect

We report the results of theoretical studies and numerical simulations of optical high-power pulse compression systems based on the spectral broadening in a Kerr nonlinear medium with subsequent pulse compression in a dispersive delay line. It is shown that the effective spectral broadening requires suppressing a smallscale instability arising due to self-focusing, which is possible in quasi-periodic systems consisting of a nonlinear medium and optical relay telescopes transmitting images of the laser beam through the system. The numerical calculations have shown the possibility of broadening the spectrum, followed by 15-fold pulse compression until the instability is excited. (control of laser radiation parameters)

Vlasov, Sergei N; Koposova, E V; Yashin, V E

2012-11-30T23:59:59.000Z

222

Multi-objective reactive power market clearing in competitive electricity market using HFMOEA  

Science Conference Proceedings (OSTI)

This paper presents an application of a hybrid fuzzy multi-objective evolutionary algorithm (HFMOEA) for solving a highly constraint, mixed integer type, complex multi-objective reactive power market clearing (RPMC) problem for the competitive electricity ... Keywords: Competitive electricity market, Fuzzy logic controller, Hybrid evolutionary algorithm, Multi-objective optimization, Pareto-optimal front, Reactive power market clearing

Ashish Saini; Amit Saraswat

2013-04-01T23:59:59.000Z

223

Wage Compression and Self-Employment  

E-Print Network (OSTI)

[Draft version, incomplete] Self-employment and entrepreneurship are important phenomena for questions ranging from the labour market options and behaviour of individuals to the overall growth dynamics of the economy. Here, we focus on how self-employment may arise in response to an important institutional feature of some economies: Wage compression resulting from institutional wage setting. We solve for the pattern of worker unemployment, wage employment, and entrepreneurship as a function of worker ability in a model that allows the workers to switch to self-employment after a period of wage employment during which the workers learn and become more productive. Wage compression can result in workers becoming self-employed in equilibrium for “carrrot ” and “stick ” reasons. Low-skilled workers may not be offered formal wage employment because the institutionallyset wage may be above their productivity. High-skilled workers may choose entrepreneurship over wage employment because the compressed wage would pay them less than their productivity. For some parameterisations, workers with intermediate skills may prefer to learn during a period of wage employment before switching, but are forced into selfemployment at time zero because firms calculate that the worker will 1 switch too early for the firm to make a profit. While our focus is primarily on the positive economics of wage compression, we also note the inefficiencies induced by the firm and worker responses to these constraints. 1

Nikolaj Malchow-mřller; James R. Markusen; Jan Rose Skaksen

2004-01-01T23:59:59.000Z

224

Compressing tags to find interesting media groups  

Science Conference Proceedings (OSTI)

On photo sharing websites like Flickr and Zooomr, users are offered the possibility to assign tags to their uploaded pictures. Using these tags to find interesting groups of semantically related pictures in the result set of a given query is a problem ... Keywords: compression, tags

Matthijs van Leeuwen; Francesco Bonchi; Börkur Sigurbjörnsson; Arno Siebes

2009-11-01T23:59:59.000Z

225

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

226

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network (OSTI)

50 compressed air system energy audits completed by Shanghai50 compressed air system energy audits completed by Shanghaiof compressed air energy audits conducted by the Shanghai

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

227

Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas School Buses Grant and Loan Pilot Program to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on AddThis.com...

228

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

229

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

230

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

231

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

232

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Vehicle Conversion Loans - Allegiance Credit Union on Digg Find More places to share Alternative Fuels Data Center: Compressed

233

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

234

Fuel Cell Technologies Office: R&D Strategies for Compressed...  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops to someone by E-mail Share Fuel Cell Technologies Office: R&D Strategies for...

235

CO? compression for capture-enabled power systems  

E-Print Network (OSTI)

The objective of this thesis is to evaluate a new carbon dioxide compression technology - shock compression - applied specifically to capture-enabled power plants. Global warming has increased public interest in carbon ...

Suri, Rajat

2009-01-01T23:59:59.000Z

236

Compression and query execution within column oriented databases  

E-Print Network (OSTI)

Compression is a known technique used by many database management systems ("DBMS") to increase performance[4, 5, 14]. However, not much research has been done in how compression can be used within column oriented architectures. ...

Ferreira, Miguel C. (Miguel Cacela Rosa Lopes Ferreira)

2005-01-01T23:59:59.000Z

237

Design upgrade for 2.670 compressed air robot  

E-Print Network (OSTI)

2.670 is an introductory Mechanical Engineering course that introduces students to the fundamentals of machine tool and computer tool use through the fabrication of a robot that is powered by compressed air. The compressed ...

James, Jeremy P., S.B. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

238

NETL: IEP – CO2 Compression - Novel Concepts for the Compression of Large  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Novel Concepts for the Compression of Large Volumes of Carbon Dioxide Project No.: FC26-05NT42650 The Southwest Research Institute (SwRI) will design an efficient and cost-effective compression system to reduce the overall cost of carbon dioxide (CO2) capture and storage for coal-based power plants. SwRI will develop two novel concepts that have the potential to reduce CO2 compression power requirements by 35 percent compared to conventional compressor designs. The first concept is a semi-isothermal compression process where the CO2 is continually cooled using an internal cooling jacket rather than using conventional interstage cooling. This concept can potentially reduce power requirements because less energy is required to boost the pressure of a cool gas. The second concept involves the use of refrigeration to liquefy the CO2 so that its pressure can be increased using a pump, rather than a compressor. The primary power requirements are the initial compression required to boost the CO2 to approximately 250 pounds per square inch absolute and the refrigeration power required to liquefy the gaseous CO2. Once the CO2 is liquefied, the pumping power to boost the pressure to pipeline supply pressure is minimal. Prototype testing of each concept will be conducted.

239

Definition: Reactive Power | Open Energy Information  

Open Energy Info (EERE)

Reactive Power Reactive Power Jump to: navigation, search Dictionary.png Reactive Power The portion of electricity that establishes and sustains the electric and magnetic fields of alternating-current equipment. Reactive power must be supplied to most types of magnetic equipment, such as motors and transformers. It also must supply the reactive losses on transmission facilities. Reactive power is provided by generators, synchronous condensers, or electrostatic equipment such as capacitors and directly influences electric system voltage. It is usually expressed in kilovars (kvar) or megavars (Mvar).[1] View on Wikipedia Wikipedia Definition In electric power transmission and distribution, volt-ampere reactive (var) is a unit used to measure reactive power in an AC electric

240

Particle Swarm Optimization Based Reactive Power Optimization  

E-Print Network (OSTI)

Reactive power plays an important role in supporting the real power transfer by maintaining voltage stability and system reliability. It is a critical element for a transmission operator to ensure the reliability of an electric system while minimizing the cost associated with it. The traditional objectives of reactive power dispatch are focused on the technical side of reactive support such as minimization of transmission losses. Reactive power cost compensation to a generator is based on the incurred cost of its reactive power contribution less the cost of its obligation to support the active power delivery. In this paper an efficient Particle Swarm Optimization (PSO) based reactive power optimization approach is presented. The optimal reactive power dispatch problem is a nonlinear optimization problem with several constraints. The objective of the proposed PSO is to minimize the total support cost from generators and reactive compensators. It is achieved by maintaining the whole system power loss as minimum...

Sujin, P R; Linda, M Mary

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Summary of Compression Testing of U-10Mo  

SciTech Connect

The mechanical properties of depleted uranium plus 10 weight percent molybdenum alloy have been evaluated by high temperature compression testing.

Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Burkes, Douglas

2012-10-31T23:59:59.000Z

242

Monitoring System Used to Optimize Compressed Air System Efficiency, Cut Costs  

E-Print Network (OSTI)

In 1994, Thomson Consumer Electronics (RCA), an international manufacturer of electronics equipment purchased a UtillTRACK® Monitoring System for a plant in Indianapolis, Indiana. The system monitored gas and electric meters, substations, main feeders, and major equipment and systems including compressed air. For the compressed air system, monitored data included compressor amps, electrical demand and consumption, pressure and airflow. The resulting UtiliTRACK® reports and graphs showed a significant variation in system efficiency depending upon the demand for air (day of week, time of day, production schedule) and which compressor or compressors were operating. By working with the boiler plant operators and making minor modifications to the existing compressor controls, the operating sequence was modified to maintain high system efficiency under all operating conditions. Monitored data after the changes were made showed a 20% reduction in compressed air system operating costs.

Holmes, W. A.

1998-04-01T23:59:59.000Z

243

Directional Reactive Power Ground Plane Transmission  

Directional Reactive Power Ground Plane Transmission Technology Summary ... The invention can transmit electrical power through the surface of the ...

244

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

245

PROGRESS IN BEAM FOCUSING AND COMPRESSION FOR WARM-DENSE MATTER EXPERIMENTS  

SciTech Connect

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using spacecharge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has beendemonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlledramps and forced neutralization. Using an injected 30-mA K+ ion beam with initialkinetic energy 0.3 MeV, axial compression leading to ~;;50-fold current amplification andsimultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to our Neutralized Drift Compression Experiment and associated beam diagnostics that are under development to reach the necessary higher beam intensities, including: (1) greater axial compression via a longer velocity ramp using a new bunching module with approximately twice the available voltseconds; (2) improved centroid control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time-dependent focusing elements to correct considerable chromatic aberrations; and (4) plasma injection improvements to establish a plasma density always greater than the beam density, expected to be>1013 cm-3.

Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Calanog, J.; Chen, A.X.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.K.; Van den Bogert, K.; Waltron, W.L.; Welch, D.R.

2008-09-25T23:59:59.000Z

246

Exploring benefits of non-linear time compression  

Science Conference Proceedings (OSTI)

In comparison to text, audio-video content is much more challenging to browse. Time-compression has been suggested as a key technology that can support browsing-time compression speeds up the playback of audio-video content without causing the ... Keywords: digital library, multimedia browsing, time compression, user evaluation

Liwei He; Anoop Gupta

2001-10-01T23:59:59.000Z

247

Real gas effects for compressible nozzle flows  

SciTech Connect

Numerical simulation of compressible nozzle flows of real gas with or without the addition of heat is presented. A generalized real gas method, using an upwind scheme and curvilinear coordinates, is applied to solve the unsteady compressible Euler equations in axisymmetric form. The present method is an extension of a previous 2D method, which was developed to solve the problem for a gas having the general equation of state in the form p=p ([rho], i). In the present work the method is generalized for an arbitrary P-V-T equation of state introducing an iterative procedure for the determination of the temperature from the specific internal energy and the flow variables. The solution procedure is applied for the study of real gas effects in an axisymmetric nozzle flow.

Drikakis, D.; Tsangaris, S. (National Technical Univ. of Athens, (Greece). Dept. of Mechanical Engineering)

1993-03-01T23:59:59.000Z

248

Compressive Object Tracking using Entangled Photons  

E-Print Network (OSTI)

We present a compressive sensing protocol that tracks a moving object by removing static components from a scene. The implementation is carried out on a ghost imaging scheme to minimize both the number of photons and the number of measurements required to form a quantum image of the tracked object. This procedure tracks an object at low light levels with fewer than 3% of the measurements required for a raster scan, permitting us to more effectively use the information content in each photon.

Omar S. Magańa-Loaiza; Gregory A. Howland; Mehul Malik; John C. Howell; Robert W. Boyd

2013-06-10T23:59:59.000Z

249

Compression of ground-motion data  

Science Conference Proceedings (OSTI)

Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

Long, J.W.

1981-04-01T23:59:59.000Z

250

Compressed Air Storage for Electric Power Generation  

Science Conference Proceedings (OSTI)

This Technical Report focuses on the use of underground storage of natural gas as a means of leveling the load between supply and demand. The book presents a view of the way compressed air storage can reduce costs when constructing new facilities for generating peak load electricity. The primary emphasis given concerns underground storage of air in underground porous media, the vehicle utilized on a large scale for over 25 years by the natural gas industry.

1990-06-01T23:59:59.000Z

251

Beta wavelet based ECG signal compression using lossless encoding with modified thresholding  

Science Conference Proceedings (OSTI)

In this paper, an ECG compression method based on beta wavelet using lossless encoding technique is presented. Wavelet based compression techniques minimize the compression distortion, while run-length encoding (RLE) further increases the compression ...

Ranjeet Kumar; A. Kumar; Rajesh K. Pandey

2013-01-01T23:59:59.000Z

252

Compressed Baryonic Matter: from Nuclei to Pulsars  

E-Print Network (OSTI)

Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau speculated that dense matter at supra-nuclear density in stellar cores could be considered as gigantic nuclei (the prototype of standard model of neutron star), however, we address that the residual compact object of supernova could be of condensed matter of quark clusters. The idea that pulsars are quark-cluster stars was not ruled out during the last decade, and we are expecting to test further by future powerful facilities. (in Chinese)

Renxin Xu

2013-10-12T23:59:59.000Z

253

Demonstration of the reactivity constraint approach on SNL's annual core research reactor  

Science Conference Proceedings (OSTI)

This paper reports on the initial demonstration of the reactivity constraint approach and its implementing algorithm, the MIT-CSDL Non-Linear Digital Controller, on the annual core research reactor (ACCR) that is operated by the Sandia National Laboratories. This demonstration constituted the first use of reactivity constraints for the closed-loop, digital control of reactor power on a facility other than the Massachusetts Institute of Technology's (MIT's) research reactor (MITR-II). Also, because the ACRR and the MITR-II are of very different design, these trials established the generic nature of the reactivity constraint approach.

Bernard, J.A.; Kwok, K.S.; Wyant, F.J.; Thome, F.V.

1989-01-01T23:59:59.000Z

254

Permeable Reactive Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barrier Field Projects Durango, Colorado DOE installed a PRB in October 1995 to treat ground water from a uranium mill tailings disposal site at Durango, Colorado Read more Cañon City, Colorado ESL personnel conduct tests and help evaluate performance at other PRB sites, such as Cotter Corporation's Cañon City site in Colorado. Read more Monticello, Utah Installation of a PRB hydraulically downgradient of the Monticello, Utah, millsite was completed June 30, 1999, as an Interim Remedial Action. Read more A permeable reactive barrier (PRB) is a zone of reactive material placed underground to intercept and react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils with reactive

255

Alternative Fuels Data Center: Public Access to State Compressed Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Access to State Public Access to State Compressed Natural Gas (CNG) Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Google Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Delicious Rank Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on

256

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

257

Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel to someone by E-mail Share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Facebook Tweet about Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Twitter Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Google Bookmark Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Delicious Rank Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on Digg Find More places to share Alternative Fuels Data Center: Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel on AddThis.com...

258

State Energy Program Helping Arkansans Convert to Compressed Natural Gas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Helping Arkansans Convert to Compressed State Energy Program Helping Arkansans Convert to Compressed Natural Gas State Energy Program Helping Arkansans Convert to Compressed Natural Gas January 25, 2012 - 4:30pm Addthis The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. The Arkansas Energy Office recently launched a Compressed Natural Gas Conversion Rebate Program, which provides incentives for fleets and individuals to purchase and/or convert their Arkansas-licensed vehicles to compressed natural gas (CNG). | All Rights Reserved. Grayson Bryant Project Officer -- State Energy Program

259

Simplified laser-driven flyer plates for shock compression science  

Science Conference Proceedings (OSTI)

We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s{sup -1} and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

Brown, Kathryn E.; Shaw, William L.; Zheng Xianxu; Dlott, Dana D. [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

2012-10-15T23:59:59.000Z

260

International magnetic pulse compression workshop: (Proceedings)  

SciTech Connect

A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Compressed Air Energy Storage Demonstration Newsletter  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) Demonstration Project includes the phased planning, engineering design, construction, demonstration, and performance monitoring of two CAES plants. One plant will be a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage, and the other will be a system rated at 15 MWs for 2 hours with above-ground air vessel/piping. This is a critical technology demonstration project that is necessary to enable higher penetration of ...

2011-04-21T23:59:59.000Z

262

Low emissions compression ignited engine technology  

DOE Patents (OSTI)

A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

Coleman, Gerald N. (Dunlap, IL); Kilkenny, Jonathan P. (Peoria, IL); Fluga, Eric C. (Dunlap, IL); Duffy, Kevin P. (East Peoria, IL)

2007-04-03T23:59:59.000Z

263

Compressed Remote Sensing of Sparse Objects  

E-Print Network (OSTI)

The linear inverse source and scattering problems are studied from the perspective of compressed sensing, in particular the idea that sufficient incoherence and sparsity guarantee uniqueness of the solution. By introducing the sensor as well as target ensembles, the maximum number of recoverable targets is proved to be at least proportional to the number of measurement data modulo a log-square factor with overwhelming probability. Important contributions of the analysis include the discoveries of the threshold aperture, consistent with the classical Rayleigh criterion, and the decoherence effect induced by random antenna locations. The prediction of theorems are confirmed by numerical simulations.

Fannjiang, Albert; Strohmer, Thomas

2009-01-01T23:59:59.000Z

264

Shock Waves in Weakly Compressed Granular Media  

E-Print Network (OSTI)

We experimentally probe nonlinear wave propagation in weakly compressed granular media, and observe a crossover from quasi-linear sound waves at low impact, to shock waves at high impact. We show that this crossover grows with the confining pressure $P_0$, whereas the shock wave speed is independent of $P_0$ --- two hallmarks of granular shocks predicted recently. The shocks exhibit powerlaw attenuation, which we model with a logarithmic law implying that local dissipation is weak. We show that elastic and potential energy balance in the leading part of the shocks.

Siet van den Wildenberg; Rogier van Loo; Martin van Hecke

2013-04-23T23:59:59.000Z

265

Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty  

Science Conference Proceedings (OSTI)

Analytical methods, described in this report, are used to systematically determine experimental fuel sub-batch reactivities as a function of burnup. Fuel sub-batch reactivities are inferred using more than 600 in-core pressurized water reactor (PWR) flux maps taken during 44 cycles of operation at the Catawba and McGuire nuclear power plants. The analytical methods systematically search for fuel sub-batch reactivities that minimize differences between measured and computed reaction rates, using Studsvik ...

2011-08-08T23:59:59.000Z

266

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

267

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SustainX SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air as a storage medium SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. Energy can be stored in compressed air, with minimal energy losses, and released when the air is later allowed to expand. Many traditional compressed air energy storage (CAES) projects store energy in underground geological formations such as salt caverns. However, in these systems, the air warms when it is compressed and cools when it is expanded. CAES systems generally use gas combustion turbines to reheat the cooled air before expansion. This process creates inefficiencies and emissions.

268

Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

Energy.gov (U.S. Department of Energy (DOE))

Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

269

Electrochemistry of Enargite: Reactivity in Alkaline Solutions  

Science Conference Proceedings (OSTI)

The reactivity of enargite samples from Montana, US and Quiruvilca, Peru were studied under alkaline conditions, pH range of 8-13, using a cyclic voltammetry ...

270

Reactive Air Aluminizing - Energy Innovation Portal  

Reactive Air Aluminizing is a process for applying a protective coating on steel components in solid oxide fuel ... Building Energy Efficiency; ...

271

Reactive Air Aluminizing - Energy Innovation Portal  

Reactive Air Aluminizing is a process for applying a protective coating on steel components in solid oxide fuel cells and other high temperature electrochemical devices.

272

Fuel cell separator with compressible sealing flanges  

DOE Patents (OSTI)

A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.

Mientek, A.P.

1984-03-30T23:59:59.000Z

273

Compression station key to Texas pipeline project  

SciTech Connect

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

274

A Quadratic Closure for Compressible Turbulence  

Science Conference Proceedings (OSTI)

We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.

Futterman, J A

2008-09-16T23:59:59.000Z

275

University of Arizona Compressed Air Energy Storage  

SciTech Connect

Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

276

Ethanol production by vapor compression distillation  

DOE Green Energy (OSTI)

The goal of this project is to develop and demonstrate a one gallon per hour vapor compression distillation unit for fuel ethanol production that can be profitably manufactured and economically operated by individual family units. Vapor compression distillation is already an industrially accepted process and this project's goal is to demonstrate that it can be done economically on a small scale. Theoretically, the process is independent of absolute pressure. It is only necessary that the condenser be at higher pressure than the evaporator. By reducing the entire process to a pressure of approximately 0.1 atmosphere, the evaporation and condensation can occur at near ambient temperature. Even though this approach requires a vacuum pump, and thus will not represent the final cost effective design, it does not require preheaters, high temperature materials, or as much insulation as if it were to operate a near ambient pressure. Therefore, the operation of the ambient temperature unit constitutes the first phase of this project. Presently, the ambient temperature unit is fully assembled and has begun testing. So far it has successfully separated ethanol from a nine to one diluted input solution. However the production rate has been very low.

Ellis, G.S.

1981-01-01T23:59:59.000Z

277

Lossless compression using the adaptive discrete cosine transform  

Science Conference Proceedings (OSTI)

This paper describes a technique using the adaptive discrete cosine transform for lossless waveform data compression. The technique is a variation on a two-stage lossless method that was developed by one of the authors. The earlier work employed an adaptive ... Keywords: ADPCM scheme, adaptive differential pulse code modulation-type, adaptive discrete cosine transform, data compression, encoding, integer residual sequence, lossless successive difference operation, lossless waveform data compression, storage, transmission, two-stage lossless method

L. Gerhardt; M. Fargues; G. Coutu

1995-10-01T23:59:59.000Z

278

Inspection of Compression Connectors: Infrared Testing and Results  

Science Conference Proceedings (OSTI)

Conductor-connector systems are vital components to the safety and reliability of the bulk-power overhead electric transmission system. Although today’s electric system is 99.97% reliable, power outages and interruptions still occur, some of which are attributed to failures of compression connectors.When properly selected and installed, compression connectors are expected to last the design life of the transmission line. When not properly constructed, compression connectors place ...

2013-12-20T23:59:59.000Z

279

Compressibility and local instabilities of differentially rotating magnetized gas  

E-Print Network (OSTI)

We study the stability of compressible cylindrical differentially rotating flow in the presence of the magnetic field, and show that compressibility alters qualitatively the stability properties of flows. Apart from the well-known magnetorotational instability that can occur even in incompressible flow, there exist a new instability caused by compressibility. The necessary condition of the newly found instability can easily be satisfied in various flows in laboratory and astrophysical conditions and reads $B_{s} B_{\\phi} \\Omega' \

Bonanno, A; Bonanno, Alfio; Urpin, Vadim

2007-01-01T23:59:59.000Z

280

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ESS 2012 Peer Review - Modular Undersea Compressed Air Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar.energy.govsunshotcsp.html ENERGY STORAGE SYSTEMS: Sept. 27, 2012 Modular Undersea Compressed Air Energy Storage (UCAES) System Bill Caruso www.BraytonEnergy.com Brayton...

282

NETL: News Release - Natural Gas Compression Technology Improves...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Innovative Compressor Design Can Extend Productive Life of Stripper Wells,...

283

Saturable inductor and transformer structures for magnetic pulse compression  

DOE Patents (OSTI)

Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

1990-01-01T23:59:59.000Z

284

Argonne TTRDC - Engines - Compression-Ignition - diesel, fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compression Ignition Engines Clean Diesel Technologies for Greener Performance Mechanical engineer Alan Kastengren examines a diesel injection nozzle used in Argonne's X-ray spray...

285

Matrix-free Interior Point Method for Compressed Sensing Problems  

E-Print Network (OSTI)

Aug 27, 2012 ... Matrix-free Interior Point Method for Compressed Sensing Problems. Kimon Fountoulakis (K.Fountoulakis ***at*** sms.ed.ac.uk) Jacek Gondzio ...

286

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

287

Low Bandwidth Video Compression with Variable Dimension Vector Quantization  

E-Print Network (OSTI)

Lambert,R. Fryer,R.J. Cockshott,W.P. Mcgregor,D.R. Proceedings of the First Advanced Digital Video Compression Engineering Conference (Cambridge, UK)

Lambert, R.; Fryer, R.J.; Cockshott, W.P.

288

Ultra-short pulse compression using photonic crystal fibre  

Science Conference Proceedings (OSTI)

ABSTRACT A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical prop- erties of this novel medium in ...

289

Energy Recovery During Expansion of Compressed Gas Using Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery During Expansion of Compressed Gas Using Power Plant Low-Quality Heat Sources Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is...

290

In-Plane Compressive Properties of Hybrid Dyneema®/Carbon ...  

Science Conference Proceedings (OSTI)

Presentation Title, In-Plane Compressive Properties of Hybrid Dyneema®/ Carbon Fiber Reinforced Polymer Matrix Composites. Author(s), Shahram Amini, John ...

291

Electron acceleration & laser pulse compression using a laser...  

NLE Websites -- All DOE Office Websites (Extended Search)

acceleration & laser pulse compression using a laser-plasma accelerator Wednesday, August 14, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Andreas Walker, Oxford...

292

List of Compressed air Incentives | Open Energy Information  

Open Energy Info (EERE)

Energy Efficiency Incentive Program (Texas) Local Grant Program Texas Commercial Ceiling Fan Central Air conditioners Chillers Comprehensive MeasuresWhole Building Compressed air...

293

Energy efficiency improvements in Chinese compressed air systems  

E-Print Network (OSTI)

air system assessments and energy audits based on a systemaudit. These compressed air system assessments may be conducted by compressor manufacturers/distributors or energy

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2008-01-01T23:59:59.000Z

294

Compressive Properties of Low Relative Density Materials, Both ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The compressive constitutive behavior of low relatively density materials bas been characterized for various materials. It has been seen that ...

295

Compression Behavior and Energy Absorption of Aluminum Alloys ...  

Science Conference Proceedings (OSTI)

Presentation Title, Compression Behavior and Energy Absorption of ... Abstract Scope, The usage of advanced high strength steels and Aluminum Alloys as ...

296

Optimization of Energy Saving Materials and Compressed Insulating ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Optimization of Energy Saving Materials and Compressed Insulating Layers in the Automotive Chemical Converters by E. Litovsky, V. Issoupov, ...

297

Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments  

DOE Green Energy (OSTI)

The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

2011-09-15T23:59:59.000Z

298

Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments  

SciTech Connect

The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including: beam diagnostics, greater axial compression via a longer velocity ramp; and plasma injection improvements to establish a plasma density always greater than the beam density, expected to be > 10{sup 13} cm{sup -3}.

Seidl, Peter; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.A.; Waldron, W.L.; Welch, D.R.

2009-04-17T23:59:59.000Z

299

Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning  

SciTech Connect

GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

None

2010-09-13T23:59:59.000Z

300

Proceedings: Fossil Plant Layup and Reactivation Conference  

Science Conference Proceedings (OSTI)

In recent years, the layup and reactivation of fossil-fired power plants has become more important as increasing numbers of utilities develop a need for retaining capacity not currently needed. A 1992 EPRI conference highlighted key technical issues, focusing on proven layup procedures, descriptions of layup equipment and preservation methods, layup and reactivation case studies, and summaries of regulatory issues.

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New Regenerative Cycle for Vapor Compression Refrigeration  

Office of Scientific and Technical Information (OSTI)

SCIENTIFIC REPORT SCIENTIFIC REPORT Title Page Project Title: New Regenerative Cycle for Vapor Compression Refrigeration DOE Award Number: DE-FG36-04GO14327 Document Title: Final Scientific Report Period Covered by Report: September 30, 2004 to September 30, 2005 Name and Address of Recipient Organization: Magnetic Development, Inc., 68 Winterhill Road, Madison, CT 06443, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Contact Information: Mark J. Bergander, Ph.D., P.E., Principal Investigator, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Project Objective (as stated in the proposal): The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient

302

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect

This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

None

2012-11-30T23:59:59.000Z

303

Modeling Routing Overhead Generated by Wireless Reactive Routing Protocols  

E-Print Network (OSTI)

In this paper, we have modeled the routing over- head generated by three reactive routing protocols; Ad-hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) and DYnamic MANET On-deman (DYMO). Routing performed by reactive protocols consists of two phases; route discovery and route maintenance. Total cost paid by a protocol for efficient routing is sum of the cost paid in the form of energy consumed and time spent. These protocols majorly focus on the optimization performed by expanding ring search algorithm to control the flooding generated by the mechanism of blind flooding. So, we have modeled the energy consumed and time spent per packet both for route discovery and route maintenance. The proposed framework is evaluated in NS-2 to compare performance of the chosen routing protocols.

Javaid, Nadeem; Javaid, Akmal; Malik, Shahzad A

2011-01-01T23:59:59.000Z

304

Model-based compression in wireless ad hoc networks  

Science Conference Proceedings (OSTI)

We present a technique for compression of shortest paths routing tables for wireless ad hoc networks. The main characteristic of such networks is that geographic location of nodes determines network topology. As opposed to encoding individual node locations, ... Keywords: compression, modeling, routing protocols, routing tables, sensor networks, trajectory

Milenko Drinic; Darko Kirovski; Miodrag Potkonjak

2003-11-01T23:59:59.000Z

305

Z-Pinch Driven Isentropic Compression for Inertial Fusion  

Science Conference Proceedings (OSTI)

The achievement of high gain with inertial fusion requires the compression of hydrogen isotopes to high density and temperatures. High densities can be achieved most efficiently by isentropic compression. This requires relatively slow pressure pulses on the order of 10-20 nanoseconds; however, the pressure profile must have the appropriate time. We present 1-D numerical simulations that indicate such a pressure profile can be generated by using pulsed power driven z pinches. Although high compression is calculated, the initial temperature is too low for ignition. Ignition could be achieved by heating a small portion of this compressed fuel with a short (-10 ps) high power laser pulse as previously described. Our 1-D calculations indicate that the existing Z-accelerator could provide the driving current (-20 MA) necessary to compress fuel to roughly 1500 times solid density. At this density the required laser energy is approximately 10 kJ. Multidimensional effects such as the Rayleigh-Taylor were not addressed in this brief numerical study. These effects will undoubtedly lower fuel compression for a given chive current. Therefore it is necessary to perform z-pinch driven compression experiments. Finally, we present preliminary experimental data from the Z-accelerator indicating that current can be efficiently delivered to appropriately small loads (- 5 mm radius) and that VISAR can be used measure high pressure during isentropic compression.

Asay, J.R.; Hall, C.A.; Holland, K.G.; Slutz, S.A.; Spielman, R.B.; Stygar, W.A.

1999-02-01T23:59:59.000Z

306

Dynamic data compression in multi-hop wireless networks  

Science Conference Proceedings (OSTI)

Data compression can save energy and increase network capacity in wireless sensor networks. However, the decision of whether and when to compress data can depend upon platform hardware, topology, wireless channel conditions, and application data rates. ... Keywords: energy efficiency, stochatic network optimization

Abhishek B. Sharma; Leana Golubchik; Ramesh Govindan; Michael J. Neely

2009-06-01T23:59:59.000Z

307

Novel Approach for fast Compressed Hybrid color image Cryptosystem  

Science Conference Proceedings (OSTI)

In this Paper, the issues pertaining with efficient, fast, cost effective and secured image transmission are addressed in totality. The proposed model employs Compressed Hybrid Cryptosystem constitutes compression, encryption and secured session key ... Keywords: Cat map, Chaotic map, Curvelet transform, ECDLP, Elliptic Curve Cryptography, Standard map

Kamlesh Gupta; Sanjay Silakari

2012-07-01T23:59:59.000Z

308

Face recognition in JPEG and JPEG2000 compressed domain  

Science Conference Proceedings (OSTI)

In this paper we investigate the potential of performing face recognition in JPEG and JPEG2000 compressed domain. This is achieved by avoiding full decompression and using transform coefficients as input to face recognition algorithms. We propose a new ... Keywords: Compressed Domain, DCT, DWT, Face Recognition, JPEG, JPEG2000

Kresimir Delac; Mislav Grgic; Sonja Grgic

2009-07-01T23:59:59.000Z

309

Adaptive Header Compression for Wireless Networks Changli Jiao  

E-Print Network (OSTI)

Adaptive Header Compression for Wireless Networks Changli Jiao Department of Electrical without compression. From the standpoint of the communication medium, the channel usage will be improved at a lower speed if the gap between ACKs is too big. This will have two side results. First, the efficiency

Richard III, Golden G.

310

Iterative Dictionary Construction for Compression of Large DNA Data Sets  

Science Conference Proceedings (OSTI)

Genomic repositories increasingly include individual as well as reference sequences, which tend to share long identical and near-identical strings of nucleotides. However, the sequential processing used by most compression algorithms, and the volumes ... Keywords: Dictionary construction, compression, DNA, large data sets.

Shanika Kuruppu; Bryan Beresford-Smith; Thomas Conway; Justin Zobel

2012-01-01T23:59:59.000Z

311

Simulations of highly reactive fluids  

SciTech Connect

We report density functional molecular dynamics simulations to determine the early chemical events of hot (T = 3000 K) and dense (1.97 g/cm{sup 3}, V/V{sub 0} = 0.68) nitromethane (CH{sub 3}NO{sub 2}). The first step in the decomposition process is an intermolecular proton abstraction mechanism that leads to the formation of CH{sub 3}NO{sub 2}H and the aci ion H{sub 2}CNO{sub 2}{sup -}, in support of evidence from static high-pressure and shock experiments. An intramolecular hydrogen transfer that transforms nitromethane into the aci acid form, CH{sub 2}NO{sub 2}H, accompanies this event. This is the first confirmation of chemical reactivity with bond selectivity for an energetic material near the condition of fully reacted specimen. We also report the decomposition mechanism followed up to the formation of H{sub 2}O as the first stable product.

Fried, L E; Manaa, M R; Reed, E J

2005-07-21T23:59:59.000Z

312

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Compressed Air Energy Storage (CAES) Jump to: navigation, search Contents 1 Introduction 2 Technology Description 3 Plants 4 References Introduction Compressed air energy storage (CAES) is a way to store energy that is generated at night and deliver the energy during the day to meet peak demand. This is performed by compressing air and storing it during periods of excess electricity and expanding the air through a turbine when electricity is needed. Technology Description Diabatic Diabatic compressed air energy storage is what the two existing compressed air energy storage facilities currently employ. This method is

313

Compressive Passive Millimeter-Wave Imager (Flash format)  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressive Passive Millimeter-Wave Imager > (Flash) Compressive Passive Millimeter-Wave Imager > (Flash) Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Compressive Passive Millimeter-Wave Imager VIDEO TRANSCRIPT Remote Vital Sign Monitoring System Preventing the Worst (by CNN) Engineering Development & Applications Argonne's Nuclear Science & Technology Legacy Other Multimedia Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Detection & Diagnostic Systems - Multimedia Bookmark and Share Compressive Passive Millimeter-Wave Imager Argonne National Laboratory Read full story Argonne has developed a passive compressive sensing system that uses millimeter waves (MMWs) to rapidly image targets with high resolution and

314

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

Rutqvist, J.

2013-01-01T23:59:59.000Z

315

Reactive Power Measurement Using the Wavelet Transform  

E-Print Network (OSTI)

Abstract—This paper provides the theoretical basis for the measurement of reactive and distortion powers from the wavelet transforms. The measurement of reactive power relies on the use of broad-band phase-shift networks to create concurrent in-phase currents and quadrature voltages. The wavelet real power computation resulting from these 90 phase-shift networks yields the reactive power associated with each wavelet frequency level or subband. The distortion power at each wavelet subband is then derived from the real, reactive and apparent powers of the subband, where the apparent power is the product of the v; i element pair's subband rms voltage and current. The advantage of viewing the real and reactive powers in the wavelet domain is that the domain preserves both the frequency and time relationship of these powers. In addition, the reactive power associated with each wavelet subband is a signed quantity and thus has a direction associated with it. This permits tracking the reactive power flow in each subband through the power system. Index Terms—Digital signal processing, phase shift networks, measurement, power, RMS, subband, wavelets. I.

Weon-ki Yoon; Michael J. Devaney

2000-01-01T23:59:59.000Z

316

Comparison of biomass and coal char reactivities  

SciTech Connect

Char combustion is typically the rate limiting step during the combustion of solid fuels. The magnitude and variation of char reactivity during combustion are, therefore, of primary concern when comparing solid fuels such as coal and biomass. In an effort to evaluate biomass` potential as a sustainable and renewable energy source, the reactivities of both biomass and coal chars were compared using Sandia`s Captive Particle Imaging (CPI) apparatus. This paper summarizes the experimental approach used to determine biomass and coal reactivities and presents results from CPT experiments. The reactivity of six types of char particles, two high-rank coal chars, two low-rank coal chars, and two biomass chars, were investigated using the CPT apparatus. Results indicate that both of the high-rank coal chars have relatively low reactivities when compared with the higher reactivities measured for the low-rank coal and the biomass chars. In addition, extinction behavior of the chars support related investigations that suggest carbonaceous structural ordering is an important consideration in understanding particle reactivity as a function of extent of burnout. High-rank coal chars were found to have highly ordered carbon structures, where as, both low-rank coal and biomass chars were found to have highly disordered carbon structures.

Huey, S.P. [Sandia National Labs., Livermore, CA (United States); Davis, K.A. [Reaction Engineering International, Salt Lake City, UT (United States); Hurt, R.H. [Brown Univ., Providence, RI (United States). Div. of Engineering

1995-08-01T23:59:59.000Z

317

Systematic approach for chemical reactivity evaluation  

E-Print Network (OSTI)

Under certain conditions, reactive chemicals may proceed into uncontrolled chemical reaction pathways with rapid and significant increases in temperature, pressure, and/or gas evolution. Reactive chemicals have been involved in many industrial incidents, and have harmed people, property, and the environment. Evaluation of reactive chemical hazards is critical to design and operate safer chemical plant processes. Much effort is needed for experimental techniques, mainly calorimetric analysis, to measure thermal reactivity of chemical systems. Studying all the various reaction pathways experimentally however is very expensive and time consuming. Therefore, it is essential to employ simplified screening tools and other methods to reduce the number of experiments and to identify the most energetic pathways. A systematic approach is presented for the evaluation of reactive chemical hazards. This approach is based on a combination of computational methods, correlations, and experimental thermal analysis techniques. The presented approach will help to focus the experimental work to the most hazardous reaction scenarios with a better understanding of the reactive system chemistry. Computational methods are used to predict reaction stoichiometries, thermodynamics, and kinetics, which then are used to exclude thermodynamically infeasible and non-hazardous reaction pathways. Computational methods included: (1) molecular group contribution methods, (2) computational quantum chemistry methods, and (3) correlations based on thermodynamic-energy relationships. The experimental techniques are used to evaluate the most energetic systems for more accurate thermodynamic and kinetics parameters, or to replace inadequate numerical methods. The Reactive System Screening Tool (RSST) and the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) were employed to evaluate the reactive systems experimentally. The RSST detected exothermic behavior and measured the overall liberated energy. The APTAC simulated near-adiabatic runaway scenarios for more accurate thermodynamic and kinetic parameters. The validity of this approach was investigated through the evaluation of potentially hazardous reactive systems, including decomposition of di-tert-butyl peroxide, copolymerization of styrene-acrylonitrile, and polymerization of 1,3-butadiene.

Aldeeb, Abdulrehman Ahmed

2003-12-01T23:59:59.000Z

318

Theoretical and Experimental Evaluation of Chemical Reactivity  

E-Print Network (OSTI)

Reactive chemicals are presented widely in the chemical and petrochemical process industry. Their chemical reactivity hazards have posed a significant challenge to the industries of manufacturing, storage and transportation. The accidents due to reactive chemicals have caused tremendous loss of properties and lives, and damages to the environment. In this research, three classes of reactive chemicals (unsaturated hydrocarbons, self-reacting chemicals, energetic materials) were evaluated through theoretical and experimental methods. Methylcyclopentadiene (MCP) and Hydroxylamine (HA) are selected as representatives of unsaturated hydrocarbons and self-reacting chemicals, respectively. Chemical reactivity of MCP, including isomerization, dimerization, and oxidation, is investigated by computational chemistry methods and empirical thermodynamic–energy correlation. Density functional and ab initio methods are used to search the initial thermal decomposition steps of HA, including unimolecular and bimolecular pathways. In addition, solvent effects are also examined using water cluster methods and Polarizable Continuum Models (PCM) for aqueous solution of HA. The thermal stability of a basic energetic material, Nitroethane, is investigated through both theoretical and experimental methods. Density functional methods are employed to explore the initial decomposition pathways, followed by developing detailed reaction networks. Experiments with a batch reactor and in situ GC are designed to analyze the distribution of reaction products and verify reaction mechanisms. Overall kinetic model is also built from calorimetric experiments using an Automated Pressure Tracking Adiabatic Calorimeter (APTAC). Finally, a general evaluation approach is developed for a wide range of reactive chemicals. An index of thermal risk is proposed as a preliminary risk assessment to screen reactive chemicals. Correlations are also developed between reactivity parameters, such as onset temperature, activation energy, and adiabatic time to maximum rate based on a limited number, 37 sets, of Differential Scanning Calorimeter (DSC) data. The research shows broad applications in developing reaction mechanisms at the molecular level. The methodology of reaction modeling in combination with molecular modeling can also be used to study other reactive chemical systems.

Wang, Qingsheng

2010-08-01T23:59:59.000Z

319

Integrated Hydrogen Production, Purification and Compression System  

DOE Green Energy (OSTI)

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

320

A fast and efficient method for compressing fMRI data sets  

Science Conference Proceedings (OSTI)

We present a new lossless compression method named FTTcoder, which compresses images and 3d sequences collected during a typical functional MRI experiment. The large data sets involved in this popular medical application necessitate novel compression ...

Fabian J. Theis; Toshihisa Tanaka

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

322

Desalination Using Vapor-Compression Distillation  

E-Print Network (OSTI)

The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO) and multi-stage flash (MSF) cost more than potable water produced from fresh water resources. As an alternative to RO and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K (331oF) and 722 kPa (105 psia) for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K (1.73oF), the energy requirement is 2.0 kWh/m3 (7.53 kWh/kgal). At this condition, the estimated water cost is $0.39/m3 ($1.48/kgal) achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K (0.80oF), the energy requirement is 3.97 kWh/m3 (15.0 kWh/kgal) and the estimated water cost is $0.61/m3 ($2.31/kgal). Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. The following table shows the improvement of a series flow arrangement compared to parallel: ?T (K) Improvement (%)*1.111 2.222 3.333 15.21 10.80 8.37 * Incoming salt concentration: 3.5% Outgoing salt concentration: 7% Temperature: 450 K (350oF) Pressure: 928 kPa (120 psig) Stages: 4

Lubis, Mirna R.

2009-05-01T23:59:59.000Z

323

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical

324

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

325

Efficient and Reliable Reactive Power Supply and Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient and Reliable Reactive Power Supply and Consumption - Insights from an Integrated Program of Engineering and Economics Research Title Efficient and Reliable Reactive Power...

326

Olefin production via reactive distillation based Olefin metathesis.  

E-Print Network (OSTI)

??Reactive distillation is a combination of a traditional multi-stage distillation column with a chemical reaction. The primary benefits of a reactive distillation process are reduced… (more)

Morrison, Ryan Frederick

2012-01-01T23:59:59.000Z

327

A Parametric Reactive Distillation Study: Economic Feasibility and Design Heuristics.  

E-Print Network (OSTI)

??The integration of reaction and distillation into a single column is called reactive distillation or catalytic distillation. Reactive distillation provides many benefits such as reduced… (more)

Hoyme, Craig Alan

2004-01-01T23:59:59.000Z

328

Observations on the Coke Air Reactivity Test - Programmaster.org  

Science Conference Proceedings (OSTI)

Coke air reactivities are strongly dependent on coke calcination levels and it is possible to drive air reactivities lower by increasing calcining temperatures.

329

Neural systems for preparatory and reactive imitation control  

E-Print Network (OSTI)

37. Iacoboni M, Woods RP, Brass M, Bekkering H, MazziottaCatmur C, Liepelt R, Brass M, Heyes C. (2008). Experience-240. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta

Cross, Katy

2013-01-01T23:59:59.000Z

330

Neural systems for preparatory and reactive imitation control.  

E-Print Network (OSTI)

??Humans have an automatic tendency to imitate, as illustrated by unconscious mimicry during social interactions and behavioral interference effects in the laboratory. Automatic imitation is… (more)

Cross, Katy

2013-01-01T23:59:59.000Z

331

In Situ Formation Of Reactive Barriers For Pollution Control  

DOE Patents (OSTI)

A method of treating soil contamination by forming one or more zones of oxidized material in the path of percolating groundwater is disclosed. The zone or barrier region is formed by delivering an oxidizing agent into the ground for reaction with an existing soil component. The oxidizing agent modifies the existing soil component creating the oxidized zone. Subsequently when soil contaminates migrate into the zone, the oxidized material is available to react with the contaminates and degrade them into benign products. The existing soil component can be an oxidizable mineral such as manganese, and the oxidizing agent can be ozone gas or hydrogen peroxide. Soil contaminates can be volatile organic compounds. Oxidized barriers can be used single or in combination with other barriers.

Gilmore, Tyler J. (Pasco, WA); Riley, Robert G. (West Richland, WA)

2004-04-27T23:59:59.000Z

332

Lillgrund Wind Farm Modelling and Reactive Power Control.  

E-Print Network (OSTI)

?? The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources.… (more)

Boulanger, Isabelle

2009-01-01T23:59:59.000Z

333

Simulation and Validation of Vapor Compression System Faults and Start-up/Shut-down Transients  

E-Print Network (OSTI)

The statistics from the US Department of Energy show that about one-third of the total consumption of electricity in the households and industries is due to the Air Conditioning and Refrigeration (AC & R) systems. This wide usage has prompted many researchers to develop models for each of the components of the vapor compression systems. However, there has been very little information on developing simulation models that have been validated for the conditions of start-up/shutdown operations as well as vapor compression system faults. This thesis addresses these concerns and enhances the existing modeling library to capture the transients related to the above mentioned conditions. In this thesis, the various faults occurring in a vapor compressor cycle (VCC) have been identified along with the parameters affecting them. The transients of the refrigerant have also been studied with respect to the start-up/shutdown of a vapor compression system. All the simulations related to the faults and start-up/shutdown have been performed using the vapor compression system models developed in MATLAB/Simulink environment and validated against the 3-ton air conditioning unit present in the Thermo-Fluids Control Laboratory at Texas A & M University. The simulation and validation results presented in this thesis can be used to lay out certain rules of thumb to identify a particular fault depending on the unusual behavior of the system thus helping in creating certain fault diagnostic algorithms and emphasize the importance of the study of start-up/shutdown transient characteristics from the point of actual energy efficiency of the systems. Also, these results prove the capability and validity of the finite control volume models to describe VCC system faults and start-up/shutdown transients.

Ayyagari, Balakrishna

2011-08-01T23:59:59.000Z

334

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

DOE Green Energy (OSTI)

As power generation from variable distributed energy resources (DER) grows, energy flows in the network are changing, increasing the requirements for ancillary services, including voltage support. With the appropriate power converter, DER can provide ancillary services such as frequency control and voltage support. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power and voltage support at its point of common coupling. The DER Customer Adoption Model assesses the costs of providing reactive power, given local utility rules. Depending on the installed DER, the cost minimizing solution for supplying reactive power locally is chosen. Costs include the variable cost of the additional losses and the investment cost of appropriately over-sizing converters or purchasing capacitors. A case study of a large health care building in San Francisco is used to evaluate different revenue possibilities of creating an incentive for microgrids to provide reactive power.

Appen, Jan von; Marnay, Chris; Stadler, Michael; Momber, Ilan; Klapp, David; Scheven, Alexander von

2011-05-01T23:59:59.000Z

335

A Tariff for Reactive Power - IEEE  

DOE Green Energy (OSTI)

This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

Kueck, John D [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator; Kirby, Brendan J [ORNL

2008-11-01T23:59:59.000Z

336

Mild coal pretreatment to improve liquefaction reactivity  

SciTech Connect

This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

Miller, R.L.

1991-01-01T23:59:59.000Z

337

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

338

Fossil plant layup and reactivation conference: Proceedings  

Science Conference Proceedings (OSTI)

The Fossil Plant Layup and Reactivation Conference was held in New Orleans, Louisiana on April 14--15, 1992. The Conference was sponsored by EPRI and hosted by Entergy Services, Inc. to bring together representatives from utilities, consulting firms, manufacturers and architectural engineers. Eighteen papers were presented in three sessions. These sessions were devoted to layup procedures and practices, and reactivation case studies. A panel discussion was held on the second day to interactively discuss layup and reactivation issues. More than 80 people attended the Conference. This report contains technical papers and a summary of the panel discussion. Of the eighteen papers, three are related to general, one is related to regulatory issues, three are related to specific equipment, four are related to layup procedures and practices, and seven are layup and reactivation case studies.

Not Available

1992-10-01T23:59:59.000Z

339

Oxidation Resistance of Reactive Atoms in Graphene  

SciTech Connect

We have found that reactive elements that are normally oxidized at room temperature are present as individual atoms or clusters on and in graphene. Oxygen is present in these samples but it is only detected in the thicker amorphous carbon layers present in the graphene specimens we have examined. However, we have seen no evidence that oxygen reacts with the impurity atoms and small clusters of these normally reactive elements when they are incorporated in the graphene layers. First principles calculations suggest that the oxidation resistance is due to kinetic effects such as preferential bonding of oxygen to nonincorporated atoms and H passivation. The observed oxidation resistance of reactive atoms in graphene may allow the use of these incorporated metals in catalytic applications. It also opens the possibility of designing and producing electronic, opto-electronic, and magnetic devices based on these normally reactive atoms.

Chisholm, Matthew F [ORNL; Duscher, Gerd [University of Tennessee, Knoxville (UTK); Windl, Wolfgang [Ohio State University

2012-01-01T23:59:59.000Z

340

Radiative Forcing Due to Reactive Gas Emissions  

Science Conference Proceedings (OSTI)

Reactive gas emissions (CO, NOx, VOC) have indirect radiative forcing effects through their influences on tropospheric ozone and on the lifetimes of methane and hydrogenated halocarbons. These effects are quantified here for the full set of ...

T. M. L. Wigley; S. J. Smith; M. J. Prather

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Effect of Compressibility on the Annihilation Process  

E-Print Network (OSTI)

Annihilation processes, where the reacting particles are influenced by some external advective field, are one of the simplest examples of nonlinear statistical systems. This type of processes can be observed in miscellaneous chemical, biological or physical systems. In low space dimensions usual description by means of kinetic rate equation is not sufficient and the effect of density fluctuations must be taken into ac- count. Using perturbative renormalization group we study the influ- ence of random velocity field on the kinetics of single-species annihila- tion reaction at and below its critical dimension $d_c = 2$. The advecting velocity field is modelled by the self-similar in space Gaussian variable finite correlated in time (Antonov-Kraichnan model). Effect of the compressibility of velocity field is taken into account and the model is analyzed near its critical dimension by means of three-parameter expansion in $\\epsilon$, $\\Delta$ and $\\eta$. Here $\\epsilon$ is the deviation from the Kolmogorov scaling, $\\Delta$ is the deviation from the (critical) space dimension 2 and {\\eta} is the deviation from the parabolic dispersion law. Depending on the value of these exponents and the value of compressiblity parameter {\\alpha}, the studied model can exhibit various asymptotic (long-time) regimes corresponding to the infrared (IR) fixed points of the renormalization group. The possible regimes are summarized and the decay rates for the mean particle number are calculated in the leading order of the perturbation theory.

Michal Hnati?; Juha Honkonen; Tomáš Lu?ivjanský

2013-02-01T23:59:59.000Z

342

Compression wave studies in Blair dolomite  

DOE Green Energy (OSTI)

Dynamic compression wave studies have been conducted on Blair dolomite in the stress range of 0-7.0 GPa. Impact techniques were used to generate stress impulse input functions, and diffuse surface laser interferometry provided the dynamic instrumentation. Experimental particle velocity profiles obtained by this method were coupled with the conservation laws of mass and momentum to determine the stress-strain and stress-modulus constitutive properties of the material. Comparison between dynamic and quasistatic uniaxial stress-strain curves uncovered significant differences. Energy dissipated in a complete load and unload cycle differed by almost an order of magnitude and the longitudinal moduli differed by as much as a factor of two. Blair dolomite was observed to yield under dynamic loading at 2.5 GPa. Below 2.5 GPa the loading waves had a finite risetime and exhibited steady propagation. A finite linear viscoelastic constitutive model satisfactorily predicted the observed wave propagation. We speculate that dynamic properties of preexisting cracks provides a physical mechanism for both the rate dependent steady wave behavior and the difference between dynamic and quasistatic response.

Grady, D.E.; Hollenbach, R.E.; Schuler, K.W.; Callender, J.F.

1976-02-01T23:59:59.000Z

343

Heat release effects on decaying homogeneous compressible turbulence  

E-Print Network (OSTI)

High Mach-number compressible flows with heat release are inherently more complicated than incompressible flows due to, among other reasons, the activation of the thermal energy mode. Such flow fields can experience significant fluctuations in density, temperature, viscosity, conductivity and specific heat, which affect velocity and pressure fluctuations. Furthermore, the flow field cannot be assumed to be dilatation-free in high Mach numbers and even in low Mach-number flows involving combustion, or in boundary layers on heated walls. The main issue in these high-speed and highly-compressible flows is the effect of thermal gradients and fluctuations on turbulence. The thermal field has various routes through which it affects flow structures of compressible turbulence. First, it has direct influence through pressure, which affects turbulence via pressure-strain correlation. The indirect effects of thermal fields on compressible turbulence are through the changes in flow properties. The high temperature gradients alter the transport coefficient and compressibility of the flow. The objective of this work is to answer the following questions: How do temperature fluctuations change the compressible flow structure and energetics? How does compressibility in the flow affect the non-linear pressure redistribution process? What is the main effect of spatial transport-coefficient variation? We perform direct numerical simulations (DNS) to answer the above questions. The investigations are categorized into four parts: 1) Turbulent energy cascade and kinetic-internal energy interactions under the influence of temperature fluctuations; 2) Return-to-isotropy of anisotropic turbulence under the influence of large temperature fluctuations; 3) The effect of turbulent Mach number and dilatation level on small-scale (velocity-gradient) dynamics; 4) The effect of variable transport-coefficients (viscosity and diffusivity) on cascade and dissipation processes of turbulence. The findings lead to a better understanding of temperature fluctuation effects on non-linear processes in compressible turbulence. This improved understanding is expected to provide direction for improving second-order closure models of compressible turbulence.

Lee, Kurn Chul

2008-05-01T23:59:59.000Z

344

Application of molten salts in pyrochemical processing of reactive metals  

Science Conference Proceedings (OSTI)

Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide.

Mishra, B.; Olson, D.L. (Colorado School of Mines, Golden, CO (United States). Kroll Inst. for Extractive Metallurgy); Averill, W.A. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant)

1992-01-01T23:59:59.000Z

345

Injection, compression and stability of intense ion-rings  

SciTech Connect

Recent advances in pulsed high power ion beam technology make possible the creation of intense ion-rings with strong self-magnetic fields by single pulse injection. Such ion rings have several uses in controlled fusion e.g., to produce a min parallel B parallel magnetic geometry with a mirror ratio much higher than is possible with external conductors. For even stronger ion rings a min parallel B parallel with closed lines of force (ASTRON type) can be created. For this purpose, since the ion energies required are much higher than are available from high power sources, magnetic compression can be utilized to increase the ion energy. The success of this scheme depends critically on the stability of the ion ring. The low frequency perturbations of the ring-plasma system is examined by means of a generalization of the energy principle which established sufficient conditions for stability. The high-frequency micro- instabilities and their nonlinear consequences are discussed in terms of conventional techniques. (auth)

Sudan, R.N.

1975-01-01T23:59:59.000Z

346

Logic Compression Of Dictionaries For Multilingual Spelling Checkers  

E-Print Network (OSTI)

To provide practical spelling checkers on micro-computers, good compression algorithms ,are essential. Curtcut techniques used to compress lexicons for indo-European languages provide efficient spelling checker. Applying mine methods to languages which have a different morpho- logical system (Arabic, Turkish,...) gives insufficicut resalts. To get better results, we apply other "logical" compression mechanisms based on the strnctare of the lan guage itself. Experiments with multilingual dictionaries show a significant reduction rate attributable to our logic colnpression Illone and even better resulls when using our method in conjunction with existing me0uxls.

Boubaker Meddeb Hamrouni

1994-01-01T23:59:59.000Z

347

Neutralized Drift Compression Experiment (NDCX) - II Quarterly Report  

Science Conference Proceedings (OSTI)

LBNL has received American Recovery and Reinvestment Act (ARRA) funding to construct a new accelerator at Lawrence Berkeley National Laboratory (LBNL) to significantly increase the energy on target, which will allow both the Heavy Ion Fusion (HIF) and Warm Dense Matter (WDM) research communities to explore scientific conditions that have not been available in any other device. For NDCX-II, a new induction linear accelerator (linac) will be constructed at Lawrence Berkeley National Laboratory (LBNL). NDCX-II will produce nano-second long ion beam bunches to hit thin foil targets. The final kinetic energy of the ions arriving at the target varies according to the ion mass. For atomic mass unit of 6 or 7 (Lithium ions), useful kinetic energies range from 1.5 to 5 or more MeV. The expected beam charge in the 1 ns (or shorter) pulse is about 20 nanoCoulombs. The pulse repetition rate will be about once or twice per minute (of course, target considerations will often reduce this rate). Our approach to building the NDCX-II ion accelerator is to make use of the available induction modules and 200 kV pulsers from the retired ATA electron linac at LLNL. Reusing this hardware will maximize the ion energy on target at a minimum cost. Some modification of the cells (e.g., reduce the bore diameter and replace with higher field pulsed solenoids) are needed in order to meet the requirements of this project. The NDCX-II project will include the following tasks: (1) Physics design to determine the required ion current density at the ion source, the injector beam optics, the layout of accelerator cells along the beam line, the voltage waveforms for beam acceleration and compression, the solenoid focusing, the neutralized drift compression and the final focus on target; (2) Engineering design and fabrication of the accelerator components, pulsed power system, diagnostic system, and control and data acquisition system; (3) Conventional facilities; and (4) Installation and integration. The project will be considered completed when the accelerator and pulsed power systems are in place and tested, and we begin beam production and acceleration. The period of performance for this project is July 7, 2009 to Mar 31, 2012, and the total funding, including contingency, is $11.0 M.

Kwan, J.W.

2009-10-01T23:59:59.000Z

348

Enhanced Oxidative Reactivity for Anthracite Coal via a Reactive Ball Milling Pretreatment Step  

Science Conference Proceedings (OSTI)

Reactive ball milling in a cyclohexene solvent significantly increases the oxidative reactivity of an anthracite coal, due to the combined effects of particle size reduction, metal introduction, introduction of volatile matter, and changes in carbon structure. Metals introduced during milling can be easily removed via a subsequent demineralization process, and the increased reactivity is retained. Solvent addition alters the morphological changes that occur during pyrolysis and leads to a char with significantly increased reactivity. When the solvent is omitted, similar effects are seen for the milled product, but a significant fraction of the char is resistant to oxidation. 33 refs., 3 figs., 1 tab.

Angela D. Lueking; Apurba Sakti; Dania Alvarez-Fonseca; Nichole Wonderling [Pennsylvania State University, PA (United States). Department of Energy and Mineral Engineering

2009-09-15T23:59:59.000Z

349

Advanced Manufacturing Office: Training: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

determine different compressor control strategies, align the supply-side to demand-side operation, and gain an understanding of the value of heat recovery. Participants will...

350

Ancillary service details: Voltage control  

SciTech Connect

Voltage control is accomplished by managing reactive power on an alternating-current power system. Reactive power can be produced and absorbed by both generation and transmission equipment. Reactive-power devices differ substantially in the magnitude and speed of response and in their capital costs. System operators, transmission owners, generators, customers, power marketers, and government regulators need to pay close attention to voltage control as they restructure the U.S. electricity industry. Voltage control can affect reliability and commerce in three ways: (1) Voltages must be maintained within an acceptable range for both customer and power-system equipment to function properly. (2) The movement of reactive power consumes transmission resources, which limits the ability to move real power and worsens congestion. (3) The movement of reactive power results in real-power losses. When generators are required to supply excessive amounts of reactive power, their real-power production must be curtailed. These opportunity costs are not currently compensated for in most regions. Current tariffs are based on embedded costs. These embedded-cost tariffs average about $0.51/MWh, equivalent to $1.5 billion annually for the United States as a whole. Although this cost is low when compared with the cost of energy, it still aggregates to a significant amount of money. This report takes a basic look at why the power system requires reactive power (an appendix explains the fundamentals of real and reactive power). The report then examines the various types of generation and transmission resources used to supply reactive power and to control voltage. Finally it discusses how these resources are deployed and paid for in several reliability regions around the country. As the U.S. electricity industry is restructured, the generation, transmission, and system-control equipment and functions that maintain voltages within the appropriate ranges are being deintegrated.

Kirby, B.; Hirst, E.

1997-12-01T23:59:59.000Z

351

Predicting the fidelity of JPEG2000 compressed CT images using DICOM header information  

Science Conference Proceedings (OSTI)

Purpose: To propose multiple logistic regression (MLR) and artificial neural network (ANN) models constructed using digital imaging and communications in medicine (DICOM) header information in predicting the fidelity of Joint Photographic Experts Group (JPEG) 2000 compressed abdomen computed tomography (CT) images. Methods: Our institutional review board approved this study and waived informed patient consent. Using a JPEG2000 algorithm, 360 abdomen CT images were compressed reversibly (n = 48, as negative control) or irreversibly (n = 312) to one of different compression ratios (CRs) ranging from 4:1 to 10:1. Five radiologists independently determined whether the original and compressed images were distinguishable or indistinguishable. The 312 irreversibly compressed images were divided randomly into training (n = 156) and testing (n = 156) sets. The MLR and ANN models were constructed regarding the DICOM header information as independent variables and the pooled radiologists' responses as dependent variable. As independent variables, we selected the CR (DICOM tag number: 0028, 2112), effective tube current-time product (0018, 9332), section thickness (0018, 0050), and field of view (0018, 0090) among the DICOM tags. Using the training set, an optimal subset of independent variables was determined by backward stepwise selection in a four-fold cross-validation scheme. The MLR and ANN models were constructed with the determined independent variables using the training set. The models were then evaluated on the testing set by using receiver-operating-characteristic (ROC) analysis regarding the radiologists' pooled responses as the reference standard and by measuring Spearman rank correlation between the model prediction and the number of radiologists who rated the two images as distinguishable. Results: The CR and section thickness were determined as the optimal independent variables. The areas under the ROC curve for the MLR and ANN predictions were 0.91 (95% CI; 0.86, 0.95) and 0.92 (0.87, 0.96), respectively. The correlation coefficients of the MLR and ANN predictions with the number of radiologists who responded as distinguishable were 0.76 (0.69, 0.82, p < 0.001) and 0.78 (0.71, 0.83, p < 0.001), respectively. Conclusions: The MLR and ANN models constructed using the DICOM header information offer promise in predicting the fidelity of JPEG2000 compressed abdomen CT images.

Kim, Kil Joong; Kim, Bohyoung; Lee, Hyunna; Choi, Hosik; Jeon, Jong-June; Ahn, Jeong-Hwan; Lee, Kyoung Ho [Department of Radiation Applied Life Science, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744 (Korea, Republic of); School of Computer Science and Engineering, Seoul National University, 599 Kwanak-Ro, Kwanak-Gu, Seoul, 151-742 (Korea, Republic of); Department of Informational Statistics, Hoseo University, 165, Sechul-ri, Baebang-myeon, Asan-si, Chungcheongnam-do, 336-795 (Korea, Republic of); Department of Statistics, Seoul National University, 599 Kwanak-Ro, Kwanak-Gu, Seoul, 151-742 (Korea, Republic of); Korean Intellectual Property Office, Government Complex-Daejeon, 139 Seonsa-ro, Seo-gu, Daejeon, 302-701 (Korea, Republic of); Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Institute of Radiation Medicine, and Seoul National University Medical Research Center, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707 (Korea, Republic of)

2011-12-15T23:59:59.000Z

352

Selective document image data compression technique  

DOE Patents (OSTI)

A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel.--(235 words)

Fu, Chi-Yung (29 Cameo Way, San Francisco, CA 94131); Petrich, Loren I. (1674 Cordoba St., #4, Livermore, CA 94550)

1998-01-01T23:59:59.000Z

353

Selective document image data compression technique  

DOE Patents (OSTI)

A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.

Fu, C.Y.; Petrich, L.I.

1998-05-19T23:59:59.000Z

354

Compressed Hydrogen and PEM Fuel Cell System  

DOE Green Energy (OSTI)

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

355

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

356

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

357

Compressive Passive Millimeter-Wave Imager - Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressive Passive Millimeter-Wave Imager Compressive Passive Millimeter-Wave Imager Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Compressive Passive Millimeter-Wave Imager VIDEO TRANSCRIPT Remote Vital Sign Monitoring System Preventing the Worst (by CNN) Engineering Development & Applications Argonne's Nuclear Science & Technology Legacy Other Multimedia Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Detection & Diagnostic Systems Multimedia Compressive Passive Millimeter-Wave Imager Video | Other sizes/formats available Other available versions of this video: Problems viewing the video in this page? Choose another format/size from the menu below; this video is available in Flash Video Flash, Quicktime video Quicktime or Windows Media video Windows Media format

358

Copper laser modulator driving assembly including a magnetic compression laser  

DOE Patents (OSTI)

A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.

Cook, Edward G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Ball, Don G. (Livermore, CA)

1994-01-01T23:59:59.000Z

359

Algorithms for transform selection in multiple-transform video compression  

E-Print Network (OSTI)

Selecting proper transforms for video compression has been based on the rate-distortion criterion. Transforms that appear reasonable are incorporated into a video coding system and their performance is evaluated. This ...

Cai, Xun, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

360

Adaptive Cache Compression for High-Performance Processors  

Science Conference Proceedings (OSTI)

Modern processors use two or more levels ofcache memories to bridge the rising disparity betweenprocessor and memory speeds. Compression canimprove cache performance by increasing effectivecache capacity and eliminating misses. However,decompressing ...

Alaa R. Alameldeen; David A. Wood

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Transporting & Shipping Hazardous Materials at LBNL: Compressed Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gases Compressed Gases Self-Transport by Hand & Foot Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Return Cylinders Self-Transport by Hand & Foot Staff may personally move (self-transport) compressed gas cylinders by hand & foot between buildings and in connecting spaces (i.e., hallways, elevators, etc.) within buildings provided it can be done safely. The following safety precautions apply: Use standard cylinder dollies to transport compressed gas cylinders. While dollies are preferred, cylinders weighing 11 Kg (25 lbs) or less may be hand-carried. Never move a cylinder with a regulator connected to it. Cylinder valve-protection caps and valve-opening caps must be in place when moving cylinders. Lecture bottles and other cylinders that are

362

Analyses of Compressed Hydrogen On-Board Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Compressed Hydrogen On-Board Storage Systems © 2010 TIAX LLC Compressed and Cryo-Compressed Hydrogen Storage Workshop February 14, 2011 Jeff Rosenfeld Karen Law Jayanti Sinha TIAX LLC 35 Hartwell Ave Lexington, MA 02421-3102 Tel. 781-879-1708 Fax 781-879-1201 www.TIAXLLC.com Reference: D0268 Overview Project Objectives Project Objectives Description Overall Help guide DOE and developers toward promising R&D and commercialization pathways by evaluating the status of the various on-board hydrogen storage technologies on a consistent basis On-Board Storage System Assessment Evaluate or develop system-level designs for the on-board storage system to project bottom-up factory costs Off-Board Fuel Cycle Assessment Evaluate or develop designs and cost inputs for the fuel cycle to

363

Investing in Our Energy Future: The Story of General Compression |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Future: The Story of General Compression Our Energy Future: The Story of General Compression Investing in Our Energy Future: The Story of General Compression February 29, 2012 - 9:23am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does government funding mean to a small clean energy startup? In the case of many ARPA-E awardees and small businesses across the country, it means being able to secure the private capital necessary to bring their innovations to life. Just ask David Marcus, founder of General Compression, a Massachusetts company founded in 2006 that received a $750,000 award from ARPA-E to develop a technology that has the ability to store renewable energy for use at any location on the electric grid. "Investors were interested in the

364

Axial Compression of a Hollow Cylinder Filled with a Foam  

Science Conference Proceedings (OSTI)

Presentation Title, Axial Compression of a Hollow Cylinder Filled with a Foam: A Porcupine ... Characterization of (Ti,Mg)N Thin Film Coatings Produced Via Physical Vapor Deposition ... Non-Toxic SPD Processed Ti Alloys for Orthopaedics.

365

Acceptance Test Report for 241-U compressed air system  

SciTech Connect

This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027.

Freeman, R.D.

1994-10-20T23:59:59.000Z

366

Solvent Clustering around Pyrazine Ions in the High-Compressibility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent Clustering around Pyrazine Ions in the High-Compressibility Region of Supercritical Ethane R. A. Holroyd, M. Nishikawa, and K. Itoh J. Phys. Chem. B 104, 11585-11590...

367

Wavelet-Compressed Representation of Deep Moist Convection  

Science Conference Proceedings (OSTI)

The capacity of wavelets to effectively represent atmospheric processes under compression is tested by a dataset generated by a cloud-resolving model simulation of deep convective events observed during the Tropical Ocean Global Atmosphere ...

Jun-Ichi Yano; Peter Bechtold; Jean-Luc Redelsperger; Francoise Guichard

2004-06-01T23:59:59.000Z

368

Unsteady flows of in homogeneous in compressible fluids  

SciTech Connect

In this paper, we study the unsteady motion of in homogeneous in compressible viscous fluids. We present the results corresponding to Stokes second problem and for the flow between two parallel plates where one is oscillating.

Massoudi, Mehrdad; Vaidya, Ashwin

2011-01-01T23:59:59.000Z

369

Compressed Air Storage with Humidification: An Economic Evaluation  

Science Conference Proceedings (OSTI)

Compressed Air Storage with Humidification (CASH) plants utilize air saturation to greatly improve the energy ratio. This EPRI study examines whether the CASH Power Plant can provide electric power at the lowest cost for cycling operation.

1999-03-08T23:59:59.000Z

370

Probabilistic analysis of compression system stability using importance sampling  

E-Print Network (OSTI)

The probability of instability is computed via a new approach based on Importance Sampling and a dynamic compression system model. In contrast to ordinary Monte Carlo methods Importance Sampling offers reduced confidence ...

Kambouchev, Nayden Dimitrov, 1980-

2005-01-01T23:59:59.000Z

371

ESS 2012 Peer Review - Isothermal Compressed Air Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials or chemicals Proven mechanical systems using steel, water, and air SustainX Heat Transfer Technology (CompressionExpansion) 0 20 40 60 80 100 120 Lead Acid Lithium...

372

Business Case for Compressed Natural Gas in Municipal Fleets  

SciTech Connect

This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

Johnson, C.

2010-06-01T23:59:59.000Z

373

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network (OSTI)

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

374

Pseudomomentum Diagnostics for Two-Dimensional Stratified Compressible Flow  

Science Conference Proceedings (OSTI)

Expressions are derived for the local pseudomomentum density in two-dimensional compressible stratified flow and are compared with the expressions for pseudomomentum in two-dimensional Boussinesq and anelastic flow derived by Shepherd and by ...

Dale R. Durran

1995-11-01T23:59:59.000Z

375

A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply  

DOE Green Energy (OSTI)

A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic operation in response to local or system operators. There are no known distributed energy asset owners currently receiving compensation for reactive power supply or capability. However, there are some cases where small generators on the generation and transmission side of electricity supply have been tested and have installed the capability to be dispatched for reactive power support. Several concerns need to be met for distributed energy to become widely integrated as a reactive power resource. The overall costs of retrofitting distributed energy devices to absorb or produce reactive power need to be reduced. There needs to be a mechanism in place for ISOs/RTOs to procure reactive power from the customer side of the meter where distributed energy resides. Novel compensation methods should be introduced to encourage the dispatch of dynamic resources close to areas with critical voltage issues. The next phase of this research will investigate in detail how different options of reactive power producing DE can compare both economically and functionally with shunt capacitor banks. Shunt capacitor banks, which are typically used for compensating reactive power consumption of loads on distribution systems, are very commonly used because they are very cost effective in terms of capital costs. However, capacitor banks can require extensive maintenance especially due to their exposure to lightning at the top of utility poles. Also, it can be problematic to find failed capacitor banks and their maintenance can be expensive, requiring crews and bucket trucks which often requires total replacement. Another shortcoming of capacitor banks is the fact that they usually have one size at a location (typically sized as 300, 600, 900 or 1200kVAr) and thus don't have variable range as do reactive power producing DE, and cannot respond to dynamic reactive power needs. Additional future work is to find a detailed methodology to identify the hidden benefit of DE for providing reactive power and the best way to allocate the benefit among customers, utilities, transmission companies or RTOs.

Li, Fangxing [ORNL; Kueck, John D [ORNL; Rizy, D Tom [ORNL; King, Thomas F [ORNL

2006-04-01T23:59:59.000Z

376

Projectile-power-compressed magnetic-field pulse generator  

DOE Green Energy (OSTI)

Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure.

Barlett, R.H.; Takemori, H.T.; Chase, J.B.

1983-03-17T23:59:59.000Z

377

Commissioning Results of the Upgraded Neutralized Drift Compression Experiment  

SciTech Connect

Recent changes to the NDCX beamline offer the promise of higher charge compressed bunches (>15nC), with correspondingly large intensities (>500kW/cm2), delivered to the target plane for ion-beam driven warm dense matter experiments. We report on commissioning results of the upgraded NDCX beamline that includes a new induction bunching module with approximately twice the volt-seconds and greater tuning flexibility, combined with a longer neutralized drift compression channel.

Lidia, S.M.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Gilson, E.P.

2009-04-30T23:59:59.000Z

378

review of extraction, processing, properties & applications of reactive ...  

Science Conference Proceedings (OSTI)

REVIEW OF EXTRACTION,. PROCESSING, PROPERTIES. & APPLICATIONS OF. REACTIVE METALS. Edited by. Brajendra Mishra ...

379

Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator  

E-Print Network (OSTI)

Perceived air quality increases when relative humidity is decreased till about 30% in the range of comfort temperature. In the present scenario, humidity is considered as a pollutant. Hence, a controlled environment not only at low temperature but also at low humidity is desired for many applications such as archives, data centers, etc. Either a separate dehumidifier or a precision air conditioning (AC) system needs to be employed for such an application. In fact, the latter forms a reheat AC system which happens to be energy inefficient. In view of this, a vapor compression window air conditioner is investigated with a superimposed liquid desiccant loop harnessing the advantages of both the compression system (high COP) and desiccant system (low humidity). Operation of such a novel system is explained, elucidating the operational feasibility. The results presented consider the characteristics of such a system with respect to changes in the evaporator inlet air temperature and humidity. The change in the specific humidity of air is compared for vapor compression system and the direct contact hybrid system for different values of inlet air temperature.

Maiya, M. P.; Ravi, J.; Tiwari, S.

2010-01-01T23:59:59.000Z

380

Micropillar compression technique applied to micron-scale mudstone elasto-plastic deformation.  

Science Conference Proceedings (OSTI)

Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate.

Michael, Joseph Richard; Chidsey, Thomas (Utah Geological Survey, Salt Lake City, UT); Heath, Jason E.; Dewers, Thomas A.; Boyce, Brad Lee; Buchheit, Thomas Edward

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Compression effects on pressure loss in flexible HVAC ducts  

SciTech Connect

A study was conducted to evaluate the effect of compression on pressure drop in flexible, spiral wire helix core ducts used in residential and light commercial applications. Ducts of 6 inches, 8 inches and 10 inches (150, 200 and 250 mm) nominal diameters were tested under different compression configurations following ASHRAE Standard 120-1999--Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings. The results showed that the available published references tend to underestimate the effects of compression. The study demonstrated that moderate compression in flexible ducts, typical of that often seen in field installations, could increase the pressure drop by a factor of four, while further compression could increase the pressure drop by factors close to ten. The results proved that the pressure drop correction factor for compressed ducts cannot be independent of the duct size, as suggested by ASHRAE Fundamentals, and therefore a new relationship was developed for better quantification of the pressure drop in flexible ducts. This study also suggests potential improvements to ASHRAE Standard 120-1999 and provides new data for duct design.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-07-01T23:59:59.000Z

382

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

383

Phase II: Performance Evaluation of Permeable Reactive Barriers and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase II: Performance Evaluation of Permeable Reactive Barriers and Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing U. S. Environmental Protection Agency Region 8 Support January 2004 Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing

384

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

385

Fluid-rock interaction: A reactive transport approach  

SciTech Connect

Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid-rock interactions. This framework is expanded through a discussion of specific topics that are the f

Steefel, C.; Maher, K.

2009-04-01T23:59:59.000Z

386

Transport Modeling of Reactive and Non-Reactive Constituents from Summitville,  

E-Print Network (OSTI)

Survey (USGS) began water- quality investigations at Summitville, Terrace #12;Figure 2. Aerial photographTransport Modeling of Reactive and Non- Reactive Constituents from Summitville, Colorado in the Wightman Fork/Alamosa River system downstream of the Summitville Mine, south-central Colorado, were

387

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1  

E-Print Network (OSTI)

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1 a Worcester Polytechnic piston Gas compression Air compressor Compression efficiency a b s t r a c t A liquid piston concept is proposed to improve the efficiency of gas compression and expansion. Because a liquid can conform

Li, Perry Y.

388

Out-of-Core Progressive Lossless Compression and Selective Decompression of Large Triangle Meshes  

Science Conference Proceedings (OSTI)

In this paper we propose a novel {\\em out-of-core} technique for{\\em progressive} lossless compression and {\\em selective}decompression of 3D triangle meshes larger than main memory. Most existing compression methods, in order to optimize compression ... Keywords: Progressive Lossless Compression, Selective Decompression, Out-of-Core Techniques, Triangle Meshes

Zhiyan Du; Pavel Jaromersky; Yi-Jen Chiang; Nasir Memon

2009-03-01T23:59:59.000Z

389

System using data compression and hashing adapted for use for multimedia encryption  

DOE Patents (OSTI)

A system and method is disclosed for multimedia encryption. Within the system of the present invention, a data compression module receives and compresses a media signal into a compressed data stream. A data acquisition module receives and selects a set of data from the compressed data stream. And, a hashing module receives and hashes the set of data into a keyword. The method of the present invention includes the steps of compressing a media signal into a compressed data stream; selecting a set of data from the compressed data stream; and hashing the set of data into a keyword.

Coffland, Douglas R. (Livermore, CA)

2011-07-12T23:59:59.000Z

390

Evaluating advanced LMR (liquid metal reactor) reactivity feedbacks using SSC  

Science Conference Proceedings (OSTI)

Analyses of the PRISM and SAFR Liquid Metal Reactors with SSC are discussed from a safety and licensing perspective. The PRISM and SAFR reactors with metal fuel are designed for inherent shutdown responses to loss-of-flow and loss-of-heat-sink events. The demonstration of this technology was performed by EBR-II during experiments in April 1986 by ANL (Planchon, et al.). Response to postulated TOPs (control rod withdrawal) are made acceptable largely by reducing reactivity swings, and therefore minimizing the size of possible ractivity insertions. Analyses by DOE and the contractors GE, RI, and ANL take credit for several reactivity feedback mechanisms during transient calculations. These feedbacks include Doppler, sodium density, and thermal expansion of the grid plates, the load pads, the fuel (axial) and the control rod which are now factored into the BNL SSC analyses. The bowing feedback mechanism is not presently modeled in the SSC due to its complexity and subsequent large uncertainty. The analysis is conservative by not taking credit for this negative feedback mechanism. Comparisons of BNL predictions with DOE contractors are provided.

Slovik, G.C.; Van Tuyle, G.J.; Kennett, R.J.; Cheng, H.S.

1988-01-01T23:59:59.000Z

391

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect

Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

None

2012-11-30T23:59:59.000Z

392

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

SciTech Connect

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O' Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

393

Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds  

DOE Patents (OSTI)

Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

Grindstaff, Quirinus G. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

394

An advanced vapor-compression desalination system  

E-Print Network (OSTI)

Currently, the two dominant desalination methods are reverse osmosis (RO) and multi-stage flash (MSF). RO requires large capital investment and maintenance, whereas MSF is too energy intensive. An innovative vapor-compression desalination system is developed in this study. A comprehensive mathematical model for the heat exchanger/evaporator is described. The literature indicates that extraordinarily high overall heat transfer coefficients for the evaporator are possible at selected operating conditions that employ dropwise condensation in the steam side and pool boiling in the liquid side. A smooth titanium surface is chosen to promote dropwise condensation and to resist corrosion. To maximize energy efficiency, a combined-cycle cogeneration scheme is employed composed of a gas turbine, a heat recovery boiler, and a steam turbine that drive a compressor. The combined-cycle power source is oversized relative to the needs of the compressor. The excess power is converted to electricity and sold to the open market. A three-effect evaporator is employed. It is fed with seawater, assumed to be 3.5% salt. Boiling brine (7% salt) is in the low pressure side of the heat exchanger and condensing steam is in the high-pressure side of the heat exchanger. The condensing steam flows at 1.52 m/s (5 ft/s), which maximizes the heat transfer coefficient. The plant is sized to produce 37,854 m3/d (10 mill gal/day) and is assumed to be financed with a 5%, 30-yr municipal bond. Two economic cases were emphasized: the United States and the Middle East. For the United States, the fuel costs $5/GJ ($5.27/mill Btu) with the latent heat exchanger at ( ) 1.11 K 2.00 F T � = ° . The required compressor energy is 14 MJ/m3 (14.7 kW h/thous gal). The capital cost for the U.S. is $884 d/m3 ($3,342/thous gal) and the delivered water selling price is $0.47/m3 ($1.79/thous/gal). For the Middle East, the fuel costs $0.5/GJ ($0.53/mill Btu) with the latent heat exchanger at K T 33 . 3 = � ( ) F 00 . 6 ° . The required compressor energy is 26 MJ/m3 (27.3 kW h/thous gal). ). The capital cost for the Middle East is $620 d/m3 ($2,344/thous gal), and the delivered water selling price is $0.25/m3 ($0.95/thous/gal). In all cases, the water selling price is attractive relative to competing technologies.

Lara Ruiz, Jorge Horacio Juan

2005-12-01T23:59:59.000Z

395

Neutron Radiography Reactor Reactivity -- Focused Lessons Learned  

SciTech Connect

As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRAD’s excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRAD’s safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRAD’s conversion and reactivity.

Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

2010-11-01T23:59:59.000Z

396

LES algorithm for turbulent reactive flows simulation  

Science Conference Proceedings (OSTI)

The paper presents the development and implementation of a Large Eddy Simulation numerical algorithm for simulating turbulent reactive flows. The numerical algorithm is based on a 5 step modified Runge - Kutta numerical scheme with a dual time stepping ... Keywords: Runge - Kutta numerical scheme, large eddy simulation, linear eddy model

Ionut Porumbel; Cristian Cârl?nescu; Florin Gabriel Florean; Constantin Eusebiu Hritcu

2010-10-01T23:59:59.000Z

397

Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi-zone modeling has been applied to investigate combustion chamber design with respect to increasing efficiency and reducing emissions in HCCI engines.

Flowers, D L

2002-06-07T23:59:59.000Z

398

Efficient Compression of CO2 and Pipeline Transport Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

CONCEPTS FOR THE COMPRESSION OF CONCEPTS FOR THE COMPRESSION OF LARGE VOLUMES OF CARBON DIOXIDE - PHASE III Southwest Research Institute Team: J. Jeffrey Moore, Ph.D. Neal Evans Timothy Allison, Ph.D. Brian Moreland Klaus Brun, Ph.D. Dresser-Rand Team: Jorge Pacheco, Ph.D. Jason Kerth Michael Dollinger Project Funded by DOE NETL DOE PM: Travis Shultz 2 SOUTHWEST RESEARCH INSTITUTE 11 Divisions *Engine Emissions *Fuels & Lubricants *Automation *Aerospace Electronics *Space Science *Nuclear Waste *Applied Physics *Applied Power *Chemistry *Electronics *Mechanical Engineering * Rotating Machinery Group *1200 Acres *2 million Ft 2 *3200 Employees *1200 Engineers *170 Buildings Project Motivation * CO 2 capture has a significant compression penalty - as high as 8 to 12%.

399

Compressible Turbulence and Interactions with Shock Waves and Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressible Turbulence Compressible Turbulence and Interactions with Shock Waves and Material Interfaces Compressible Turbulence and Interactions with Shock Waves and Material Interfaces Lele.jpg Alternate Title: High-fidelity simulations of supersonic turbulent mixing and combustion Key Challenges: Direct numerical simulation (DNS) of isotropic turbulence interacting with a normal shock wave and turbulent multi-material mixing in the Richtmyer-Meshkov instability (RMI) Why it Matters: Shock/turbulence interaction is a fundamental phenomenon in fluid mechanics that occurs in a wide range of interesting problems in various disciplines, including supernova explosions, inertial confinement fusion, hypersonic flight and propulsion, and shock wave lithotripsy. Accomplishments: A novel solution-adaptive algorithm that applies different

400

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

delivery of compressed hydrogen delivery of compressed hydrogen with advanced vessel technology Gene Berry Andrew Weisberg Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE and FreedomCar & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop Washington, DC January 25, 2006 LLNL is developing innovative concepts for efficient containment of hydrogen in light duty vehicles concepts may offer advantages for hydrogen delivery Conformable containers efficiently use available space in the vehicle. We are pursuing multiple approaches to conformability High Strength insulated pressure vessels extend LH 2 dormancy 10x, eliminate boiloff, and enable efficiencies of flexible refueling (compressed/cryogenic H 2 /(L)H 2 ) The PVT properties of H

402

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1997-01-01T23:59:59.000Z

403

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1998-12-29T23:59:59.000Z

404

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1998-01-01T23:59:59.000Z

405

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1997-04-29T23:59:59.000Z

406

Compressibility Consideration in the Boundary of a Strongly Collapsing Bubble  

E-Print Network (OSTI)

Equations of radial motion of a gas bubble in a compressible viscous liquid have been modified to account for compressibility at the bubble boundary. It has been done by deriving a new bubble boundary equation. This equation has a new term due to liquid compressibility. The influence of this term in the bubble dynamics has been numerically investigated using isothermal-adiabatic model for the gas bubble evolution. The results clearly indicate that at the end of the collapse the new term has very significant role and its consideration dramatically changes the bubble characteristics. The effect of this term is more prominent for the more intense collapses, so that its consideration scales up the maximum values of gas pressure and gas temperature. We have also reasoned that the new bubble behavior will be established even when the effects of mass (water vapor) exchange, chemical reactions, and gas dynamics inside the bubble are taken into account in the model.

Moshaii, A; Taeibi-Rahni, M; Moshaii, Ahmad; Sadighi-Bonabi, Rasool; Taeibi-Rahni, Mohammad

2003-01-01T23:59:59.000Z

407

Gas turbine power plant with supersonic shock compression ramps  

SciTech Connect

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

408

Mica-based Composite Compressive Seals for SOFC  

DOE Green Energy (OSTI)

One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals are required for long-term stability and integrity in the high temperature SOFC environment during normal and transient operations. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Compressive seals potentially offer a significant and unique advantage over the other approaches by providing a means of mechanically ''de-coupling'' adjacent stack components, thereby minimizing the need for closely matching the coefficients of thermal expansion (CTE) of the various SOFC stack components. In an attempt to help the SOFC industry overcome sealing challenges, PNNL is developing mica-based hybrid compressive seals which exhibit leak rates 2 to 3 orders of magnitude lower than obtained with simple mica gasket seals.

Chou, Y S.; Meinhardt, Kerry D.; Stevenson, Jeffry W.; Singh, Prabhakar

2004-07-07T23:59:59.000Z

409

CRUCIFORM CONTROL ROD JOINT  

DOE Patents (OSTI)

An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

Thorp, A.G. II

1962-08-01T23:59:59.000Z

410

Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity  

DOE Patents (OSTI)

This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

2000-07-01T23:59:59.000Z

411

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Tax and Permit to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Tax and Permit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Tax and Permit

412

Author manuscript, published in "SPARS'09- Signal Processing with Adaptive Sparse Structured Representations (2009)" 1 Compressed sensing based compression of SAR raw data  

E-Print Network (OSTI)

Abstract—Due to their noise-like features, SAR images are difficult to acquire with compressed sensing techniques. However, some parts of the images, typically associated to man-made structures, are compressible and we investigate two techniques exploiting that information to allow a compressive acquisition of the whole image. These techniques result in a significant enhancement of the image quality compared to classical compressed sensing. Moreover, compared to classical sampling and quantisation of the SAR raw data, they allow a significant reduction of bitrate with a limited increase of the distortion. However, their efficiency depends strongly on the presence of compressible parts in the image. I.

Gabriel Rilling; Mike Davies; Bernard Mulgrew

2009-01-01T23:59:59.000Z

413

Plasmons in strongly coupled shock-compressed matter  

Science Conference Proceedings (OSTI)

We present the first measurements of the plasmon dispersion and damping in laser shock-compressed solid matter. Petawatt laser produced K-{alpha} radiation scatters on boron targets compressed by a 10 ns-long 400 J laser pulse. In the vicinity of the Fermi momentum, the scattering spectra show dispersionless, collisionally damped plasmons, indicating a strongly coupled electron liquid. These observations agree with x-ray scattering calculations that include both the Born-Mermin approximation to account for electron-ion collisional damping and local field corrections reflecting electron-electron correlations.

Neumayer, P; Fortmann, C; Doppner, T; Davis, P; Falcone, R W; Kritcher, A L; Landen, O L; Lee, H J; Lee, R W; Niemann, C; Pape, S L; Glenzer, S H

2010-04-15T23:59:59.000Z

414

Compressed supersymmetry after 1/fb at the Large Hadron Collider  

E-Print Network (OSTI)

We study the reach of the Large Hadron Collider with 1/fb of data at sqrt{s} = 7 TeV for several classes of supersymmetric models with compressed mass spectra, using jets and missing transverse energy cuts like those employed by ATLAS for Summer 2011 data. In the limit of extreme compression, the best limits come from signal regions that do not require more than 2 or 3 jets and that remove backgrounds by requiring more missing energy rather than higher effective mass.

Thomas J. LeCompte; Stephen P. Martin

2011-11-29T23:59:59.000Z

415

Development of an Enhanced GenVARR™ (Generator Volt Ampere Reactive Reserve) System  

SciTech Connect

Transmission system operators require near real time knowledge of reactive power capability to reliably operate large electric power transmission systems. Reactive power produced by, or capable of being produced by, a power generator is often estimated based on a series of mega volt amperes (MVA) capability curves for the generator. These curves indicate the ability of the generator to produce real and reactive power under a variety of conditions. In transmission planning and operating studies, it is often assumed, based on estimates for these capability curves, that the generator can provide its rated MVA capability output when needed for system stability However, generators may not always operate at levels depicted by the maximum MVA capability curve due to present constraints. Transmission system operators utilizing the generators’ capability curves for operation decisions regarding transmission system stability or for planning horizons may overestimate the capability of the generators to supply reactive power when required. Southern Company has enhanced GenVARR(TM), the system of plant data query, retrieval, and analysis and calculates the actual – not estimated -- remaining reactive power output capability. The remaining reactive output is considered spinning reserve and is displayed graphically to transmission control center and generating plant operators to identify real time VAR limits. GenVARR is capable of aggregating generators from a defined region, or other user selectable combinations, to represent the available reserves that the operators are specifically interested in. GenVARR(TM) has been put into live production operation and is expected to significantly improve the overall visibility of the reactive reserve capability of the system. This new version of GenVARR(TM) significantly enhances the products structure and performance, and enables links to other key transmission system operation tools.

Schatz, Joe E.

2009-03-12T23:59:59.000Z

416

ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS  

DOE Green Energy (OSTI)

In searching for high gravimetric and volumetric density hydrogen storage systems, it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential risks and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials, as codified by the United Nations, have been used to evaluate two potential hydrogen storage materials, 2LiBH{sub 4} {center_dot} MgH{sub 2} and NH{sub 3}BH{sub 3}. The modified U.N. procedures include identification of self-reactive substances, pyrophoric substances, and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH{sub 4} and MgH{sub 2}). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. In the case of the 2LiBH{sub 4} {center_dot} MgH{sub 2} material, the results from the hydride mixture compared to the pure materials results showed the MgH{sub 2} to be the least reactive component and LiBH{sub 4} the more reactive. The combined 2LiBH{sub 4} {center_dot} MgH{sub 2} resulted in a material having environmental reactivity between these two materials. Relative to 2LiBH{sub 4} {center_dot} MgH{sub 2}, the chemical hydride NH{sub 3}BH{sub 3} was observed to be less environmentally reactive.

Gray, J; Donald Anton, D

2009-04-23T23:59:59.000Z

417

Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.  

DOE Green Energy (OSTI)

Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

2012-02-01T23:59:59.000Z

418

Behavior of Laminate Reactive Materials under Dynamic Loading ...  

Science Conference Proceedings (OSTI)

Presentation Title, Behavior of Laminate Reactive Materials under Dynamic Loading ... Atomistically-Informed Dislocation Dynamics Simulations of High Rate  ...

419

SIC Manufature via Reactive Infiltration - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Ceramic Matrix Composites. Presentation Title, SIC Manufature via Reactive ...

420

Multiple Steady States in Azeotropic and Reactive Distillation  

E-Print Network (OSTI)

Introduction . Motivation Overview on the Contributions MSS in Reactive Distillation Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions . The Starting Point . Consolidation . Industrial Applications . Incorporating Reactions MSS in Reactive Distillation Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions MSS in Reactive Distillation . Prediction Method . MTBE Process Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions MSS in Reactive Distillation Conclusions Distillation Overview . Ideal binary / multicomponent distillation . Homogeneous azeotropic distillation -- Heavy entrainer (extractive distillation) -- Intermediate entrainer -- "Boundary scheme" (ligh

Thomas E. Güttinger

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Guide to Minimizing Compress-based Cooling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide to Minimizing Guide to Minimizing Compressor-based Cooling in Data Centers Prepared for the U.S. Department of Energy Federal Energy Management Program By: Lawrence Berkeley National Laboratory Author: William Tschudi May 2013 2 Contacts William Tschudi Lawrence Berkeley National Laboratory One Cyclotron Road, 90R3111 Berkeley, California 94720 510-495-2417 wftschudi@lbl.gov For more information on FEMP, please contact: Will Lintner, P.E. Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. S.W. Washington, D. C. 20585-0121 202.586.3120 william.lintner@ee.doe.gov Cover photo: Center for Disease Control and Prevention's Arlen Specter Headquarters and Operations Center reached LEED Silver rating through sustainable design and operations that decrease energy consumption by 20%

422

Treatment of Radioactive Reactive Mixed Waste  

Science Conference Proceedings (OSTI)

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has developed a new feed system to ensure the safe containment of these radioactive reactive wastes during transfer to the gasification unit. The plasma gasification system safely processed the radioactively contaminated trimethyl-metal compounds into metal oxides. The waste stream came from LANL research operations, and had been in storage for seven years, pending treatment options. (authors)

Colby, S.; Turner, Z.; Utley, D. [Pacific EcoSolutions, Inc., 2025 Battelle Boulevard, Richland, Washington 99354 (United States); Duy, C. [Los Alamos National Laboratory - LA-UR-05-8410, Post Office Box 1663 MS J595, Los Alamos, New Mexico 97545 (United States)

2006-07-01T23:59:59.000Z

423

Real time reactive programming in lucid enriched with contexts  

Science Conference Proceedings (OSTI)

We present a synchronous approach to real-time reactive programming in Lucid enriched with contexts as first class objects. The declarative intensional approach allows real-time reactive programs to manipulate both events and state-based representations ... Keywords: contexts, formal verification, intensional programming, real-time reactive programming

Kaiyu Wan; Vasu Alagar; Joey Paquet

2004-09-01T23:59:59.000Z

424

Local Dynamic Reactive Power for Correction of System Voltage Problems  

SciTech Connect

Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results are also provided and discussed. The simulations and testing show that local voltage control from DER can prevent local voltage collapse. The results also show that the control can be provided so quickly, within 0.5 seconds, that is does not interfere with conventional utility methods.

Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

2008-12-01T23:59:59.000Z

425

Superradiant pulse compression using free-carrier plasma  

SciTech Connect

Free-carrier plasma can be used as an effective nonlinear medium for pulse compression. In the backward Raman amplifier geometry, the lower-frequency seed can extract most of the long pump energy through the mechanism of nonlinear superradiance. Filamentation is avoided due to strong dependence of the Raman instability growth rate on the wavenumber.

G. Shvets; N. J. Fisch; A. Pukhov; J. Meyer-ter-Vehn

2000-07-21T23:59:59.000Z

426

Nuclear Maintenance Applications Center: Compression Fitting Application Manual  

Science Conference Proceedings (OSTI)

The Nuclear Maintenance Applications Center: Compression Fitting Application Manual provides power plant maintenance personnel with current maintenance information on this type of component used in power plants, both fossil fuel and nuclear. This guide will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs for this equipment.

2008-12-22T23:59:59.000Z

427

Fast compression of transportable Tcl agents Robert S. Gray  

E-Print Network (OSTI)

Fast compression of transportable Tcl agents Robert S. Gray Department of Computer Science implemented a transportable agent system that uses the Tool Command Language (Tcl) as the agent language. Each Tcl script can suspend its execution at an arbitrary point, transport itself to another machine

428

Joint watermarking and progressive geometric compression of 3D meshes  

Science Conference Proceedings (OSTI)

With the ever-increasing development of digital technologies and digital 3D models, the question of 3D mesh protection has becoming more and more important. One of the problems in digital watermarking is to decide how to embed in a 3D mesh as many bits ... Keywords: 3D compression, blind watermarking, dither modulation, semi-regular 3D meshes, wavelet transform

Ines Bouzidi; Azza Ouled Zaid; Meha Hachani; William Puech

2013-06-01T23:59:59.000Z

429

Economic and technical feasibility study of compressed air storage  

DOE Green Energy (OSTI)

The results of a study of the economic and technical feasibility of compressed air energy storage (CAES) are presented. The study, which concentrated primarily on the application of underground air storage with combustion turbines, consisted of two phases. In the first phase a general assessment of the technical alternatives, economic characteristics and the institutional constraints associated with underground storage of compressed air for utility peaking application was carried out. The goal of this assessment was to identify potential barrier problems and to define the incentive for the implementation of compressed air storage. In the second phase, the general conclusions of the assessment were tested by carrying out the conceptual design of a CAES plant at two specific sites, and a program of further work indicated by the assessment study was formulated. The conceptual design of a CAES plant employing storage in an aquifer and that of a plant employing storage in a conventionally excavated cavern employing a water leg to maintain constant pressure are shown. Recommendations for further work, as well as directions of future turbo-machinery development, are made. It is concluded that compressed air storage is technically feasible for off-peak energy storage, and, depending on site conditions, CAES plants may be favored over simple cycle turbine plants to meet peak demands. (LCL)

Not Available

1976-03-01T23:59:59.000Z

430

Mound Isotope Power Systems; AMTEC Integral Cell Wall Compression Test  

DOE Green Energy (OSTI)

An AMTEC (Alkali Metal Thermal-to-Electric Conversion) device is tested under a compression load at a rate of 0.0025 inches/minute. The integral cell wall is made of Haynes Alloy 25. The wall buckled at 724 pounds load.

None

1997-11-05T23:59:59.000Z

431

Economics of compressed air energy storage employing thermal energy storage  

DOE Green Energy (OSTI)

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

432

Economics of compressed air energy storage employing thermal energy storage  

SciTech Connect

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

433

Computational study of compressive loading of carbon nanotubes  

Science Conference Proceedings (OSTI)

A reduced-order general continuum method is used to examine the mechanical behavior of single-walled carbon nanotubes (CNTs) under compressive loading and unloading conditions. Quasi-static solutions are sought where the total energy of the system is ... Keywords: carbon nanotube, component, finite element method, mechanical properties

Yang Yang; William W. Liou

2010-03-01T23:59:59.000Z

434

Test Data Compression with Partial LFSR-Reseeding  

Science Conference Proceedings (OSTI)

The large amount of test data becomes a serious problem in SOC testing. In this paper, we propose a method to improve the LFSR reseeding based compression scheme. This method rearranges a given set of test data by merging and partitioning test cubes ...

Yu-Hsuan Fu; Sying-Jyan Wang

2005-12-01T23:59:59.000Z

435

The conservative cascade of kinetic energy in compressible turbulence  

E-Print Network (OSTI)

The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale-range despite not being an invariant of the compressible flow dynamics. We use high-resolution three-dimensional simulations of compressible hydrodynamic turbulence on $512^3$ and $1024^3$ grids. We probe regimes of forced steady-state isothermal flows and of unforced decaying ideal gas flows. The key quantity we measure is pressure dilatation cospectrum, $E^{PD}(k)$, where we provide the first numerical evidence that it decays at a rate faster than $k^{-1}$ as a function of wavenumber. This is sufficient to imply that mean pressure dilatation acts primarily at large-scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale-range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbulence is possible.

Hussein Aluie; Shengtai Li; Hui Li

2011-07-28T23:59:59.000Z

436

The conservative cascade of kinetic energy in compressible turbulence  

E-Print Network (OSTI)

The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale-range despite not being an invariant of the compressible flow dynamics. We use high-resolution three-dimensional simulations of compressible hydrodynamic turbulence on $512^3$ and $1024^3$ grids. We probe regimes of forced steady-state isothermal flows and of unforced decaying ideal gas flows. The key quantity we measure is pressure dilatation cospectrum, $E^{PD}(k)$, where we provide the first numerical evidence that it decays at a rate faster than $k^{-1}$ as a function of wavenumber. This is sufficient to imply that mean pressure dilatation acts primarily at large-scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale-range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbu...

Aluie, Hussein; Li, Hui

2011-01-01T23:59:59.000Z

437

Cloud-Level Penetrative Compressible Convection in the Venus Atmosphere  

Science Conference Proceedings (OSTI)

A two-dimensional, nonlinear, fully compressible model of a perfect gas is used to simulate cloud-level penetrative convection in the Venus atmosphere from 40 to 60 km altitude. Three cases with different amounts of solar heating are considered: ...

R. David Baker; Gerald Schubert; Philip W. Jones

1998-01-01T23:59:59.000Z

438

Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions  

SciTech Connect

The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.

Manaa, M R; Reed, E J; Fried, L E

2009-09-23T23:59:59.000Z

439

High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines  

SciTech Connect

This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

None

2011-01-31T23:59:59.000Z

440

Reactive gas atomization processing for Fe-based ODS alloys  

Science Conference Proceedings (OSTI)

Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe-Cr-Y-Hf). During this process a reactive atomization gas (i.e., Ar-O{sub 2}) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal-mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Odette, G.R.; Stergarc, E.; Haney, E.

2011-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "reactivity controlled compression" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Computer-assisted apparatus for measuring physical properties of meat during compression  

Science Conference Proceedings (OSTI)

Prototype apparatus was developed to measure the optical properties of meat during compression and the rheological properties of meat during thawing. Compression may be a source of error when meat quality is measured with an optical probe and the rheological ...

H. J. Swatland

1992-07-01T23:59:59.000Z

442

Thermally Induced Compression Waves and Gravity Waves Generated by Convective Storms  

Science Conference Proceedings (OSTI)

A three-dimensional, fully compressible cloud model is used to simulate a convective storm in order to investigate the properties of compression waves and gravity waves induced by latent heat release. Time series of the low-level pressure ...

Melville E. Nicholls; Roger A. Pielke Sr.

2000-10-01T23:59:59.000Z

443

Optical, electronic, and dynamical phenomena in the shock compression of condensed matter  

E-Print Network (OSTI)

Despite the study of shock wave compression of condensed matter for over 100 years, scant progress has been made in understanding the microscopic details. This thesis explores microscopic phenomena in shock compression of ...

Reed, Evan J. (Evan John), 1976-

2003-01-01T23:59:59.000Z

444

ASE/CAGI Meeting about Compressors and Compressed Air System Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

On April 25, 2013, several representatives of energy efficiency advocacy organizations met with staff and members of the Compressed Air and Gas Institute (CAGI) along with some compressed air...

445

Extension of the high load limit in the Homogeneous Charge Compression Ignition engine  

E-Print Network (OSTI)

The Homogeneous Charge Compression Ignition (HCCI) engine offers diesel-like efficiency with very low soot and NOx emissions. In a HCCI engine, a premixed charge of air, fuel and burned gas is compressed to achieve ...

Scaringe, Robert J. (Robert Joseph)

2009-01-01T23:59:59.000Z

446

Energy Saving Technology of Thermal Regenerative Compressed Air Dryer by Regenerates Adsorbent with Residual Heat  

Science Conference Proceedings (OSTI)

According to the characteristic of the compressed air dryer located at the same place with the air compressor, for the large capacity thermal regenerative compressed air dryer that the absorbent is regenerated by an electric heater, this thesis puts ... Keywords: Compressed air dryer, Regeneration, Heater, Residual heat, Energy saving

Zhang Mingzhu; Zhou Zhili; Li Hongtao; Zhang Yongbo

2009-10-01T23:59:59.000Z

447

High-Throughput Compression of FASTQ Data with SeqDB  

Science Conference Proceedings (OSTI)

Compression has become a critical step in storing next-generation sequencing (NGS) data sets because of both the increasing size and decreasing costs of such data. Recent research into efficiently compressing sequence data has focused largely on improving ... Keywords: Throughput,Arrays,Bandwidth,Libraries,Bioinformatics,Instruction sets,Genomics,FASTQ,Compression,data storage,next-generation sequencing

Mark Howison

2013-01-01T23:59:59.000Z

448

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network (OSTI)

-storage materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed airCOMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique, USA ABSTRACT In this work, a low-cost, low-volume, low-maintenance, small-scale compressed-air energy

Deymier, Pierre

449

Potential petrophysical and chemical property alterations in a compressed air energy storage porous rock reservoir  

DOE Green Energy (OSTI)

Successful commercialization of Compressed Air Energy Storage (CAES) systems depends on long-term stability of the underground reservoirs subjected to somewhat unique operating conditions. Specifically, these conditions include elevated and time varying temperatures, effective stresses, and air humidities. To minimize the requirements for premium fuels, it may be desirable to retain the thermal energy of compression. Porous media, e.g., sandstone, may hold promise as elevated temperature reservoirs. In this study, a reservoir composed of clean quartz sandstone and injection air temperatures of 300 to 575/sup 0/K are assumed. Numerical modeling is used to estimate temperature, stress, and humidity conditions within this reference porous media reservoir. A discussion on relative importance to CAES of several potential porous media damage mechanisms is presented. In this context, damage is defined as a reduction in intrinsic permeability (measure of air transport capability), a decrease in effective porosity (measure of storage capability), or an increase in elastic and/or inelastic deformation of the porous material. The potential damage mechanisms presented include: (1) disaggregation, (2) particulate plugging, (3) boundary layer viscosity anomalies, (4) inelastic microstructural consolidation, (5) clay swelling and dispersion, (6) hydrothermal mineral alteration, (7) oxidation reactions, and (8) well casing corrosion. These mechanisms are placed in perspective with respect to anticipated CAES conditions and mechanisms suggested are: (1) of academic interest only, (2) readily identified and controlled via engineering, or (3) potential problem areas requiring additional investigation.

Stottlemyre, J.A.; Erikson, R.L.; Smith, R.P.

1979-10-01T23:59:59.000Z

450

Preparation of reactive beta-dicalcium silicate  

DOE Patents (OSTI)

This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

1982-01-01T23:59:59.000Z