National Library of Energy BETA

Sample records for reaction-driven ionic transport

  1. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect (OSTI)

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  2. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Wednesday, 28 January 2009 00:00 Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the

  3. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect (OSTI)

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  4. Defect Interactions and Ionic Transport in Scandia Stabilized Zirconia

    SciTech Connect (OSTI)

    Devanathan, Ramaswami; Thevuthasan, Suntharampillai; Gale, Julian D.

    2009-06-24

    Atomistic simulation has been used to study ionic transport in scandia-stabilized zirconia, as well as scandia and yttria-co-doped zirconia, as a function of temperature and composition. The oxygen diffusion coefficient shows a peak at a composition of 6 mole % Sc2O3. Oxygen vacancies prefer to be second nearest neighbours to yttrium ions, but have little preference between first and second neighbour positions with respect to scandium ions. The Sc-O bond length is about 2.17 compared to 2.28 for the Y-O bond. Oxygen migration between cation tetrahedra is impeded less effectively by Sc-Sc edges than by Y-Y edges. A neutral cluster of two scandium ions with an oxygen vacancy in the common first neighbour position has a binding energy of -0.56 eV. The formation of such clusters may contribute to conductivity degradation of stabilized zirconia at elevated temperature.

  5. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  6. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  7. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  8. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  9. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  10. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  11. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  12. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  13. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts Print Catalytic systems based on bimetallic particles with controlled size, composition, and structure dispersed on a high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the particles, the modification of the surface structure and composition that may occur when reaction conditions change can have dramatic

  14. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C6D14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C6D14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C6D14 is on average a factor of 21more » times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  15. Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media

    SciTech Connect (OSTI)

    J. W. Halley

    2009-05-20

    This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficult to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.

  16. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect (OSTI)

    Griffin, Phillip; Agapov, Alexander L; Kisliuk, Alexander; Sun, Xiao-Guang; Dai, Sheng; Novikov, Vladimir; Sokolov, Alexei P

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  17. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gmez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation Li-ion rechargeable battery and LiCoO2 cathode is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  18. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  19. Center for Nanophase Materials Sciences (CNMS) - Ionically Active Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ionically Active Solids

  20. Ionic conductors for solid oxide fuel cells

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Bloom, Ira D. (Bolingbrook, IL); Pullockaran, Jose D. (Hanover Park, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01

    An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  1. Partially fluorinated ionic compounds

    DOE Patents [OSTI]

    Han, legal representative, Amy Qi (Hockessin, DE); Yang, Zhen-Yu (Hockessin, DE)

    2008-11-25

    Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

  2. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  3. CX-004090: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Reaction-Driven Ionic Transport Membranes (ITM) TechnologyCX(s) Applied: B3.6Date: 09/30/2010Location(s): University Park, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  4. CX-004087: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Reaction-Driven Ionic Transport Membranes (ITM) TechnologyCX(s) Applied: B3.6Date: 09/30/2010Location(s): Salt Lake City, UtahOffice(s): Fossil Energy, National Energy Technology Laboratory

  5. CX-004084: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Reaction-Driven Ionic Transport Membranes (ITM) TechnologyCX(s) Applied: B3.6Date: 09/30/2010Location(s): Allentown, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  6. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  7. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  8. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  9. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  10. ionic-liquid pretreatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ionic-liquid pretreatment - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. Preparation and purification of ionic liquids and precursors

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ)

    2010-07-27

    Substantially pure ionic liquids and ionic liquid precursors were prepared. The substantially pure ionic liquid precursors were used to prepare substantially pure ionic liquids.

  12. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOE Patents [OSTI]

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  13. Hydrophobic ionic liquids

    DOE Patents [OSTI]

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  14. Hydrophobic ionic liquids

    DOE Patents [OSTI]

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  15. Clustering effects in ionic polymers: Molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2015-08-18

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less

  16. Clustering effects in ionic polymers: Molecular dynamics simulations

    SciTech Connect (OSTI)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2015-08-18

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.

  17. ionic | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ionic Liquids Project No.: FC26-07NT43091 Model of CO2 absorption by an IL. Model of CO2 absorption by an IL. The model shows that the anions are controlling absorption in ILs. The green units represent anions and the grey units represent cations. The University of Notre Dame is conducting the Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO2 Capture project (FC26-07NT43091), that builds on the work of its earlier project (FG26-04NT42122), to provide a comprehensive

  18. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  19. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  20. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  1. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  2. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect (OSTI)

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  3. Enhanced ionic conductivity in oxide heterostructures

    SciTech Connect (OSTI)

    Garcia-Barriocanal, Javier; Rivera-Calzada, Alberto; Varela del Arco, Maria; Sefrioui, Z.; Iborra, Enrique; Leon, C.; Pennycook, Stephen J; Santamaria, J.

    2010-01-01

    Fuel cells are electrochemical devices used to generate energy out of hydrogen. In a fuel cell, two conducting electrodes are separated by an electrolyte that is permeable to ions (either hydrogen or oxygen, depending on the fuel-cell category) but not to electrons. An electrode catalytic process yields the ionic species, which are transported through the electrolyte, while electrons blocked by the electrolyte pass through the external circuit. Polymeric membrane (PEMFC) or phosphoric acid fuel cells (PAFC) operating at low temperatures are the preferred option for transportation because of their quite large efficiencies (50%), compared with gasoline combustion engines (25%). Other uses are also being considered, such as battery replacements for personal electronics and stationary or portable emergency power. Solid-oxide fuel cells (SOFCs), operating at high temperatures, are a better option for stationary power generation because of their scalability. Here O{sup 2-} ions are the mobile species that travel at elevated temperatures (800-1000 C) through a solid electrolyte material to react with H{sup +} ions in the anode to produce water (Fig. 1). The high operating temperatures of solid oxide fuel cells are a major impediment to their widespread use in power generation. Thus, reducing this operating temperature is currently a major materials research goal, involving the search for novel electrolytes as well as active catalysts for electrode kinetics (oxygen reduction and hydrogen oxidation). Among oxide-ion conductors, those of anion-deficient fluorite structures such as yttria-stabilized zirconia (YSZ), xY{sub 2}O{sub 3}:(1-x) ZrO{sub 2}, are extensively used as electrolytes in SOFCs. Doping with Y{sub 2}O{sub 3} is known to stabilize the cubic fluorite structure of ZrO{sub 2} and to supply the oxygen vacancies responsible for the ionic conduction. These materials are characterized by a large number of mobile oxygen vacancies, which are randomly distributed in the structure, and thus give rise to a completely disordered anion (oxygen) sublattice. Traditionally, the main strategy to reduce the operating temperature has been to search for novel electrolyte materials with larger oxide-ion conductivity values. Only recently has the use of artificial nanostructures appeared as a promising new direction for dramatically improved properties.

  4. Partially fluorinated cyclic ionic polymers and membranes

    DOE Patents [OSTI]

    Yang, Zhen-Yu

    2013-04-09

    Ionic polymers are made from selected partially fluorinated dienes, in which the repeat units are cycloaliphatic. The polymers are formed into membranes.

  5. Electrolyte Solvation and Ionic Association. V. Acetonitrile...

    Office of Scientific and Technical Information (OSTI)

    V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures Citation Details In-Document Search Title: Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium ...

  6. Membrane separation of ionic liquid solutions

    DOE Patents [OSTI]

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  7. Synthesis of Ionic Liquids - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ionic liquids are compatible with extraction processes and reaction schemes common to organic chemistry. They are water stable and immiscible with water, and are useful...

  8. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart,J.F.

    2008-09-29

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz at U. Wisc. Milwaukee is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

  9. Engineered microorganisms having resistance to ionic liquids

    DOE Patents [OSTI]

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  10. Ionic Liquid Pretreatment Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ionic Liquid Pretreatment Technologies Ionic Liquid Pretreatment Technologies These slides were used as a presentation by Dr. Blake Simmons on June 24, 2013, for the bimonthly BETO webinar. PDF icon june2013_snl_webinar.pdf More Documents & Publications 2015 Peer Review Presentations-Biochemical Conversion Innovative Topics for Advanced Biofuels Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals

  11. Ionic Effects on the Behavior of Thermoresponsive PEO-PNIPAAm...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ionic Effects on the Behavior of Thermoresponsive PEO-PNIPAAm Block Copolymers. Citation Details In-Document Search Title: Ionic Effects on the Behavior of...

  12. Ultrastable Superbase-Derived Protic Ionic Liquids - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    protic ionic liquids (PILs). Protic ionic liquids can be used in protonexchange membrane fuel cells for the transformation of chemical energy to electrical energy. These liquids...

  13. Ionic Liquids as Multifunctional Ashless Additives for Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Ashless Additives for Engine Lubrication Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication A group of oil-miscible ionic liquids has been ...

  14. Controlled Nanopatterning of a Polymerized Ionic Liquid in a...

    Office of Scientific and Technical Information (OSTI)

    Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field Citation Details In-Document Search Title: Controlled Nanopatterning of a Polymerized Ionic ...

  15. Copper ionic liquids: Tunable ligand and anion chemistries to...

    Office of Scientific and Technical Information (OSTI)

    Copper ionic liquids: Tunable ligand and anion chemistries to control electrochemistry and deposition morphology. Citation Details In-Document Search Title: Copper ionic liquids: ...

  16. Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic

    Office of Scientific and Technical Information (OSTI)

    gating (Journal Article) | SciTech Connect Journal Article: Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating Citation Details In-Document Search Title: Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in

  17. Ionic liquids for rechargeable lithium batteries

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  18. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS.

    SciTech Connect (OSTI)

    WISHART,J.F.

    2007-10-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz and coworkers at ANL is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents.

  19. Phosphonium-based ionic liquids and uses

    DOE Patents [OSTI]

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  20. Superbase-derived protic ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  1. Ionic Liquid Sorbents for Carbon Capture - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquid Sorbents for Carbon Capture Ionic liquids for carbon capture and gas separation National Energy Technology Laboratory Contact NETL About This Technology Ionic liquids Ionic liquids Technology Marketing Summary Research is active on technologies for application of ionic liquids to carbon capture or other separation processes in energy systems. The technologies consist of materials and methods that promise to

  2. Equations of state and transport properties of mixtures in the warm dense regime

    SciTech Connect (OSTI)

    Hou, Yong; Dai, Jiayu; Kang, Dongdong; Ma, Wen; Yuan, Jianmin

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide region of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.

  3. Multiphysics simulation of corona discharge induced ionic wind

    SciTech Connect (OSTI)

    Cagnoni, Davide; MOX - Dipartimento di Matematica F. Brioschi, Politecnico di Milano, 20133 Milano ; Agostini, Francesco; Christen, Thomas; Parolini, Nicola; Stevanovi?, Ivica; Laboratory of Electromagnetics and Acoustics, Ecole Polytechnique Fdrale de Lausanne, CH-1015 Lausanne ; Falco, Carlo de; CEN - Centro Europeo di Nanomedicina, 20133 Milano

    2013-12-21

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  4. Research progress on ionic plasmas generated in an intense hydrogen negative ion source

    SciTech Connect (OSTI)

    Takeiri, Y. Tsumori, K.; Nagaoka, K.; Kaneko, O.; Ikeda, K.; Nakano, H.; Kisaki, M.; Tokuzawa, T.; Osakabe, M.; Kondo, T.; Sato, M.; Shibuya, M.; Komada, S.; Sekiguchi, H.; Geng, S.

    2015-04-08

    Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 110{sup 17}m{sup ?3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 110{sup 16}m{sup ?3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observed at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the H? emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.

  5. Electric dipole moments (EDM) of ionic atoms

    SciTech Connect (OSTI)

    Oshima, Sachiko

    2010-03-15

    Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.

  6. Fractionation and Removal of Solutes from Ionic Liquids - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Fractionation and Removal of Solutes from Ionic Liquids Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have developed a technology to fractionate and recover biomaterials dissolved in an ionic liquid and to purify water miscible ionic liquids. The JBEI technology utilizes specific mixtures of solvents to precipitate or extract compounds dissolved in an ionic liquid without high

  7. Metal-air low temperature ionic liquid cell

    DOE Patents [OSTI]

    Friesen, Cody A; Buttry, Daniel A

    2014-11-25

    The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

  8. New Structure found at Ionic Liquid Surface | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Structure found at Ionic Liquid Surface

  9. Synthesis of electroactive ionic liquids for flow battery applications

    DOE Patents [OSTI]

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  10. 1,2,3-triazolium ionic liquids

    DOE Patents [OSTI]

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  11. VOC and HAP recovery using ionic liquids

    SciTech Connect (OSTI)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200C (almost 400F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and ?-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and ?-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. Its likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

  12. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures

    SciTech Connect (OSTI)

    Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

    2014-09-30

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  13. Reaction-Driven Restructuring of Bimetallic Nanoparticle Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-surface-area support are widely used for catalytic reforming, pollution control, alcohol oxidation, and electrocatalysis in fuel cells. Owing to the nanoscale size of the...

  14. imidazolium-based ionic liquid pretreatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    imidazolium-based ionic liquid pretreatment - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  15. understanding the chemistries of ionic liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemistries of ionic liquids - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  16. Ionic Liquids Create More Sustainable Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ionic Liquids Create More Sustainable Processes - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  17. Electron transport in carbon nanotube/RbAg{sub 4}I{sub 5} film...

    Office of Scientific and Technical Information (OSTI)

    We explore the transport properties of mixed ionic-electronic conductors made of carbon nanotubeRbAgsub 4Isub 5 film composite nanostructures in the presence of optical ...

  18. Thermophilic Cellulases Compatible with Ionic Liquid Pretreatment - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Thermophilic Cellulases Compatible with Ionic Liquid Pretreatment Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at the Joint BioEnergy Institute (JBEI) have identified an efficient method for the saccharification of lignocellulose using thermophilic endoglucanases compatible with ionic liquid pretreatment. The enzymes are used directly in a solution of ionic liquids and biomass to produce sugars from

  19. Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Multifunctional Ashless Additives for Engine Lubrication Ionic Liquids as Multifunctional Ashless Additives for Engine Lubrication A group of oil-miscible ionic liquids has been developed by an ORNL-GM team as candidate lubricant additives with promising physical/chemical properties and potential multiple functionalities. PDF icon deer12_qu.pdf More Documents & Publications Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency Vehicle

  20. Ionic Liquids as Lubricants or Additives - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Ionic Liquids as Lubricants or Additives Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryNew ionic liquids invented at ORNL show great promise as lubricants for aluminum and steel in combustion engines, bearings, and microelectromechanical systems (MEMS). The ammonium-based ionic liquids are strongly adsorbant on contact surfaces, leading to a more than 30% friction

  1. Spheroid-Encapsulated Ionic Liquids for Gas Separation - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Find More Like This Return to Search Spheroid-Encapsulated Ionic Liquids for Gas Separation National Energy Technology Laboratory Contact NETL About This Technology...

  2. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOE Patents [OSTI]

    Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  3. Compositions and methods useful for ionic liquid treatment of biomass

    DOE Patents [OSTI]

    Dibble, Dean C.; Cheng, Aurelia; George, Anthe

    2014-07-29

    The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

  4. Highly luminescent and color-tunable salicylate ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; Cybinska, Joanna; Mudring, Anja -Verena

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  5. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  6. New Ionic Liquids with Diverse Properties - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ligand. The organic salt of many of these compounds is a strongly hydrophobic, room temperature ionic liquid with low volatility. The reactions require no solvent, heat, or...

  7. Lipid extraction from microalgae using a single ionic liquid

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  8. Ionic Liquids as Novel Engine Lubricants or Lubricant Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bench test results showed that compared with fully-formulated engine oils, selected low-viscosity ionic liquids, used as neat lubricants or basestock, produced significantly lower ...

  9. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect (OSTI)

    Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  10. Durable electrooptic devices comprising ionic liquids

    DOE Patents [OSTI]

    Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  11. 1,2,3-triazolium ionic liquids (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    1,2,3-triazolium ionic liquids Citation Details In-Document Search Title: 1,2,3-triazolium ionic liquids The present invention relates to compositions of matter that are ionic...

  12. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  13. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  14. Durable electrooptic devices comprising ionic liquids

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin; John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  15. Durable Electrooptic Devices Comprising Ionic Liquids

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  16. Durable electrooptic devices comprising ionic liquids

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  17. Colloid formation study of U, Th, Ra, Pb, Po, Sr, Rb, and Cs in briny (high ionic strength) groundwaters

    SciTech Connect (OSTI)

    Maiti, T.C.; Smith, M.R.; Laul, J.C.

    1989-01-01

    Colloid formation of uranium, thorium, radium, lead, polonium, strontium, rubidium, and cesium in briny (high ionic strength) groundwaters is studied to predict their capability as vectors for transporting radionuclides. This knowledge is essential in developing models to infer the transport of radionuclides from the source region to the surrounding environment. Except polonium, based on the experimental results, colloid formation of uranium, thorium, radium, lead, strontium, rubidium, and cesium is unlikely in brines with compositions similar to the synthetic Palo Duro Basin brine. This observation of no colloid formation is explained by electrokinetic theory and inorganic solution chemistry.

  18. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  19. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  20. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    SciTech Connect (OSTI)

    ;

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  1. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    SciTech Connect (OSTI)

    van Swol, Frank B.; Medforth, Craig John

    2010-10-01

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  2. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  3. The radiation chemistry of ionic liquids: A review

    SciTech Connect (OSTI)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  4. The radiation chemistry of ionic liquids: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  5. Ionic liquid pretreatment (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ionic liquid pretreatment Citation Details In-Document Search Title: ... OSTI Identifier: 1048939 Report Number(s): LBNL-5001E Journal ID: ISSN 0360-7275; CEPRA8; ...

  6. Ionic Liquids as Novel Engine Lubricants or Lubricant Additives

    Broader source: Energy.gov [DOE]

    Bench test results showed that compared with fully-formulated engine oils, selected low-viscosity ionic liquids, used as neat lubricants or basestock, produced significantly lower friction and engine wear

  7. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  8. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  9. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Battery Electrolytes | Department of Energy Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es057_henderson_2010_p.pdf More Documents & Publications Inexpensive, Nonfluorinated (or Partially Fluorinated)

  10. Ionic Liquids as Novel Lubricants and Additives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants and Additives Ionic Liquids as Novel Lubricants and Additives Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_qu.pdf More Documents & Publications Ionic Liquids as Novel Engine Lubricants or Lubricant Additives

  11. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOE Patents [OSTI]

    Lin, Yupo J.; Snyder, Seth W.

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  12. Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong

    Office of Scientific and Technical Information (OSTI)

    Electric Field (Journal Article) | SciTech Connect Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field Citation Details In-Document Search Title: Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field Authors: Bocharova, Vera [1] ; Agapov, Alexander L [1] ; Tselev, Alexander [1] ; Kumar, Rajeev [1] ; Berdzinski, Stefan [2] ; Strehmel, Veronika [2] ; Kisliuk, Alexander [1] ; Kravchenko, Ivan I [1] ; Sumpter, Bobby G [1] ; Sokolov,

  13. Copper ionic liquids: Tunable ligand and anion chemistries to control

    Office of Scientific and Technical Information (OSTI)

    electrochemistry and deposition morphology. (Journal Article) | SciTech Connect Copper ionic liquids: Tunable ligand and anion chemistries to control electrochemistry and deposition morphology. Citation Details In-Document Search Title: Copper ionic liquids: Tunable ligand and anion chemistries to control electrochemistry and deposition morphology. Abstract not provided. Authors: Pratt, Harry ; Ingersoll, David ; Hudak, Nicholas ; McKenzie, Bonnie B. Publication Date: 2013-07-01 OSTI

  14. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium

    Office of Scientific and Technical Information (OSTI)

    Bis(fluorosulfonyl)imide (LiFSI) Mixtures (Journal Article) | SciTech Connect Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures Citation Details In-Document Search Title: Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts.

  15. Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt

    Office of Scientific and Technical Information (OSTI)

    Mixtures: Highly Associated Salts Revisited (Journal Article) | SciTech Connect Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited Citation Details In-Document Search Title: Electrolyte Solvation and Ionic Association. VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited Molecular dynamics (MD) simulations of acetonitrile (AN) mixtures with LiBF4, LiCF3SO3 and LiCF3CO2 provide extensive details about the

  16. Project Profile: Thermally-Stable Ionic Liquid Carriers for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle-Based Heat Transfer in CSP Applications | Department of Energy Thermally-Stable Ionic Liquid Carriers for Nanoparticle-Based Heat Transfer in CSP Applications Project Profile: Thermally-Stable Ionic Liquid Carriers for Nanoparticle-Based Heat Transfer in CSP Applications SRNL logo Savannah River National Laboratory, under an ARRA CSP Award, is performing research to better understand the thermal stability of low-temperature organic molten salts, which are commonly referred to as

  17. Spatially Resolved Ionic Diffusion and Electrochemical Reactions in Solids:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Spatially Resolved Ionic Diffusion and Electrochemical Reactions in Solids: Spatially Resolved Ionic Diffusion and Electrochemical Reactions in Solids: 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es153_balke_2012_p.pdf More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Overview of Computer-Aided Engineering of Batteries (CAEBAT)

  18. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  19. Ionic Liquids with Ammonium Cations as Lubricants or Additives

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Truhan, Jr., John J

    2006-01-01

    Friction and wear are estimated to cost 6% of the US gross national product, or around $700 billion annually. A new class of more effective lubricants could lead to huge energy savings. Limited recent literature has suggested potential for using room-temperature ionic liquids as lubricants, however only a few out of millions (or more) of species have been evaluated. Recent ORNL work discovered a new category of ionic liquids with ammonium cations that have demonstrated promising lubricating properties as net lubricants or lubricant additives, particularly in lubricating difficult-to-lubricate metals like aluminum. More than 30% friction reduction has been observed on ammonium-based ionic liquids compared to conventional hydrocarbon oils. The inherent polarity of ionic liquids is believed to provide strong adhesion to contact surfaces and form a boundary lubricating film leading to friction and wear reductions. Other advantages of ionic liquids include (1) negligible volatility, (2) high thermal stability, (3) non-flammability, and (4) better intrinsic properties that eliminate the necessity of many expensive lubricant additives. With very flexible molecular structures, this new class of lubricants, particularly ammonium-based ionic liquids, can be tailored to fit a big variety of applications including but not limited to bearings, combustion engines, MEMS, and metal forming.

  20. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  1. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  2. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  3. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  4. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  5. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  6. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Transportation Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of

  7. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  8. Methods for separating medical isotopes using ionic liquids

    DOE Patents [OSTI]

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  9. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  10. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFCs performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cells microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  11. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOE Patents [OSTI]

    Gopalan, Srikanth (Westborough, MA); Pal, Uday B. (Dover, MA); Karthikeyan, Annamalai (Quincy, MA); Hengdong, Cui (Allston, MA)

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  12. Cubic Ionic Conductor Ceramics for Alkali Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search Cubic Ionic Conductor Ceramics for Alkali Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion battery cathode with extremely low volume change (2,321 KB) <br type="_moz" /> An artist rendition of the structure of the electrode material with intercalated sodium ions shown as

  13. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect (OSTI)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  14. Ion-modulated nonlinear electronic transport in carbon nanotube

    Office of Scientific and Technical Information (OSTI)

    bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures (Journal Article) | SciTech Connect Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures Citation Details In-Document Search Title: Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor

  15. 1,2,3-triazolium ionic liquids (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    1,2,3-triazolium ionic liquids Citation Details In-Document Search Title: 1,2,3-triazolium ionic liquids You are accessing a document from the Department of Energy's (DOE)...

  16. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by solvent extraction The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a

  17. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  18. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  19. High performance batteries with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen (Littleton, CO)

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  20. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOE Patents [OSTI]

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  1. Tuning the metal-insulator crossover and magnetism in SrRuO3 by ionic gating

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yi, Hee Taek; Gao, Bin; Xie, Wei; Cheong, Sang -Wook; Podzorov, Vitaly

    2014-10-13

    Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. We report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K, respectively,more » by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.« less

  2. Can Ionic Liquids Be Used As Templating Agents For Controlled Design of Uranium-Containing Nanomaterials?

    SciTech Connect (OSTI)

    Visser, A.; Bridges, N.; Tosten, M.

    2013-04-09

    Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  3. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect (OSTI)

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode. Successful extraction of metal from metal oxide dissolved in Urea/ChCl (2:1) was accomplished. The current efficiencies were relatively high in both the metal deposition processes with current efficiency greater than 86% for lead and 95% for zinc. This technology will advance the metal oxide reduction process by increasing the process efficiency and also eliminate the production of CO2 which makes this an environmentally benign technology for metal extraction.

  4. Strategies for Using Host-Guest Chemistry in the Extractive Separations of Ionic Guests

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Hay, Benjamin P.

    2005-09-12

    Host-guest chemistry has led to a new paradigm in extractive separations, generating new possibilities for efficient separations of ionic species to meet the challenging needs of industry. This account describes the approach the authors have recently undertaken, recent results, and future directions toward highly selective separations of anions based on host?guest chemistry principles. The material presented deals mainly with the genesis and discovery of new extractive systems, illustrating the potential of particular chemical concepts with examples of practical application. Major questions of interest concern the role of anions in extractive processes and factors underlying the recognition and transport of anions. Theoretical efforts explore the technique of molecular-design itself as embodied in the evolving HostDesigner program. Design calculations are capable of generating ranked candidate multifunctional ion receptors based on hydrogen-bond-donor groups having O?H and N?H donor functionalities. Efforts to synthesize candidate receptors together with studies of molecular structure and the thermodynamics of binding and transport provide a complete picture for understanding structure-function relationships and feedback for further molecular modeling. Extraction data are evaluated in a thermochemical context in which the solvent matrix, including use of anion-solvating lipophilic alcohols, plays a pivotal role. Applications are envisioned for the solution of many types of separations needs, and examples are taken mainly from the authors' own research as applied to treatment of radioactive wastes for disposal.

  5. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    DOE Patents [OSTI]

    Van Calcar, Pamela (Superior, CO); Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  6. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  7. Ionic liquids for separation of olefin-paraffin mixtures

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  8. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  9. Ionic liquid-induced synthesis of selenium nanoparticles

    SciTech Connect (OSTI)

    Langi, Bhushan; Shah, Chetan; Singh, Krishankant; Chaskar, Atul; Kumar, Manmohan; Bajaj, Parma N.

    2010-06-15

    A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

  10. Using Ionic Liquids to Make Titanium Dioxide Nanotubes - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Using Ionic Liquids to Make Titanium Dioxide Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummarySince self-organized TiO2 nanotube (NT) arrays were first reported in 1999, there has been increasing research interest due to their comparably larger surface area, chemical stability,

  11. Carbon Films Produced from Ionic Liquid Precursors - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Carbon Films Produced from Ionic Liquid Precursors Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryResearchers at ORNL have invented a more effective method of preparing thin carbons films, a material that has become increasing important to the development of energy-saving storage batteries. Using this new method, it is possible to produce a very resilient, thermally stable porous carbon film characterized by a highly ordered arrangement of

  12. Nanoparticle-Enhanced Ionic Liquids (NEILs) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Find More Like This Return to Search Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat Transfer Fluids with high volumetric heat capacity as well as favorable physical properties to improve the efficiency of CSP systems Savannah River National Laboratory Contact SRNL About This Technology Technology Marketing Summary A good HTF must be able to absorb a substantial amount of energy in a given volume, a property known as volumetric heat capacity. Physical properties such

  13. Lithium Ion Conducting Ionic Electrolytes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Lithium Ion Conducting Ionic Electrolytes DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for high-output, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density batteries, one of the principal obstacles

  14. Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Larger Scale | Department of Energy Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale June 3, 2014 - 10:50am Addthis DOE-funded researchers have shown that a new, highly effective pretreatment process used in the production of biofuel can be executed at a larger scale than ever achieved before. Before biofuel can be generated from lignocellulosic feedstocks like

  15. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  16. Ionic switch controls the DNA state in phage λ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Dong; Liu, Ting; Zuo, Xiaobing; Li, Tao; Qiu, Xiangyun; Evilevitch, Alex

    2015-06-19

    We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid bymore » changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is ‘switched on’ at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. The results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses.« less

  17. Vadose Zone Transport Field Study: Status Report

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-30

    Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of the past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.

  18. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    SciTech Connect (OSTI)

    Meier, Sebastian B., E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Hartmann, David; Sarfert, Wiebke, E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-09-14

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)?(pbpy)][PF?]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  19. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    SciTech Connect (OSTI)

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  20. Influence of Physico-Chemical Changes on Enzymatic Digestibility of Ionic

    Office of Scientific and Technical Information (OSTI)

    Liquid and AFEX pretreated Corn Stover (Journal Article) | SciTech Connect Influence of Physico-Chemical Changes on Enzymatic Digestibility of Ionic Liquid and AFEX pretreated Corn Stover Citation Details In-Document Search Title: Influence of Physico-Chemical Changes on Enzymatic Digestibility of Ionic Liquid and AFEX pretreated Corn Stover Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their

  1. Understanding the effect of side groups in ionic liquids on carbon-capture

    Office of Scientific and Technical Information (OSTI)

    properties: a combined experimental and theoretical effort (Journal Article) | SciTech Connect Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort Citation Details In-Document Search Title: Understanding the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort Ionic liquids are an emerging class of materials with applications in a variety of fields.

  2. Synthesis of Highly Ordered TiO2 Nanotubes Using Ionic Liquids for Photovoltaics Applications

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a study that deals with a new, green approach of synthesizing highly ordered TiO2 nanotubes using ionic liquids for photovoltaics (PV) applications.

  3. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Method of purifying a gas stream using 1,2,3-triazolium ionic liquids Citation Details In-Document Search Title: Method of purifying a gas stream using 1,2,3-triazolium ionic liquids A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound. Authors:

  4. On the cause of conductivity degradation in sodium strontium silicate ionic conductor

    SciTech Connect (OSTI)

    Jee, Y; Zhao, X; Huang, K

    2015-01-01

    Here we present strong experimental evidence that elucidates the fundamental cause for the conductivity degradation observed in Na-SrSiO3 ionic conductor.

  5. Methods of using ionic liquids having a fluoride anion as solvents

    DOE Patents [OSTI]

    Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  6. EERE Success Story-Ionic Liquids Used as Wear Reduction, Wins R&D 100

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award | Department of Energy Ionic Liquids Used as Wear Reduction, Wins R&D 100 Award EERE Success Story-Ionic Liquids Used as Wear Reduction, Wins R&D 100 Award October 16, 2014 - 11:19am Addthis Partnered with Shell Global Solutions, the Oak Ridge National Laboratory (ORNL) has developed ionic liquids (salts in a liquid state at ambient temperatures) that can be used as friction and wear reduction additives for lubricating oils. The ionic liquids create nanostructured protective

  7. Crowding and Anomalous Capacitance at an Electrode–Ionic Liquid...

    Office of Scientific and Technical Information (OSTI)

    Crowding and Anomalous Capacitance at an ElectrodeIonic Liquid Interface Observed Using Operando X-ray Scattering Citation Details In-Document Search Title: Crowding and ...

  8. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response

    SciTech Connect (OSTI)

    Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.

    2014-08-14

    We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.

  9. Fabrication of fiber supported ionic liquids and methods of use

    DOE Patents [OSTI]

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  10. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    SciTech Connect (OSTI)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trend can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.

  11. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trendmore » can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.« less

  12. Polarizability effects on the structure and dynamics of ionic liquids

    SciTech Connect (OSTI)

    Cavalcante, Ary de Oliveira; Ribeiro, Mauro C. C.; Skaf, Munir S.

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup ?} and PF{sub 6}{sup ?}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (?) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  13. Development of an Ionic-Liquid Absorption Heat Pump

    SciTech Connect (OSTI)

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  14. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    DOE Patents [OSTI]

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  15. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    DOE Patents [OSTI]

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  16. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  17. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  18. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    SciTech Connect (OSTI)

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

  19. Electron transport in carbon nanotube/RbAg{sub 4}I{sub 5} film composite

    Office of Scientific and Technical Information (OSTI)

    nanostructures modulated by optical field (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Electron transport in carbon nanotube/RbAg{sub 4}I{sub 5} film composite nanostructures modulated by optical field Citation Details In-Document Search Title: Electron transport in carbon nanotube/RbAg{sub 4}I{sub 5} film composite nanostructures modulated by optical field We explore the transport properties of mixed ionic-electronic conductors made of carbon

  20. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, III, Charles F.; Margossian, Khatcher O.; et al

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  1. Ionic electroactive polymer actuators as active microfluidic mixers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meis, Catherine; Montazami, Reza; Hashemi, Nastaran

    2015-11-06

    On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less

  2. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect (OSTI)

    Tashev, Bekbolat; Baimbetov, Fazylkhan; Deutsch, Claude; Fromy, Patrice

    2008-10-15

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  3. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  4. Ionic Liquids Used as Wear Reduction, Wins R&D 100 Award | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Liquids Used as Wear Reduction, Wins R&D 100 Award Ionic Liquids Used as Wear Reduction, Wins R&D 100 Award October 16, 2014 - 11:19am Addthis Partnered with Shell Global Solutions, the Oak Ridge National Laboratory (ORNL) has developed ionic liquids (salts in a liquid state at ambient temperatures) that can be used as friction and wear reduction additives for lubricating oils. The ionic liquids create nanostructured protective films on lubricated metal surfaces, reducing

  5. NREL: Transportation Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and hydrogen technologies with this...

  6. Transportation Emergency Preparedness Program

    Office of Environmental Management (EM)

    Stakeholders Forum 1 Planning for a Shipment Campaign Identifying Responders Needs National Transportation Stakeholders Forum Tom Clawson US Department of Energy Transportation...

  7. Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosby, James T.; Holt, Adam P.; Griffin, Phillip; Wang, Yangyang; Sangoro, Joshua R.

    2015-09-18

    The impact of supramolecular hydrogen bonded networks on dynamics and charge transport in 2-ethyl-4-methylimidazole (2E4MIm), a model proton-conducting system, is investigated by broadband dielectric spectroscopy, depolarized dynamic light scattering, viscometry, and calorimetry. It is observed that the slow, Debye-like relaxation reflecting the supramolecular structure in neat 2E4MIm is eliminated upon the addition of minute amounts of levulinic acid. This is attributed to the dissociation of imidazole molecules and the breaking down of hydrogen-bonded chains, which leads to a 10-fold enhancement of ionic conductivity.

  8. High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  9. Method of purifying a gas stream using 1,2,3-triazolium ionic...

    Office of Scientific and Technical Information (OSTI)

    target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by...

  10. Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazol...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide (hmimTfsub 2N) Confined in Silica Slit Pores: A ...

  11. Elucidating graphene - Ionic Liquid interfacial region: a combined experimental and computational study

    SciTech Connect (OSTI)

    Vijayakumar, M.; Schwenzer, Birgit; Shutthanandan, V.; Hu, Jian Z.; Liu, Jun; Aksay, Ilhan A.

    2014-01-10

    The interfacial region between graphene and an imidazolium based ionic liquid is studied using spectroscopic analysis and computational modelling. This combined approach reveals that the molecular level structure of the interfacial region is significantly influenced by functional group defects on the graphene surface.The combined experimental and computational study reveals that the molecular structure at interfacial region between graphene and imidazolium based ionic liquid is defined by the hydroxyl functional groups on the graphene surface

  12. Polymeric Ionic Networks with High Charge Density: Solid-like Electrolytes in Lithium Metal Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pengfei; Li, Mingtao; Jiang, Xueguang; Fang, Youxing; Veith, Gabriel M.; Sun, Xiao-Guang; Dai, Sheng

    2015-11-02

    Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitution-mediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 × 10-3 S cm-1 at 22 °C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes.

  13. Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium

    Office of Scientific and Technical Information (OSTI)

    Bis(trifluoromethylsulfonyl)amide ([hmim][Tf{sub 2}N]) Confined in Silica Slit Pores: A Molecular Simulation Study (Journal Article) | SciTech Connect Journal Article: Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim][Tf{sub 2}N]) Confined in Silica Slit Pores: A Molecular Simulation Study Citation Details In-Document Search Title: Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium

  14. Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquids as New Solvents for Improved Separation of Medical Isotopes Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00234_ID2580 (2).pdf (942 KB) Technology Marketing SummaryA series of ionic liquids (ILs) have recently been applied as new solvents for potentially effective separation of different

  15. Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution

    SciTech Connect (OSTI)

    Lee, E.; Prinz, F. B.; Cai, W.

    2011-02-11

    We present an ab initiobased kinetic Monte Carlo model for ionic conductivity in single-crystal yttria-stabilized zirconia. Ionic interactions are taken into account by combining density functional theory calculations and the cluster expansion method and are found to be essential in reproducing the effective activation energy observed in experiments. The model predicts that the effective energy barrier can be reduced by 0.150.25 eV by arranging the dopant ions into a superlattice.

  16. Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerization

    Office of Scientific and Technical Information (OSTI)

    with ppm of Cu Catalyst (Journal Article) | SciTech Connect Journal Article: Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerization with ppm of Cu Catalyst Citation Details In-Document Search Title: Synthesis of Poly(ionic liquid)s by Atom Transfer Radical Polymerization with ppm of Cu Catalyst Authors: He, Hongkun ; Luebke, David ; Nulwala, Hunaid ; Matyjaszewski, Krzysztof Publication Date: 2014-10-14 OSTI Identifier: 1185116 DOE Contract Number: ER-45998; DMR-0969301;

  17. EERE Success Story-Ionic Liquid Pretreatment Process for Biomass Is

    Office of Environmental Management (EM)

    Successfully Implemented at Larger Scale | Department of Energy Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale EERE Success Story-Ionic Liquid Pretreatment Process for Biomass Is Successfully Implemented at Larger Scale June 3, 2014 - 10:50am Addthis DOE-funded researchers have shown that a new, highly effective pretreatment process used in the production of biofuel can be executed at a larger scale than ever achieved before. Before biofuel can be

  18. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    SciTech Connect (OSTI)

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  19. Ionic strength independence of charge distributions in solvation of biomolecules

    SciTech Connect (OSTI)

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  20. Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores

    SciTech Connect (OSTI)

    Sumpter, Bobby G

    2011-01-01

    Recent experiments have shown that the capacitance of subnanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with widths from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width-dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of 'ion solvation' in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

  1. Complex Capacitance Scaling in Ionic Liquids-filled Nanopores

    SciTech Connect (OSTI)

    Qiao, Rui; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Peng, Wu

    2011-01-01

    Recent experiments have shown that the capacitance of sub-nanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with width from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of ion solvation in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

  2. Transportation Organization and Functions

    Broader source: Energy.gov [DOE]

    Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

  3. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers January 2016 Issue Sustainable Mobility Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives. Printable Version

  4. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. ...

  5. On the radiation stability of crown ethers in ionic liquids.

    SciTech Connect (OSTI)

    Shkrob, I.; Marin, T.; Dietz, M.

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.

  6. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    SciTech Connect (OSTI)

    Qu, J.; Viola, M. B.

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction in mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.

  7. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  8. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    SciTech Connect (OSTI)

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  9. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  10. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  11. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  12. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  13. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  14. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  15. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  16. Colloid and ionic tracer migration within SRS sediments: Final summary

    SciTech Connect (OSTI)

    Strom, R.N.; Seaman, J.C.; Bertsch, P.M.; Miller, W.P.

    1996-04-09

    The generation of a stable colloidal suspension in geologic materials has a number of environmental implications. Mobile colloids may act as vectors for the transport of adsorbed contaminants through soils and within aquifers and can cause serious problems related to well monitoring and formation permeability in an injections well system. Colloid-facilitated transport has been implicated in the migration of contaminants from seepage basins on the Department of Energy`s Savannah River Site (SRS) at a rate greater than was predicted in two- phase transport models. From 1955 to 1988, seepage basins overlying the water-table aquifer received acidic wastes containing high levels of Na+ and nitric acid, as well as trace radionuclides and metals from the nuclear materials processing facilities. Numerical simulations predicted that metal contaminants would not reach the water table, but measurable quantities of these contaminants have been detected in monitoring wells down gradient from the basins. Lack of agreement between predicted and observed contaminant migration in this and other studies has been attributed to both local non equilibrium situation, preferential flow paths within the geologic material, and to transport of the contaminant in association with a mobile solid phase, i.e. dispersed colloids. Additionally, the association of contaminants with a mobile colloidal phase has important ramifications for groundwater sampling on SRS intended to evaluate the potential environmental hazards of a given contaminant. As part of the F- and H-Area reclamation project, the Department of Energy has proposed the capture and treatment of the contaminant plume followed by reinjection of the treated water into the water table and upper confined aquifers. (Abstract Truncated)

  17. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  18. Transportation Storage Interface

    Office of Environmental Management (EM)

    of Future Extended Storage and Transportation Transportation-Storage Interface James Rubenstone Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Overview * Changing policy environment * Regulatory framework-current and future * Extended storage and transportation-technical information needs * Next Steps 2 Current Policy Environment * U.S. national policy for disposition of spent

  19. Ionic liquid assisted hydrothermal fabrication of hierarchically organized ?-AlOOH hollow sphere

    SciTech Connect (OSTI)

    Tang, Zhe; Liu, Yunqi; Li, Guangci; Hu, Xiaofu; Liu, Chenguang

    2012-11-15

    Highlights: ? The ?-AlOOH hollow spheres were synthesized via an ionic liquid-assisted hydrothermal treatment. ? Ionic liquid plays an important role in the morphology of the product. ? Ionic liquid can be easily removed from the product and reused in next experiment. ? A aggregationsolutionrecrystallization formation mechanism may occur in the system. -- Abstract: Hierarchically organized ?-AlOOH hollow spheres with nanoflake-like porous surface texture have been successfully synthesized via an ionic liquid-assisted hydrothermal synthesis method in citric acid monohydrate (CAMs). It was found that ionic liquid [bmim]{sup +}Cl{sup ?} played an important role in the morphology of the product due to its strong interactions with reaction particles. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). The results show that the product has narrow particle size distribution (500900 nm particle diameter range), high specific surface area (240.5 m{sup 2}/g) and large pore volume (0.61 cm{sup 3}/g). The corresponding ?-Al{sub 2}O{sub 3} hollow spheres can be obtained by calcining it at 550 C for 3 h. The proposed formation mechanism and other influencing factors of the ?-AlOOH hollow sphere material, such as reaction temperature, reaction duration, CAMs and urea, have also been investigated.

  20. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  1. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect (OSTI)

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  2. Topological defects in electric double layers of ionic liquids at carbon interfaces

    SciTech Connect (OSTI)

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; Cummings, Peter T.; Kalinin, Sergei V.; Balke, Nina

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here we utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.

  3. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  4. NREL: Transportation Research - Transportation Deployment Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from...

  5. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage This is the November 2015 issue of the Transportation and Hydrogen Newsletter. November 6, 2015 Photo of a light blue car with a pump nozzle in front of a fuel ...

  6. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    SciTech Connect (OSTI)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

  7. Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes

    SciTech Connect (OSTI)

    None

    2011-02-02

    IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

  8. Surface layering and melting in an ionic liquid studied by resonant soft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray reflectivity | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity Previous Next List Markus Mezger, Benjamin M. Ocko, Harald Reichert, and Moshe Deutsche, PNAS, 110, 3733-3737, 2013, DOI: 10.1073/pnas.1211749110 Abstract: The molecular-scale structure of the ionic liquid [C18mim]+[FAP]- near its free surface was studied by complementary methods. X-ray absorption

  9. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phase membranes have been evaluated for structural properties. An increasing crack growth resistance was observed for the membranes heat-treated at 1000 C in air and N{sub 2} with increasing crack length. The combined effect of thermal and elastic mismatch stresses on the crack path was studied and the fracture behavior of the dual phase composite at the test conditions was analyzed. Ceramic/metal (C/M) seals are needed to form a leak-tight interface between the OTM and a nickel-base super alloy. It was concluded that Ni-based brazing alloys provided the best option in terms of brazing temperature and final operating conditions after analyzing several possible brazing systems. A mechanical testing procedure has been developed. This model was tested with model ceramic/metal systems but it is expected to be useful for testing concentric perovskite/metal seals.

  10. Fluorescence energy transfer efficiency in labeled yeast cytochrome c: a rapid screen for ion biocompatibility in aqueous ionic liquids

    SciTech Connect (OSTI)

    Baker, Sheila N; Zhao, Hua; Pandey, Siddharth; Heller, William T; Bright, Frank; Baker, Gary A

    2011-01-01

    A fluorescence energy transfer de-quenching assay was implemented to follow the equilibrium unfolding behaviour of site-specific tetramethylrhodamine-labelled yeast cytochrome c in aqueous ionic liquid solutions; additionally, this approach offers the prospect of naked eye screening for biocompatible ion combinations in hydrated ionic liquids.

  11. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOE Patents [OSTI]

    Angell, C. Austen; Xu, Wu; Belieres, Jean-Philippe; Yoshizawa, Masahiro

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  12. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced ...

  13. An improved thermodynamic model for the complexation of trivalent actinides and lanthanide with oxalic acid valid to high ionic strength.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Yongliang; Thakur, Punam; Borkowski, Marian

    2015-07-30

    The dissociation constants of oxalic acid (Ox), and the stability constants of Am3+, Cm3+ and Eu3+ with Ox2– have been determined at 25 °C, over a range of concentration varying from 0.1 to 6.60 m NaClO4 using potentiometric titration and extraction techniques, respectively. The experimental data support the formation of complexes, M(Ox)n3 – 2n, where (M = Am3+, Cm3+ and Eu3+ and n = 1 and 2). The dissociation constant and the stability constant values measured as a function of NaClO4 concentration were used to estimate the Pitzer parameters for the respective interactions of Am3+, Cm3+ and Eu3+ with Ox.more » Furthermore, the stability constants data of Am3+ –Ox measured in NaClO4 and in NaCl solutions from the literature were simultaneously fitted in order to refine the existing actinide–oxalate complexation model that can be used universally in the safety assessment of radioactive waste disposal. The thermodynamic stability constant: log β0101 = 6.30 ± 0.06 and log β0102 = 10.84 ± 0.06 for Am3+ was obtained by simultaneously fitting data in NaCl and NaClO4 media. Additionally, log β0101 = 6.72 ± 0.08 and log β0102 = 11.05 ± 0.09 for the Cm3+ and log β0101 = 6.67 ± 0.08 and log β0102 = 11.15 ± 0.09 for the Eu3+ were calculated by extrapolation of data to zero ionic strength in NaClO4 medium only. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and CΦ determined in this work. The thermodynamic model developed in this work will be useful in accurately modeling the potential solubility of trivalent actinides and early lanthanides to ionic strength of 6.60 m in low temperature environments in the presence of Ox. Furthermore, the work is also applicable to the accurate modeling transport of rare earth elements in various environments under the surface conditions.« less

  14. integrated-transportation-models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Archive Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa Hosted by: The Transportation Research and Analysis Computing Center at Argonne National Laboratory This email address is being protected from spambots. You need JavaScript enabled to view it. The aim of the workshop was to provide an opportunity for researchers and practitioners to discuss recent research results that can support a wider application of integrated transportation models,

  15. Future of Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation In the coming decades, transportation in the U.S. is expected to change radically in response to environmental constraints, fluctuating oil availability and economic factors. Future Decision-Makers The transportation systems that emerge in the 21 st century will be defined largely by the choices, skills and imaginations of today's youth. Future Workforce As scientists and engineers, they will develop new vehicle and fuel technologies. As citizens, they will make decisions

  16. Intelligent Transportation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligent Transportation Systems This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background The development and deployment of Intelligent Transportation Systems (ITS) in the United States is an effort of national importance. Through the use of advanced computing, control, and communication technologies, ITS promises to greatly improve the efficiency and safety of the existing surface transportation system and reduce the

  17. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    N ti l T t ti National Transportation Stakeholders Forum Chicago, IL, May 26, 2010 Ahmad Al-Daouk Date and page number - 1 Director, National Security Department National Nuclear Security Administration Service Center - Albuquerque, NM National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with applicable regulations (e.g. federal, local, tribal) * Great majority of NNSA shipments

  18. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  19. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  20. UZ Colloid Transport Model

    SciTech Connect (OSTI)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  1. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  2. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  3. Natural Gas Transportation Resiliency

    Broader source: Energy.gov (indexed) [DOE]

    Transportation Resiliency Anders Johnson Director Pipeline System Design April 29, 2014 Confidential and Illustrative for discussion purposes only. The views expressed in this...

  4. NREL: Transportation Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas ...

  5. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  6. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    SciTech Connect (OSTI)

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  7. Equation of state for high explosives detonation products with explicit polar and ionic species

    SciTech Connect (OSTI)

    Bastea, S; Glaesemann, K R; Fried, L E

    2006-06-28

    We introduce a new thermodynamic theory for detonation products that includes polar and ionic species. The new formalism extends the domain of validity of the previously developed EXP6 equation of state library and opens the possibility of new applications. We illustrate the scope of the new approach on PETN detonation properties and water ionization models.

  8. Ionic Current Mapping Techniques and Applications to Aluminum-Copper Corrosion

    SciTech Connect (OSTI)

    Isaacs, H. S.; Jeffcoate, C. S.; Missert, N. A.; Barbour, J. C.

    1999-10-17

    Measurements have been made of the aluminum/metal galvanic couple. A wide range of geometries were investigated varying the areas of anodic and cathodic surfaces and employing specially designed galvanic cells with crevices. In situ ionic current density mapping was used to monitor galvanic corrosion and currents flowing between separated metals was measured.

  9. J-aggregation of ionic liquid solutions of meso-tetrakis(4-sulfonatophenyl)porphyrin

    SciTech Connect (OSTI)

    Ali, Maroof; Kumar, Vinod; Baker, Sheila N; Baker, Gary A; Pandey, Siddharth

    2010-01-01

    The title porphyrin was dissolved in the hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and triggered to assemble into J-aggregates by the addition of incremental volumes of water containing various amounts of acid (0.1, 0.2, or 1.0 M HCl). In contrast to recent studies, the current investigation is unique in that it centers on media that contain a predominant ionic liquid component (2.9 5.4 M [bmim][BF4]), as opposed to an aqueous electrolyte containing a small fraction of ionic liquid as dissociated solute. Complex aggregation and underlying photophysical behavior are revealed from absorption spectroscopy, steady-state fluorescence, and resonance light scattering studies. Upon addition of aqueous HCl, the efficient formation of H4TPPS2 J-aggregates from the diprotonated form of meso-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4) occurs in [bmim][BF4]-rich media in a manner highly dependent upon the acidity, TPPS concentration, and solvent composition. The unique features of TPPS aggregation in this ionic liquid were elucidated, including the surprising disassembly of J-aggregates at higher aqueous contents, and our results are described qualitatively in terms of the molecular exciton theory. Finally, the potential of this system for the optical sensing of water at a sensitivity below 0.5 wt% is demonstrated. Overall, our findings accentuate how little is known about functional self-assembly within ionic liquids and suggest a number of avenues for exploring this completely untouched research landscape.

  10. Transport Version 3

    Energy Science and Technology Software Center (OSTI)

    2008-05-16

    The Transport version 3 (T3) system uses the Network News Transfer Protocol (NNTP) to move data from sources to a Data Reporisoty (DR). Interested recipients subscribe to newsgroups to retrieve data. Data in transport is protected by AES-256 and RSA cryptographic services provided by the external OpenSSL cryptographic libraries.

  11. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  13. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Technology Hydrogen and Fuel Cell Technology This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on accelerating the acceptance of hydrogen infrastructure. Photo by John De La Rosa, NREL 33660 New H2FIRST Reports Detail Hydrogen Station Designs, Contaminant Detection Two new reports have been published by NREL and Sandia National Laboratories

  14. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Mobility Sustainable Mobility This is the January 2016 issue of the Transportation and Hydrogen Newsletter. January 26, 2016 Photo of a red electric vehicle in front of ESIF A recent mobility workshop showcased an array of plug-in electric, hybrid electric, and hydrogen fuel cell vehicles. Image by Ellen Jaskol/NREL 35097 Summit Explores the Future of Dynamic Mobility Systems NREL brought together local and national thought leaders to discuss the convergence of connectivity,

  15. Fermilab | Visit Fermilab | Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Transportation to and from Chicago O'Hare Airport or Midway Airport is available by limousine, taxi or car rental. Transportation to and from the Geneva local commuter Metra train station on the Union Pacific West line is available by taxi or Pace Call-n-Ride. Car rental All of the usual rental companies (such as Hertz, Avis, Budget and National) are located at the airports. For the best price, we recommend Ace Rent-a-Car at O'Hare Airport, telephone 1-800-243-3443 or

  16. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Transportation Stakeholders Forum May 14-16, 2013 Tuesday, May 14 7:00 am - 5:00 pm Registration Niagara Foyer 7:00 am - 7:45 am Breakfast and Networking Grand A 8:00 am - 10:00 am National Updates for Transportation Stakeholder Groups and Guests - Panel Grand BC Moderator: John Giarrusso Jr., MA Emergency Management Agency / Northeast High-Level Radioactive Waste Transportation Task Force Co-Chair US Department of Energy, Office of Environmental Management - Steve O'Connor, Director, Office of

  17. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  18. The Geography of Transport Systems-Maritime Transportation |...

    Open Energy Info (EERE)

    report Website: people.hofstra.edugeotransengch3enconc3ench3c4en.html Cost: Free Language: English References: Maritime Transportation1 "Maritime transportation, similar to...

  19. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies ...

  20. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  1. Accident resistant transport container

    DOE Patents [OSTI]

    Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  2. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  3. PBA Transportation Websites

    Broader source: Energy.gov [DOE]

    PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  4. Transportation Data Archiving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Data Archiving This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background Urban and regional transportation planning and operations applications, (e.g. traffic modeling) require a large volume of accurate traffic-related data for a wide range of conditions. Significant real-time data on traffic volumes, highway construction, accidents, weather, airline flights, commuter and rail schedules, etc., are recorded each day by

  5. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, Bradley G. (41 James St., Sequim, WA 98382); Downing, Jr., John P. (260 Kala Heights Dr., Port Townsand, WA 98368); Neal, Michael P. (921 Amberly Pl., Columbus, OH 43220)

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  6. Transportation Politics and Policy

    Gasoline and Diesel Fuel Update (EIA)

    Reducing Greenhouse Gas Emissions from U.S. Transportation Steven Plotkin, Argonne National Laboratory (co-author is David Greene of Oak Ridge) 2011 EIA Energy Conference May 26-27, 2011 Washington, DC Overview  Presentation based on recent report from the Pew Center on Global Climate Change  Task: Assess the potential to substantially reduce transportation's GHG emissions by 2035 & 2050.  Base Case: Annual Energy Outlook 2010 Reference Case, extended to 2050  Three scenarios

  7. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  8. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Save the Date! National Transportation Stakeholders Forum 2015 Annual Meeting May 12-14, 2015 Embassy Suites Albuquerque, New Mexico The U.S. Department of Energy (DOE) is pleased to announce the 2015 Annual Meeting of the National Transportation Stakeholders' Forum (NTSF). The Annual Meeting will take place from May 12-14 at the Embassy Suites in Albuquerque, New Mexico. DOE will be hosting this year's meeting in partnership with the Western Governors' Association, Western Interstate Energy

  9. Transportation and Program Management Services

    Office of Environmental Management (EM)

    Atlanta, Georgia Transportation and Program Management Services Secured Transportation Services, LLC Founded: December, 2003 ff Staff: 7 Experience: Over 145 years combined experience in Nuclear Transportation, Security, HP & Operations Services Transportation The largest Transportation Coordinators of Spent Nuclear Fuel in North America On-Site, Hands-On Assistance (Before & During both Loading & Transport) P d A i t (W iti d/ R i ) Procedure Assistance (Writing and/or Review)

  10. Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties

    SciTech Connect (OSTI)

    Cao Shaowen; Zhu Yingjie; Cui Jingbiao

    2010-07-15

    A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures such as solid microspheres, microspheres with the core in the hollow shell, and double-shelled hollow microspheres were synthesized by a simple one-step microwave-solvothermal ionic liquid method. The effects of the experimental parameters on the morphology and crystal phase of the resultant materials were investigated. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres and the underlying mechanisms were discussed. - Graphical abstract: A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures were synthesized by a simple one-step microwave-solvothermal ionic liquid method. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres.

  11. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid

    SciTech Connect (OSTI)

    Jensen, Mark P.; Beitz, James V.; Rickert, Paul G.; Borkowski, Marian; Laszak, Ivan; Dietz, Mark L.

    2012-07-01

    The extraction of trivalent lanthanides from an aqueous phase containing 1 M NaClO{sub 4} into the room temperature ionic liquid 1-butyl-3-methylimidazolium nonafluoro-1-butane sulfonate by the beta-diketone extractant 2-thenoyltrifluoroacetone (Htta) was studied. Radiotracer distribution, absorption spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and X-ray absorption fine structure measurements point to the extraction of multiple lanthanide species. At low extractant concentrations, fully hydrated aqua cations of the lanthanides are present in the ionic liquid phase. As the extractant concentration is increased 1:2 and 1:3 lanthanide:tta species are observed. In contrast, 1:4 Ln:tta complexes were observed in the extraction of lanthanides by Htta into 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. (authors)

  12. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    DOE Patents [OSTI]

    Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2015-10-13

    The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.

  13. Effect of Hydrogen Passivation on the Electronic Structure of Ionic Semiconductor Nanostructures

    SciTech Connect (OSTI)

    Deng, H. X.; Li, S. S.; Li, J. B.; Wei, S. H.

    2012-05-15

    In theoretical studies of thin film and nanostructured semiconductors, pseudohydrogen (PH) is widely used to passivate the surface dangling bonds. Based on these calculations, it is often believed that nanostructured semiconductors, due to quantum confinement, have a larger band gap than their bulk counterparts. Using first-principles band structure theory calculation and comparing systematically the differences between PH-passivated and real-hydrogen-passivated (RH-passivated) semiconductor surfaces and nanocrystals, we show that, unlike PH passivation that always increases the band gap with respect to the bulk value, RH passivation of the nanostructured semiconductors can either increase or decrease the band gap, depending on the ionicity of the nanocompounds. The differences between PH and RH passivations decreases when the covalency of the semiconductor increases and can be explained using a band coupling model. This observation greatly increases the tunability of nanostructured semiconductor properties, especially for wide-gap ionic semiconductors.

  14. CASL - Radiation Transport Methods Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Transport Methods Update The Radiation Transport Methods (RTM) focus area is responsible for the development of methods, algorithms, and implementations of radiation...

  15. Badger Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Jump to: navigation, search Name: Badger Transport Place: Clintonville, Wisconsin Zip: 54929 Product: Heavy haul and specialty trucking company active in the US Midwest....

  16. Transportation Resources | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources The following means of transportation are available for getting to Argonne. Airports Argonne is located within 25 miles of two major Chicago airports:...

  17. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  18. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders ...

  19. California Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Jump to: navigation, search Name: California Department of Transportation Place: Sacramento, California References: California Department of Transportation1 This...

  20. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. PDF icon Transportation Storage Interface More Documents & Publications...

  1. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    DOE Patents [OSTI]

    Zhao, Haibo (The Woodlands, TX); Holladay, Johnathan E. (Kennewick, WA; , Zhang, Zongchao C. (Norwood, NJ)

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  2. Electron Solvation Dynamics and Reactivity in Ionic Liquids Observed by Picosecond RadiolysisTechniques

    SciTech Connect (OSTI)

    Wishart J. F.; Funston, A.M.; Szreder, T.; Cook, A.R.; Gohdo, M.

    2012-01-01

    On time scales of a nanosecond or less, radiolytically-generated excess electrons in ionic liquids undergo solvation processes and reactions that determine all subsequent chemistry and the accumulation of radiolytic damage. Using picosecond pulse radiolysis detection methods, we observed and quantified the solvation response of the electron in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide and used it to understand electron scavenging by a typical solute, duroquinone.

  3. Synergistic Effects Between Phosphonium-Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qu, Jun; Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M.; Leonard, Donovan N.; Landauer, Alexander K.; Kheireddin, Bassem; Gao, Hong; Papke, Brian L; Dai, Sheng

    2015-07-14

    Unique synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) are discovered when used together as lubricant additives, resulting in significant friction and wear reduction along with distinct tribofilm composition and mechanical properties. The synergism is attributed to the 30-70× higher-than-nominal concentrations of hypothetical new compounds (via anion exchange between IL and ZDDP) on the fluid surface/interface.

  4. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    SciTech Connect (OSTI)

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  5. An Ionic Liquid Reaction and Separation Process for Production of Hydroxymethylfurfural from Sugars

    SciTech Connect (OSTI)

    Liu, Wei; Zheng, Feng; Li, Joanne; Cooper, Alan R.

    2014-01-01

    There has been world-wide interest to making plastics out of renewable biomass feedstock for recent years. Hydroxymethylfurfural (HMF) is viewed as an attractive alternate to terephthalic acid (TPA) for production of polyesters (PET) and polyamides. Conversion of sugars into HMF has been studied in numerous publications. In this work, a complete ionic liquid reaction and separation process is presented for nearly stoichiometric conversion of fructose into HMF. Different adsorbent materials are evaluated and silicalite material is demonstrated effective for isolation of 99% pure HMF from actual ionic liquid reaction mixtures and for recovery of the un-converted sugars and reaction intermediate along with the ionic liquid. Membrane-coated silicalite particles are prepared and studied for a practical adsorption process operated at low pressure drops but with separation performances comparable or better than the powder material. Complete conversion of fresh fructose feed into HMF in the recycled ionic liquid is shown under suitable reaction conditions. Stability of HMF product is characterized. A simplified process flow diagram is proposed based on these research results, and the key equipment such as reactor and adsorbent bed is sized for a plant of 200,000 ton/year of fructose processing capacity. The proposed HMF production process is much simpler than the current paraxylene (PX) manufacturing process from petroleum oil, which suggests substantial reduction to the capital cost and energy consumption be possible. At the equivalent value to PX on the molar basis, there can be a large gross margin for HMF production from fructose and/or sugars.

  6. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOE Patents [OSTI]

    Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL)

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  7. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing

    SciTech Connect (OSTI)

    Lee, JS; Hillesheim, PC; Huang, DK; Lively, RP; Oh, KH; Dai, S; Koros, WJ

    2012-11-30

    A proof of concept study for a new type of carbon capture system is considered for post-combustion CO2 capture based on porous hollow fiber sorbents with ionic liquids sorbed in the cell walls of the fiber. This study proves that delicate morphological features in the open-celled porous wall can be maintained during the infusion process. Mixtures of task specific ionic liquid (i.e. [BMIM][Tf2N]) and superbase (i.e. DBU) were loaded into polyamide-imide (PAI) fibers by a so-called two-step non-solvent infusion protocol. In the protocol, methanol carries ionic liquids into the pore cell walls of hollow fibers and then hexane carries superbase to create an efficient CO2 sorbent. Our ionic liquid/superbase impregnation technique overcomes a serious increase in mass transfer resistance upon reaction with CO2, thereby allowing its large scale utilization for post-combustion CO2 capture. The investigation on the effect of different pore former additives (different molecular weights of polyvinylpyrrolidone, lithium nitrate, and their mixtures) suggested that a large molecular weight of PVP (M-w; 1300k) including dope composition produces highly interconnected open cell pore structures of PAI hollow fibers. Lastly, a lumen side barrier layer was successfully formed on the bore side of neat PAI fibers by using a mixture of Neoprene (R) with crosslinking agents (TSR-633) via a post-treatment process. The lumen layer will enable heat removal from the fiber sorbents during their application in rapid thermal swing cycling processes. (C) 2012 Elsevier Ltd. All rights reserved.

  8. Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ab Initio Property Maps | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by Ab Initio Property Maps Previous Next List Fangyong Yan, Michael Lartey, Kuldeep Jariwala, Sage Bowser, Krishnan Damodaran, Erik Albenze, David R. Luebke, Hunaid B. Nulwala, Berend Smit, and Maciej Haranczyk, J. Phys. Chem. B, 118, 13609-13620 (2014) DOI: 10.1021/jp506972w jp-2014-06972w_0013 Abstract: The

  9. Understanding the effect of side groups in ionic liquids on carbon-capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties: a combined experimental and theoretical effort | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome the effect of side groups in ionic liquids on carbon-capture properties: a combined experimental and theoretical effort Previous Next List Fangyong Yan, Michael Lartey, Krishnan Damodaran, Erik Albenze, Robert L. Thompson, Jihan Kim, Maciej Haranczyk, Hunaid B. Nulwala, David R. Luebke and Berend Smit, Phys. Chem. Chem. Phys., 2013,15, 3264-3272 DOI:

  10. Synergistic Effects Between Phosphonium-Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives

    SciTech Connect (OSTI)

    Qu, Jun; Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M.; Leonard, Donovan N.; Landauer, Alexander K.; Kheireddin, Bassem; Gao, Hong; Papke, Brian L; Dai, Sheng

    2015-07-14

    Unique synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) are discovered when used together as lubricant additives, resulting in significant friction and wear reduction along with distinct tribofilm composition and mechanical properties. The synergism is attributed to the 30-70 higher-than-nominal concentrations of hypothetical new compounds (via anion exchange between IL and ZDDP) on the fluid surface/interface.

  11. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOE Patents [OSTI]

    Lin, YuPo J. (Naperville, IL); Henry, Michael P. (Batavia, IL); Snyder, Seth W. (Lincolnwood, IL)

    2008-11-18

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  12. Fabrication of hollow mesoporous NiO hexagonal microspheres via hydrothermal process in ionic liquid

    SciTech Connect (OSTI)

    Zhao, Jinbo; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Wu, Lili; School of Materials Science and Engineering, Shandong University, 250061, Jinan ; Zou, Ke; School of Materials Science and Engineering, Shandong University, 250061, Jinan

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Ni(OH){sub 2} precursors were synthesized in ionic liquid and water solution by hydrothermal method. Black-Right-Pointing-Pointer NiO hollow microspheres were prepared by thermal treatment of Ni(OH){sub 2} precursors. Black-Right-Pointing-Pointer NiO hollow microspheres were self-assembled by mesoporous cubic and hexagonal nanocrystals with high specific surface area. Black-Right-Pointing-Pointer The mesoporous structure is stable at 773 K. Black-Right-Pointing-Pointer The ionic liquid absorbed on the O-terminate surface of the crystals to form hydrogen bond and played key roles in determining the final shape of the NiO novel microstructure. -- Abstract: The novel NiO hexagonal hollow microspheres have been successfully prepared by annealing Ni(OH){sub 2}, which was synthesized via an ionic liquid-assisted hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption and Fourier transform infrared spectrometer (FTIR). The results show that the hollow NiO microstructures are self-organized by mesoporous cubic and hexagonal nanocrystals. The mesoporous structure possessed good thermal stability and high specific surface area (ca. 83 m{sup 2}/g). The ionic liquid 1-butyl-3methylimidazolium tetrafluoroborate ([Bmim][BF{sub 4}]) was found to play a key role in controlling the morphology of NiO microstructures during the hydrothermal process. The special hollow mesoporous architectures will have potential applications in many fields, such as catalysts, absorbents, sensors, drug-delivery carriers, acoustic insulators and supercapacitors.

  13. Properties of some ionic liquids based on1-methyl-3-octylimidazolium and 4-methyl-N-butylpyridinium cations.

    SciTech Connect (OSTI)

    Papaiconomou, Nicolas; Yakelis, Neal; Salminen, Justin; Bergman,Robert; Prausnitz, John M.

    2005-09-29

    Syntheses are reported for ionic liquids containing 1-methyl-3octylimidazolium and 4-methyl-N-butylpyridinium cations, and trifluoromethansulfonate, dicyanamide, bis(trifluoromethylsulfonyl)imide, and nonafluorobutanesulfonate anions. Densities, melting points and glass transition points, solubility in water as well as polarities have been measured. Ionic liquids based on pyridinium cations exhibit higher melting points, lower solubility in water, and higher polarity than those based on imidazolium cations.

  14. Solubilities of Solutes in Ionic Liquids from a SimplePerturbed-Hard-Sphere Theory

    SciTech Connect (OSTI)

    Qin, Yuan; Prausnitz, John M.

    2005-09-20

    In recent years, several publications have provided solubilities of ordinary gases and liquids in ionic liquids. This work reports an initial attempt to correlate the experimental data using a perturbed-hard-sphere theory; the perturbation is based on well-known molecular physics when the solution is considered as a dielectric continuum. For this correlation, the most important input parameters are hard-sphere diameters of the solute and of the cation and anion that constitute the ionic liquid. In addition, the correlation uses the solvent density and the solute's polarizability and dipole and quadrupole moments, if any. Dispersion-energy parameters are obtained from global correlation of solubility data. Results are given for twenty solutes in several ionic liquids at normal temperatures; in addition, some results are given for gases in two molten salts at very high temperatures. Because the theory used here is much simplified, and because experimental uncertainties (especially for gaseous solutes) are often large, the accuracy of the correlation presented here is not high; in general, predicted solubilities (Henry's constants) agree with experiment to within roughly {+-} 70%. As more reliable experimental data become available, modifications in the characterizing parameters are likely to improve accuracy. Nevertheless, even in its present form, the correlation may be useful for solvent screening in engineering design.

  15. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  16. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account for individual traveler response to the dynamic transportation environment. In contrast, TRANSIMS provides disaggregated information that more explicitly represents the complex nature of humans interacting with the transportation system. It first generates a synthetic population that represents individuals and their households in the metropolitan region in a statistically valid way. The demographic makeup and spatial distribution of this synthetic population is derived from census data so that it matches that of the region’s real population. From survey data, a model is built of household and individual activities that may occur at home, in the workplace, school or shopping centers, for example. Trip plans including departure times, travel modes, and specific routes are created for each individual to get to his or her daily activities. TRANSIMS then simulates the movement of millions of individuals, following their trip plans throughout the transportation network, including their use of vehicles such as cars or buses, on a second-by-second basis. The virtual travel in TRANSIMS mimics the traveling and driving behavior of real people in the metropolitan region. The interactions of individual vehicles produce realistic traffic dynamics from which analysts can judge to performance of the transportation sysime and estimate vehicle emissions. Los Alamos, in cooperation with the Department of Transportation, Federal HIghway Administration and the local Metropolitan Planning Offices, has done TRANSIMS micro-simulations of auto traffic patterns in these two urban areas and completed associated scenario-based studies.« less

  17. Water Transport Within the STack: Water Transport Exploratory Studies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 2_lanl.pdf More Documents & Publications Water Transport Exploratory Studies Fuel Cell Kickoff Meeting Agenda

  18. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    reports Coal Transportation Rates to the Electric Power Sector With Data through 2014 | Release Date: February 23, 2016 | Next Release Date: January 2017 | Previous Data Years Year: 2013 2011 2010 2008 2002 Go Background and Methodology The data in the tables are based on primary data collected by EIA from plant owners and operators on the Form EIA-923, "Power Plant Operations Report" (EIA-923 Data) and supplement data and analysis of coal transportation costs released by EIA in June

  19. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Registration is OPEN! National Transportation Stakeholders Forum 2015 Annual Meeting May 12-14, 2015 Embassy Suites Albuquerque, New Mexico Online registration is now open for the 2015 Annual Meeting of the National Transportation Stakeholders' Forum (NTSF), to be held in Albuquerque, New Mexico. The meeting will begin at 8:00am on Tuesday, May 12th, and will conclude by 10:00am on Thursday, May 14th. To view a preliminary draft agenda, please visit the NTSF meeting website. DOE will be hosting

  20. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

  1. EPAct Transportation Regulatory Activities

    SciTech Connect (OSTI)

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  2. NREL: Transportation Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Transportation Research Home Capabilities Projects

  3. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  4. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  5. Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Maginn, Edward

    2012-09-30

    This is the final report for DE-FC26-07NT43091 ??Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO{sub 2} Capture?. A detailed summary is provided of the ionic liquid (IL) discovery process, synthesis and testing results, process / systems modeling, lab-scale operational testing, corrosion testing and commercialization possibilities. The work resulted in the discovery of a new class of ionic liquids (ILs) that efficiently react with CO{sub 2} in a 1:1 stoichiometry with no water present and no increase in viscosity. The enthalpy of reaction was tuned to optimize process economics. The IL was found to have excellent corrosion behavior with and without CO{sub 2} present. In lab-scale tests, the IL was able to effectively remove CO{sub 2} from a simulated flue gas stream, although mass transfer was slower than with aqueous monoethanolamine (MEA) due to higher viscosities. The non-volatile nature of the solvent and its high thermal stability, however, make it an intriguing option. An independent systems analysis indicates that the economics of using the best IL discovered to date (NDIL0157), are at least comparable to ?? and potentially slightly better than -?? the Fluor Econamine FG PlusTM process (DOE Case 12). Further work should be directed at improving mass transfer / lowering viscosity and developing commercial synthesis routes to make these ILs at scale in an inexpensive manner. Demonstration of the process at larger scales is also warranted, as is the exploration of other process configurations that leverage the anhydrous nature of the solvent and its extremely low volatility.

  6. Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization

    SciTech Connect (OSTI)

    Karpenko, A. Iablonskyi, D.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.; Urpelainen, S.

    2014-05-28

    The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.

  7. THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.

    2013-04-15

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  8. ionic liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  10. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  11. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Map of Argonne Site Showing CNM Location A shuttle bus operates between Argonne and the University of Chicago's Hyde Park campus. Northwestern University offers a car pool program to Argonne. From early spring until early fall, Argonne offers a bike-share program that facility users are welcome to join. Before using the bikes, you must take a online bike safety course and sign a liability waiver. On completion of the training and waiver, you will receive an Argonne-issued bike

  12. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    TRANSPORTATION STAKEHOLDERS FORUM Activities and Accomplishments May 16, 2013 Buffalo, New York NTSF RESOURCES  Wiki Site  Private domain / Registration required  Repository of information  Users are allowed editing capabilities  Webinars  Cover a variety of topics (NRC Rulemaking, Section 180(c), BRC Recommendations, Strategy for Management and Disposal of UNF and HLRW, etc.)  Recording are available on the wiki site  Input is needed for future content NTSF Working

  13. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  14. High Cyclability of Ionic Liquid-Produced TiO2 Nanotube Arrays As an Anode Material for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Li, Huaqing; Martha, Surendra K; Unocic, Raymond R; Luo, Huimin; Dai, Sheng; Qu, Jun

    2012-01-01

    TiO{sub 2} nanotubes (NTs) are considered as a potential SEI-free anode material for Li-ion batteries to offer enhanced safety. Organic solutions, dominatingly ethylene glycol (EG)-based, have widely been used for synthesizing TiO{sub 2} NTs via anodization because of their ability to generate long tubes and well-aligned structures. However, it has been revealed that the EG-produced NTs are composited with carbonaceous decomposition products of EG, release of which during the tube crystallization process inevitably causes nano-scale porosity and cracks. These microstructural defects significantly deteriorate the NTs charge transport efficiency and mechanical strength/toughness. Here we report using ionic liquids (ILs) to anodize titanium to grow low-defect TiO{sub 2} NTs by reducing the electrolyte decomposition rate (less IR drop due to higher electrical conductivity) as well as the chance of the decomposition products mixing into the TiO{sub 2} matrix (organic cations repelled away). Promising electrochemical results have been achieved when using the IL-produced TiO{sub 2} NTs as an anode for Li-ion batteries. The ILNTs demonstrated excellent capacity retention without microstructural damage for nearly 1200 cycles of charge-discharge, while the NTs grown in a conventional EG solution totally pulverized in cycling, resulting in significant capacity fade.

  15. the-transportation-research-board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 22-26, 2012 The Transportation Research Board (TRB) 91st Annual Meeting will be held in Washington, D.C. at the Washington Marriott Wardman Park, Omni Shoreham, and Washington Hilton hotels. The information-packed program will attract more than 11,000 transportation professionals from around the world to Washington, D.C., January 22-26, 2012. The Transportation Research and Analysis Computing Center (TRACC) team will showcase current projects at the upcoming Transportation Research Board

  16. transportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    transportation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  17. Oil-Miscible and Non-Corrosive Phosphonium Ionic Liquids as Candidate Lubricant Additives

    SciTech Connect (OSTI)

    Yu, Bo; Bansal, Dinesh G; Qu, Jun; Sun, Xiaoqi; Luo, Huimin; Dai, Sheng; Blau, Peter Julian; Bunting, Bruce G; Mordukhovich, Gregory; Smolenski, Donald

    2012-01-01

    Ionic liquids (ILs) have been receiving considerable attention from the lubricants industry as potential friction and wear-reducing additives, but their solubility in oils is an issue. Unlike most ionic liquids that are insoluble in non-polar hydrocarbon oils, this study reports phosphonium-based ILs (PP-ILs) that are fully miscible with both mineral oil-based and synthetic lubricants. Both the cation and anion in quaternary structures, long alkyl chains, and capability of pairing the cation and the anion via a H-O bond are hypothesized to improve the compatibility between ions and neutral oil molecules. The measured viscosities of the oil-IL blends agree well with the Refutas equation that is for solutions containing multiple components. High thermal stability and non-corrosiveness were observed for the PP-ILs. Effective friction reduction and anti-wear functionality have been demonstrated in tribological tests when adding 5 wt% of a PP-IL into a base oil, suggesting potential applications for using the oil-miscible PP-ILs as lubricant additives.

  18. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol•kg–1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol•kg–1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Ksp) for cerussite, PbCO3(cr) = Pb2+ + CO32- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)22-, and Pb(CO3)Cl– with the bulk-supporting electrolytes, based on the Pitzer model. The model developed inmore » this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less

  19. Ionic liquid-assisted sonochemical preparation of CeO2 nanoparticles for CO oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; Grünert, Wolfgang; Mudring, Anja -Verena

    2014-10-10

    CeO2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf2N]–, in combination with various cations including 1-butyl-3-methylimidazolium ([C4mim]+), 1-ethyl-2,3-dimethylimidazolium ([Edimim]+), butyl-pyridinium([Py4]+), 1-butyl-1-methyl-pyrrolidinium ([Pyrr14]+), and 2-hydroxyethyl-trimethylammonium ([N1112OH]+). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic propertiesmore » of the as-prepared CeO2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO2 nanoparticles were investigated in the oxidation of CO. CeO2 nanospheres obtained sonochemically in [C4mim][Tf2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.« less

  20. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture

    SciTech Connect (OSTI)

    Eckert, Charles; Liotta, Charles

    2011-09-30

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  1. Reversible Ionic Liquids as Double-Action Solvents for Efficient CO{sub 2} Capture

    SciTech Connect (OSTI)

    Charles Eckert; Charles Liotta

    2011-09-30

    We have developed a novel class of CO{sub 2} capture solvents, Reversible Ionic Liquids (RevILs), that offer high absorption capacity through two modes of capture: chemical reaction (chemisorption) and physical solubility (physisorption). These solvents are silicon containing alkaline compounds such as silylamines that form a liquid salt (ionic liquid) upon reaction with CO{sub 2}. Subsequently, modest elevations in temperature reverse the reaction and yield pure CO{sub 2} for sequestration. By incorporating Si in the molecules we have reduced the viscosity, thereby improving the mass transfer rates of CO{sub 2} absorption/desorption and decreasing the processing costs for pumping the solvent. In this project, we have made systematic changes to the structure of these compounds to improve several physical and thermodynamic properties important for CO{sub 2} capture. Through these structure-property paradigms, we have obtained a RevIL which requires only a third of the energy required by conventional aqueous MEA process for 90% CO{sub 2} capture.

  2. Process for CO2 Capture Using Ionic Liquid That Exhibits Phase Change

    SciTech Connect (OSTI)

    Eisinger, RS; Keller, GE

    2014-11-01

    A novel process for capturing carbon dioxide from the flue gas of a coal-fired power plant has been shown to reduce parasitic power consumption substantially. The process employs an ionic liquid created at the University of Notre Dame that has a high capacity for absorbing CO2 by chemical reaction. A distinguishing property of this ionic liquid is that it changes phase from solid to liquid upon reaction with CO2. The process uses heat generated by this phase transition to lower parasitic power consumption. The driving force for CO2 separation is a combination of temperature and pressure differences; the process could even work without the addition of heat. A realistic process was created to capture CO2 efficiently. Computer simulation of the process enabled calculation of viable process conditions and power usage. The main concepts of the process were shown to work using a lab-scale apparatus. Parasitic power consumes 23% of net power generation, 55% lower than that of the monoethanolamine (MEA) process. However, capital cost is higher. The cost of electricity (COE) is 28% lower than that of the MEA process.

  3. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    SciTech Connect (OSTI)

    Duan, QJ; Ge, SH; Wang, CY

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  5. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    SciTech Connect (OSTI)

    Yu, Jianguo Bai, Xian-Ming; El-Azab, Anter; Allen, Todd R.

    2015-03-07

    Oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation, and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO{sub 2}) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo method has been used to investigate the kinetics of oxygen transport in UO{sub 2} under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable off-stoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO{sub 2?x}, oxygen transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO{sub 2+x}, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that di-interstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence, and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing an explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.

  6. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOE Patents [OSTI]

    Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  7. 2012 ROCK DEFORMATION: FEEDBACK PROCESSES IN ROCK DEFORMATION GORDON RESEARCH CONFERENCE, AUGUST 19-24, 2012

    SciTech Connect (OSTI)

    Kelemen, Peter

    2012-08-24

    Topics covered include: Failure At High Confining Pressure; Fluid-assisted Slip, Earthquakes & Fracture; Reaction-driven Cracking; Fluid Transport, Deformation And Reaction; Localized Fluid Transport And Deformation; Earthquake Mechanisms; Subduction Zone Dynamics And Crustal Growth.

  8. The World Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes...

  9. Ecolane Transport Conultancy | Open Energy Information

    Open Energy Info (EERE)

    Ecolane Transport Conultancy Jump to: navigation, search Name: Ecolane Transport Conultancy Place: Bristol, United Kingdom Zip: BS3 4UB Product: UK-based sustainable transport...

  10. Financing Sustainable Urban Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Toolkit Region(s): Global Related Tools Production Costs of Alternative Transportation Fuels Transport Regulation from Theory to Practice: General...

  11. National Transportation Stakeholders Forum (NTSF) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) The U.S. Department of Energy ...

  12. Texas Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin,...

  13. VTPI-Transportation Statistics | Open Energy Information

    Open Energy Info (EERE)

    Area: Transportation Resource Type: Dataset Website: www.vtpi.orgtdmtdm80.htm Cost: Free VTPI-Transportation Statistics Screenshot References: VTPI-Transportation Statistics1...

  14. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    SciTech Connect (OSTI)

    Ryan, Joseph

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix. The results of the field experiment suggested that ion exchange, and not organic matter- or colloid-facilitated transport, was the dominant mechanism for mobilization of cesium and strontium through the macropores of the fractured soil.

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-07-30

    This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  18. Resolving the mystery of transport within internal transport barriers

    SciTech Connect (OSTI)

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Kinsey, J. E.; Grierson, B. A.; Chrystal, C.

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by EB velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high EB velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  19. Isotope Program Transportation | Department of Energy

    Office of Environmental Management (EM)

    Isotope Program Transportation Isotope Program Transportation PDF icon Isotope Program Transportation More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project Overview Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy

  20. Nuclear Transportation Management Services | Department of Energy

    Office of Environmental Management (EM)

    Transportation Management Services Nuclear Transportation Management Services PDF icon Nuclear Transportation Management Services More Documents & Publications Transportation and Program Management Services Pueblo de San Ildefonso Shoshone-Bannock Tribes

  1. NREL: Transportation Research - Archives for the Transportation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Newsletter Archives for the Transportation and Hydrogen Newsletter To read past issues of the Transportation and Hydrogen Newsletter, select from the list below. January 2016 - Sustainable Mobility November 2015 - Energy Storage August 2015 - Deployment May 2015 - Hydrogen & Fuel Cell Technology March 2015 - Fuels and Combustion January 2015 - The Future of Sustainable Transportation December 2014 - Marketplace Impact October 2014 - Reliability, Durability, and Safety July 2014

  2. NREL: Transportation Research - Subscribe to the Transportation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Newsletter Subscribe to the Transportation and Hydrogen Newsletter To subscribe to or unsubscribe from the Transportation and Hydrogen Newsletter, complete one of the forms below. Subscribe To subscribe to the newsletter, submit your email address. Email: Submit Unsubscribe To unsubscribe from the newsletter, submit your email address. Email: Submit Printable Version Transportation Research Home Capabilities Projects Success Stories Facilities Working with Us Publications Data &

  3. Mixed-Salt Effects on the Ionic Conductivity of Lithium-Doped PEO-Containing Block Copolymers

    SciTech Connect (OSTI)

    Young, Wen-Shiue; Albert, Julie N.L.; Schantz, A. Benjamin; Epps, III, Thomas H.

    2012-10-10

    We demonstrate a simple, yet effective, mixed-salt method to increase the room temperature ionic conductivity of lithium-doped block copolymer electrolyte membranes by suppressing the crystalline phases in the conducting block. We examined a mixed-salt system of LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} (LiTFSI) doped into a lamellae-forming poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymer. The domain spacings, morphologies, thermal behavior, and crystalline phases of salt-doped PS-PEO samples were characterized, and the ionic conductivities of block copolymer electrolytes were obtained through ac impedance measurements. Comparing the ionic conductivity profiles of salt-doped PS-PEO samples at different mixed-salt ratios and total salt concentrations, we found that the ionic conductivity at room temperature can be improved by more than an order of magnitude when coinhibition of crystallite growth is promoted by the concerted behavior of the PEO:LiClO{sub 4} and PEO:LiTFSI phases. Additionally, we examined the influence of mixed-salt ratio and total salt concentration on copolymer energetics, and we found that the slope of the effective interaction parameter ({chi}{sub eff}) vs salt concentration in our lamellae-forming PS-PEO system was lower than that reported for a cylinder-forming PS-PEO system due to the balance between chain stretching and salt segregation in the PEO domains.

  4. Fabrication of ionic liquid electrodeposited Cu--Sn--Zn--S--Se thin films and method of making

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath

    2016-01-12

    A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.

  5. TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening

    SciTech Connect (OSTI)

    Li, Huaqing; Qu, Jun; Cui, Qingzhou; Xu, Hanbing; Luo, Huimin; Chi, Miaofang; Meisner, Roberta Ann; Wang, Wei; Dai, Sheng

    2011-01-01

    Debris-free, long, well-separated TiO2 nanotube arrays were obtained using an ionic liquid (IL) as electrolyte. The high conductivity of IL resulted in fast pore widening and few contaminants from electrolyte decomposition leading to high photocatalytic efficiency in water splitting.

  6. DOE TMD transportation training module 14 transportation of explosives

    SciTech Connect (OSTI)

    Griffith, R.L. Jr.

    1994-07-01

    The Department of Energy Transportation Management Division has developed training module 14, entitled {open_quotes}Transportation of Explosives{close_quotes} to compliment the basic {open_quotes}core ten{close_quotes} training modules of the Hazardous Materials Modular Training Program. The purpose of this training module is to increase awareness of the Department of Transportation (DOT) requirements concerning the packaging and transportation of explosives. Topics covered in module 14 include the classification of explosives, approval and registration of explosives, packaging requirements, hazard communication requirements, separation and segregation compatibility requirements, loading and unloading operations, as well as safety measures required in the event of a vehicle accident involving explosives.

  7. Transportation and Stationary Power Integration Workshop Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Transportation and Stationary Power Integration: ...

  8. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  9. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  10. Transportation, Aging and Disposal Canister System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 ...

  11. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  12. Supertruck - Improving Transportation Efficiency through Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine ...

  13. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming...

  14. Transportation Emergency Preparedness Program | Department of...

    Office of Environmental Management (EM)

    Program Transportation Emergency Preparedness Program Planning for a Shipment Campaign - Identification of Responder Needs PDF icon Transportation Emergency Preparedness Program...

  15. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 ...

  16. Transportation Issues and Resolutions Compilation of Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Work Package Reports | Department of Energy Transportation Issues and Resolutions Compilation of Laboratory Transportation Work Package Reports Transportation Issues and Resolutions Compilation of Laboratory Transportation Work Package Reports The Transportation Team identified the retrievability and subcriticality safety functions to be of primary importance to the transportation of UNF after extended storage and to transportation of high burnup fuel. The tasks performed and

  17. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  18. Transportation Efficiency Financial Incentives and Program Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financial Incentives and Program Resources Transportation Efficiency Financial Incentives and Program Resources While transportation efficiency policies are often implemented under ...

  19. Westminster Energy Environment Transport Forum | Open Energy...

    Open Energy Info (EERE)

    Westminster Energy Environment Transport Forum Jump to: navigation, search Name: Westminster Energy, Environment & Transport Forum Place: United Kingdom Product: String...

  20. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    SciTech Connect (OSTI)

    Rocha, Marisa A. A. E-mail: marisa.alexandra.rocha@gmail.com; Coutinho, João A. P.; Santos, Luís M. N. B. F. E-mail: marisa.alexandra.rocha@gmail.com

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids. The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.

  1. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-02-02

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in themore » microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Lastly, cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.« less

  2. Lubricants or lubricant additives composed of ionic liquids containing ammonium cations

    DOE Patents [OSTI]

    Qu, Jun (Knoxville, TN) [Knoxville, TN; Truhan, Jr.,; John J. (Cookeville, TN) [Cookeville, TN; Dai, Sheng (Knoxville, TN) [Knoxville, TN; Luo, Huimin (Knoxville, TN) [Knoxville, TN; Blau, Peter J. (Knoxville, TN) [Knoxville, TN

    2010-07-13

    A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

  3. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

    DOE Patents [OSTI]

    Mackay, Richard (Lafayette, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01

    Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.

  4. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    SciTech Connect (OSTI)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  5. Catalytic Ionic Hydrogenation of Ketones by {[Cp*Ru(CO)2]2(? H)}+

    SciTech Connect (OSTI)

    Fagan, Paul J.; Voges, Mark H.; Bullock, R. Morris

    2010-02-22

    {[Cp*Ru(CO)2]2(? H)}+OTf functions as a homogeneous catalyst precursor for hydrogenation of ketones to alcohols, with hydrogenations at 1 mol % catalyst loading at 90 C under H2 (820 psi) proceeding to completion and providing >90% yields. Hydrogenation of methyl levulinate generates ?-valerolactone, presumably by ring-closing of the initially formed alcohol with the methyl ester. Experiments in neat Et2C=O show that the catalyst loading can be <0.1 mole %, and that at least 1200 turnovers of the catalyst can be obtained. These reactions are proposed to proceed by an ionic hydrogenation pathway, with the highly acidic dihydrogen complex [Cp*Ru(CO)2(?2-H2)]+OTf- being formed under the reaction conditions from reaction of H2 with {[Cp*Ru(CO)2]2(? H)}+OTf .

  6. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    SciTech Connect (OSTI)

    Yin, Yee Cia; Kait, Chong Fai E-mail: hayyiratulfatimah@yahoo.com Fatimah, Hayyiratul E-mail: hayyiratulfatimah@yahoo.com Wilfred, Cecilia E-mail: hayyiratulfatimah@yahoo.com

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  7. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOE Patents [OSTI]

    Clark, Jr., William M. (Thousand Oaks, CA); Utlaut, Mark W. (Saugus, CA); Wysocki, Joseph A. (Oxnard, CA); Storms, Edmund K. (Los Alamos, NM); Szklarz, Eugene G. (Los Alamos, NM); Behrens, Robert G. (Los Alamos, NM); Swanson, Lynwood W. (McMinnville, OR); Bell, Anthony E. (McMinnville, OR)

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  8. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite

    SciTech Connect (OSTI)

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Bias-dependent structure of electrochemical double layers at liquid-solid interfaces underpin a multitude of phenomena in virtually all areas of scientific enquiry ranging from energy storage and conversion systems, biology, to geophysics and geochemistry. Here we report the bias-evolution of the electric double layer structure of an ionic liquid on highly ordered pyrolytic graphite as a model system for carbon-based electrodes for electrochemical supercapacitors measured by atomic force microscopy. Matching the observed structures to molecular dynamics simulations allows us to resolve steric effects due to cation and anion layers. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long- and short range interactions. This insight will improve understanding of the mechanism of charge storage in electrochemical capacitors on a molecular level which can be used to enhance their electrochemical performance.

  9. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the systemits physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is Mobility and Access, which complements past TSAR theme sections on The Economic Performance of Transportation (1995) and Transportation and the Environment (1996). Mobility and access are at the heart of the transportation systems performance from the users perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nations residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve peoples access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  10. Leaching behavior of copper from waste printed circuit boards with Brnsted acidic ionic liquid

    SciTech Connect (OSTI)

    Huang, Jinxiu; Chen, Mengjun Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-15

    Highlights: A Brnsted acidic ILs was used to leach Cu from WPCBs for the first time. The particle size of WPCBs has significant influence on Cu leaching rate. Cu leaching rate was higher than 99% under the optimum leaching conditions. The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brnsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.10.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.

  11. Transportation (technology 86)

    SciTech Connect (OSTI)

    Caplan, G.

    1986-01-01

    As railroads strive to cut operating and maintenance costs in an increasingly competitive transportation industry, AC propulsion and microprocessors figure prominently in their plans. New generations of locomotives and cars incorporating AC propulsion and microprocessors entered service last year, and the trend is destined to continue. Electronics is also making possible freight trains that rely on a telemetry unit at the rear to monitor airbrake pressure, instead of a manned caboose. AC is gaining acceptance because it permits simpler motors with fewer parts to wear and replace, and it saves energy by allowing the traction motors to work as generators during braking. Microprocessors are being used in locomotives not only to reduce energy waste through better regulation of traction motor currents and auxiliary devices such as cooling fans, but also to control engine speed, braking, and other functions.

  12. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  13. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D. (McMurray, PA)

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  15. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  16. computational-hydraulics-for-transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Workshop Sept. 23-24, 2009 Argonne TRACC Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory will hold a workshop on the use of computational hydraulics for transportation applications. The goals of the workshop are: Bring together people who are using or would benefit from the use of high performance cluster

  17. transportation-system-modeling-webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar Announcement Webinar for the Intelligent Transportation Society of the Midwest (ITS Midwest) May 16, 2011 1:00 PM(CST) Hubert Ley Director, TRACC Argonne National Laboratory Argonne, Illinois High Performance Computing in Transportation Research - High Fidelity Transportation Models and More The Role of High-Performance Computing Because ITS relies on a very diverse collection of technologies, including communication and control technologies, advanced computing, information management

  18. National Transportation Fuels Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilitiesNational Transportation Fuels Model content top National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries, transmission pipelines, and tank farms) can be disrupted,

  19. Minority Transportation Expenditure Allocation Model

    Energy Science and Technology Software Center (OSTI)

    1993-04-12

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  20. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Transportation Projects Transportation Projects Because highway vehicles account for a large share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve our energy security and air quality. However, few fuel-cell-powered vehicles are in use today; even fewer are available commercially. A number of fuel cell vehicle demonstrations are currently underway

  1. Sustainable Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Sustainable Transportation Bioenergy Bioenergy Read more Hydrogen and Fuel Cells Hydrogen and Fuel Cells Read more Vehicles Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices,

  2. Natural gas marketing and transportation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  3. Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste Shipment Indiana Department of Homeland...

  4. Air Transport Optimization Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACAir Transport Optimization Model content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures...

  5. NREL: Transportation Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power ...

  6. Office of Secure Transportation Activities

    Office of Environmental Management (EM)

    Briefing Our Mission To provide safe and secure ground and air transportation of nuclear weapons, nuclear weapons components, and special nuclear materials and conduct other ...

  7. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  8. Santa Clara Valley Transportation Authority

    Broader source: Energy.gov [DOE]

    Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual ridership of more than 39 million and cover approximately 326 square miles.

  9. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  10. Career Map: Transportation Worker | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Worker Career Map: Transportation Worker Transportation workers help to guide a large wind turbine component down a narrow road. Transportation Worker Position Title Transportation Worker Alternate Title(s) Railroad worker, truck driver, driver, long-haul truck driver, water transportation officer or engineer Education & Training Level Bachelor's degree generally not expected Education & Training Level Description Transportation workers' education and training requirements

  11. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  12. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  13. NREL: Transportation Research - A Vision for Sustainable Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Vision for Sustainable Transportation NREL research, development, and deployment accelerates the process of bringing sustainable transportation technologies to market. Line graph illustrating three pathways to reduce transportation energy use and greenhouse gas (GHG) emissions, with "energy consumption of vehicles" along the y-axis (ranging from 0 to 2.0 kWh/km) and "carbon intensity of energy source" along the x-axis (ranging from 450 to 0 g CO2/kWh). A solid bottom line

  14. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  15. Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials

    SciTech Connect (OSTI)

    Zhang, Yanwen; Varga, Tamas; Ishimaru, Dr. Manabu; Edmondson, Dr. Philip; Xue, Haizhou; Liu, Peng; Moll, Sandra; Namavar, Fereydoon; Hardiman, Chris; Shannon, Prof. Steven; Weber, William J

    2014-01-01

    Ever increasing energy needs have raised the demands for advanced fuels and cladding materials that withstand the extreme radiation environments with improved accident tolerance over a long period of time. Ceria (CeO2) is a well known ionic conductor that is isostructural with urania and plutonia-based nuclear fuels. In the context of nuclear fuels, immobilization and transmutation of actinides, CeO2 is a model system for radiation effect studies. Covalent silicon carbide (SiC) is a candidate for use as structural material in fusion, cladding material for fission reactors, and an inert matrix for the transmutation of plutonium and other radioactive actinides. Understanding microstructural change of these ionic-covalent materials to irradiation is important for advanced nuclear energy systems. While displacements from nuclear energy loss may be the primary contribution to damage accumulation in a crystalline matrix and a driving force for the grain boundary evolution in nanostructured materials, local non-equilibrium disorder and excitation through electronic energy loss may, however, produce additional damage or anneal pre-existing defect. At intermediate transit energies where electronic and nuclear energy losses are both significant, synergistic, additive or competitive processes may evolve that affect the dynamic response of materials to irradiation. The response of crystalline and nanostructured CeO2 and SiC to ion irradiation are studied under different nuclear and electronic stopping powers to describe some general material response in this transit energy regime. Although fast radiation-induced grain growth in CeO2 is evident with no phase transformation, different fluence and dose dependence on the growth rate is observed under Si and Au irradiations. While grain shrinkage and amorphization are observed in the nano-engineered 3C SiC with a high-density of stacking faults embedded in nanosize columnar grains, significantly enhanced radiation resistance is attributed to stacking faults that promote efficient point defect annihilation. Moreover, competing effects of electronic and nuclear energy loss on the damage accumulation and annihilation are observed in crystalline 4H-SiC. Systematic experiments and simulation effort are needed to understand the competitive or synergistic effects.

  16. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  17. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Environmental Management (EM)

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  18. Modified normal-phase ion-pair chromatographic methods for the facile separation and purification of imidazolium-based ionic compounds

    SciTech Connect (OSTI)

    Urban, ND; Schenkel, MR; Robertson, LA; Noble, RD; Gin, DL

    2012-07-04

    lmidazolium- and oligo(imidazolium)-based ionic organic compounds are important in the design of room-temperature ionic liquid materials; however, the chromatographic analysis and separation of such compounds are often difficult. A convenient and inexpensive method for effective thin-layer chromatography (TLC) analysis and column chromatography separation of imidazolium-based ionic compounds is presented. Normal-phase ion-pair TLC is used to effectively analyze homologous mixtures of these ionic compounds. Subsequent separation of the mixtures is performed using ion-pair flash chromatography on normal-phase silica gel, yielding high levels of recovery. This method also results in a complete exchange of the counter anion on the imidazolium compounds to the anion of the ion-pair reagent. (C) 2012 Elsevier Ltd. All rights reserved.

  19. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  20. Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena

    2015-07-08

    Ln3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial shows intense luminescencemore » of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+).« less

  1. High-Permeance Room-Temperature Ionic-Liquid-Based Membranes for CO2/N-2 Separation

    SciTech Connect (OSTI)

    Zhou, JS; Mok, MM; Cowan, MG; McDanel, WM; Carlisle, TK; Gin, DL; Noble, RD

    2014-12-24

    We have developed and fabricated thin-film composite (TFC) membranes with an active layer consisting of a room-temperature ionic liquid/polymerized (room-temperature ionic liquid) [i.e., (RTIL)/poly(RTIL)] composite material. The resulting membrane has a CO2 permeance of 6100 +/- 400 GPU (where 1 GPU = 10(-6) cm(3)/(cm(2) s cmHg)) and an ideal CO2/N-2 selectivity of 22 +/- 2. This represents a new membrane with state-of-the-art CO2 permeance and good CO2/N-2 selectivity. To our knowledge, this is the first example of a TFC gas separation membrane composed of an RTIL-containing active layer.

  2. Interim UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-03-30

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a draft list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during very long term storage (VLTS). The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of SSCs and degradation mechanisms developed by the UFD Storage Task (Stockman et al. 2010)

  3. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report

  4. Quantum transport through aromatic molecules

    SciTech Connect (OSTI)

    Ojeda, J. H.; Rey-Gonzlez, R. R.; Laroze, D.

    2013-12-07

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices.

  5. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  6. Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces

    SciTech Connect (OSTI)

    Strelcov, Evgheni; Ievlev, Dr. Anton; Jesse, Stephen; Kravchenko, Ivan I; Shur, V.Y.; Kalinin, Sergei V

    2014-01-01

    Mapping surface potential with time-resolved Kelvin Probe Force Microscopy (tr-KPFM) in LiNbO3 periodically-poled single crystal revealed activation of the surface ionic subsystem. Electric fields higher than certain threshold value but lower than the switching field induce injection of charge from the biased electrode, formation of an active region in its vicinity and uneven distribution of screening charge on the opposite ferroelectric domains. Tr-KPFM technique allows investigating these phenomena in details.

  7. Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells

    SciTech Connect (OSTI)

    Li, Bin; Zhang, Jiaming; Kaspar, Tiffany C.; Shutthanandan, V.; Ewing, Rodney C.; Lian, Jie

    2013-01-01

    Strain confinement in heterostructured films significantly affects ionic conductivity of the electrolytes for solid oxide fuel cells based on a multi-layered design strategy. Nearly ideal tensile strain can be achieved by a dedicated manipulation of the lattice mismatch between adjacent layers and fine control of the layer thicknesses to minimize the formation of dislocations and thus to achieve optimized ionic conduction. This strategy was demonstrated by a model system of multilayered 8 mol%Y2O3 stabilized ZrO2 (YSZ) with Gd2Zr2O7 (GZO) films, which were epitaxially grown on Al2O3 (0001) substrates by pulsed laser deposition (PLD) with the {111} planes of YSZ/GZO along the Al2O3 [0 1 ?1 0] direction. The tensile strain (3%) resulting from the lattice mismatch can be confined in individual YSZ layers with the formation of a coherent, dislocation-free interface upon the manipulation of the layer thickness below a critical value, e.g., down to 5 nm. The strained heterostructure displays a two order-of-magnitude increase in oxide-ion conductivity as compared with bulk YSZ, and a high ionic conductivity of 0.01 S cm?1 at 475 C can be achieved, five times greater than that of Gd-doped ceria/zirconia. The approach of strain confinement by fine control of lattice mismatch and layer thickness represents a promising strategy in developing advanced electrolytes enabling the miniaturization of solid-state ionic devices that can be operated at low temperatures below 500 C.

  8. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases. Four case studies are presented: Water and Soil Characterization, Subsurface Stabilization of Uranium and other Toxic Metals, Reductive Precipitation (in situ bioremediation) of Uranium, and Physical Transport of Particle-bound Uranium by Erosion.

  9. Influence of magnetic field on laser-produced barium plasmas: Spectral and dynamic behaviour of neutral and ionic species

    SciTech Connect (OSTI)

    Raju, Makaraju Srinivasa; Gopinath, Pramod, E-mail: pramod@iist.ac.in [Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547 (India); Singh, R. K.; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-10-21

    The expansion dynamics and spectral behaviour of plasma produced by a Nd:YAG laser (?=1.064 ?m, pulse width: 8 ns) from barium target and expanding in 0.45 T transverse magnetic field in vacuum (10??Torr pressure) are investigated using time-of-flight optical emission spectroscopy. The experiments are carried out at various laser fluences from 12 to 31 J/cm. The temporal profiles of neutral (Ba I 553.5 and 577.7 nm) lines are temporally broadened, while that of ionic (Ba II 413.0 and 455.4 nm) lines show strong confinement in the presence of a magnetic field. In the absence of magnetic field, the temporal profile of Ba I 553.5 nm is exactly reproduced by fitting with two Shifted Maxwell Boltzmann (SMB) Distribution components, while in the presence of a magnetic field the profile could only be fitted with three components. The field enhanced and field induced SMB components of neutral profile are correlated with populations of ground state, metastable states, and long-lived Rydberg states present in the barium plasma, while SMB components of ionic lines are explained on the basis of the presence of super-elastic collisions among the excited species in the plasma. The spatial variation of electron temperature and temporal variation of electron density are deduced and correlated to the different collisional processes in the barium plasma. The ionic profiles show efficient confinement in the presence of a magnetic field at higher fluences.

  10. Raidiation-Induced Fragmentation of Diamide Extraction Agents in Ionic Liquid Diluents

    SciTech Connect (OSTI)

    Bell, Jason R; Dai, Sheng; Shkrob, Ilya A.; Marin, Timothy W.; Luo, Huimin; Hatcher, Jasmine; Rimmer, R. Dale; Wishart, James F.

    2012-01-01

    N,N,N',N'-Tetraalkyldiglycolamides are extracting agents that are used for liquid-liquid extraction of trivalent metal ions in wet processing of spent nuclear fuel. This application places such agents in contact with the decaying radionuclides, causing radiolysis of the agent in the organic diluent. Recent research seeks to replace common molecular diluents (such as n-dodecane) with hydrophobic room-temperature ionic liquids (ILs), which have superior solvation properties. In alkane diluents, rapid radiolytic deterioration of diglycolamide agents can be inhibited by addition of an aromatic cosolvent that scavenges highly reactive alkane radical cations before these oxidize the extracting agent. Do aromatic ILs exhibit a similar radioprotective effect? To answer this question, we used electron paramagnetic resonance spectroscopy to study the fragmentation pathways in radiolysis of neat diglycolamides, their model compounds, and their solutions in the ILs. Our study indicates that aromatic ILs do not protect these types of solutes from extensive radiolytic damage. Previous research indicated a similar lack of protection for crown ethers, whereas the ILs readily protected di- and trialkyl phosphates (another large class of metal-extracting agents). Our analysis of these unanticipated failures suggests that new types of organic anions are required in order to formulate ILs capable of radioprotection for these classes of solutes. This study is a cautionary tale of the fallacy of analogical thinking when applied to an entirely new and insufficiently understood class of chemical materials.

  11. Deprotonation and oligomerization in photo-, radiolytically and electrochemically induced redox reactions in hydrophobic alkylalkylimidazolium ionic liquids.

    SciTech Connect (OSTI)

    Shkrob, I . A.; Chemical Sciences and Engineering Division

    2010-01-14

    Radical chemistry initiated by one-electron reduction of 1-methyl-3-alkylimidazolium cations in the corresponding ionic liquids (ILs) is examined. The reaction scheme is examined in light of the recent experimental data on photo-, radiation-, and electrochemically induced degradation of the practically important hydrophobic alkylimidazolium ILs. It is suggested that the primary species leading to the formation of the oligomers and acidification of the IL is a {sigma}{sigma}* dimer radical cation that loses a proton, yielding a neutral radical whose subsequent reactions produce C(2)-C(2) linked oligomers, both neutral and charged. The neutral oligomers (up to the tetramer) account for the features observed in the NMR spectra of cathodic liquid generated in electrolytic breakdown of the IL solvent. In photolysis and radiolysis, these neutral species and/or their radical precursors are oxidized by radical (ions) derived from the counteranions, and only charged dimers are observed. The dication dimers account for the features observed in the mass spectra of irradiated ILs. The products of these ion radical and radical reactions closely resemble those generated via carbene chemistry, without the formation of the carbene via the deprotonation of the parent cation. As the loss of 2-protons increases the proticity of the irradiated IL, it interferes with the extraction of metal ions by ionophore solutes, while the formation of the oligomers modifies solvent properties. Thus, the peculiarities of radical chemistry in the alkylimidazolium ILs have significant import for their practical applications.

  12. Ionic field effect and memristive phenomena in single-point ferroelectric domain switching

    SciTech Connect (OSTI)

    Ievlev, Anton; Morozovska, A. N.; Eliseev, E. A.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2014-01-01

    Electric field induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science, and optoelectronics. In the last 20 years, much attention has been focused on the switching of individual domains using scanning probe microscopy, both as model of ferroelectric data storage and approach to explore fundamental physics of ferroelectric switching. The classical picture of tip induced switching includes formation of cylindrical domain oriented along the tip field, with the domain size is largely determined by the tip-induced field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behavior. Here, we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviors are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). The implications of these behaviors for ferroelectric materials and devices are discussed.

  13. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  14. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    SciTech Connect (OSTI)

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

  15. Mass spectrometers for studying the ionic and neutral composition of the upper layers of the atmosphere

    SciTech Connect (OSTI)

    Shutov, M.D.

    1984-04-01

    The investigation of the ionic and neutral composition of the upper layers of the atmosphere and outer space which is of interest for solving theoretical and applied problems of astrophysics, geophysics, space biology, and other closely-tied areas of science is discussed. The upper layers of the atmosphere are of practical significance for launching rockets and artificial satellites, for which the nature of movement depends on the structure and composition of the atmosphere. The study of the chemical composition of the ionosphere, the degree of ionization of the upper layers of the atmosphere at different latitudes and different times of day, and the dependence of ionization on the action of ultraviolet and corpuscular radiation is necessary to study the processes of the propagation of radio waves, and to explain the chemical and photochemical reaction which cause the ionosphere to exist. The most modern methods of study the composition of the mass spectral method which is a direct method and is especially valuable at great altitudes to study the composition of the upper atmosphere is considered. The mass spectrometric method is the only one to analyze the composition of ionizing gases.

  16. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    SciTech Connect (OSTI)

    Nazari, K.; Adhami, F.; Najjar-Safari, A.; Salmani, S.; Mahmoudi, A.

    2011-07-15

    Highlights: {yields} Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. {yields} Main advantage of this simple method is producing soluble encapsulated nanowires. {yields} Nanowire can be easily precipitated and separated by dilution with distilled water. {yields} Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. {yields} Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  17. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  18. Installation of a reactive site for covalent wiring onto an intrinsically conductive poly(ionic liquid)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brombosz, Scott M.; Lee, Sungwon; Firestone, Millicent A.

    2014-11-04

    We describe post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone. Raman and FT-IR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-dopedmore » polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100 % functionalization can be achieved. These results collectively demonstrate that post-modification of a π-conjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules.« less

  19. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers.

    SciTech Connect (OSTI)

    Marin, T.; Shkrob, I.; Dietz, M.

    2011-04-14

    Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between different clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.

  20. Catalytic Ionic Hydrogenation of Ketones by {[Cp*Ru(CO)2]2(-H)}+

    SciTech Connect (OSTI)

    Bullock, R.M.; Fagan, P.J.; Voges, M.H.

    2010-02-22

    {l_brace}[Cp*Ru(CO){sub 2}]{sub 2}({mu}-H){r_brace}{sup +}OTf{sup -} functions as a homogeneous catalyst precursor for hydrogenation of ketones to alcohols, with hydrogenations at 1 mol % catalyst loading at 90 C under H{sub 2} (820 psi) proceeding to completion and providing >90% yields. Hydrogenation of methyl levulinate generates {gamma}-valerolactone, presumably by ring-closing of the initially formed alcohol with the methyl ester. Experiments in neat Et{sub 2}C=O show that the catalyst loading can be <0.1 mol % and that at least 1200 turnovers of the catalyst can be obtained. These reactions are proposed to proceed by an ionic hydrogenation pathway, with the highly acidic dihydrogen complex [Cp*Ru(CO){sub 2}({eta}{sup 2}-H{sub 2})]{sup +}OTf{sup -} being formed under the reaction conditions from reaction of H2 with {l_brace}[Cp*Ru(CO){sub 2}]{sub 2}({mu}-H){r_brace}{sup +}OTf{sup -}.

  1. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect (OSTI)

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  2. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulationmore » of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  3. Midwestern Radioactive Materials Transportation Committee Agenda |

    Office of Environmental Management (EM)

    Department of Energy Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda PDF icon Midwestern Radioactive Materials Transportation Committee Agenda More Documents & Publications NTSF Spring 2012 Agenda NTSF Spring 2011 Agenda NTSF 2013 Agenda

  4. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  5. Transportation Sector Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  6. National Transportation Stakeholders Forum (NTSF)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the Department...

  7. transportation-systems-modeling-training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Table of Contents Date Location Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa, FL TRANSIMS Training Course April 14-15, 2011 James E. Clyburn University Transportation Center Orangeburg, SC TRANSIMS RTSTEP Guest Lecturer March 29, 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course January 19-21 2011 Argonne TRACC Argonne, IL TRANSIMS Training Course September 7-8, 2010 Turner Fairbank Highway Research Center Washington D.C. Network

  8. NREL: Transportation Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research Silver Toyota Prius being driven in front of NREL entrance sign. NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. Thermal image of two men standing in front of tractor trailer cab. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. Female researcher holding coin cell battery. NREL's transportation research spans from the materials to the

  9. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 2 (Jan 2016) Archived Editions: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 1 (Oct 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1, Issue 4 (July 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1, Issue 3 (Apr 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1,

  10. Energy Intensity Indicators: Transportation Energy Consumption | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet

  11. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share

  12. Transportation scenarios for risk analysis.

    SciTech Connect (OSTI)

    Weiner, Ruth F.

    2010-09-01

    Transportation risk, like any risk, is defined by the risk triplet: what can happen (the scenario), how likely it is (the probability), and the resulting consequences. This paper evaluates the development of transportation scenarios, the associated probabilities, and the consequences. The most likely radioactive materials transportation scenario is routine, incident-free transportation, which has a probability indistinguishable from unity. Accident scenarios in radioactive materials transportation are of three different types: accidents in which there is no impact on the radioactive cargo, accidents in which some gamma shielding may be lost but there is no release of radioactive material, and accident in which radioactive material may potentially be released. Accident frequencies, obtainable from recorded data validated by the U.S. Department of Transportation, are considered equivalent to accident probabilities in this study. Probabilities of different types of accidents are conditional probabilities, conditional on an accident occurring, and are developed from event trees. Development of all of these probabilities and the associated highway and rail accident event trees are discussed in this paper.

  13. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  14. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 2 (Jan 2016) Archived Editions: Coal ...

  15. Transportation and Stationary Power Integration Workshop Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda, October 27, 2008, Phoenix, Arizonia Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Agenda for the Transportation and ...

  16. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Transportation Fuels Jump to: navigation, search TODO: Add description List of Renewable Transportation Fuels Incentives Retrieved from "http:en.openei.orgw...

  17. Transport NAMA Database | Open Energy Information

    Open Energy Info (EERE)

    Website: www.transport-namadatabase.orgindex.phpMainPage Transport Toolkit Region(s): Latin America & Caribbean, Africa & Middle East, Europe, Asia Related Tools Climate...

  18. Transport Research Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Research Laboratory AgencyCompany Organization: Transport Research Laboratory Focus Area:...

  19. Standardization of Transport Properties Measurements: Internal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric Standardization of Transport Properties Measurements: Internal Energy...

  20. EERE FY 2016 Budget Overview -- Sustainable Transportation |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation EERE FY 2016 Budget Overview -- Sustainable Transportation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Sustainable...

  1. Victoria Transport Policy Institute | Open Energy Information

    Open Energy Info (EERE)

    Transport Policy Institute Jump to: navigation, search Name: Victoria Transport Policy Institute Address: 1250 Rudlin Street, Place: Victoria, British Columbia Website:...

  2. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  3. APEC-Alternative Transport Fuels: Implementation Guidelines ...

    Open Energy Info (EERE)

    APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APEC-Alternative Transport Fuels: Implementation Guidelines...

  4. Caltrans Transportation Permits Manual | Open Energy Information

    Open Energy Info (EERE)

    Transportation Permits Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Caltrans Transportation Permits ManualLegal Abstract...

  5. Analysis of Transportation and Logistics Challenges Affecting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results Analysis of Transportation and Logistics Challenges Affecting ...

  6. Transportation and Stationary Power Integration Workshop Attendees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attendees List Transportation and Stationary Power Integration Workshop Attendees List List of attendees for the Transportation and Stationary Power Integration Workshop PDF icon ...

  7. Spring 2014 National Transportation Stakeholder Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 National Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda PRESENTATIONS - MAY ...

  8. Transportation Emergency Preparedness Program (TEPP) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Emergency Preparedness Program (TEPP) Transportation Emergency Preparedness Program (TEPP) In an effort to address responder concerns, the Department retooled its ...

  9. Known Challenges Associated with the Production, Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Known Challenges Associated with the Production, Transportation, Storage and ...

  10. ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) This schedule covers records documenting the ...

  11. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of ...

  12. Hazardous Materials Packaging and Transportation Safety - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Ashok Kapoor Functional areas: Hazardous Materials, Packaging and Transportation, Safety and Security, Work...

  13. Asian Development Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    sectorstransportmain Transport Toolkit Region(s): Asia Related Tools TRANSfer - Towards climate-friendly transport technologies and measures List of Publications from GIZ...

  14. Spring 2016 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida The Spring 2016 meeting of the ...

  15. New Transportation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation solutions. Home > Innovation > Transportation A World-Class Traction Motor for Hybrid and Electric Vehicles Engineers at GE Global Research are advancing motor...

  16. Electric Drive Transportation Association EDTA | Open Energy...

    Open Energy Info (EERE)

    Transportation Association EDTA Jump to: navigation, search Name: Electric Drive Transportation Association (EDTA) Product: EDTA is the preeminent U.S. industry association...

  17. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    Climate Adaptation for Transportation (Redirected from 03 Climate Adaptation for Transportation) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 03 Climate Adaptation...

  18. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    Climate Adaptation for Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 03 Climate Adaptation for Transportation AgencyCompany Organization: AASHTO...

  19. Montana Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Name: Montana Department of Transportation Address: 2701 Prospect Avenue P.O. Box 201001 Place: Helena, Montana Zip: 59620 Website: www.mdt.mt.gov Coordinates:...

  20. Nevada Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    of Transportation Name: Nevada Department of Transportation Address: 1263 S. Stewart St. Place: Carson City, Nevada Zip: 89712 Phone Number: 775-888-7000 Website:...

  1. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle ...

  2. Vehicle Technologies Office Merit Review 2014: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle ...

  3. Los Angeles County Metropolitan Transportation Authority Metro...

    Open Energy Info (EERE)

    County Metropolitan Transportation Authority Metro Jump to: navigation, search Name: Los Angeles County Metropolitan Transportation Authority (Metro) Place: Los Angeles, California...

  4. Transportation Energy Data Book | Open Energy Information

    Open Energy Info (EERE)

    for use as a desk-top reference, the Transportation Energy Data Book provides statistics and information characterizing transportation activity and energy use. The book...

  5. Washington State Department of Transportation | Open Energy Informatio...

    Open Energy Info (EERE)

    Transportation Jump to: navigation, search Logo: Washington State Department of Transportation Name: Washington State Department of Transportation Abbreviation: WDOT Place:...

  6. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

  7. Multi-Path Transportation Futures Study - Lessons for the Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study Multi-Path Transportation Futures Study - Lessons for the Transportation Energy ...

  8. Molecular Aspects of Transport in Thin Films of Controlled Architecture

    SciTech Connect (OSTI)

    Paul W. Bohn

    2009-04-16

    Our laboratory focuses on developing spatially localized chemistries which can produce structures of controlled architecture on the supermolecular length scale -- structures which allow us to control the motion of molecular species with high spatial resolution, ultimately on nanometer length scales. Specifically, nanocapillary array membranes (NCAMs) contain an array of nanometer diameter pores connecting vertically separated microfluidic channels. NCAMs can manipulate samples with sub-femtoliter characteristic volumes and attomole sample amounts and are opening the field of chemical analysis of mass-limited samples, because they are capable of digital control of fluid switching down to sub-attoliter volumes; extension of analytical unit operations down to sub-femtomole sample sizes; and exerting spatiotemporal control over fluid mixing to enable studies of reaction dynamics. Digital flow switching mediated by nanocapillary array membranes can be controlled by bias, ionic strength, or pore diameter and is being studied by observing the temporal characteristics of transport across a single nanopore in thin PMMA membranes. The control of flow via nanopore surface characteristics, charge density and functional group presentation, is being studied by coupled conductivity and laser-induced fluorescence (LIF) measurements. Reactive mixing experiments previously established low millisecond mixing times for NCAM-mediated fluid transfer, and this has been exploited to demonstrate capture of mass-limited target species by Au colloids. Voltage and thermally-activated polymer switches have been developed for active control of transport in NCAMs. Thermally-switchable and size-selective transport was achieved by grafting poly(N-isopropylacrylamide) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane, while the voltage-gated properties of poly(hydroxyethylmethacrylate) were characterized dynamically. Electrophoretic separations have been coupled to analyte sampling both by LIF and mass spectrometry. Detection of electrophoresis separation products by electrospray mass spectrometry was achieved through direct interfacing to an electrospray mass spectrometer. Pb(II) interactions with the DNAzyme have been realized in an NCAM-coupled integrated microfluidic structure allowing cation separations to be coupled to molecular beacon detection motifs for the determination of Pb(II) in an electroplating sludge reference material. By changing the DNAzyme to select for other compounds of interest, it is possible to incorporate multiple sensing systems within a single device, thereby achieving great flexibility.

  9. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14

    Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current commerically used thermal fluids. Also within the past decade nanofluids have gained attention for thermal conductivity enhancment of fluids, but little analysis has been completed on the heat capacity effects of the nanoparticle addition. The idea of ILs or nanofluids as a HTF is not new, as there are several references that have proposed the idea. However, the use of ionic liquid nanofluids containing nanomaterials other than carbon nanotubes has never before been studied. Here, for the first time, nano-particle enhanced ILs (NEILs) have been shown to increase the heat capacity of the IL with no adverse side effects to the ILs thermal stability and, only at high nanoparticle loading, are the IL physical properties affected. An increase of volumetric heat capacity translates into a better heat transfer fluid as more energy is stored per volumetric unit in the solar concentrating section, thus more efficency in increased steam pressure. Results show that the properties of the NEIL are highly dependant on the suspended nanomaterial and careful materials selection is required to fully optimize the nanofluid properties.

  10. Phytoremediation of ionic and methyl mercury pollution. 1997 annual progress report

    SciTech Connect (OSTI)

    Meagher, R.B.

    1997-01-01

    'The long-term goal of this research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants (Meagher and Rugh, 1996; Meagher et al., 1997). The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The authors have had a very successful first year either testing aspects of this hypothesis directly or preparing material needed for future experiments. The results are outlined below under goals A and B, which are explicit in this hypothesis. There were less than 10% of the funds remaining in any category as projected in the first 12 month budget at the end of the first year, with the exception of the equipment category which had 25% of the funds remaining ({approximately} $8,000). Much of this remaining equipment money is being spent this week on a mercury vapor analyzer. It might be useful to remember that at the time this grant was awarded, the authors had successfully engineered a small model plant, Arabidopsis thalianat to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. However, at that time, they had no information on expression of merA in any other plant species, nor had they expressed merB in any plant.'

  11. Composition dependent structural organization in trihexyl(tetradecyl)phosphonium chloride ionic liquid-methanol mixtures

    SciTech Connect (OSTI)

    Gupta, Aditya; Sharma, Shobha; Kashyap, Hemant K.

    2015-04-07

    This article reports results from the molecular dynamics simulations on the structural arrangement of the ions and molecules in the mixtures of trihexyl(tetradecyl)phosphonium chloride ([P{sub 666,14}{sup +}][Cl{sup ?}]) ionic liquid (IL) and methanol (MeOH) over the entire composition range. Effects of composition on the charge and polarity orderings have been investigated via computation of X-ray scattering structure function, S(q), and by using a partitioning scheme proposed for such multi-component mixtures. Except for the neat methanol liquid, the total S(q) shows two peaks in its intermolecular region for all the mole-fractions. The lowest q peak is dominated primarily by anion-anion, cation-anion, and methanol-anion correlations. Our results signify that the methanol bulk structure, which predominantly has short-distance characteristic correlations and is governed by polar group of methanol, is retained for x{sub IL} ? 0.1. Then, the mixture goes through gradual structural changes from methanol-like to the IL-like for 0.1 < x{sub IL} ? 0.7. The dipolar interaction between methanol molecules weakens in this range, and the structural landscape of the mixture is steered by strong ion-ion, anion-methanol, and nonpolar interactions. The IL-like structural arrangement is virtually recovered for x{sub IL} > 0.7. At all the compositions studied, while the cation head groups are predominantly solvated by anions and subsequently by methanol molecules, the polar hydroxyl group of methanol is preferentially solvated by the anions. The radial distribution functions of selected pair of atomic species have also confirmed these observations.

  12. The importance of ion size and electrode curvature on electrical double layers in ionic liquids

    SciTech Connect (OSTI)

    Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

    2011-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ? [BMIM][Cl] (near the negative electrode) ? [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a Multiple Ion Layers with Overscreening (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  13. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    SciTech Connect (OSTI)

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent

    2010-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  14. Transportation Emergency Preparedness Program - Making A Difference |

    Office of Environmental Management (EM)

    Department of Energy - Making A Difference Transportation Emergency Preparedness Program - Making A Difference Overview of TEPP presentated by Tom Clawson. PDF icon Transportation Emergency Preparedness Program - Making A Difference More Documents & Publications Transportation Emergency Preparedness Program Exercise Overview Transportation Emergency Preparedness Program 2012 TEPP Annual Report

  15. Transportation Emergency Preparedness Program Exercise Overview |

    Office of Environmental Management (EM)

    Department of Energy Exercise Overview Transportation Emergency Preparedness Program Exercise Overview PDF icon Transportation Emergency Preparedness Program Exercise Overview More Documents & Publications Transportation Emergency Preparedness Program - Making A Difference DOE Efforts in Preparing and Improving First Response Capabilities and Performance through Drills and Exercises Transportation Emergency Preparedness Program

  16. BEST (Battery Economics for more Sustainable Transportation)

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    Computer software for the simulation of battery economics based on various transportation business models.

  17. Transportation, Aging and Disposal Canister System Performance

    Energy Savers [EERE]

    Specification: Revision 1 | Department of Energy Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. PDF icon Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 More Documents &

  18. Transportation Efficiency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Transportation Efficiency Resources Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and state programs can play supportive roles in reducing VMT. Find transportation efficiency resources below. Improving Travel Efficiency at the Local Level: An ACEEE Policy Toolkit.

  19. Methods of producing transportation fuel

    DOE Patents [OSTI]

    Nair, Vijay; Roes, Augustinus Wilhelmus Maria; Cherrillo, Ralph Anthony; Bauldreay, Joanna M.

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  20. Subsurface Flow and Contaminant Transport

    Energy Science and Technology Software Center (OSTI)

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  1. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Perspectives Nonlinear optical approaches for elucidating interfacial fluid and sorbed species structures and dynamics pdf Structural and Dynamic Properties of Room Temperature Ionic Liquids Confined within Hierarchical Porous Materials pdf Structure and Dynamics of Electrical Double Layer Using Integrated Scanning Probe Microscopy and Molecular Simulations pdf Effects of Nano-Confinement on the Fluid Interfacial Structure, Dynamics and Thermodynamic behavior pdf Molecular Insights into

  2. Transportation System Simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation System Simulation Transportation System Simulation Today's transportation systems are becoming more and more complex, with integration of communication technologies, vehicle automation and innovative mobility solutions. The advent of connected and autonomous vehicles (CAVs) will see no shortage of new technologies aimed at transforming transportation. While some will likely succeed and others fail, to truly understand their potential and their impacts on the larger transportation

  3. EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW

    SciTech Connect (OSTI)

    Fox, E.; Visser, A.; Bridges, N.

    2011-07-18

    This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

  4. Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions

    SciTech Connect (OSTI)

    Rinne, Klaus F.; Netz, Roland R.; Gekle, Stephan

    2014-12-07

    Using extensive equilibrium molecular dynamics simulations we determine the dielectric spectra of aqueous solutions of NaF, NaCl, NaBr, and NaI. The ion-specific and concentration-dependent shifts of the static dielectric constants and the dielectric relaxation times match experimental results very well, which serves as a validation of the classical and non-polarizable ionic force fields used. The purely ionic contribution to the dielectric response is negligible, but determines the conductivity of the salt solutions. The ion-water cross correlation contribution is negative and reduces the total dielectric response by about 5%-10% for 1?M solutions. The dominating water dielectric response is decomposed into different water solvation shells and ion-pair configurations, by this the spectral blue shift and the dielectric decrement of salt solutions with increasing salt concentration is demonstrated to be primarily caused by first-solvation shell water. With rising salt concentration the simulated spectra show more pronounced deviations from a single-Debye form and can be well described by a Cole-Cole fit, in quantitative agreement with experiments. Our spectral decomposition into ionic and different water solvation shell contributions does not render the individual contributions more Debye-like, this suggests the non-Debye-like character of the dielectric spectra of salt solutions not to be due to the superposition of different elementary relaxation processes with different relaxation times. Rather, the non-Debye-like character is likely to be an inherent spectral signature of solvation water around ions.

  5. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  6. Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report

    SciTech Connect (OSTI)

    Nguyen, Thuc-Quyen; Bazan, Guillermo; Mikhailovsky, Alexander

    2014-04-15

    Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced cost. During the execution of the project, main efforts were focused on the synthesis of new charge-bearing organic materials, such as CPEs and COEs, and block copolymers with neutral and ionic segments, studies of mechanisms responsible for the charge injection modulation in devices with ionic interlayers, and use of naturally occurring charged molecules for creation of enhanced devices. The studies allowed PIs to demonstrate the usefulness of the proposed approach for the improvement of operational parameters in model OLED and FET systems resulting in increased efficiency, decreased contact resistance, and possibility to use stable metals for fabrication of device electrodes. The successful proof-of-the-principle results potentially promise development of light-weight, low fabrication cost devices which can be used in consumer applications such as displays, solar cells, and printed electronic devices. Fundamental mechanisms responsible for the phenomena observed have been identified thus advancing the fundamental knowledgebase.

  7. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    SciTech Connect (OSTI)

    Roberts, J.G.

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  8. Assessment of the Effects of Flow Rate and Ionic Strength on Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Aaron, D; Tsouris, Costas; Hamilton, Choo Yieng; Borole, Abhijeet P

    2010-01-01

    Impedance changes of the anode, cathode and solution were examined for a microbial fuel cell (MFC) under varying conditions in order to improve its performance. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode limited power output. Decreasing the anode flow rate did not impact the anode impedance significantly, while it increased the cathode impedance by 65% . Reducing the anode-medium ionic strength from 100% to 10% increased the cathode impedance by 48%.

  9. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: ARPA-Es Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  10. Azobenzene-based organic salts with ionic liquid and liquid crystalline properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; Mudring, Anja -Verena

    2015-07-23

    Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn)2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and m =more » 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12)2 (1d), Azo(-C1-Im-C12)2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. As a result, through irradiation with UV-light (320–366 nm) all compounds undergo trans–cis isomerization, which reverses under visible light (440 nm).« less

  11. Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO{sub 2}

    SciTech Connect (OSTI)

    Dean Camper; Jason E. Bara; Douglas L. Gin; Richard D. Noble

    2008-11-05

    Solutions of room-temperature ionic liquids (RTILs) and commercially available amines were found to be effective for the capture of CO{sub 2} as carbamate salts. RTIL solutions containing 50 mol % (16% v/v) monoethanolamine (MEA) are capable of rapid and reversible capture of 1 mol of CO{sub 2} per 2 moles MEA to give an insoluble MEA-carbamate precipitate that helps to drive the capture reaction (as opposed to aqueous amine systems). Diethanolamine (DEA) can also be used in the same manner for CO{sub 2} capture in RTILs containing a pendant hydroxyl group. The captured CO{sub 2} in the resulting RTIL-carbamate salt mixtures can be readily released by either heating and/or subjecting them to reduced pressure. Using this unprecedented and industrially attractive mixing approach, the desirable properties of RTILs (i.e., nonvolatility, enhancedCO{sub 2} solubility, lower heat capacities) can be combined with the performance of amines for CO{sub 2} capture without the use of specially designed, functionalized 'task-specific' ionic liquids. By mixing RTILs with commercial amines, reactive solvents with a wide range of amine loading levels can be tailored to capture CO{sub 2} in a variety of conditions and processes. These RTIL-amine solutions behave similarly to their water-based counterparts but may offer many advantages, including increased energy efficiency, compared to current aqueous amine technologies.

  12. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for using our shuttle. See other transit information here). OAKLAND INTERNATIONAL AIRPORT to the Lab by BART A special shuttle bus, the Oakland-AirBART shuttle, runs between...

  13. PNNL Coal Gasifier Transportation Logistics

    SciTech Connect (OSTI)

    Reid, Douglas J.; Guzman, Anthony D.

    2011-04-13

    This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNLs coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNLs Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administrations Cargo Securement Rules.

  14. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fueled transportation systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  15. Biomass Engineering: Transportation & Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office eere.energy.gov 1 | Bioenergy Technologies Office Content 1 | Bioenergy Technologies Office eere.energy.gov 2015 DOE Bioenergy Technologies Office (BETO) Project Peer Review March 23-27, 2015 1.2.1.3 Biomass Engineering: Transportation & Handling Mar. 27, 2015 Tyler Westover, Ph.D. Idaho National Laboratory "Why 'flowability' doesn't work and how to fix it" This presentation does not contain any proprietary, confidential, or otherwise restricted

  16. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  17. Transportation Research Board 94th Annual Meeting

    Broader source: Energy.gov [DOE]

    The Transportation Research Board 94th Annual Meeting will be held January 11–15, 2015, in Washington, D.C. at the Walter E. Washington Convention Center. The event covers the entire transportation...

  18. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  19. GIZ Transport & Mobility Compass | Open Energy Information

    Open Energy Info (EERE)

    Transport Toolkit Region(s): Global Related Tools Global EV Outlook Pay-As-You-Drive Pricing in British Columbia GIZ Sourcebook Module 5f: Adapting Urban Transport to Climate...

  20. Evaluation of the Whooshh Fish Transport System

    Broader source: Energy.gov [DOE]

    Last November, John Oliver highlighted during his program Last Week Tonight the Whooshh Fish Transport System (aka “salmon cannon”), a new, innovate fish transport system developed by Whooshh...