Sample records for reaction transport model

  1. Pion-nucleus reactions in a microscopic transport model

    E-Print Network [OSTI]

    A. Engel; W. Cassing; U. Mosel; M. Schäfer; Gy. Wolf

    1993-07-07T23:59:59.000Z

    We analyse pion-nucleus reactions in a microscopic transport model of the BUU type, which propagates nucleons, pions, deltas and N(1440)-resonances explicitly in space and time. In particular we examine pion absorption and inelastic scattering cross sections for pion kinetic energies T(pi) =85-315MeV and various target masses. In general, the mass-dependence of the experimental data is well described for energies up to the delta-resonance (\\approx 160 MeV) while the absorption cross sections are somewhat overestimated for the higher energies. In addition we study the possible dynamical effects of delta- and pion-potentials in the medium on various observables as well as alternative models for the in-medium delta-width.

  2. Development of a scalable model for predicting arsenic transport coupled with oxidation and adsorption reactions

    E-Print Network [OSTI]

    Clement, Prabhakar

    modeling; Contaminant transport; Scaling; Numerical modeling 1. Introduction Management of groundwaterDevelopment of a scalable model for predicting arsenic transport coupled with oxidation is critical for predicting its transport dynamics in groundwater systems. We completed batch experiments

  3. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    SciTech Connect (OSTI)

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01T23:59:59.000Z

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle model simulates more accurately than the ADRE.

  4. Reaction plane angle dependence of dihadron azimuthal correlations from a multiphase transport model calculation

    E-Print Network [OSTI]

    W. Li; S. Zhang; Y. G. Ma; X. Z. Cai; J. H. Chen; H. Z. Huang; G. L. Ma; C. Zhong

    2010-01-07T23:59:59.000Z

    Dihadron azimuthal angle correlations relative to the reaction plane have been investigated in Au + Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV using a multi-phase transport model (AMPT). Such reaction plane azimuthal angle dependent correlations can shed light on path-length effect of energy loss of high transverse momentum particles propagating through the hot dense medium. The correlations vary with the trigger particle azimuthal angle with respect to the reaction plane direction, $\\phi_{s}=\\phi_{T}-\\Psi_{EP}$, which is consistent with the experimental observation by the STAR collaboration. The dihadron azimuthal angle correlation functions on the away side of the trigger particle present a distinct evolution from a single peak to a broad, possibly double peak, structure when the trigger particle direction goes from in-plane to out-of-plane of the reaction plane. The away-side angular correlation functions are asymmetric with respect to the back-to-back direction in some regions of $\\phi_{s}$, which could provide insight on testing $v_{1}$ method to reconstruct the reaction plane. In addition, both the root-mean-square width ($W_{rms}$) of the away-side correlation distribution and the splitting parameter $D$ between the away-side double peaks increase slightly with $\\phi_{s}$, and the average transverse momentum of the away-side associated hadrons shows a strong $\\phi_{s}$ dependence. Our results indicate that strong parton cascade and resultant energy loss could play an important role for the appearance of a double-peak structure in the dihadron azimuthal angular correlation function on the away side of the trigger particle.

  5. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    SciTech Connect (OSTI)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01T23:59:59.000Z

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone.

  6. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    SciTech Connect (OSTI)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01T23:59:59.000Z

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  7. The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules

    E-Print Network [OSTI]

    Garnier, Josselin

    The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules Josselin Garnier1,a and Catherine Cherfils-Clérouin2 1 Laboratoire de Probabilités et the energy released by nuclear reactions, a nonlocal model for the -particle energy deposition process

  8. Transport Model with Quasipions

    E-Print Network [OSTI]

    Xiong, L.; Ko, Che Ming; Koch, V.

    1993-01-01T23:59:59.000Z

    , the transport model that takes into account both nucleon-nucleon collisions and the nuclear mean-field po- tential (normally called the Ulasov-Uehling-Uhlenbeck or Boltzmann-Uehling-Uhlenbeck model [3]) have been ex- tended to include the pion degree... equation, the pion collision term is obtained from the imaginary part of its self-energy. In nuclear medium, the pion self-energy is modified by the strong p-wave pion- nucleon interaction. This not only afFects the production and absorption of the pion...

  9. Transport Properties for Combustion Modeling

    E-Print Network [OSTI]

    Brown, N.J.

    2010-01-01T23:59:59.000Z

    a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

  10. Generalized solution to multispecies transport equations coupled with a first-order reaction network

    E-Print Network [OSTI]

    Clement, Prabhakar

    Generalized solution to multispecies transport equations coupled with a first-order reaction for deriving analytical solutions to multispecies transport equations coupled with multiparent, serial multispecies transport equations with different retardation factors. Mathematical steps are provided

  11. Transportation Analysis, Modeling, and Simulation (TAMS) Application

    E-Print Network [OSTI]

    Transportation Analysis, Modeling, and Simulation (TAMS) Application Center for Transportation Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Center for Transportation Analysis (CTA) TAMS application is a web-based tool that supports

  12. An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and temporal flow variations in CO2/brine/rock systems

    Broader source: Energy.gov [DOE]

    Project objectives: Generate and characterize mineral dissolution/precipitation reactions in supercritical CO2/brine/rock systems under pressure-temperature-chemistry conditions resembling CO2injection into EGS. Characterize three-dimensional spatial and temporal distributions of rock structures subject to mineral dissolution/precipitation processes by X-ray tomography, SEM imaging, and Microprobe analysis.

  13. Spallation reactions. A successful interplay between modeling and applications

    E-Print Network [OSTI]

    J. -C. David

    2015-05-13T23:59:59.000Z

    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.

  14. Serpentinization reaction pathways: implications for modeling approach

    SciTech Connect (OSTI)

    Janecky, D.R.

    1986-01-01T23:59:59.000Z

    Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.

  15. Mechanistic interpretation of glass reaction: Input to kinetic model development

    SciTech Connect (OSTI)

    Bates, J.K.; Ebert, W.L. [Argonne National Lab., IL (USA); Bradley, J.P. [McCrone Associates, Inc., Westmont, IL (USA); Bourcier, W.L. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01T23:59:59.000Z

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90{degree}C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs.

  16. Mechanistic interpretation of glass reaction: Input to kinetic model development

    SciTech Connect (OSTI)

    Bates, J.K.; Ebert, W.L. [Argonne National Lab., IL (USA); Bradley, J.P. [McCrone Associates, Inc., Westmont, IL (USA); Bourcier, W.L. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01T23:59:59.000Z

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90{degrees}C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 6 figs., 3 tabs.

  17. Solar Models and NACRE thermonuclear reaction rates

    E-Print Network [OSTI]

    P. Morel; B. Pichon; J. Provost; G. Berthomieu

    1999-07-27T23:59:59.000Z

    Using the most recent updated physics, calibrated solar models have been computed with the new thermonuclear reaction rates of NACRE, the recently available European compilation. Comparisons with models computed with the reaction rates of Caughlan & Fowler (\\cite{cf88}) and of Adelberger et al. (\\cite{a98}) are made for global structure, expected neutrinos fluxes, chemical composition and sound speed profiles, helioseismological properties of p-modes and g-modes.

  18. Integration of Nontraditional Isotopic Systems Into Reaction-Transport

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry ResearchPerspective | DepartmentModels of EGS

  19. Modeling Interfacial Glass-Water Reactions: Recent Advances and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract:...

  20. Macroscopic Modeling of Transport Phenomena in

    E-Print Network [OSTI]

    Berning, Torsten

    Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells Anders Christian Olesen, Denmark #12;Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells Anders Christian transport phenomena govern- ing direct methanol fuel cell operation are analyzed, discussed and modeled

  1. A Film Depositional Model of Permeability for Mineral Reactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to solid-aqueous phase reactions. Citation: Freedman VL, P Saripalli, DH Bacon, and PD Meyer.2004."A Film Depositional Model of Permeability for Mineral Reactions in Unsaturated...

  2. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    SciTech Connect (OSTI)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01T23:59:59.000Z

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  3. Ecological Modelling 192 (2006) 143159 Nitrogen transformation and transport modeling

    E-Print Network [OSTI]

    Clement, Prabhakar

    model; Transformation; Transport; Nitrification; Denitrification; RT3D 1. Introduction Nitrogen of this paper are to develop a nitro- gen transport and transformation model for saturated groundwater systemsEcological Modelling 192 (2006) 143­159 Nitrogen transformation and transport modeling

  4. 5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions

    E-Print Network [OSTI]

    Peletier, Reynier

    5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

  5. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect (OSTI)

    B.W. ARNOLD

    2004-10-27T23:59:59.000Z

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  6. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect (OSTI)

    S. Magnuson

    2004-11-01T23:59:59.000Z

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  7. A model for reactive porous transport during re-wetting of hardened concrete

    E-Print Network [OSTI]

    Stockie, John

    A model for reactive porous transport during re-wetting of hardened concrete Michael Chapwanya residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product hydration; Porous media; Reaction-diffusion equations; Vari- able porosity. 1. Introduction Concrete

  8. Stopping and Baryon Transport in Heavy Ion Reactions

    E-Print Network [OSTI]

    F. Videbaek

    2005-05-10T23:59:59.000Z

    In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.

  9. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    ... ... Primary Energy Supplies Gas Coal Railroad, Barge ... ... Storage & Transportation Systems Energy Transportation Networks #12;Structural Model: Energy Flows GAS COAL ELECTRIC Case A: 2002, and the amount of electricity generated #12;Structural Model: Effects of Katrina Average natural gas nodal price

  10. PROCESS SYSTEMS ENGINEERING Discovery of Transport and Reaction

    E-Print Network [OSTI]

    Linninger, Andreas A.

    .interscience.wiley.com). In distributed systems, transport phenomena coupled with chemical or metabolic reac- tions are functions of space, which can often not be achieved in the real processes. Moreover, in many biological systems and safety, their extrapolation to larger reactor dimen- sions or different configuration can become unreliable. Parameter

  11. Modeling Radionuclide Transport in Clays

    E-Print Network [OSTI]

    Zheng, L.

    2014-01-01T23:59:59.000Z

    Radionuclide Transport in Clays May 2012 Zheng, L. , J.a single sample of Opalinus Clay. Geochimica et Cosmochimicaadsorption onto kaolinite based clay minerals using FITEQL

  12. Multiphase transport model for heavy ion collisions at RHIC

    E-Print Network [OSTI]

    Zi-wei Lin; Subrata Pal; C. M. Ko; Bao-An Li; Bin Zhang

    2001-05-18T23:59:59.000Z

    Using a multiphase transport model (AMPT) with both partonic and hadronic interactions, we study the multiplicity and transverse momentum distributions of charged particles such as pions, kaons and protons in central Au+Au collisions at RHIC energies. Effects due to nuclear shadowing and jet quenching on these observables are also studied. We further show preliminary results on the production of multistrange baryons from the strangeness-exchange reactions during the hadronic stage of heavy ion collisions.

  13. Multiphase transport model for relativistic nuclear collisions 

    E-Print Network [OSTI]

    Zhang, B.; Ko, Che Ming; Li, Ba; Lin, ZW.

    2000-01-01T23:59:59.000Z

    To study heavy ion collisions at energies available from the Relativistic Heavy Ion Collider (RHIC), we have developed a multiphase transport model that includes both initial partonic and final hadronic interactions. Specifically, the Zhang's parton...

  14. Multiphase transport model for relativistic nuclear collisions

    E-Print Network [OSTI]

    Zhang, B.; Ko, Che Ming; Li, Ba; Lin, ZW.

    2000-01-01T23:59:59.000Z

    To study heavy ion collisions at energies available from the Relativistic Heavy Ion Collider (RHIC), we have developed a multiphase transport model that includes both initial partonic and final hadronic interactions. Specifically, the Zhang's parton...

  15. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    emissions prices? How would CO2 regulations impact coal, gas, electricity, & SO2 markets? 3. Disruptions1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc: · integrated fuel, electricity networks · environmental impacts · electricity commodity markets · behavior

  16. Highway and interline transportation routing models

    SciTech Connect (OSTI)

    Joy, D.S.; Johnson, P.E.

    1994-06-01T23:59:59.000Z

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE`s Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described.

  17. Upscaling geochemical reaction rates using pore-scale network modeling

    E-Print Network [OSTI]

    Peters, Catherine A.

    . To examine the scaling behavior of reaction kinetics, these continuum-scale rates from the network model as a valuable research tool for examining upscaling of geochemical kinetics. The pore-scale model allowsUpscaling geochemical reaction rates using pore-scale network modeling Li Li, Catherine A. Peters

  18. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    SciTech Connect (OSTI)

    Yannis C. Yortsos

    2003-02-01T23:59:59.000Z

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  19. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect (OSTI)

    G. Moridis; Q. Hu

    2001-12-20T23:59:59.000Z

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  20. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOE Patents [OSTI]

    McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

    1999-01-01T23:59:59.000Z

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  1. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    SciTech Connect (OSTI)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15T23:59:59.000Z

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site ? specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. ? Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of secondary mineral precipitates (cancrinite), conducting experiments under conditions with and without Al allowed us to experimentally separate the conditions that lead to quartz dissolution from the conditions that lead to quartz dissolution plus cancrinite precipitation. Consistent with our expectations, in the experiments without Al, there was a substantial reduction in volume of the solid matrix. With Al there was a net increase in the volume of the solid matrix. The rate and extent of reaction was found to increase with temperature. These results demonstrate a successful effort to identify conditions that lead to increases and conditions that lead to decreases in solid matrix volume due to reactions of caustic tank wastes with quartz sands. In addition, we have begun to work with slightly larger, intermediate-scale columns packed with Hanford natural sediments and quartz. Similar dissolution and precipitation were observed in these colums. The measurements are being interpreted with reactive transport modeling using STOMP; preliminary observations are reported here. 2) Multi-Scale Imaging and Analysis. Mineral dissolution and precipitation rates within a porous medium will be different in different pores due to natural heterogeneity and the heterogeneity that is created from the reactions themselves. We used a combination of X-ray computed microtomography, backscattered electron and energy dispersive X-ray spectroscopy combined with computational image analysis to quantify pore structure, mineral distribution, structure changes and fluid-air and fluid-grain interfaces. ? Results and Key Findings: Three of the columns from the reactive flow experiments at PNNL (S1, S3, S4) were imaged using 3D X-ray computed microtomography (XCMT) at BNL and analyzed using 3DMA-rock at SUNY Stony Brook. The imaging results support the mass balance findings reported by Dr. Um’s group, regarding the substantial dissolution of quartz in column S1. An important observation is that of grain movement accompanying dissolution in the unconsolidated media. The resultant movement

  2. Interactive coastal oil spill transport model 

    E-Print Network [OSTI]

    Thalasila, Nanda K.

    1992-01-01T23:59:59.000Z

    INTERACTIVE COASTAL OIL SPILL TRANSPORT MODEL A Thesis by NANDA K. THALASILA Submitted to the OIIice of Graduate Studies of Texas A8zM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1992 Major... Subject: Civil Engineering INTERACTIVE COASTAL OIL SPILL TRANSPORT MODEL A Thesis by NANDA K. THALASILA Approved a, s to style and content by: Roy W. Harm Chair of C mittee) Richard A. artzman (Member) om D. olds (Member) Dr Jame T P. Yao...

  3. Climate Impact of Transportation A Model Comparison

    SciTech Connect (OSTI)

    Girod, Bastien; Van Vuuren, Detlef; Grahn, Maria; Kitous, Alban; Kim, Son H.; Kyle, G. Page

    2013-06-01T23:59:59.000Z

    Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology is important for limiting energy consumption and CO2 emissions, but quite radical changes in the technology mix are required to stabilize or reverse the trend. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of US$200/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for improvement in modeling and empirical description of the transport system.

  4. Modeling chamber transport for heavy-ion fusion

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    Modeling Chamber Transport for Heavy-Ion Fusion W. M. Sharp,Peterson, "Chamber Transport of 'Foot' Pulses for Heavy-Ionstate of beam ions. Although several chamber- transport

  5. Model for assessing bronchial mucus transport

    SciTech Connect (OSTI)

    Agnew, J.E.; Bateman, J.R.M.; Pavia, D.; Clarke, S.W.

    1984-02-01T23:59:59.000Z

    The authors propose a scheme for the assessment of regional mucus transport using inhaled Tc-99m aerosol particles and quantitative analysis of serial gamma-camera images. The model treats input to inner and intermediate lung regions as the total of initial deposition there plus subsequent transport into these regions from more peripheral airways. It allows for interregional differences in the proportion of particles deposited on the mucus-bearing conducting airways, and does not require a gamma image 24 hr after particle inhalation. Instead, distribution of particles reaching the respiratory bronchioles or alveoli is determined from a Kr-81m ventilation image, while the total amount of such deposition is obtained from 24-hr Tc-99m retention measured with a sensitive counter system. The model is applicable to transport by mucociliary action or by cough, and has been tested in ten normal and ten asthmatic subjects.

  6. Dynamics of damped nuclear reactions

    SciTech Connect (OSTI)

    Randrup, J.

    1982-09-01T23:59:59.000Z

    The nucleon-exchange model for damped nuclear reactions is briefly reviewed in the framework of macroscopic transport theory. Recent developments are discussed and some future directions indicated.

  7. A model for reactive porous transport during re-wetting of hardened concrete

    E-Print Network [OSTI]

    Chapwanya, Michael; Stockie, John M

    2008-01-01T23:59:59.000Z

    We develop a mathematical model that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the infiltrating water and the residual calcium silicate compounds that reside in the porous concrete matrix. We investigate the hypothesis that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Using numerical simulations, we determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.

  8. Modelling Additive Transport in Metal Halide Lamps

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Beks, Mark Louwrens Modelling Additive Transport in Metal Halide Lamps/ door Beks, M.L. - Eindhoven : Technische Universiteit Eindhoven, 2008. Proefschrift. ISBN: 978

  9. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20T23:59:59.000Z

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  10. Transport Analysis of Trace Tritium Experiments on JET using TRANSP Code and Comparison with Theory-Based Transport Models

    E-Print Network [OSTI]

    Transport Analysis of Trace Tritium Experiments on JET using TRANSP Code and Comparison with Theory-Based Transport Models

  11. Analytical mesoscale modeling of aeolian sand transport

    E-Print Network [OSTI]

    Marc Lämmel; Anne Meiwald; Klaus Kroy

    2014-05-03T23:59:59.000Z

    We analyze the mesoscale structure of aeolian sand transport, based on a recently developed two-species continuum model. The calculated sand flux and important average characteristics of the grain trajectories are found to be in remarkable agreement with field and wind-tunnel data. We conclude that the essential mesoscale physics is insensitive to unresolved details on smaller scales and well captured by the coarse-grained analytical model, thus providing a sound basis for precise and numerically efficient mesoscale modeling of aeolian structure formation.

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2001-08-07T23:59:59.000Z

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  13. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    2001-05-29T23:59:59.000Z

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  14. Multicomponent reactive transport modeling of uranium bioremediation field experiments

    SciTech Connect (OSTI)

    Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

    2009-10-15T23:59:59.000Z

    Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Old Rifle UMTRA sediments and aqueous complexation reactions that include ternary complexes (e.g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization.

  15. Multimodal Transport Modeling for Nairobi, Kenya: Insights and Recommendations with an Evidence-Based Model

    E-Print Network [OSTI]

    California at Berkeley, University of

    Multimodal Transport Modeling for Nairobi, Kenya: Insights and Recommendations with an Evidence-5 August 2009 #12;Multimodal Transport Modeling for Nairobi, Kenya: Insights and Recommendations

  16. A smoothed particle hydrodynamics model for reactive transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. A smoothed particle hydrodynamics model for reactive...

  17. Strong plasma screening in thermonuclear reactions: Electron drop model

    E-Print Network [OSTI]

    Kravchuk, P A

    2014-01-01T23:59:59.000Z

    We analyze enhancement of thermonuclear fusion reactions due to strong plasma screening in dense matter using a simple electron drop model. The model assumes fusion in a potential that is screened by an effective electron cloud around colliding nuclei (extended Salpeter ion-sphere model). We calculate the mean field screened Coulomb potentials for atomic nuclei with equal and nonequal charges, appropriate astrophysical S factors, and enhancement factors of reaction rates. As a byproduct, we study analytic behavior of the screening potential at small separations between the reactants. In this model, astrophysical S factors depend not only on nuclear physics but on plasma screening as well. The enhancement factors are in good agreement with calculations by other methods. This allows us to formulate the combined, pure analytic model of strong plasma screening in thermonuclear reactions. The results can be useful for simulating nuclear burning in white dwarfs and neutron stars.

  18. Strong plasma screening in thermonuclear reactions: Electron drop model

    E-Print Network [OSTI]

    P. A. Kravchuk; D. G. Yakovlev

    2014-01-11T23:59:59.000Z

    We analyze enhancement of thermonuclear fusion reactions due to strong plasma screening in dense matter using a simple electron drop model. The model assumes fusion in a potential that is screened by an effective electron cloud around colliding nuclei (extended Salpeter ion-sphere model). We calculate the mean field screened Coulomb potentials for atomic nuclei with equal and nonequal charges, appropriate astrophysical S factors, and enhancement factors of reaction rates. As a byproduct, we study analytic behavior of the screening potential at small separations between the reactants. In this model, astrophysical S factors depend not only on nuclear physics but on plasma screening as well. The enhancement factors are in good agreement with calculations by other methods. This allows us to formulate the combined, pure analytic model of strong plasma screening in thermonuclear reactions. The results can be useful for simulating nuclear burning in white dwarfs and neutron stars.

  19. Documentation of TRU biological transport model (BIOTRAN)

    SciTech Connect (OSTI)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01T23:59:59.000Z

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  20. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yanis C.

    2002-03-11T23:59:59.000Z

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  1. Transverse transport of solutes between co-flowing pressure-driven streams for microfluidic studies of diffusion/reaction processes

    E-Print Network [OSTI]

    Jean-Baptiste Salmon; Armand Ajdari

    2007-02-01T23:59:59.000Z

    We consider a situation commonly encountered in microfluidics: two streams of miscible liquids are brought at a junction to flow side by side within a microchannel, allowing solutes to diffuse from one stream to the other and possibly react. We focus on two model problems: (i) the transverse transport of a single solute from a stream into the adjacent one, (ii) the transport of the product of a diffusion-controlled chemical reaction between solutes originating from the two streams. Our description is made general through a non-dimensionalized formulation that incorporates both the parabolic Poiseuille velocity profile along the channel and thermal diffusion in the transverse direction. Numerical analysis over a wide range of the streamwise coordinate $x$ reveal different regimes. Close to the top and the bottom walls of the microchannel, the extent of the diffusive zone follows three distinct power law regimes as $x$ is increased, characterized respectively by the exponents 1/2, 1/3 and 1/2. Simple analytical arguments are proposed to account for these results.

  2. Integration of Nontraditional Isotopic Systems Into Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Rock Interaction, and Impacts of Water Chemistry on Reservoir Sustainability Integration of Nontraditional Isotopic Systems Into Reaction-Transport Models of EGS For...

  3. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    SciTech Connect (OSTI)

    Suh, Dong-Myung; Sun, Xin

    2013-09-01T23:59:59.000Z

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

  4. Comb models for transport along spiny dendrites

    E-Print Network [OSTI]

    Méndez, V

    2015-01-01T23:59:59.000Z

    This chapter is a contribution in the "Handbook of Applications of Chaos Theory" ed. by Prof. Christos H Skiadas. The chapter is organized as follows. First we study the statistical properties of combs and explain how to reduce the effect of teeth on the movement along the backbone as a waiting time distribution between consecutive jumps. Second, we justify an employment of a comb-like structure as a paradigm for further exploration of a spiny dendrite. In particular, we show how a comb-like structure can sustain the phenomenon of the anomalous diffusion, reaction-diffusion and L\\'evy walks. Finally, we illustrate how the same models can be also useful to deal with the mechanism of ta translocation wave / translocation waves of CaMKII and its propagation failure. We also present a brief introduction to the fractional integro-differentiation in appendix at the end of the chapter.

  5. SOLVING VERTICAL TRANSPORT AND CHEMISTRY IN AIR POLLUTION MODELS

    E-Print Network [OSTI]

    Botchev, Mike

    SOLVING VERTICAL TRANSPORT AND CHEMISTRY IN AIR POLLUTION MODELS P.J.F. BERKVENS #3; , M.A. BOTCHEV; transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due causing large errors for such species. In the framework of an operational global air pollution model, we

  6. ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground- water systems are modelled one has to resort to indirect, or inverse, techniques to populate the model. In a groundwater system

  7. ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground­ water systems are modelled to resort to indirect, or inverse, techniques to populate the model. In a groundwater system one

  8. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award...

  9. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

  10. Weakly screened thermonuclear reactions in astrophysical plasmas: Improving Salpeter's model

    E-Print Network [OSTI]

    Theodore E. Liolios

    2003-06-23T23:59:59.000Z

    This paper presents a detailed study of the electron degeneracy and nonlinear screening effects which play a crucial role in the validity of Salpeter's weak-screening model. The limitations of that model are investigated and an improved one is proposed which can take into account nonlinear screening effects. Its application to the solar pp reaction derives an accurate screening enhancement factor and provides a very reliable estimation of the associated neutrino flux uncertanties.

  11. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    SciTech Connect (OSTI)

    Peters, Catherine A [Princeton University] [Princeton University

    2013-05-15T23:59:59.000Z

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE legacy waste problems.

  12. Building robust chemical reaction mechanisms : next generation of automatic model construction software

    E-Print Network [OSTI]

    Song, Jing, 1972-

    2004-01-01T23:59:59.000Z

    Building proper reaction mechanisms is crucial to model the system dynamic properties for many industrial processes with complex chemical reaction phenomena. Because of the complexity of a reaction mechanism, computer-aided ...

  13. MOMDIS: a Glauber model computer code for knockout reactions

    E-Print Network [OSTI]

    C. A. Bertulani; A. Gade

    2006-04-12T23:59:59.000Z

    A computer program is described to calculate momentum distributions in stripping and diffraction dissociation reactions. A Glauber model is used with the scattering wavefunctions calculated in the eikonal approximation. The program is appropriate for knockout reactions at intermediate energy collisions (30 MeV $\\leq$ E$_{lab}/$nucleon $\\leq 2000$ MeV). It is particularly useful for reactions involving unstable nuclear beams, or exotic nuclei (e.g. neutron-rich nuclei), and studies of single-particle occupancy probabilities (spectroscopic factors) and other related physical observables. Such studies are an essential part of the scientific program of radioactive beam facilities, as in for instance the proposed RIA (Rare Isotope Accelerator) facility in the US.

  14. Predictability and reduced order modeling in stochastic reaction networks.

    SciTech Connect (OSTI)

    Najm, Habib N.; Debusschere, Bert J.; Sargsyan, Khachik

    2008-10-01T23:59:59.000Z

    Many systems involving chemical reactions between small numbers of molecules exhibit inherent stochastic variability. Such stochastic reaction networks are at the heart of processes such as gene transcription, cell signaling or surface catalytic reactions, which are critical to bioenergy, biomedical, and electrical storage applications. The underlying molecular reactions are commonly modeled with chemical master equations (CMEs), representing jump Markov processes, or stochastic differential equations (SDEs), rather than ordinary differential equations (ODEs). As such reaction networks are often inferred from noisy experimental data, it is not uncommon to encounter large parametric uncertainties in these systems. Further, a wide range of time scales introduces the need for reduced order representations. Despite the availability of mature tools for uncertainty/sensitivity analysis and reduced order modeling in deterministic systems, there is a lack of robust algorithms for such analyses in stochastic systems. In this talk, we present advances in algorithms for predictability and reduced order representations for stochastic reaction networks and apply them to bistable systems of biochemical interest. To study the predictability of a stochastic reaction network in the presence of both parametric uncertainty and intrinsic variability, an algorithm was developed to represent the system state with a spectral polynomial chaos (PC) expansion in the stochastic space representing parametric uncertainty and intrinsic variability. Rather than relying on a non-intrusive collocation-based Galerkin projection [1], this PC expansion is obtained using Bayesian inference, which is ideally suited to handle noisy systems through its probabilistic formulation. To accommodate state variables with multimodal distributions, an adaptive multiresolution representation is used [2]. As the PC expansion directly relates the state variables to the uncertain parameters, the formulation lends itself readily to sensitivity analysis. Reduced order modeling in the time dimension is accomplished using a Karhunen-Loeve (KL) decomposition of the stochastic process in terms of the eigenmodes of its covariance matrix. Subsequently, a Rosenblatt transformation relates the random variables in the KL decomposition to a set of independent random variables, allowing the representation of the system state with a PC expansion in those independent random variables. An adaptive clustering method is used to handle multimodal distributions efficiently, and is well suited for high-dimensional spaces. The spectral representation of the stochastic reaction networks makes these systems more amenable to analysis, enabling a detailed understanding of their functionality, and robustness under experimental data uncertainty and inherent variability.

  15. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Kang, Qinjin [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr I [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  16. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    SciTech Connect (OSTI)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-02-28T23:59:59.000Z

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches.

  17. Integration of Groundwater Transport Models with Wireless Sensor Networks

    E-Print Network [OSTI]

    Han, Qi "Chee"

    Integration of Groundwater Transport Models with Wireless Sensor Networks Kevin Barnhart1 , I.jayasumana@colostate.edu, Fort Collins, CO, USA ABSTRACT Groundwater transport modeling is intended to aid in remediation be conceptualized in the WSN context. INTRODUCTION As groundwater contamination is an established problem with many

  18. Adaptive Methods for Modelling Transport Processes in Fractured Subsurface Systems

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    ­ discrete Galerkin method applying finite differences for the discretization in time and the StreamlineAdaptive Methods for Modelling Transport Processes in Fractured Subsurface Systems 3rd­adaptive methods for modelling transport processes in fractured rock. As a simplification, ideal tracers

  19. Review of petroleum transport network models and their applicability to a national refinery model

    SciTech Connect (OSTI)

    Hooker, J. N.

    1982-04-01T23:59:59.000Z

    This report examines four petroleum transport network models to determine whether parts of them can be incorporated into the transportation component of a national refinery model. Two questions in particular are addressed. (a) How do the models under examination represent the oil transport network, estimate link capacities, and calculate transport costs. (b) Are any of these network representations, capacity estimates, or cost functions suitable for inclusion in a linear programming model of oil refinery and primary distribution in the US. Only pipeline and waterway transport is discussed. The models examined are the Department of Energy's OILNET model, the Department of Transportation's Freight Energy Model, the Federal Energy Administration Petroleum Transportation Network Model, and an Oak Ridge National Laboratory oil pipeline energy model. Link capacity and cost functions are recommended for each transport mode. The coefficients of the recommended pipeline cost functions remain to be estimated.

  20. Isospin transport in 84Kr+112,124Sn reactions at Fermi energies

    E-Print Network [OSTI]

    S. Piantelli; G. Casini; A. Olmi; S. Barlini; M. Bini; S. Carboni; P. R. Maurenzig; G. Pasquali; G. Poggi; A. A. Stefanini; R. Bougault; N. LeNeindre; O. Lopez; M. Parlog; E. Vient; E. Bonnet; A. Chbihi; J. D. Frankland; D. Gruyer; E. Rosato; G. Spadaccini; M. Vigilante; B. Borderie; M. F. Rivet; M. Bruno; L. Morelli; M. Cinausero; M. Degerlier; F. Gramegna; T. Marchi; R. Alba; C. Maiolino; D. Santonocito; T. Kozik; T. Twarog

    2013-09-06T23:59:59.000Z

    Isospin transport phenomena in dissipative heavy ion collisions have been investigated at Fermi energies with a beam of 84Kr at 35AMeV. A comparison of the /Z of light and medium products forward-emitted in the centre of mass frame when the beam impinges on a n-poor 112Sn and a n-rich 124Sn targets is presented. Data were collected by means of a three-layer telescope with very good performances in terms of mass identification (full isotopic resolution up to Z about 20 for ions punching through the first detector layer) built by the FAZIA Collaboration and located just beyond the grazing angle for both reactions. The /Z of the decay products emitted when the n-rich target is used is always higher than that associated to the n-poor one. Since the detector was able to measure only fragments coming from the QuasiProjectile decay and/or neck emission, the observed behaviour can be ascribed to the isospin diffusion, driven by the isospin gradient between QuasiProjectile and QuasiTarget. Moreover, for light fragments the /Z as a function of the lab velocity of the fragment increases when we move from the QuasiProjectile velocity to the centre of mass (neck zone). This effect can be interpreted as an evidence of isospin drift driven by the density gradient between the QuasiProjectile zone (at normal density) and the more diluted neck zone.

  1. A reaction-subdiffusion model of fluorescence recovery after photobleaching (FRAP)

    E-Print Network [OSTI]

    S. B. Yuste; E. Abad; K. Lindenberg

    2014-07-30T23:59:59.000Z

    Anomalous diffusion, in particular subdiffusion, is frequently invoked as a mechanism of motion in dense biological media, and may have a significant impact on the kinetics of binding/unbinding events at the cellular level. In this work we incorporate anomalous diffusion in a previously developed model for FRAP experiments. Our particular implementation of subdiffusive transport is based on a continuous time random walk (CTRW) description of the motion of fluorescent particles, as CTRWs lend themselves particularly well to the inclusion of binding/unbinding events. In order to model switching between bound and unbound states of fluorescent subdiffusive particles, we derive a fractional reaction-subdiffusion equation of rather general applicability. Using suitable initial and boundary conditions, this equation is then incorporated in the model describing two-dimensional kinetics of FRAP experiments. We find that this model can be used to obtain excellent fits to experimental data. Moreover, recovery curves corresponding to different radii of the circular bleach spot can be fitted by a single set of parameters. While not enough evidence has been collected to claim with certainty that CTRW is the underlying transport mechanism in FRAP experiments, the compatibility of our results with experimental data fuels the discussion as to whether normal diffusion or anomalous diffusion is the appropriate model, and as to whether anomalous diffusion effects are important to fully understand the outcomes of FRAP experiments. On a more technical side, we derive explicit analytic solutions of our model in certain limits.

  2. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    SciTech Connect (OSTI)

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28T23:59:59.000Z

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv#19;en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv#19;en Eigenmodes) and to other numerical codes or theories.

  3. ab initio Electronic Transport Model with Explicit Solution to the Linearized Boltzmann Transport Equation

    E-Print Network [OSTI]

    Faghaninia, Alireza; Lo, Cynthia S

    2015-01-01T23:59:59.000Z

    Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semi-empirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy -- particularly in capturing the correct trends with temperature and carrier concentration. We present here a general transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n-type semiconductors, by explicitly considering all relevant physical phenomena (i.e. elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the ban...

  4. Modeling the impact of complexity on transportation

    E-Print Network [OSTI]

    Fernandez, Jose A. (Jose Antonio Fernandez Chavira)

    2012-01-01T23:59:59.000Z

    This thesis aimed to understand the drivers of total transportation costs during supply chain complexity events, in particular new product launches, in a fast moving consumer goods company in the United States. The research ...

  5. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    SciTech Connect (OSTI)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01T23:59:59.000Z

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  6. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Institute for Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany)

    2011-12-21T23:59:59.000Z

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  7. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-28T23:59:59.000Z

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ?fG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than approximately one-third of these compounds. Because the temperatures of host formations that will be used for CO2 injection and sequestration will be at tempera¬tures in the range of 50ºC to 100ºC or greater, the lack of high temperature thermodynamic values for key carbonate compounds especially minerals, will impact the accuracy of some modeling calculations.

  8. Scaling up and modeling for transport and flow

    E-Print Network [OSTI]

    Rogina, Mladen

    & modélisation des écoulements de fluides en milieux poreux DUBROVNIK, CROATIA 13-16 OCTOBER 2008 BOOK for Transport and Flow in Porous Media Dubrovnik, Croatia, 13-16 October 2008 Book of abstracts #12;Contents and Modeling for Transport and Flow in Porous Media, held at Dubrovnik, Croatia, 13­16 October 2008

  9. Keratin Dynamics: Modeling the Interplay between Turnover and Transport

    E-Print Network [OSTI]

    Stephanie Portet; Anotida Madzvamuse; Andy Chung; Rudolf E. Leube; Reinhard Windoffer

    2015-04-01T23:59:59.000Z

    Keratin are among the most abundant proteins in epithelial cells. Functions of the keratin network in cells are shaped by their dynamical organization. Using a collection of experimentally-driven mathematical models, different hypotheses for the turnover and transport of the keratin material in epithelial cells are tested. The interplay between turnover and transport and their effects on the keratin organization in cells are hence investigated by combining mathematical modeling and experimental data. Amongst the collection of mathematical models considered, a best model strongly supported by experimental data is identified. Fundamental to this approach is the fact that optimal parameter values associated with the best fit for each model are established. The best candidate among the best fits is characterized by the disassembly of the assembled keratin material in the perinuclear region and an active transport of the assembled keratin. Our study shows that an active transport of the assembled keratin is required to explain the experimentally observed keratin organization.

  10. Modeling spin magnetization transport in a spatially varying magnetic field

    E-Print Network [OSTI]

    Rico A. R. Picone; Joseph L. Garbini; John A. Sidles

    2014-08-13T23:59:59.000Z

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment. A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation.

  11. Mechanical reaction-diffusion model for bacterial population dynamics

    E-Print Network [OSTI]

    Ngamsaad, Waipot

    2015-01-01T23:59:59.000Z

    The effect of mechanical interaction between cells on the spreading of bacterial population was investigated in one-dimensional space. A nonlinear reaction-diffusion equation has been formulated as a model for this dynamics. In this model, the bacterial cells are treated as the rod-like particles that interact, when contacting each other, through the hard-core repulsion. The repulsion introduces the exclusion process that causes the fast diffusion in bacterial population at high density. The propagation of the bacterial density as the traveling wave front in long time behavior has been analyzed. The analytical result reveals that the front speed is enhanced by the exclusion process---and its value depends on the packing fraction of cell. The numerical solutions of the model have been solved to confirm this prediction.

  12. Deuteron-nucleus collisions in a multiphase transport model 

    E-Print Network [OSTI]

    Lin, ZW; Ko, Che Ming.

    2003-01-01T23:59:59.000Z

    Using a multiphase transport model, we study pseudorapidity distributions and transverse momentum spectra in deuteron-gold collisions at RHIC. We find that final-state partonic and hadronic interactions affect the transverse momentum spectrum...

  13. Subdiffusion and Superdiffusion in Lagrangian Stochastic Models of Oceanic Transport

    E-Print Network [OSTI]

    Kramer, Peter

    managable models are sought which capture the important phenomena of interest without needing to calculate of tracer transport associated to power-law regions of the La- grangian power spectrum. We focus on how well

  14. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs 

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18T23:59:59.000Z

    of this technology for enhanced oil recovery, nano-scale sensors and subsurface mapping. Little work has been conducted to establish numerical models to investigate nanoparticle transport in reservoirs, and particularly much less for shale reservoirs. Unlike...

  15. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18T23:59:59.000Z

    of this technology for enhanced oil recovery, nano-scale sensors and subsurface mapping. Little work has been conducted to establish numerical models to investigate nanoparticle transport in reservoirs, and particularly much less for shale reservoirs. Unlike...

  16. Analytical model for flux saturation in sediment transport

    E-Print Network [OSTI]

    Pähtz, T; Kok, J F; Herrmann, H J

    2014-01-01T23:59:59.000Z

    The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment and for a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out-of-equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrain...

  17. Modelling Ammonium Transporters in Arbuscular Mycorrhiza Symbiosis

    E-Print Network [OSTI]

    Troina, Angelo

    transporter which exists in plants, viz. LjAMT1;1, our simulations support an hypothesis about why LjAMT2 potential as a natural plant This research is founded by the BioBITs Project (Converging Technologies 2007 to play a fundamen- tal role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza

  18. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  19. The $^{136}$Xe + $^{208}$Pb reaction: A test of models of multi-nucleon transfer reactions

    E-Print Network [OSTI]

    Barrett, J S; Loveland, W; Zhu, S; Ayangeakaa, A D; Carpenter, M P; Greene, J P; Janssens, R V F; Lauritsen, T; McCutchan, E A; Sonzogni, A A; Chiara, C J; Harker, J L; Walters, W B

    2015-01-01T23:59:59.000Z

    The yields of over 200 projectile-like fragments (PLFs) and target-like fragments (TLFs) from the interaction of (E$_{c.m.}$=450 MeV) $^{136}$Xe with a thick target of $^{208}$Pb were measured using Gammasphere and off-line $\\gamma$-ray spectroscopy, giving a comprehensive picture of the production cross sections in this reaction.The measured yields were compared to predictions of the GRAZING model and the predictions of Zagrebaev and Greiner using a quantitative metric, the theory evaluation factor, {\\bf tef}. The GRAZING model predictions are adequate for describing the yields of nuclei near the target or projectile but grossly underestimate the yields of all other products. The predictions of Zagrebaev and Greiner correctly describe the magnitude and maxima of the observed TLF transfer cross sections for a wide range of transfers ($\\Delta$Z = -8 to $\\Delta$Z = +2). However for $\\Delta$Z =+4, the observed position of the maximum in the distribution is four neutrons richer than the predicted maximum. The pre...

  20. The $^{136}$Xe + $^{208}$Pb reaction: A test of models of multi-nucleon transfer reactions

    E-Print Network [OSTI]

    J. S. Barrett; R. Yanez; W. Loveland; S. Zhu; A. D. Ayangeakaa; M. P. Carpenter; J. P. Greene; R. V. F. Janssens; T. Lauritsen; E. A. McCutchan; A. A. Sonzogni; C. J. Chiara; J. L. Harker; W. B. Walters

    2015-05-01T23:59:59.000Z

    The yields of over 200 projectile-like fragments (PLFs) and target-like fragments (TLFs) from the interaction of (E$_{c.m.}$=450 MeV) $^{136}$Xe with a thick target of $^{208}$Pb were measured using Gammasphere and off-line $\\gamma$-ray spectroscopy, giving a comprehensive picture of the production cross sections in this reaction.The measured yields were compared to predictions of the GRAZING model and the predictions of Zagrebaev and Greiner using a quantitative metric, the theory evaluation factor, {\\bf tef}. The GRAZING model predictions are adequate for describing the yields of nuclei near the target or projectile but grossly underestimate the yields of all other products. The predictions of Zagrebaev and Greiner correctly describe the magnitude and maxima of the observed TLF transfer cross sections for a wide range of transfers ($\\Delta$Z = -8 to $\\Delta$Z = +2). However for $\\Delta$Z =+4, the observed position of the maximum in the distribution is four neutrons richer than the predicted maximum. The predicted yields of the neutron-rich N=126 nuclei exceed the measured values by two orders of magnitude. Correlations between TLF and PLF yields are discussed.

  1. Interactive coastal oil spill transport model

    E-Print Network [OSTI]

    Thalasila, Nanda K.

    1992-01-01T23:59:59.000Z

    and in time contaminate large areas. Knowing the behavior of an oil slick after it has been inadvirently released to the ocean surface may be of great practical value. It will permit an assessment of the potential damage to aquatic life and shoreline... Function of Time 20 Longshore Current Nomograph 31 Oil Slick Transport Vectors by Areal Extent (adapted from Keith, et al, 1977)s 32 Program Structure for Program OILSPILL Program Structure for Subroutine DATAENT 37 37 Program Structure...

  2. An Ab Initio Model of Electron Transport in Hematite (a-Fe2O3...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Ab Initio Model of Electron Transport in Hematite (a-Fe2O3) Basal Planes. An Ab Initio Model of Electron Transport in Hematite (a-Fe2O3) Basal Planes. Abstract: Transport of...

  3. An Equilibrium-Based Model of Gas Reaction and Detonation

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    2000-04-01T23:59:59.000Z

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

  4. Tungsten Transport in JET H-mode Plasmas in Hybrid Scenario, Experimental Observations and Modelling

    E-Print Network [OSTI]

    Tungsten Transport in JET H-mode Plasmas in Hybrid Scenario, Experimental Observations and Modelling

  5. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    E-Print Network [OSTI]

    Locatelli, R.

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model ...

  6. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yannis C.

    2003-03-19T23:59:59.000Z

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  7. Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework

    E-Print Network [OSTI]

    Struchtrup, Henning

    and optimization of fuel cells in a design and development environment. Kreuer et al.19 recently presented of ongoing efforts to develop more comprehensive compu- tational fuel cell model14-18 that allow analysis of the fundamental transport mechanisms. In the context of multidimensional fuel cell modeling, practical

  8. 155: Numerical Models of Groundwater Flow and Transport

    E-Print Network [OSTI]

    Sorek, Shaul

    155: Numerical Models of Groundwater Flow and Transport EKKEHARD HOLZBECHER1 AND SHAUL SOREK2 1. #12;2402 GROUNDWATER Calibration as a task cannot be separated from the other tasks. Inverse modeling of the Negev, J. Blaustein Institutes for Desert Research, Sede Boker, Israel The article gives an introduction

  9. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    SciTech Connect (OSTI)

    Juxiu Tong; Bill X. Hu; Hai Huang; Luanjin Guo; Jinzhong Yang

    2014-03-01T23:59:59.000Z

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.

  10. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01T23:59:59.000Z

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromium’s deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  11. Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen

    SciTech Connect (OSTI)

    Braun, R.L.; Burnham, A.K.

    1993-06-01T23:59:59.000Z

    A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

  12. Allocating city space to multiple transportation modes: A new modeling approach consistent with the physics of transport

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Allocating city space to multiple transportation modes: A new modeling approach consistent with the physics of transport Eric J. Gonzales, Nikolas Geroliminis, Michael J. Cassidy and Carlos F. Daganzo WORKING PAPER UCB-ITS-VWP-2008-1 March 2008 #12;Allocating city space to multiple transportation modes

  13. A Stochastic Model of Transport in Three-Dimensional Porous Media1

    E-Print Network [OSTI]

    Boyer, Edmond

    Lee2 Modeling of solute transport remains a key issue in the area of groundwater contamination transport, non-Fickian dispersion, random walk, stochastic processes. INTRODUCTION Solute transport modelA Stochastic Model of Transport in Three-Dimensional Porous Media1 Cyril Fleurant2 and Jan van der

  14. Reaction-Diffusion systems for the macroscopic Bidomain model of the cardiac electric field

    E-Print Network [OSTI]

    Veneroni, Marco

    Reaction-Diffusion systems for the macroscopic Bidomain model of the cardiac electric field Marco Veneroni Abstract. The paper deals with a mathematical model for the electric activity of the heart the mathematical viewpoint the model is made up of a degenerate parabolic reaction diffusion system coupled

  15. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to Berkeley...

  16. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Print Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to...

  17. Nuclear reaction analysis profiling as direct evidence for lithium ion mass transport in thin film rocking-chair'' structures

    SciTech Connect (OSTI)

    Goldner, R.B.; Haas, T.E.; Arntz, F.O.; Slaven, S.; Wong, K.K. (Electro-Optics Technology Center, Tufts University, Medford, Massachusetts 02155 (United States)); Wilkens, B. (Bellcore, Red Bank, New Jersey 07001-7040 (United States)); Shepard, C.; Lanford, W. (Accelerator Laboratory, Physics Department, State University of New York at Albany, Albany, New York 12222 (United States))

    1993-04-05T23:59:59.000Z

    A nuclear reaction analysis technique using the [ital p],[gamma] reaction, [sup 7]Li([ital p],[gamma])[sup 8]Be, occurring at approximately 440 keV, (half-width[approx]12 keV), has been utilized to determine the lithium concentration profiles in multilayer electrochromic window ( smart window'')/rechargeable battery cells when in their colored''/charged and bleached''/discharged states. The lithium profiles have been observed to shift according to the cells' states, thereby providing direct experimental evidence for the so-called rocking-chair model for such structures.

  18. Dissipative particle dynamics model for colloid transport in porous media

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.

    2013-08-01T23:59:59.000Z

    We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation e?ect. In the present work, we use the new formulation to study the contact e?ciency in colloid ?ltration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian di?usion. Our results of contact e?ciency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.

  19. Modeling Space-Time Dynamics of Aerosols Using Satellite Data and Atmospheric Transport Model Output

    E-Print Network [OSTI]

    Shi, Tao

    Modeling Space-Time Dynamics of Aerosols Using Satellite Data and Atmospheric Transport Model of aerosol optical depth across mainland Southeast Asia. We include a cross validation study to assess

  20. Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale

    E-Print Network [OSTI]

    Hubbard, Susan

    Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale Vikranth scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical

  1. Global transportation cost modeling for long-range planning

    SciTech Connect (OSTI)

    Pope, R.B.; Michelhaugh, R.D.; Singley, P.T. [Oak Ridge National Lab., TN (United States); Lester, P.B. [Dept. of Energy, Oak Ridge, TN (United States)

    1998-02-01T23:59:59.000Z

    The US Department of Energy (DOE) is preparing to perform significant remediation activities of the sites for which it is responsible. To accomplish this, it is preparing a corporate global plan focused on activities over the next decade. Significant in these planned activities is the transportation of the waste arising from the remediation. The costs of this transportation are expected to be large. To support the initial assessment of the plan, a cost estimating model was developed, peer-reviewed against other available packaging and transportation cost data, and applied to a significant number of shipping campaigns of radioactive waste. This cost estimating model, known as the Ten-year Plan Transportation Cost Model (TEPTRAM), can be used to model radioactive material shipments between DOE sites or from DOE sites to non-DOE destinations. The model considers the costs for (a) recovering and processing of the wastes, (b)packaging the wastes for transport, and (c) the carriage of the waste. It also provides a rough order of magnitude estimate of labor costs associated with preparing and undertaking the shipments. At the user`s direction, the model can also consider the cost of DOE`s interactions with its external stakeholders (e.g., state and local governments and tribal entities) and the cost associated with tracking and communicating with the shipments. By considering all of these sources of costs, it provides a mechanism for assessing and comparing the costs of various waste processing and shipping campaign alternatives to help guide decision-making. Recent analyses of specific planned shipments of transuranic (TRU) waste which consider alternative packaging options are described. These analyses show that options are available for significantly reducing total costs while still satisfying regulatory requirements.

  2. CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION MODELING IN GROUNDWATER

    E-Print Network [OSTI]

    Boyer, Edmond

    , 60550 Verneuil-en-Halatte - France, fabrice.quiot@ineris.fr 2. ENVIROS, Spain S.L., Passeig de Rubi 29-31, 08197 Valldoreix - Spain, sjordana@enviros.biz 3. ANTEA, Direction Technique, 3 avenue Claude Guillemin in order to bring a better and common practice of the use of transport models concerning various pollutants

  3. Steady states for Streater's energy-transport models

    E-Print Network [OSTI]

    Esteban, Maria J.

    Steady states for Streater's energy-transport models of self/4, 50-384 Wroc_law, Poland Piotr.Biler@math.uni.wroc.pl, 2Ceremade Matematyki, Politechnika Zielonog'orska, ul. Podg'orna 50, 65-246 Zielona G'ora, Poland

  4. Microfluidic Technology Platforms for Synthesizing, Labeling and Measuring the Kinetics of Transport and Biochemical Reactions for Developing Molecular Imaging Probes

    SciTech Connect (OSTI)

    Phelps, Michael E.

    2009-09-01T23:59:59.000Z

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies for radiochemistry (macro to micro levels), biochemistry and biology to imaging principles, tracer kinetics, pharmacokinetics and biochemical assays. New generations of radiochemists will be immersed in the biochemistry and biology for which their labeled probes are being developed for assays of these processes. In this program engineers and radio-chemists integrate the principles of microfluidics and radiolabeling along with proper system design and chemistry rule sets to yield Synthesizers enabling biological and pharmaceutical scientists to develop diverse arrays of probes to pursue their interests. This progression would allow also radiochemists to focus on the further evolution of rapid, high yield synthetic reactions with new enabling technologies, rather than everyday production of radiotracers that should be done by technologists. The invention of integrated circuits in electronics established a platform technology that allowed an evolution of ideas and applications far beyond what could have been imagined at the beginning. Rather than provide a technology for the solution to a single problem, it is hoped that microfluidic radiochemistry will be an enabling platform technology for others to solve many problems. As part of this objective, another program goal is to commercialize the technologies that come from this work so that they can be provided to others who wish to use it.

  5. MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS

    SciTech Connect (OSTI)

    Pokorny, Richard; Pierce, David A.; Hrma, Pavel R.

    2012-08-10T23:59:59.000Z

    In this study, we present a model for the kinetics of multiple overlapping reactions. Mathematical representation of the kinetics of gas-evolving reactions is crucial for the modeling of the feed-to-glass conversion in a waste-glass melter. The model simulates multiple gas-evolving reactions that occur during heating of a high-alumina high-level waste melter feed. To obtain satisfactory kinetic parameters, we employed Kissinger's method combined with least-squares analysis. The power-law kinetics with variable reaction order sufficed for obtaining excellent agreement with measured thermogravimetric analysis data.

  6. MELTING OF GLASS BATCH - MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS

    SciTech Connect (OSTI)

    KRUGER AA; PIERCE DA; POKORNY R; HRMA PR

    2012-02-07T23:59:59.000Z

    In this study, we present a model for the kinetics of multiple overlapping reactions. Mathematical representation of the kinetics of gas-evolving reactions is crucial for the modeling of the feed-to-glass conversion in a waste-glass melter. The model simulates multiple gas-evolving reactions that occur during heating of a high-alumina high-level waste melter feed. To obtain satisfactory kinetic parameters, we employed Kissinger's method combined with least-squares analysis. The power-law kinetics with variable reaction order sufficed for obtaining excellent agreement with measured thermogravimetric analysis data.

  7. Multiscale modeling for fluid transport in nanosystems.

    SciTech Connect (OSTI)

    Lee, Jonathan W.; Jones, Reese E.; Mandadapu, Kranthi Kiran; Templeton, Jeremy Alan; Zimmerman, Jonathan A.

    2013-09-01T23:59:59.000Z

    Atomistic-scale behavior drives performance in many micro- and nano-fluidic systems, such as mircrofludic mixers and electrical energy storage devices. Bringing this information into the traditionally continuum models used for engineering analysis has proved challenging. This work describes one such approach to address this issue by developing atomistic-to-continuum multi scale and multi physics methods to enable molecular dynamics (MD) representations of atoms to incorporated into continuum simulations. Coupling is achieved by imposing constraints based on fluxes of conserved quantities between the two regions described by one of these models. The impact of electric fields and surface charges are also critical, hence, methodologies to extend finite-element (FE) MD electric field solvers have been derived to account for these effects. Finally, the continuum description can have inconsistencies with the coarse-grained MD dynamics, so FE equations based on MD statistics were derived to facilitate the multi scale coupling. Examples are shown relevant to nanofluidic systems, such as pore flow, Couette flow, and electric double layer.

  8. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect (OSTI)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01T23:59:59.000Z

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  9. Kinetic Modeling Of Solid-Gas Reactions At Reactor Scale: A General Approach Loc Favergeon1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the knowledge of the kinetic model for the calculation of the speed of reaction in one part of the reactorKinetic Modeling Of Solid-Gas Reactions At Reactor Scale: A General Approach Loïc Favergeon1 favergeon@emse.fr ABSTRACT A rigorous simulation of industrial reactors in the case of solid-gas reacting

  10. Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions for model systems

    E-Print Network [OSTI]

    Hammes-Schiffer, Sharon

    Proton-coupled electron transfer reactions in solution: Molecular dynamics with quantum transitions A general minimal model for proton-coupled electron transfer PCET reactions in solution is presented. This model consists of three coupled degrees of freedom that represent an electron, a proton, and a solvent

  11. Iron Reduction and Radionuclide Immobilization: Kinetic, Thermodynamic and Hydrologic controls & Reaction-Based Modeling - Final Report

    SciTech Connect (OSTI)

    William D. Burgos

    2004-06-18T23:59:59.000Z

    Our research focused on (1) microbial reduction of Fe(III) and U(VI) individually, and concomitantly in natural sediments, (2) Fe(III) oxide surface chemistry, specifically with respect to reactions with Fe(II)and U(VI), (3) the influence of humic substances on Fe(III) and U(VI) bioreduction, and on U(VI) complexation, and (4) the development of reaction-based reactive transport biogeochemical models to numerically simulate our experimental results. We have continued our investigations on microbial reduction of Fe(III) oxides. Modeling our earlier experimental results required assumption of a hydrated surface for hematite, more reactive than predicted based on theoretical solubility (Burgos et al.2002). Subsequent studies with Shewanella putrefaciens and Geobacter sulfurreducens confirmed the rates of Fe(III) bioreduction depend on oxide surface area rather than oxide thermodynamic properties (Roden,2003a,b;2004; Burgos et al,2003). We examined the potential for bioreduction of U(VI) by Geobacter sulfurreducens in the presence of synthetic Fe(III) oxides and natural Fe(III) oxide-containing solids (Jeon et al,2004a,b) in which more than 95% of added U(VI) was sorbed to mineral surfaces. The results showed a significant portion of solid-associated U(VI) was resistant to both enzymatic and abiotic (Fe(II)-driven) reduction, but the rate and extent of bioreduction of U(VI) was increased due to the addition of anthraquinone-2,6-disulfonate (AQDS). We conducted long-term semicontinuous culture and column experiments on coupled Fe(III) oxide/U(VI) reduction. These experiments were conducted with natural subsurface sediment from the Oyster site in Virginia, whose Fe content and microbial reducibility are comparable to ORNL FRC sediments (Jeon et al, 2004b). The results conclusively demonstrated the potential for sustained removal of U(VI) from solution via DMRB activity in excess of the U(VI) sorption capacity of the natural mineral assemblages. Jang (2004) demonstrated that the hydrated surface of nano-particles of hematite (prepared according to well-cited recipes and confirmed to be 100% hematite by Mossbauer spectroscopy and XRD) exhibited the solubility of hydrous ferric oxide (HFO). Jang (2004) also demonstrated that the sorptive reactivity of hematite and HFO were identical except for different specific surface area and pHzpc, and that the reduction of U(VI) by sorbed Fe(II) in the presence of the two phases was also similar in spite of theoretical predictions of large differences in Nernst potential. These results are consistent with the modeling of hematite bioreduction experiments where the thermodynamic potential of hematite had to be adjusted to represent a more disordered surface phase in order to accurately model bioreduction kinetics (Burgos et al, 2002, 2003). We have demonstrated that humic substances enhance solid-phase Fe(III) bioreduction via both electron shuttling and Fe(II) complexation(Royer et al, 2002a, b). We have found that humic substances were shown to inhibit the bioreduction of dissolved U(VI) and that soluble humic-U(IV) complexes were likely formed (Burgos et al, 2004). Kirkham (2004) measured and modeled complexation of U(VI) by humic substances as a function of pH, pCO2, U(VI) concentration, and humic concentration, and demonstrated that humic substances can complex U(VI) even at neutral pH values and in the presence of high (ca.30 mM) carbonate concentrations. Jang(2004) measured the abiotic reduction of U(VI) by Fe(II) sorbed to Fe(III) oxides in the presence/absence of humic substances and demonstrated that humic substances inhibited the heterogeneous reduction of U(VI). We have recently developed, validated, and documented a series of diagonalized reaction-based reactive transport computer models (HYDROGEOCHEM; Yeh et al,2004a,b). We demonstrated that parallel kinetic reactions could be modeled if separate experiments are used to independently measure each contributing kinetic reaction (Burgos et al, 2003). We have demonstrated the use of a reaction-based reactive transport model (HYDROGE

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2002-10-08T23:59:59.000Z

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  13. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  14. Log-domain circuit models of chemical reactions

    E-Print Network [OSTI]

    Mandal, Soumyajit

    We exploit the detailed similarities between electronics and chemistry to develop efficient, scalable bipolar or subthreshold log-domain circuits that are dynamically equivalent to networks of chemical reactions. Our ...

  15. Recent Developments of the Nuclear Reaction Model Code EMPIRE

    SciTech Connect (OSTI)

    Herman, M.; Oblozinsky, P. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Capote, R.; Trkov, A.; Zerkin, V. [International Atomic Energy Agency, Vienna (Austria); Sin, M. [University of Bucharest, Bucharest (Romania); Ventura, A. [Ente Nazionale Energie Alternative, Bologna (Italy)

    2005-05-24T23:59:59.000Z

    Recent extensions and improvements of the EMPIRE code system are outlined. They add to the code new capabilities such as fission of actinides, preequilibrium emission of clusters, photo-nuclear reactions, and reactions on excited targets. These features, along with improved ENDF formatting, exclusive spectra, and recoils make the forthcoming 2.19 release a complete tool for evaluation of nuclear data at incident energies above the resonance region.

  16. Three-dimensional Modeling of Acid Transport and Etching in a Fracture 

    E-Print Network [OSTI]

    Oeth, Cassandra V

    2013-11-25T23:59:59.000Z

    -dimensional acid transport and reaction within a fracture to yield the etched width created by acid along the fracture. The conductivity is calculated with the simulator derived acid-etched width, using correlations recently developed that reflect the small scale...

  17. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    SciTech Connect (OSTI)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01T23:59:59.000Z

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  18. Transportation

    E-Print Network [OSTI]

    Vinson, Steve

    2013-01-01T23:59:59.000Z

    Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

  19. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    SciTech Connect (OSTI)

    Chun, Jaehun; Pierce, David A.; Pokorny, Richard; Hrma, Pavel R.

    2013-05-01T23:59:59.000Z

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  20. Coupled Model for Heat and Water Transport in a High Level Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report...

  1. Modeling of heavy metal transport in a contaminated soil

    SciTech Connect (OSTI)

    Cernik, M.; Federer, P.; Borkovec, M.; Sticher, H. [Inst. of Terrestrial Ecology, Schlieren (Switzerland)

    1994-11-01T23:59:59.000Z

    Observed depth profiles in soils polluted by Zn and Cu that originate from a metal smelter are quantitatively interpreted by combining the production history of the smelter with established transport models. Using independent laboratory and field data, we were able to calculate the present depth profiles semiquantitatively by applying the pure convection model without parameter fitting. The agreement of the calculated depth profiles with the experimental data can be improved by including dispersion effects in the convection-dispersion model or the stochastic convection model. For the latter model, the depth profiles were calculated analytically. These models were used to calculate the expected depth profiles in the future and to judge possible remediation strategies. 48 refs., 12 figs., 1 tab.

  2. Advancements in the ADAPT Photospheric Flux Transport Model

    E-Print Network [OSTI]

    Kyle S. Hickmann; Humberto C. Godinez; Carl J. Henney; C. Nick Arge

    2015-04-08T23:59:59.000Z

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

  3. Modeling of contaminant transport in underground coal gasification

    SciTech Connect (OSTI)

    Lanhe Yang; Xing Zhang [China University of Mining and Technology, Xuzhou (China). College of Resources and Geosciences

    2009-01-15T23:59:59.000Z

    In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

  4. Modeling of transport phenomena in tokamak plasmas with neural networks

    SciTech Connect (OSTI)

    Meneghini, O., E-mail: meneghini@fusion.gat.com [Oak Ridge Associated Universities, 120 Badger Ave, Oak Ridge, Tennessee 37830 (United States); Luna, C. J. [Arizona State University, 411 N. Central Ave, Phoenix, Arizona 85004 (United States); Smith, S. P.; Lao, L. L. [General Atomics, San Diego, California 92186-5608 (United States)

    2014-06-15T23:59:59.000Z

    A new transport model that uses neural networks (NNs) to yield electron and ion heat flux profiles has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest fidelity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport profiles. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range of plasma regimes. Although each radial location is calculated independently from the others, the heat flux profiles are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-defined, non-stochastic relationship between the input parameters and the experimentally measured transport fluxes. The numerical efficiency of this method, requiring only a few CPU-?s per data point, makes it ideal for scenario development simulations and real-time plasma control.

  5. Application of a new screening model to thermonuclear reactions of the rp process

    E-Print Network [OSTI]

    Theodore Liolios

    2003-05-09T23:59:59.000Z

    A new screening model for astrophysical thermonuclear reactions was derived recently which improved Salpeter's weak-screening one. In the present work we prove that the new model can also give very reliable screening enhancement factors (SEFs) when applied to the rp process. According to the results of the new model, which agree well with Mitler's SEFs, the screened rp reaction rates can be, at most, twice as fast as the unscreened ones.

  6. Analysis of the energy transport and deposition within the reaction chamber of the prometheus inertial fusion energy reactor

    SciTech Connect (OSTI)

    Eggleston, J.E.; Abdou, M.A.; Tillack, M.S. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    One of the parameters affecting the feasibility of Inertial Fusion Energy (IFE) devices is the number of shots per unit time, i.e. the repetition rate. The repetition rate limits the achievable power that can be obtained from the reactor. To obtain an estimate of the allowable time between shots, a code named RECON was developed to model the response of the reaction chamber to the pellet explosion. This paper discusses how the code treats the thermodynamic response of the cavity gas and models the condensation/evaporation of this vapor to and from the first wall. A large amount of energy from the pellet microexplosion is carried by the pellet debris and the x-rays generated in the fusion reaction. Models of x-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. A large amount of energy is absorbed into the cavity gas, which causes it to become partially ionized. The ionization complicates the calculation of the temperature, pressure, and the radiative heat transfer from the gas to the first wall. To treat this problem, methods developed by Zel`dovich and Raizer are used in modeling the internal energy and the radiative heat flux. RECON was developed to run with a relatively short computational time, yet accurate enough for conceptual reactor design calculations.

  7. Folding model description of reactions with exotic nuclei

    SciTech Connect (OSTI)

    Ibraheem, Awad A., E-mail: awad_ah_eb@hotmail.com [Al-Azhar University, Assiut Branch, Physics Department (Egypt); Hassanain, M. A. [King Khalid University, Physics Department (Saudi Arabia); Mokhtar, S. R. [Assiut University, Physics Department (Egypt); Zaki, M. A. [South-Valley University, Physics Department (Egypt); Mahmoud, Zakaria M. M. [Assiut University, Sciences Department, New-Valley Faculty of Education (Egypt); Farid, M. El-Azab [Assiut University, Physics Department (Egypt)

    2012-08-15T23:59:59.000Z

    Microscopic folding calculations based upon the effective M3Y nucleon-nucleon interaction and the nuclearmatter densities of the interacting nuclei have been carried out to explain recently measured experimental data of the {sup 6}He+{sup 120}Sn elastic scattering cross section at four different laboratory energies near the Coulomb barrier. The extracted reaction cross sections are also considered.

  8. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-11-01T23:59:59.000Z

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.

  9. Well-posedness of a moving two-reaction-strips problem modeling

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    CO2 in unsaturated cement-based porous materials (concrete). The main issue is that CO2 diffusionWell-posedness of a moving two-reaction-strips problem modeling chemical corrosion of porous media and fast reaction with Ca(OH)2 in concrete lead to a sudden drop of alkalinity near the steel reinforcement

  10. Pajarito Plateau Groundwater Flow and Transport Modeling Process-Level and Systems Models of Groundwater Flow and

    E-Print Network [OSTI]

    Lu, Zhiming

    Pajarito Plateau Groundwater Flow and Transport Modeling 1 Process-Level and Systems Models of Groundwater Flow and Transport Beneath the Pajarito Plateau: Migration of High Explosives from Technical Area Groundwater Modeling Project Systems Model Vadose Zone Model Regional Aquifer Model #12;Pajarito Plateau

  11. A minimum-reaction-flux solution to master-equation models of protein folding

    E-Print Network [OSTI]

    Weston, Ken

    A minimum-reaction-flux solution to master-equation models of protein folding Huan-Xiang Zhoua; published online 20 May 2008 Master equations are widely used for modeling protein folding. Here- ceptual and quantitative models for protein folding.1­15 In such models, the conformational space

  12. Building 235-F Goldsim Fate And Transport Model

    SciTech Connect (OSTI)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14T23:59:59.000Z

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  13. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  14. Upscaling reactive transport in porous media : laboratory visualization and stochastic models

    E-Print Network [OSTI]

    Oates, Peter M. (Peter Michael), 1977-

    2007-01-01T23:59:59.000Z

    Solute transport models are essential tools for understanding and forecasting chemical concentrations in groundwater. Advection-dispersion based models can adequately predict spatial averages of conservative solute ...

  15. Comparison of kinetic and equilibrium reaction models insimulating the behavior of porous media

    SciTech Connect (OSTI)

    Kowalsky, Michael B.; Moridis, George J.

    2006-11-29T23:59:59.000Z

    In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. Assuming validity of the mostaccurate kinetic reaction model that is currently available, the use ofthe equilibrium reaction model often appears to be justified andpreferred for simulating the behavior of gas hydrates, given that thecomputational demands for the kinetic reaction model far exceed those forthe equilibrium reaction model.

  16. Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles

    E-Print Network [OSTI]

    Zeng, Yi

    Using the recently developed Cahn-Hilliard reaction (CHR) theory, we present a simple mathematical model of the transition from solid-solution radial diffusion to two-phase shrinking-core dynamics during ion intercalation ...

  17. Mesoscopic modeling of stochastic reaction-diffusion kinetics in the subdiffusive regime

    E-Print Network [OSTI]

    Emilie Blanc; Stefan Engblom; Andreas Hellander; Per Lötstedt

    2015-03-24T23:59:59.000Z

    Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again.

  18. Fluorine Plasma Treatments of Poly(propylene) Films, 2 Modeling Reaction Mechanisms and

    E-Print Network [OSTI]

    Kushner, Mark

    Fluorine Plasma Treatments of Poly(propylene) Films, 2 ­ Modeling Reaction Mechanisms and Scalinga of commodity hydrocarbon polymers such as poly(propylene) (PP) can be modified by functionalization with plasma

  19. A comparative study of vibrational relaxation and chemical reaction models for the Martian entry vehicle

    E-Print Network [OSTI]

    Koteshwar, Rajeev

    1992-01-01T23:59:59.000Z

    A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION AND CHEMICAL REACTION MODELS FOR THE MARTIAN ENTRY VEHICLE A Thesis by RAJEEV KOTESHWAR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1992 Major Subject: Aerospace Engineering A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION AND CHEMICAL REACTION MODELS FOR THE MARTIAN ENTRY VEHICLE A Thesis by RAJEEV KOTESHWAR Approved as to style...

  20. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect (OSTI)

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15T23:59:59.000Z

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  1. 4.0 Application of Chemical Reaction Models Computerized chemical reaction models based on thermodynamic principles may be used to calculate

    E-Print Network [OSTI]

    . Of the contaminants selected for consideration in this project [chromium, cadmium, cesium, tritium (3 H), lead/reduction, adsorption/desorption, and mineral precipitation/dissolution for contaminants in soil-water systems reaction models, their utility to understanding the solution chemistry of contaminants, and the MINTEQA2

  2. Vlasov modelling of parallel transport in a tokamak scrape-off layer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Vlasov modelling of parallel transport in a tokamak scrape-off layer G. Manfredi Institut de.Devaux@ccfe.ac.uk Abstract. A one-dimensional Vlasov-Poisson model is used to describe the parallel transport in a tokamak transport in a tokamak scrape-off layer 2 1. Introduction One of the main challenges for future tokamak

  3. Transport Corrections in Nodal Diffusion Codes for HTR Modeling

    SciTech Connect (OSTI)

    Abderrafi M. Ougouag; Frederick N. Gleicher

    2010-08-01T23:59:59.000Z

    The cores and reflectors of High Temperature Reactors (HTRs) of the Next Generation Nuclear Plant (NGNP) type are dominantly diffusive media from the point of view of behavior of the neutrons and their migration between the various structures of the reactor. This means that neutron diffusion theory is sufficient for modeling most features of such reactors and transport theory may not be needed for most applications. Of course, the above statement assumes the availability of homogenized diffusion theory data. The statement is true for most situations but not all. Two features of NGNP-type HTRs require that the diffusion theory-based solution be corrected for local transport effects. These two cases are the treatment of burnable poisons (BP) in the case of the prismatic block reactors and, for both pebble bed reactor (PBR) and prismatic block reactor (PMR) designs, that of control rods (CR) embedded in non-multiplying regions near the interface between fueled zones and said non-multiplying zones. The need for transport correction arises because diffusion theory-based solutions appear not to provide sufficient fidelity in these situations.

  4. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    SciTech Connect (OSTI)

    Sheng, F.; Wang, K.; Zhang, R.; Liu, H.H.

    2009-03-15T23:59:59.000Z

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.

  5. Preliminary Environmental Flow and Transport Modeling at the INEEL

    SciTech Connect (OSTI)

    J. D. Navratil; J. M. McCarthy; S. O. Magnuson

    1999-09-26T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is located in southeastern Idaho in the USA. The primary mission since the laboratory was founded in 1949 has been nuclear reactor research. Fifty-two reactors have been built and operated on the INEEL. Other principal activities at the laboratory have been reprocessing of spent nuclear fuel. Low-level radioactive waste generated on site and mixed and transuranic waste from the Rocky Flats plutonium processing facility in Colorado has been disposed on the INEEL at the Radioactive Waste Management Complex (RWMC). Waste disposal at the RWMC began in 1952 with shallow land burial in pits and trenches. The INEEL was placed on the National Priorities List (NPL) in 1989. The resulting environmental assessments of the potential negative health impacts of disposed waste at the RWMC have required the use of predictive numerical simulations. A petroleum reservoir simulator called TETRAD was modified for use in simulating environmental flow and transport. Use of this code has allowed the complex subsurface stratigraphy to be simulated, including an extensive region of unsaturated fractured basalt. Dual continual simulation approaches have been used to assess combined aqueous- and gaseous-phase transport of volatile organic compounds as well as dissolved-phase transport of radionuclides. Calibration of the simulator to available monitoring data has increased the confidence in the simulator results to the point where the model sensitivities are being used to direct additional characterization efforts. Eventually, as the model calibration improves and confidence in the model predictions increases, the simulator will be used as a decision tool for selecting remedial alternatives for the wastes buried at the RWMC. An overview of the overall program including a summary of laboratory actinide migration studies will be presented.

  6. Preliminary Environmental Flow and Transport Modeling at the INEEL

    SciTech Connect (OSTI)

    Magnuson, Swen O; Mccarthy, James Michael; Navratil, James Dale

    1999-09-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is located in southeastern Idaho in the USA. The primary mission since the laboratory was founded in 1949 has been nuclear reactor research. Fifty-two reactors have been built and operated on the INEEL. Other principal activities at the laboratory have been reprocessing of spent nuclear fuel. Low-level radioactive waste generated on site and mixed and transuranic waste from the Rocky Flats plutonium processing facility in Colorado has been disposed on the INEEL at the Radioactive Waste Management Complex (RWMC). Waste disposal at the RWMC began in 1952 with shallow land burial in pits and trenches. The INEEL was placed on the National Priorities List (NPL) in 1989. The resulting environmental assessments of the potential negative health impacts of disposed waste at the RWMC have required the use of predictive numerical simulations. A petroleum reservoir simulator called TETRAD was modified for use in simulating environmental flow and transport. Use of this code has allowed the complex subsurface stratigraphy to be simulated, including an extensive region of unsaturated fractured basalt. Dual continual simulation approaches have been used to assess combined aqueous- and gaseous-phase transport of volatile organic compounds as well as dissolved-phase transport of radionuclides. Calibration of the simulator to available monitoring data has increased the confidence in the simulator results to the point where the model sensitivities are being used to direct additional characterization efforts. Eventually, as the model calibration improves and confidence in the model predictions increases, the simulator will be used as a decision tool for selecting remedial alternatives for the wastes buried at the RWMC. An overview of the overall program including a summary of laboratory actinide migration studies will be presented.

  7. Thermoelectric transport in the coupled valence-band model

    E-Print Network [OSTI]

    Ramu, Ashok; Cassels, Laura; Hackman, Nathan; Lu, Hong; Zide, Joshua; Bowers, John E.

    2011-01-01T23:59:59.000Z

    109, 033704 ?2011? Thermoelectric transport in the coupledapplied to the problem of thermoelectric transport in p-typeef?ciency p-type thermoelectric material, are calculated and

  8. Environmental Transport Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    M. Wasiolek

    2004-09-10T23:59:59.000Z

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]).

  9. Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction

    E-Print Network [OSTI]

    Clement, Prabhakar

    Generalized solution to multi-dimensional multi-species transport equations coupled with a first-species reactive transport equations. The new method can be used for solving multi-species transport problems transport problem. In addition, three one-dimensional problems and two three-dimensional problems are solved

  10. Improved Geothermometry Through Multivariate Reaction Path Modeling and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImprove MotorEvaluation of

  11. Reaction-Diffusion systems for the microscopic cellular model of the cardiac electric field

    E-Print Network [OSTI]

    Veneroni, Marco

    Reaction-Diffusion systems for the microscopic cellular model of the cardiac electric field Marco-diffusion systems arising from the math- ematical models of the electric activity of cardiac ventricular cells Veneroni Abstract. The paper deals with a mathematical model for the electric activity of the heart

  12. Environmental Transport Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    M. A. Wasiolek

    2003-06-27T23:59:59.000Z

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values developed in this report, and the related FEPs, are listed in Table 1-1. The relationship between the parameters and FEPs was based on a comparison of the parameter definition and the FEP descriptions as presented in BSC (2003 [160699], Section 6.2). The parameter values developed in this report support the biosphere model and are reflected in the TSPA through the biosphere dose conversion factors (BDCFs). Biosphere modeling focuses on radionuclides screened for the TSPA-LA (BSC 2002 [160059]). The same list of radionuclides is used in this analysis (Section 6.1.4). The analysis considers two human exposure scenarios (groundwater and volcanic ash) and climate change (Section 6.1.5). This analysis combines and revises two previous reports, ''Transfer Coefficient Analysis'' (CRWMS M&O 2000 [152435]) and ''Environmental Transport Parameter Analysis'' (CRWMS M&O 2001 [152434]), because the new ERMYN biosphere model requires a redefined set of input parameters. The scope of this analysis includes providing a technical basis for the selection of radionuclide- and element-specific biosphere parameters (except for Kd) that are important for calculating BDCFs based on the available radionuclide inventory abstraction data. The environmental transport parameter values were developed specifically for use in the biosphere model and may not be appropriate for other applications.

  13. Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder

    SciTech Connect (OSTI)

    Rothman, A.B.

    1996-02-01T23:59:59.000Z

    Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

  14. Mixing Cell Model: A One-Dimensional Numerical Model for Assessment of Water Flow and Contaminant Transport in the Unsaturated Zone

    SciTech Connect (OSTI)

    A. S. Rood

    2010-10-01T23:59:59.000Z

    This report describes the Mixing Cell Model code, a one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions. The model is based on the principles and assumptions underlying mixing cell model formulations. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes include explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. Two FORTRAN codes were developed to solve the water flow and solute transport equations: (1) the Mixing-Cell Model for Flow (MCMF) solves transient water flow problems and (2) the Mixing Cell Model for Transport (MCMT) solves the solute transport problem. The transient water flow problem is typically solved first by estimating the water flux through each cell in the model domain as a function of time using the MCMF code. These data are stored in either ASCII or binary files that are later read by the solute transport code (MCMT). Code output includes solute pore water concentrations, water and solute inventories in each cell and at each specified output time, and water and solute fluxes through each cell and specified output time. Computer run times for coupled transient water flow and solute transport were typically several seconds on a 2 GHz Intel Pentium IV desktop computer. The model was benchmarked against analytical solutions and finite-element approximations to the partial differential equations (PDE) describing unsaturated flow and transport. Differences between the maximum solute flux estimated by the mixing-cell model and the PDE models were typically less than two percent.

  15. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    E-Print Network [OSTI]

    Bower, Allan F; Sethuraman, Vijay A; 10.1016/j.jmps.2011.01.003

    2011-01-01T23:59:59.000Z

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode-electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted c...

  16. Aerosols and clouds in chemical transport models and climate models.

    SciTech Connect (OSTI)

    Lohmann,U.; Schwartz, S. E.

    2008-03-02T23:59:59.000Z

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  17. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of David...

  18. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-01-01T23:59:59.000Z

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  19. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    SciTech Connect (OSTI)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01T23:59:59.000Z

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  20. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    SciTech Connect (OSTI)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15T23:59:59.000Z

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup +} production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

  1. Chemical Accelerator Studies of Isotope Effects on Collision Dynamics of Ion–Molecule Reactions: Elaboration of a Model for Direct Reactions

    E-Print Network [OSTI]

    Hierl, Peter M.; Herman, Z.; Wolfgang, R.

    1970-01-01T23:59:59.000Z

    there is a fairly wide distribution about the median values. Results confirm that this reaction is predominantly direct at all energies and provide no evidence for intermediate persistent complex formation. They are also consistent with a model for direct...

  2. A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport

    E-Print Network [OSTI]

    Kushner, Mark

    A hybrid model for particle transport and electron energy distributions in positive column species are generated in the kinetic module. The hybrid model has been used to examine electron energy which has discrete negative energies representing bound states, and a positive continuum representing

  3. Modeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material

    E-Print Network [OSTI]

    Modeling of a Nickel-Hydrogen Cell Phase Reactions in the Nickel Active Material B. Wu and R. E of South Carolina, Columbia, South Carolina 29208, USA A nonisothermal model of a nickel-hydrogen cell has been developed with the consideration of multiple phases in the nickel active material. Important

  4. EFFICIENCY OF POLYMERASE CHAIN REACTION PROCESSES: A STOCHASTIC MODEL Arjang Hassibi

    E-Print Network [OSTI]

    Hassibi, Arjang

    EFFICIENCY OF POLYMERASE CHAIN REACTION PROCESSES: A STOCHASTIC MODEL Arjang Hassibi California Institute of Technology Masoud Sharif Boston University ABSTRACT A stochastic model for the efficiency, temperature profile, enzyme rate, and other assay conditions [3], we calculate the efficiency of a multi

  5. Compendium of Material Composition Data for Radiation Transport Modeling

    SciTech Connect (OSTI)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04T23:59:59.000Z

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library file or mechanism for revising the data in a consistent and traceable manner. The authors of this revision have addressed that problem by first compiling all of the information (i.e., numbers and references) for all the materials into a single database, maintained at PNNL, that was then used as the basis for this document.

  6. Active patterning and asymmetric transport in a model actomyosin network

    E-Print Network [OSTI]

    Shenshen Wang; Peter G. Wolynes

    2014-12-19T23:59:59.000Z

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  7. header for SPIE use Laboratory Data and Model Comparisons of the Transport of Chemical

    E-Print Network [OSTI]

    Cal, Mark P.

    header for SPIE use Laboratory Data and Model Comparisons of the Transport of Chemical Signatures to examine the breadth of conditions that impact chemical signature transport, from the buried location results from the T2TNT code, specifically developed to evaluate the buried landmine chemical transport

  8. Fractional advection-dispersion equations for1 modeling transport at the Earth surface2

    E-Print Network [OSTI]

    Bäumer, Boris

    Fractional advection-dispersion equations for1 modeling transport at the Earth surface2 Rina partial differential equations such as the advection-dispersion equation12 (ADE) begin with assumptions biomechanical transport and mixing29 by bioturbation, and the transport of sediment particles and sediment

  9. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals

    E-Print Network [OSTI]

    Zender, Charles

    Simulating aerosols using a chemical transport model with assimilation of satellite aerosol for simulating aerosols has been developed using a chemical transport model together with an assimilation of satellite aerosol retrievals. The methodology and model components are described in this paper

  10. d+Au Collisions from A MultiPhase Transport Model

    E-Print Network [OSTI]

    Lin, Zi-wei

    d+Au Collisions from A MultiPhase Transport Model Structure of AMPT Model Results for d's Parton Cascade) Partons freeze out Lund fragmentation to hadrons using HIJING ART (A Relativistic Transport model for hadrons) A+B Final output Zhang et al, PRC61; ZWL et al, PRC64, NPA698 Wang

  11. Plutonium-238 observations as a test of modeled transport and surface deposition of meteoric smoke particles

    E-Print Network [OSTI]

    Chipperfield, Martyn

    Plutonium-238 observations as a test of modeled transport and surface deposition of meteoric smoke chemistry-climate model (CCM) to simulate the transport and deposition of plutonium- 238 oxide nanoparticles. P. Chipperfield, and J. M. C. Plane (2013), Plutonium-238 observations as a test of modeled

  12. Computers & Geosciences 29 (2003) 351359 A case against Kd-based transport models: natural attenuation

    E-Print Network [OSTI]

    Polly, David

    )-based transport model. The study site is a contaminated groundwater aquifer underneath a uranium mill tailings groundwater for 1600 years. The coupled model shows that groundwater­sediment interactions result in multiple. Keywords: Geochemical modeling; Contaminant; Transport; Coupled processes 1. Introduction Accurate

  13. Transportation planning for mega events : a model of urban change

    E-Print Network [OSTI]

    Kassens, Eva

    2009-01-01T23:59:59.000Z

    My study is about opportunities for revolutionary developments in urban transport. Often, we think of transport and urban development as an evolutionary process, yet there exist a few opportunities for cities to revolutionize ...

  14. Temperature Modeling for Reaction Development in Microwave-Assisted Chemistry

    E-Print Network [OSTI]

    Yakovlev, Vadim

    of exposure of the reactants to the electromagnetic (EM) field. The microwave parts of those systems are-scale resonator-type reactor in a 3D model capable of monitoring electromagnetic and thermal processes field. I. INTRODUCTION Microwave-assisted chemistry has recently emerged as a rapidly growing field

  15. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  16. The cationic amino acid transporter 2 is induced in inflammatory lung models and regulates lung fibrosis

    E-Print Network [OSTI]

    Niese, Kathryn A; Chiaramonte, Monica G; Ellies, Lesley G; Rothenberg, Marc E; Zimmermann, Nives

    2010-01-01T23:59:59.000Z

    acid transporter 2 is induced in inflammatory lung modelsand regulates lung fibrosis Respiratory Research 2010, 11:872 is induced in inflammatory lung models and regulates lung

  17. Full-fuel-cycle modeling for alternative transportation fuels

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1995-12-01T23:59:59.000Z

    Utilization of alternative fuels in the transportation sector has been identified as a potential method for mitigation of petroleum-based energy dependence and pollutant emissions from mobile sources. Traditionally, vehicle tailpipe emissions have served as sole data when evaluating environmental impact. However, considerable differences in extraction and processing requirements for alternative fuels makes evident the need to consider the complete fuel production and use cycle for each fuel scenario. The work presented here provides a case study applied to the southeastern region of the US for conventional gasoline, reformulated gasoline, natural gas, and methanol vehicle fueling. Results of the study demonstrate the significance of the nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-cycle-analysis method.

  18. Stochastic modeling of cargo transport by teams of molecular motors

    E-Print Network [OSTI]

    Sarah Klein; Cécile Appert-Rolland; Ludger Santen

    2014-07-16T23:59:59.000Z

    Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by M\\"uller et al., describes the cargo dynamics as a tug-of-war between different kinds of motors. An alternative approach has been suggested recently by Kunwar et al., who considered the coupling between motor and cargo in more detail. Based on this framework we introduce a model considering single motor positions which we propagate in continuous time. Furthermore, we analyze the possible influence of the discrete time update schemes used in previous publications on the system's dynamic.

  19. Modeling the Prospects for Hydrogen Powered Transportation Through 2100

    E-Print Network [OSTI]

    Sandoval, Reynaldo.

    Hydrogen fueled transportation has been proposed as a low carbon alternative to the current gasoline-powered

  20. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    SciTech Connect (OSTI)

    A. Hassan; J. Chapman

    2008-11-01T23:59:59.000Z

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

  1. Real-time capable first principle based modelling of tokamak turbulent transport

    E-Print Network [OSTI]

    Breton, S; Felici, F; Imbeaux, F; Aniel, T; Artaud, J F; Baiocchi, B; Bourdelle, C; Camenen, Y; Garcia, J

    2015-01-01T23:59:59.000Z

    A real-time capable core turbulence tokamak transport model is developed. This model is constructed from the regularized nonlinear regression of quasilinear gyrokinetic transport code output. The regression is performed with a multilayer perceptron neural network. The transport code input for the neural network training set consists of five dimensions, and is limited to adiabatic electrons. The neural network model successfully reproduces transport fluxes predicted by the original quasilinear model, while gaining five orders of magnitude in computation time. The model is implemented in a real-time capable tokamak simulator, and simulates a 300s ITER discharge in 10s. This proof-of-principle for regression based transport models anticipates a significant widening of input space dimensionality and physics realism for future training sets. This aims to provide unprecedented computational speed coupled with first-principle based physics for real-time control and integrated modelling applications.

  2. Coulomb reacceleration as a clock for nuclear reactions: A two-dimensional model

    SciTech Connect (OSTI)

    Bertulani, C.A. (Gesellschaft fuer Schwerionenforschung, KPII, Planckstrasse 1, D-64291 Darmstadt (Germany)); Bertsch, G.F. (Department of Physics and Institute for Nuclear Theory FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-05-01T23:59:59.000Z

    Reacceleration effects in the Coulomb breakup of nuclei are modeled with the two-dimensional time-dependent Schroedinger equation, extending a previous one-dimensional study. The present model better describes the individual contributions of longitudinal and transverse forces to the breakup and reacceleration. Reacceleration effects are found to preserve a strong memory of the pre-breakup phase of the reaction, as was concluded with the one-dimensional model.

  3. Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources

    E-Print Network [OSTI]

    Friedman, Carey

    We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model’s ability to simulate PAHs with different volatilities, ...

  4. Modeling of diffusive mass transport in micropores in cement based materials

    SciTech Connect (OSTI)

    Yamaguchi, Tetsuji, E-mail: yamaguchi.tetsuji@jaea.go.j [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Negishi, Kumi [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Taiheiyo Consultant Company Limited, 2-4-2, Osaku, Sakura, Chiba 285-8655 (Japan); Hoshino, Seiichi; Tanaka, Tadao [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan)

    2009-12-15T23:59:59.000Z

    In order to predict long-term leaching behavior of cement constituents for safety assessments of radioactive waste disposal, we modeled diffusive mass transport in micropores in cement based materials. Based on available knowledge on the pore structure, we developed a transport porosity model that enables us to estimate effective porosity available for diffusion (transport porosity) in cement based materials. We microscopically examined the pore structure of hardened cement pastes to partially verify the model. Effective diffusivities of tritiated water in hardened cement pastes were also obtained experimentally, and were shown to be proportional to the estimated transport porosity.

  5. Modelling of silicon oxynitridation by nitrous oxide using the reaction rate approach

    SciTech Connect (OSTI)

    Dominique Krzeminski, Christophe, E-mail: christophe.krzeminski@isen.fr [Départment ISEN, IEMN-UMR-8520, 41 Boulevard Vauban, 59046 Lille Cedex (France)

    2013-12-14T23:59:59.000Z

    Large technological progress in oxynitridation processing leads to the introduction of silicon oxynitride as ultra-thin gate oxide. On the theoretical side, few studies have been dedicated to the process modelling of oxynitridation. Such an objective is a considerable challenge regarding the various atomistic mechanisms occurring during this fabrication step. In this article, some progress performed to adapt the reaction rate approach for the modelling of oxynitride growth by a nitrous ambient are reported. The Ellis and Buhrman's approach is used for the gas phase decomposition modelling. Taking into account the mass balance of the species at the interface between the oxynitride and silicon, a minimal kinetic model describing the oxide growth has been calibrated and implemented. The influence of nitrogen on the reaction rate has been introduced in an empirical way. The oxidation kinetics predicted with this minimal model compares well with several experiments.

  6. TRANSVIP: a solute transport model based on the spatial variability of intrinsic permeability

    E-Print Network [OSTI]

    Freeze, Geoffrey Allan

    1989-01-01T23:59:59.000Z

    groundwater flow and solute transport in three dimensions in both saturated and unsaturated porous media. The model simulates mechanical dispersion using a spatially vari- able intrinsic permeability field. This approach provides a, more realistic physical.... TRANSVIP is a three-dimensional flow and transport model capable of simulating contaminant transport in both saturated and unsaturated porous me- dia and does not assume Fickian dispersion. In TRANSVIP, the flow deviations that cause mechanical...

  7. FEMA: a Finite Element Model of Material Transport through Aquifers

    SciTech Connect (OSTI)

    Yeh, G.T.; Huff, D.D.

    1985-01-01T23:59:59.000Z

    This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.

  8. Toward an Improved Model of Asphalt Binder Oxidation in Pavements

    E-Print Network [OSTI]

    Prapaitrakul, Nikornpon

    2011-02-22T23:59:59.000Z

    and oxygen transport model, coupled with binder reaction kinetics, provides the basis for such calculations. A one-dimensional thermal transport model, coupled with site-specific model parameters and recent improvements in the availability of required input...

  9. Numerical modeling of interface dynamics and transport phenomena in transport-limited electrolysis processes

    E-Print Network [OSTI]

    Pongsaksawad, Wanida

    2006-01-01T23:59:59.000Z

    Electrochemical reactions in materials and processes induce morphological instability on the cathode, which can lead to porous deposits or system failure. The growth of the protrusion is a complex phenomenon which involves ...

  10. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  11. A non-isothermal PEM fuel cell model including two water transport mechanisms in the

    E-Print Network [OSTI]

    Münster, Westfälische Wilhelms-Universität

    A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

  12. Using beryllium-7 to assess cross-tropopause1 transport in global models2

    E-Print Network [OSTI]

    Liu, Hongyu

    1 Using beryllium-7 to assess cross-tropopause1 transport in global models2 3 Hongyu Liu1 , David B, MA13 14 Short Title: Beryllium-7 and cross-tropopause transport15 Index Terms: 0368 Troposphere Initiative (GMI) modeling framework the29 utility of cosmogenic beryllium-7 (7 Be), a natural aerosol tracer

  13. A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors

    E-Print Network [OSTI]

    Pietra, Paola

    A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors Stefan Holst #12;tting mixed #12;nite-element method is used to discretize the stationary energy. Energy-transport models describe the ow of electrons through a semi- conductor device, in uenced by di

  14. Addressing model bias and uncertainty in three dimensional groundwater transport forecasts for a physical aquifer experiment

    E-Print Network [OSTI]

    Vermont, University of

    Addressing model bias and uncertainty in three dimensional groundwater transport forecasts, and D. M. Rizzo (2008), Addressing model bias and uncertainty in three dimensional groundwater transport. Introduction [2] Eigbe et al. [1998] provide an excellent review of groundwater applications of the linear

  15. Uranium Removal from Groundwater via In Situ Biostimulation: Field-Scale Modeling of Transport and Biological Processes

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Long, Philip E.; Resch, Charles T.; Peacock, Aaron D.; Komlos, John; Jaffe, Peter R.; Morrison, Stan J.; Dayvault, Richard; White, David C.; Anderson, Robert T.

    2007-03-12T23:59:59.000Z

    During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to 1) identify the dominant transport and biological processes controlling uranium mobility during biostimulation, 2) determine field-scale parameters for these modeled processes, and 3) apply the calibrated process models to history match observations during the 2003 field experiment. In spite of temporally and spatially variable observations during the field-scale biostimulation experiments, the coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of bioavailable Fe(III) mineral, and the magnitude of uranium bioreduction during biostimulated growth of the iron-reducing and sulfate-reducing microorganisms.

  16. A unified model of electroporation and molecular transport

    E-Print Network [OSTI]

    Smith, Kyle Christopher

    2011-01-01T23:59:59.000Z

    Biological membranes form transient, conductive pores in response to elevated transmembrane voltage, a phenomenon termed electroporation. These pores facilitate electrical and molecular transport across cell membranes that ...

  17. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect (OSTI)

    Pierce, Eric M [ORNL; Frugier, Pierre [CEA Marcoule DEN Laboratoire d’Étude du Comportement à Long Terme (France); Criscenti, Louise J [Sandia National Laboratory (SNL); Kwon, Kideok [Sandia National Laboratory (SNL); Kerisit, Sebastien [Pacific Northwest National Laboratory (PNNL)

    2014-01-01T23:59:59.000Z

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.

  18. MODELLING OF CONCRETE STRUCTURES AFFECTED BY INTERNAL SWELLING REACTIONS: COUPLINGS BETWEEN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Page 1 MODELLING OF CONCRETE STRUCTURES AFFECTED BY INTERNAL SWELLING REACTIONS: COUPLINGS BETWEEN of the affected concrete that generally leads to cracking and decrease of its mechanical properties of the concrete works and structural integrity. To manage with considered suffering structures, it is necessary

  19. On the Methods for Constructing Meson-Baryon Reaction Models within Relativistic Quantum Field Theory

    E-Print Network [OSTI]

    B. Julia-Diaz; H. Kamano; T. -S. H. Lee; A. Matsuyama; T. Sato; N. Suzuki

    2009-02-18T23:59:59.000Z

    Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.

  20. Coupled Deterministic-Monte Carlo Transport for Radiation Portal Modeling

    SciTech Connect (OSTI)

    Smith, Leon E.; Miller, Erin A.; Wittman, Richard S.; Shaver, Mark W.

    2008-01-14T23:59:59.000Z

    Radiation portal monitors are being deployed, both domestically and internationally, to detect illicit movement of radiological materials concealed in cargo. Evaluation of the current and next generations of these radiation portal monitor (RPM) technologies is an ongoing process. 'Injection studies' that superimpose, computationally, the signature from threat materials onto empirical vehicle profiles collected at ports of entry, are often a component of the RPM evaluation process. However, measurement of realistic threat devices can be both expensive and time-consuming. Radiation transport methods that can predict the response of radiation detection sensors with high fidelity, and do so rapidly enough to allow the modeling of many different threat-source configurations, are a cornerstone of reliable evaluation results. Monte Carlo methods have been the primary tool of the detection community for these kinds of calculations, in no small part because they are particularly effective for calculating pulse-height spectra in gamma-ray spectrometers. However, computational times for problems with a high degree of scattering and absorption can be extremely long. Deterministic codes that discretize the transport in space, angle, and energy offer potential advantages in computational efficiency for these same kinds of problems, but the pulse-height calculations needed to predict gamma-ray spectrometer response are not readily accessible. These complementary strengths for radiation detection scenarios suggest that coupling Monte Carlo and deterministic methods could be beneficial in terms of computational efficiency. Pacific Northwest National Laboratory and its collaborators are developing a RAdiation Detection Scenario Analysis Toolbox (RADSAT) founded on this coupling approach. The deterministic core of RADSAT is Attila, a three-dimensional, tetrahedral-mesh code originally developed by Los Alamos National Laboratory, and since expanded and refined by Transpire, Inc. [1]. MCNP5 is used to calculate sensor pulse-height tallies. RADSAT methods, including adaptive, problem-specific energy-group creation, ray-effect mitigation strategies and the porting of deterministic angular flux to MCNP for individual particle creation are described in [2][3][4]. This paper discusses the application of RADSAT to the modeling of gamma-ray spectrometers in RPMs.

  1. Modeling spatiotemporal behavior of the NO+CO reaction on Pt

    SciTech Connect (OSTI)

    Evans, J.W.; Madden, H.H.; Imbihl, R. (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, W-1000 Berlin 33 (Germany))

    1992-03-15T23:59:59.000Z

    Various features of NO+CO reaction kinetics on Pt(100) surfaces, including temporal oscillations, are well described by a three-variable model incorporating only the CO, NO, and O coverages. Here we analyze the corresponding reaction--diffusion equations demonstrating the existence of chemical waves where an oscillating phase'' displaces an unreactive NO/CO phase leaving a spatially periodic structure in its wake; pulses excited via inhomogeneities from an unreactive NO/CO background; and Turing structures for sufficiently unequal NO and CO diffusion rates.

  2. A comparison between the fission matrix method, the diffusion model and the transport model

    SciTech Connect (OSTI)

    Dehaye, B.; Hugot, F. X.; Diop, C. M. [Commissariat a l'Energie Atomique et aux Energies Alternatives, Direction de l'Energie Nucleaire, Departement de Modelisation des Systemes et Structures, CEA DEN/DM2S, PC 57, F-91191 Gif-sur-Yvette cedex (France)

    2013-07-01T23:59:59.000Z

    The fission matrix method may be used to solve the critical eigenvalue problem in a Monte Carlo simulation. This method gives us access to the different eigenvalues and eigenvectors of the transport or fission operator. We propose to compare the results obtained via the fission matrix method with those of the diffusion model, and an approximated transport model. To do so, we choose to analyse the mono-kinetic and continuous energy cases for a Godiva-inspired critical sphere. The first five eigenvalues are computed with TRIPOLI-4{sup R} and compared to the theoretical ones. An extension of the notion of the extrapolation distance is proposed for the modes other than the fundamental one. (authors)

  3. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    SciTech Connect (OSTI)

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, K. D.; Kerisit, Sebastien N.

    2014-07-12T23:59:59.000Z

    The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products)represents a complex region, both physically and chemically, sandwiched between two distinct boundaries - pristine glass surface at the inner most interface and aqueous solution at the outer most. The physico-chemical processes that control the development of this region have a significant impact on the long-term glass-water reaction. Computational models, spanning different length and time-scales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include Geochemical Reaction Path simulations, Glass Reactivity in Allowance for Alteration Layer simulations, Monte Carlo simulations, and Molecular Dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers; thus providing the fundamental data needed to develop pore-scale equations that enable more accurate predictions of nuclear waste glass corrosion in a geologic repository.

  4. Application of reactive transport modelling to growth and transport of microorganisms in the capillary fringe

    E-Print Network [OSTI]

    Hron, Pavel; Bastian, Peter; Gallert, Claudia; Winter, Josef; Ippisch, Olaf

    2014-01-01T23:59:59.000Z

    A multicomponent multiphase reactive transport simulator has been developed to facilitate the investigation of a large variety of phenomena in porous media including component transport, diffusion, microbiological growth and decay, cell attachment and detachment and phase exchange. The coupled problem is solved using operator splitting. This approach allows a flexible adaptation of the solution strategy to the concrete problem. Moreover, the individual submodels were optimised to be able to describe behaviour of Escherichia coli (HB101 K12 pGLO) in the capillary fringe in the presence or absence of dissolved organic carbon and oxygen under steady-state and flow conditions. Steady-state and flow through experiments in a Hele-Shaw cell, filled with quartz sand, were conducted to study eutrophic bacterial growth and transport in both saturated and unsaturated porous media. As E. coli cells can form the green fluorescent protein (GFP), the cell densities, calculated by evaluation of measured fluorescence intensit...

  5. Comparison of kinetic and equilibrium reaction models insimulating gas hydrate behavior in porous media

    SciTech Connect (OSTI)

    Kowalsky, Michael B.; Moridis, George J.

    2006-11-29T23:59:59.000Z

    In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. The use of the equilibriumreaction model often appears to be justified and preferred for simulatingthe behavior of gas hydrates, given that the computational demands forthe kinetic reaction model far exceed those for the equilibrium reactionmodel.

  6. Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems

    SciTech Connect (OSTI)

    Zheng, L.; Spycher, N.; Xu, T.; Apps, J.; Kharaka, Y.; Birkholzer, J.T.

    2010-11-05T23:59:59.000Z

    In this study, reactive transport simulations were used to assess the mobilization and transport of organics with supercritical CO{sub 2} (SCC), and the co-injection and transport of H{sub 2}S with SCC. These processes were evaluated at conditions of typical storage reservoirs, and for cases of hypothetical leakage from a reservoir to an overlying shallower fresh water aquifer. Modeling capabilities were developed to allow the simulation of multiphase flow and transport of H{sub 2}O, CO{sub 2}, H{sub 2}S, as well as specific organic compounds (benzene), coupled with multicomponent geochemical reaction and transport. This included the development of a new simulator, TMVOC-REACT, starting from existing modules of the TOUGH2 family of codes. This work also included an extensive literature review, calculation, and testing of phase-partitioning properties for mixtures of the phases considered. The reactive transport simulations presented in this report are primarily intended to illustrate the capabilities of the new simulator. They are also intended to help evaluate and understand various processes at play, in a more qualitative than quantitative manner, and only for hypothetical scenarios. Therefore, model results are not intended as realistic assessments of groundwater quality changes for specific locations, and they certainly do not provide an exhaustive evaluation of all possible site conditions, especially given the large variability and uncertainty in hydrogeologic and geochemical parameter input into simulations. The first step in evaluating the potential mobilization and transport of organics was the identification of compounds likely to be present in deep storage formations, and likely to negatively impact freshwater aquifers if mobilized by SCC. On the basis of a literature review related to the occurrence of these organic compounds, their solubility in water and SCC, and their toxicity (as reflected by their maximum contaminant levels MCL), benzene was selected as a key compound for inclusion into numerical simulations. Note that considering additional organic compounds and/or mixtures of such compounds in the simulations was beyond the scope of this study, because of the effort required to research, calculate, and validate the phase-partitioning data necessary for simulations. The injection of CO{sub 2} into a deep saline aquifer was simulated, followed by modeling the leaching of benzene by SCC and transport of benzene to an overlying aquifer along a hypothetical leakage pathway. One- and two-dimensional models were set up for this purpose. The target storage formation was assumed to initially contain about 10{sup -4} ppm benzene. Model results indicate that: (1) SCC efficiently extracts benzene from the storage formation. (2) Assuming equilibrium, the content of benzene in SCC is roportional to the concentration of benzene in the aqueous and solid phases. (3) Benzene may co-migrate with CO{sub 2} into overlying aquifers if a leakage pathway is present. Because the aqueous solubility of benzene in contact with CO{sub 2} is lower than the aqueous solubility of CO{sub 2}, benzene is actually enriched in the CO{sub 2} phase as the plume advances. (4) For the case studied here, the resulting aqueous benzene concentration in the overlying aquifer is on the same order of magnitude as the initial concentration in the storage formation. This generic modeling study illustrates, in a semi-quantitative manner, the possible mobilization of benzene by SCC. The extent to which the mobilization of this organic compound evolves temporally and spatially depends on a large number of controlling parameters and is largely site specific. Therefore, for more 'truly' predictive work, further sensitivity studies should be conducted, and further modeling should be integrated with site-specific laboratory and/or field experimental data. The co-injection of H{sub 2}S with CO{sub 2} into a deep saline aquifer was also simulated. In addition, the model considered leakage of the supercritical CO{sub 2}+H{sub 2}S mixture along a preferential p

  7. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center) [Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center; FIRST Staff

    2011-05-01T23:59:59.000Z

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  8. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center); FIRST Staff

    2011-11-02T23:59:59.000Z

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  9. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    SciTech Connect (OSTI)

    Atherton, C.S.

    1995-01-05T23:59:59.000Z

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  10. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect (OSTI)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01T23:59:59.000Z

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  11. A turbulent transport network model in MULTIFLUX coupled with TOUGH2

    SciTech Connect (OSTI)

    Danko, G.; Bahrami, D.; Birkholzer, J.T.

    2011-02-15T23:59:59.000Z

    A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.

  12. Analytical modeling of contaminant transport and horizontal well hydraulics

    E-Print Network [OSTI]

    Park, Eungyu

    2004-09-30T23:59:59.000Z

    transport from one-, two-, and three-dimensional finite sources in a finite-thickness aquifer using Green's function method. A library of unpublished analytical solutions with different finite source geometry is provided. A graphically integrated software...

  13. Analytical modeling of contaminant transport and horizontal well hydraulics 

    E-Print Network [OSTI]

    Park, Eungyu

    2004-09-30T23:59:59.000Z

    This dissertation is composed of three parts of major contributions. In Chapter II, we discuss analytical study of contaminant transport from a finite source in a finite-thickness aquifer. This chapter provides analytical solutions of contaminant...

  14. E-model for Transportation Problem of Linear Stochastic Fractional ...

    E-Print Network [OSTI]

    Dr.V.Charles

    2007-03-07T23:59:59.000Z

    Abstract: This paper deals with the so-called transportation problem of linear stochastic fractional programming, and ... sophisticated analysis. Stochastic ... circuit board of multi-objective LSFP, algorithm to identify redundant fractional objective ...

  15. Theoretical Description of Heavy Impurity Transport and its Application to the Modelling of Tungsten in JET and ASDEX Upgrade

    E-Print Network [OSTI]

    Theoretical Description of Heavy Impurity Transport and its Application to the Modelling of Tungsten in JET and ASDEX Upgrade

  16. Modeling of On-Cell Reforming Reaction for Planar SOFC Stacks

    SciTech Connect (OSTI)

    Yang, Choongmo; Lim, Hyung-Tae; Hwang, Soon Cheol; Kim, Dohyung; Lai, Canhai; Koeppel, Brian J.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-05-30T23:59:59.000Z

    Planar Solid Oxide Fuel Cell (SOFC) stack is known to suffer thermal problem from high stack temperature during operation to generate high current. On-Cell Reforming (OCR) phenomenon is often used to reduce stack temperature by an endothermic reaction of steam-methane reforming process. RIST conducted single-cell experiment to validate modeling tool to simulate OCR performance including temperature measurement. 2D modeling is used to check reforming rate during OCR using temperature measurement data, and 3D modeling is used to check overall thermal performance including furnace boundary conditions.

  17. REVIEW AND ANALYSIS Research Activities at U.S. Government Agencies in Subsurface Reactive Transport Modeling

    E-Print Network [OSTI]

    All T. Cygan; Caroline T. Stevens; Robert W. Puls; Steven B. Yabusaki; Robert D; David R. Turner

    Subsurface reactive transport modeling may be defi ned as the use of mathematical models to simulate the fate and transport of dissolved species and particulates in groundwater as these species are transported through porous media and react with each other, with mineral surfaces, and with microbes associated with the porous media matrix. This type of modeling has evolved over the last 30 yr from a specialized research topic involving a dozen or so practitioners (with often large stacks of computer punch cards) to a common offi ce tool found today on the personal computer (and occasional supercomputer) of many environmental chemists, geochemists, and soil scientists. The devel-

  18. Modeling electronic structure and transport properties of graphene with resonant scattering centers

    E-Print Network [OSTI]

    Modeling electronic structure and transport properties of graphene with resonant scattering centers present a detailed numerical study of the electronic properties of single-layer graphene with resonant and transport properties of functionalized graphene in a broad range of concentration of impurities from

  19. Toward Optimized Bioclogging and Biocementation Through Combining Advanced Geophysical Monitoring and Reactive Transport Modeling

    E-Print Network [OSTI]

    Hubbard, Susan

    and electrical techniques); (ii) developing and using a reactive transport simulator capable of predicting and Reactive Transport Modeling Approaches Christopher G Hubbard1 , Susan S. Hubbard1 , Yuxin Wu1 , Vikranth heterogeneities at the field scale. Optimization of these strategies requires advances in mechanistic reactive

  20. Proton transport model in the ionosphere. 2. Inuence of magnetic mirroring and collisions

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    Proton transport model in the ionosphere. 2. In¯uence of magnetic mirroring and collisions on the angular redistribution in a proton beam M. Galand1 , J. Lilensten2 , W. Kofman2 , D. Lummerzheim3 1 High in a proton/hydrogen beam by using a transport code in comparison with observations. H-emission Doppler pro

  1. Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water

    E-Print Network [OSTI]

    Kurganov, Alexander

    Finite-Volume-Particle Methods for Models of Transport of Pollutant in Shallow Water Alina Chertock of shallow water equations and the pollutant propagation is described by a transport equation. The idea and the pollution computations: the shallow water equations are numerically integrated using a #12;nite- volume

  2. Rattling and freezing in a 1-D transport model Jean-Pierre Eckmann1

    E-Print Network [OSTI]

    Rattling and freezing in a 1-D transport model Jean-Pierre Eckmann1 and Lai-Sang Young2 1 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Transport in the chain 8 3.1 Single-particle dynamics energy and fluxes as functions of (and time) . . . . . . . . . . . 14 4 Freezing 16 4.1 Distribution

  3. Modeling Transport E ects on Ground-Level Ozone Using a

    E-Print Network [OSTI]

    Huang, Su-Yun

    Modeling Transport E ects on Ground-Level Ozone Using a Non-Stationary Space-Time Model Hsin on Ground-Level Ozone 1 #12;Summary This article presents a novel autoregressive space-time model for ground-level ozone data, which models not only spatio-temporal dynamics of hourly ozone con- centrations, but also

  4. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect (OSTI)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01T23:59:59.000Z

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

  5. Coal thermolysis modeling: The effects of restricted diffusion on thermal reaction pathways

    SciTech Connect (OSTI)

    Buchanan, A.C. III; Britt, P.F.; Biggs, C.A.

    1989-01-01T23:59:59.000Z

    The technique of model compound immobilization by covalent surface attachment is being employed to investigate the potential impact of restricted diffusional mobility on the thermal reactivity of coal. This restricted mobility may be imposed in coal as a consequence of its cross-linked, macromolecular structure. A detailed study of the thermolysis of surface-immobilized bibenzyl showed that the rate of unimolecular C-C homolysis is similar to that in fluid phases. Recent studies have foucused on the thermally induced, free radical chain decomposition reactions for surface-immobilized 1,3-diphenylpropane and 1,4-diphenylbutane. For 1,4-diphenylbutane both the reaction rate and product composition are strongly dependent on surface coverage and, hence, the proximity of 1.4-diphenylbutane molecules and hydrogen abstracting radicals on the surface. The rates and selectivities of these key bimolecular reaction steps on the surface might also be affected by the structure of neighboring molecules. In the current study, we are beginning to probe this feature by examining the influence of the structure of co-attached aromatic molecules such as biphenyl and diphenylmethane on the reaction rate and regioselectivity in the thermolysis of 1,4-diphenylbutane. 7 refs. , 1 fig., 2 tabs.

  6. Development of a Proteoliposome Model to Probe Transmembrane Electron-Transfer Reactions

    SciTech Connect (OSTI)

    White, Gaye F.; Shi, Zhi; Shi, Liang; Dohnalkova, Alice; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas

    2012-12-01T23:59:59.000Z

    The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system has been developed that contains methyl viologen (MV) as an internalised electron acceptor and valinomycin (V) as a membrane associated cation exchanger. These proteoliposomes can be used as a model system to investigate MtrCAB function.

  7. Oceanic transports of heat and salt from a global model and data

    E-Print Network [OSTI]

    Olson, Elise

    2006-01-01T23:59:59.000Z

    A state estimate produced by ECCO-GODAE from a global one-degree model and data spanning the years 1992-2005 is analyzed in terms of transports of volume, temperature, and freshwater. The estimate is assessed to be ...

  8. Technology detail in a multi-sector CGE model : transport under climate policy

    E-Print Network [OSTI]

    Schafer, Andreas.

    A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

  9. Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer

    E-Print Network [OSTI]

    Zheng, Chunmiao

    Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer Jerry the geophysically derived hydraulic conductivity representation in numerical simulations of the natural the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field

  10. Reactive Transport Modeling of Natural Attenuation in Stormwater Bioretention Cells and Under Land Application of Wastewater 

    E-Print Network [OSTI]

    Zhang, Jingqiu

    2014-04-29T23:59:59.000Z

    hydrocarbon, nutrient, metals, and solids. Vegetation also plays an important role in reducing water volume, and removing nutrients and solutes from the contaminated soil. We used a reactive transport model MIN3P-THM to simulate the natural attenuation...

  11. Improving parameterization of scalar transport through vegetation in a coupled ecosystem-atmosphere model

    E-Print Network [OSTI]

    Link, Percy Anne

    2008-01-01T23:59:59.000Z

    Several regional-scale ecosystem models currently parameterize subcanopy scalar transport using a rough-wall boundary eddy diffusivity formulation. This formulation predicts unreasonably high soil evaporation beneath tall, ...

  12. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect (OSTI)

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Hoza 69, PL-00-681 Warsaw (Poland); Andrzej Soltan Institute for Nuclear Studies, PL-05-400 Otwock-Swierk (Poland)

    2011-05-15T23:59:59.000Z

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  13. A screening model for evaluating the degradation and transport of MTBE and other fuel oxygenates in the subsurface

    SciTech Connect (OSTI)

    Sun, Y; Lu, X

    2004-04-20T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) has received high attention as it contributed to cleaner air and contaminated thousands of underground storage tank sites. Because MTBE is very water soluble, it is more difficult to remove from water by conventional remediation techniques. Therefore, biodegradation of MTBE has become a remediation alternative. In order to understand the transport and transformation processes, they present a closed form solution as a screening tool in this paper. The possible reaction pathways of first-order reactions are described as a reaction matrix. The singular value decomposition is conducted analytically to decouple the partial differential equations of the multi-species transport system coupled by the reaction matrix into multiple independent subsystems. Therefore, the complexity of mathematical description for the reactive transport system is significantly reduced and analytical solutions may be previously available or easily derived.

  14. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    SciTech Connect (OSTI)

    None

    1996-12-01T23:59:59.000Z

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  15. Transport parameter determination and modeling of sodium and strontium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Londergan, John Thomas

    1987-01-01T23:59:59.000Z

    TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Geophysics TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Approved...

  16. Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents

    SciTech Connect (OSTI)

    Ellison, P.G.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (United States)); Mitchell, H.A. (Concord Associates, Inc., Knoxville, TN (United States))

    1990-01-01T23:59:59.000Z

    This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises.

  17. Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents

    SciTech Connect (OSTI)

    Ellison, P.G.; Monson, P.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Mitchell, H.A. [Concord Associates, Inc., Knoxville, TN (United States)

    1990-12-31T23:59:59.000Z

    This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises.

  18. Field, Laboratory, and Modeling Study of Reactive Transport of

    E-Print Network [OSTI]

    University of New York, Flushing, New York 11367, Department of Marine Chemistry and Geochemistry, Woods Hole Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport), phosphate (5), and oxyanions of molybdenum (6) and uranium (7, 8) in aquifers. In addition

  19. Conventional Transportation Planning Models: Review and Prospects for Alternatives

    E-Print Network [OSTI]

    Nagurney, Anna

    of 1964 ($ 375 m) Highway Oriented 1970s Oil Crisis, Back to the City Transit Oriented (Urban Mass-Aid Highway Act of 1956) 1960s Fiscal Crisis, Urban Exodus Suburbanization Urban Mass Transportation Act-Private Partnership 1990s Global Warming CAAA 1990, ISTEA 1991, TEA21 1998 2000s Alternative Energy Sources Terrorism

  20. Model Proton-Coupled Electron Transfer Reactions in Solution: Predictions of Rates, Mechanisms, and Kinetic Isotope Effects

    E-Print Network [OSTI]

    Hammes-Schiffer, Sharon

    Model Proton-Coupled Electron Transfer Reactions in Solution: Predictions of Rates, Mechanisms isotope effects for proton-coupled electron transfer (PCET) reactions. These studies are based, the solvent is represented as a dielectric continuum, and the active electrons and transferring protons

  1. Pore-scale simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale reactive transport

    SciTech Connect (OSTI)

    Tartakovsky, Guzel D.; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Fang, Yilin; Mahadevan, Radhakrishnan; Lovley, Derek R.

    2013-09-07T23:59:59.000Z

    Recent advances in microbiology have enabled the quantitative simulation of microbial metabolism and growth based on genome-scale characterization of metabolic pathways and fluxes. We have incorporated a genome-scale metabolic model of the iron-reducing bacteria Geobacter sulfurreducens into a pore-scale simulation of microbial growth based on coupling of iron reduction to oxidation of a soluble electron donor (acetate). In our model, fluid flow and solute transport is governed by a combination of the Navier-Stokes and advection-diffusion-reaction equations. Microbial growth occurs only on the surface of soil grains where solid-phase mineral iron oxides are available. Mass fluxes of chemical species associated with microbial growth are described by the genome-scale microbial model, implemented using a constraint-based metabolic model, and provide the Robin-type boundary condition for the advection-diffusion equation at soil grain surfaces. Conventional models of microbially-mediated subsurface reactions use a lumped reaction model that does not consider individual microbial reaction pathways, and describe reactions rates using empirically-derived rate formulations such as the Monod-type kinetics. We have used our pore-scale model to explore the relationship between genome-scale metabolic models and Monod-type formulations, and to assess the manifestation of pore-scale variability (microenvironments) in terms of apparent Darcy-scale microbial reaction rates. The genome-scale model predicted lower biomass yield, and different stoichiometry for iron consumption, in comparisonto prior Monod formulations based on energetics considerations. We were able to fit an equivalent Monod model, by modifying the reaction stoichiometry and biomass yield coefficient, that could effectively match results of the genome-scale simulation of microbial behaviors under excess nutrient conditions, but predictions of the fitted Monod model deviated from those of the genome-scale model under conditions in which one or more nutrients were limiting. The fitted Monod kinetic model was also applied at the Darcy scale; that is, to simulate average reaction processes at the scale of the entire pore-scale model domain. As we expected, even under excess nutrient conditions for which the Monod and genome-scale models predicted equal reaction rates at the pore scale, the Monod model over-predicted the rates of biomass growth and iron and acetate utilization when applied at the Darcy scale. This discrepancy is caused by an inherent assumption of perfect mixing over the Darcy-scale domain, which is clearly violated in the pore-scale models. These results help to explain the need to modify the flux constraint parameters in order to match observations in previous applications of the genome-scale model at larger scales. These results also motivate further investigation of quantitative multi-scale relationships between fundamental behavior at the pore scale (where genome-scale models are appropriately applied) and observed behavior at larger scales (where predictions of reactive transport phenomena are needed).

  2. A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS

    E-Print Network [OSTI]

    Dessouky, Maged

    A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS Marco a demand responsive transit service with a predetermined quality for the user in terms of waiting time models; Continuous approximation models; Paratransit services; Demand responsive transit systems. #12;3 1

  3. Estimates for temperature in projectile like fragment in geometric and transport models

    E-Print Network [OSTI]

    Mallik, S; Chaudhuri, G

    2013-01-01T23:59:59.000Z

    Projectile like fragments emerging from heavy ion collision have an excitation energy which is often labeled by a temperature. This temperature was recently calculated using a geometric model. We expand the geometric model to include also dynamic effects using a transport model. The temperatures so deduced agree quite well with values of temperature needed to fit experimental data.

  4. Journal of Transportation Engineering Modelling Automobile Driver's Toll-Lane Choice Behaviour at a Toll Plaza

    E-Print Network [OSTI]

    Kundu, Debasis

    Journal of Transportation Engineering Modelling Automobile Driver's Toll-Lane Choice Behaviour at a Toll Plaza --Manuscript Draft-- Manuscript Number: TEENG-1181R3 Full Title: Modelling Automobile Driver to develop a random utility based discrete multinomial choice model for the behaviour of automobile drivers

  5. Complex particle and light fragment emission in the cascade-excitation model of nuclear reactions

    SciTech Connect (OSTI)

    Mashnik, S. G. (Stepan G.); Sierk, A. J. (Arnold J.); Gudima, K. K. (Konstantin K.)

    2002-01-01T23:59:59.000Z

    A brief description of our improvements and refinements that led from the CEM95 version of the Cascade-Exciton Model (CEM) code to CEM97 and to CEM2k is given. The increased accuracy and predictive power of the code CEM2k are shown by several examples. To describe fission and light-fragment (heavier than {sup 4}He) production, the CEM2k code has been merged with the GEM2 code of Furihata. We present some results on proton-induced fragmentation and fission reactios predicted by this extended version of CEM2k. We show that merging CEM2k with GEM2 allows us to describe many fission and fragmentation reactions in addition to the spallation reactions which are already relatively well described.

  6. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01T23:59:59.000Z

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  7. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01T23:59:59.000Z

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  8. Modeling Water and Solute Transport in Porous Media: Theory and Application Modeling Water and Solute Transport in Porous Media: Theory

    E-Print Network [OSTI]

    Zhan, Hongbin

    and transport near horizontal wells, hydraulics of flowing horizontal wells, fresh water/sea water upconing and fractured media, and hydrogeophysics. He is an associate editor of some well-know journal such as Water Resources Research, Advances in Water Resources, and Journal of contaminant Hydrology. Chunmiao Zheng

  9. Mechanistic studies of photo-induced proton-coupled electron transfer and oxygen atom transfer reactions in model systems

    E-Print Network [OSTI]

    Hodgkiss, Justin M. (Justin Mark), 1978-

    2007-01-01T23:59:59.000Z

    Time-resolved optical spectroscopy has been employed for mechanistic studies in model systems designed to undergo photo-induced proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT) reactions, both of which ...

  10. A comparative study of reaction rate, species, and vibration-dissociation coupling models for an AOTV flowfield

    E-Print Network [OSTI]

    Bobskill, Glenn James

    1988-01-01T23:59:59.000Z

    A COMPARATIVE STUDY OF REACTION RATE, SPECIES, AND VIBRATION DISSOCIATION COUPLING MODELS FOR AN AOTV FLOWFIELD A Thesis by GLENN JAMES BOBSKILL Submitted to the Graduate College of Texas A&M UniversitY in partial fulfillment... of the requirements for the degree of MASTER GF SC. BNCH August 1938 Major Subject: Aerospace Engineering A COMPARATIVE STUDY OF REACTION RATE, SPECIES, AND VIBRATION -DISSOCIATION COUPLING MODELS FOR AN AOTV FLOWFIELD A Thesis by GLENN JAMES BOBSKILL...

  11. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Ramsdell, J.V.

    1991-07-01T23:59:59.000Z

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs.

  12. Transport enhancement and suppression in turbulent magnetic reconnection: A self-consistent turbulence model

    SciTech Connect (OSTI)

    Yokoi, N. [Institute of Industrial Science, University of Tokyo, Tokyo (Japan)] [Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Higashimori, K.; Hoshino, M. [Department of Earth and Planetary Science, University of Tokyo, Tokyo (Japan)] [Department of Earth and Planetary Science, University of Tokyo, Tokyo (Japan)

    2013-12-15T23:59:59.000Z

    Through the enhancement of transport, turbulence is expected to contribute to the fast reconnection. However, the effects of turbulence are not so straightforward. In addition to the enhancement of transport, turbulence under some environment shows effects that suppress the transport. In the presence of turbulent cross helicity, such dynamic balance between the transport enhancement and suppression occurs. As this result of dynamic balance, the region of effective enhanced magnetic diffusivity is confined to a narrow region, leading to the fast reconnection. In order to confirm this idea, a self-consistent turbulence model for the magnetic reconnection is proposed. With the aid of numerical simulations where turbulence effects are incorporated in a consistent manner through the turbulence model, the dynamic balance in the turbulence magnetic reconnection is confirmed.

  13. Modeling electron transport in the presence of electric and magnetic fields.

    SciTech Connect (OSTI)

    Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David

    2013-09-01T23:59:59.000Z

    This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.

  14. Uncertainty quantication in environmental flow and transport models

    E-Print Network [OSTI]

    Wang, Peng

    2011-01-01T23:59:59.000Z

    78] V. P. Singh, Kinematic Wave Modeling in Water Resources:V. P. Singh, “Kinematic wave modeling in water resources: awater content ? and precipitation rate, whose motion can be approximated using kinematic wave

  15. Analytical modelling of hydrogen transport in reactor containments

    E-Print Network [OSTI]

    Manno, V.

    1983-01-01T23:59:59.000Z

    There are two diffusion processes, molecular and turbulent, which should be modelled in different ways. Molecular diffusion is modelled by Wilke's formula for the multi-component gas diffusion, where the diffusion constants ...

  16. Ris-R-1201(EN) Radon Transport Modelling

    E-Print Network [OSTI]

    is a numerical computer model of soil-gas and radon trans- port in porous media. It can be used, for example radon exhalation from building materials such as concrete. The finite-volume model is a technical

  17. Dynamical coupled-channels model of $K^- p$ reactions (I): Determination of partial-wave amplitudes

    E-Print Network [OSTI]

    H. Kamano; S. X. Nakamura; T. -S. H. Lee; T. Sato

    2014-12-12T23:59:59.000Z

    We develop a dynamical coupled-channels model of K^- p reactions, aiming at extracting the parameters associated with hyperon resonances and providing the elementary antikaon-nucleon scattering amplitudes that can be used for investigating various phenomena in the strangeness sector such as the production of hypernuclei from kaon-nucleus reactions. The model consists of (a) meson-baryon (MB) potentials v_{M'B',MB} derived from the phenomenological SU(3) Lagrangian, and (b) vertex interactions Gamma_{MB,Y*} for describing the decays of the bare excited hyperon states (Y*) into MB states. The model is defined in a channel space spanned by the two-body barK N, pi Sigma, pi Lambda, eta Lambda, and K Xi states and also the three-body pi pi Lambda and pi barK N states that have the resonant pi Sigma* and barK* N components, respectively. The resulting coupled-channels scattering equations satisfy the multichannel unitarity conditions and account for the dynamical effects arising from the off-shell rescattering processes. The model parameters are determined by fitting the available data of the unpolarized and polarized observables of the K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi reactions in the energy region from the threshold to invariant mass W=2.1 GeV. Two models with equally good chi^2 fits to the data have been constructed. The partial-wave amplitudes obtained from the constructed models are compared with the results from a recent partial-wave analysis by the Kent State University group. We discuss the differences between these three analysis results. Our results at energies near the threshold suggest that the higher partial waves should be treated on the same footing as the S wave if one wants to understand the nature of Lambda(1405)1/2^- using the data below the barK N threshold, as will be provided by the J-PARC E31 experiment.

  18. Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation on metal (100) surfaces

    SciTech Connect (OSTI)

    Liu, Dajiang [Ames Laboratory; Evans, James W. [Ames Laboratory

    2013-12-01T23:59:59.000Z

    A realistic molecular-level description of catalytic reactions on single-crystal metal surfaces can be provided by stochastic multisite lattice-gas (msLG) models. This approach has general applicability, although in this report, we will focus on the example of CO-oxidation on the unreconstructed fcc metal (100) or M(100) surfaces of common catalyst metals M = Pd, Rh, Pt and Ir (i.e., avoiding regimes where Pt and Ir reconstruct). These models can capture the thermodynamics and kinetics of adsorbed layers for the individual reactants species, such as CO/M(100) and O/M(100), as well as the interaction and reaction between different reactant species in mixed adlayers, such as (CO + O)/M(100). The msLG models allow population of any of hollow, bridge, and top sites. This enables a more flexible and realistic description of adsorption and adlayer ordering, as well as of reaction configurations and configuration-dependent barriers. Adspecies adsorption and interaction energies, as well as barriers for various processes, constitute key model input. The choice of these energies is guided by experimental observations, as well as by extensive Density Functional Theory analysis. Model behavior is assessed via Kinetic Monte Carlo (KMC) simulation. We also address the simulation challenges and theoretical ramifications associated with very rapid diffusion and local equilibration of reactant adspecies such as CO. These msLG models are applied to describe adsorption, ordering, and temperature programmed desorption (TPD) for individual CO/M(100) and O/M(100) reactant adlayers. In addition, they are also applied to predict mixed (CO + O)/M(100) adlayer structure on the nanoscale, the complete bifurcation diagram for reactive steady-states under continuous flow conditions, temperature programmed reaction (TPR) spectra, and titration reactions for the CO-oxidation reaction. Extensive and reasonably successful comparison of model predictions is made with experimental data. Furthermore, we discuss the possible transition from traditional mean-field-type bistability and reaction kinetics for lower-pressure to multistability and enhanced fluctuation effects for moderate- or higher-pressure. Behavior in the latter regime reflects a stronger influence of adspecies interactions and also lower diffusivity in the higher-coverage mixed adlayer. We also analyze mesoscale spatiotemporal behavior including the propagation of reaction diffusion fronts between bistable reactive and inactive states, and associated nucleation-mediated transitions between these states. This behavior is controlled by complex surface mass transport processes, specifically chemical diffusion in mixed reactant adlayers for which we provide a precise theoretical formulation. The msLG models together with an appropriate treatment of chemical diffusivity enable equation-free heterogeneous coupled lattice-gas (HCLG) simulations of spatiotemporal behavior. In addition, msLG + HCLG modeling can describe coverage variations across polycrystalline catalysts surfaces, pressure variations across catalyst surfaces in microreactors, and could be incorporated into a multiphysics framework to describe mass and heat transfer limitations for high-pressure catalysis. (C) 2013 Elsevier Ltd. All rights reserved.

  19. Observations and models of heat and salt transport at a deepwater Gulf of Mexico vent

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Observations and models of heat and salt transport at a deepwater Gulf of Mexico vent Andrew Smith salinity and temperature anomalies at a deepwater Gulf of Mexico vent in lease blocks MC852/853. In our method for estimating gas and water flux from vents. Our model indicates that vents in the Gulf of Mexico

  20. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    E-Print Network [OSTI]

    Clement, Prabhakar

    Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical, and it does not require any additional software tools. The code can be easily adapted by others for simulating

  1. Finite-element discretization of a linearized 2 -D model for lubricated oil transportation

    E-Print Network [OSTI]

    Frey, Pascal

    Finite-element discretization of a linearized 2 - D model for lubricated oil transportation V acts as a lubricant by coating the wall of the pipeline, thus preventing the oil from adhering is devoted to the numerical simulation of a linearized model for the lubricated trans- portation of heavy

  2. Revised rail-stop exposure model for incident-free transport of nuclear waste

    SciTech Connect (OSTI)

    Ostmeyer, R.M.

    1986-02-01T23:59:59.000Z

    This report documents a model for estimating railstop doses that occur during incident-free transport of nuclear waste by rail. The model, which has been incorporated into the RADTRAN III risk assessment code, can be applied to general freight and dedicated train shipments of waste.

  3. Fluid transport in branched structures with temporary closures: A model for quasistatic lung inflation

    E-Print Network [OSTI]

    Alencar, Adriano Mesquita

    Fluid transport in branched structures with temporary closures: A model for quasistatic lung a model system relevant to the inflation of a mammalian lung, an asymmetric bifurcating structure description of the underlying branching structure of the lung, by analyzing experimental pressure-volume data

  4. Modeling precursor diffusion and reaction of atomic layer deposition in porous structures

    SciTech Connect (OSTI)

    Keuter, Thomas, E-mail: t.keuter@fz-juelich.de; Menzler, Norbert Heribert; Mauer, Georg; Vondahlen, Frank; Vaßen, Robert; Buchkremer, Hans Peter [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK-1), 52425 Jülich (Germany)

    2015-01-01T23:59:59.000Z

    Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.

  5. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Drici, Warda

    2003-08-01T23:59:59.000Z

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  6. Centrifuge modeling of LNAPL transport in partially saturated sand

    SciTech Connect (OSTI)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-12-01T23:59:59.000Z

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an unsaturated sand prepared at two values of porosity. The duration of the centrifuge model tests corresponded to a prototype equivalent of 110 days. The choice of modeling a 2D flow together with the use of a transparent container enabled direct visual observation of the experiments. Scaling laws developed in connection with other centrifuge modeling studies were used to support the test results. Tests were conducted at two different centrifuge accelerations to verify, by means of the modeling of models technique, the similitude between the different experiments. The paper presents details of the experimental methodologies and the measuring techniques used to evaluate the final distribution of water and LNAPL content in the soils.

  7. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    SciTech Connect (OSTI)

    Kwong, S. [National Nuclear Laboratory (United Kingdom)] [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)] [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2013-07-01T23:59:59.000Z

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive transport model) to examine the long term behaviour of deep geological repositories with media property change under complex geochemical conditions. (authors)

  8. Constructing transportable behavioural models for nonlinear electronic devices

    E-Print Network [OSTI]

    David M. Walker; R. Brown; N. B. Tufillaro

    1998-10-09T23:59:59.000Z

    We use radial basis functions to model the input--output response of an electronic device. A new methodology for producing models that accuratly describe the response of the device over a wide range of operating points is introduced. A key to the success of the method is the ability to find a polynomial relationship between the model parameters and the operating points of the device.

  9. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    Incident.docx More Documents & Publications Hazardous Materials Incident Response Procedure First Responder Initial Response Procedure TEPP Model Needs Assessment Document...

  10. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    SciTech Connect (OSTI)

    Holt, R.M. [Holt Hydrogeology, Placitas, NM (United States)] [Holt Hydrogeology, Placitas, NM (United States)

    1997-08-01T23:59:59.000Z

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model.

  11. Conceptual model for regional radionuclide transport from a salt dome repository: a technical memorandum

    SciTech Connect (OSTI)

    Kier, R.S.; Showalter, P.A.; Dettinger, M.D.

    1980-05-30T23:59:59.000Z

    Disposal of high-level radioactive wastes is a major environmental problem influencing further development of nuclear energy in this country. Salt domes in the Gulf Coast Basin are being investigated as repository sites. A major concern is geologic and hydrologic stability of candidate domes and potential transport of radionuclides by groundwater to the biosphere prior to their degradation to harmless levels of activity. This report conceptualizes a regional geohydrologic model for transport of radionuclides from a salt dome repository. The model considers transport pathways and the physical and chemical changes that would occur through time prior to the radionuclides reaching the biosphere. Necessary, but unknown inputs to the regional model involve entry and movement of fluids through the repository dome and across the dome-country rock interface and the effect on the dome and surrounding strata of heat generated by the radioactive wastes.

  12. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: One-dimensional soil thaw

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Analytical solutions for benchmarking cold regions subsurface water flow and energy transport Freezing and thawing a b s t r a c t Numerous cold regions water flow and energy transport models have of powerful simulators of cold regions subsurface water flow and energy transport have emerged in recent years

  13. Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    colleagues suggests that without this heat transport the globe would freeze over, [Winton, 2003Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse of subgridscale mixing on ocean heat transport in coarse- resolution ocean models of the type used in coupled

  14. A Generalized Linear Transport Model for Spatially-Correlated Stochastic Media

    E-Print Network [OSTI]

    Anthony B. Davis; Feng Xu

    2014-10-29T23:59:59.000Z

    We formulate a new model for transport in stochastic media with long-range spatial correlations where exponential attenuation (controlling the propagation part of the transport) becomes power law. Direct transmission over optical distance $\\tau(s)$, for fixed physical distance $s$, thus becomes $(1+\\tau(s)/a)^{-a}$, with standard exponential decay recovered when $a\\to\\infty$. Atmospheric turbulence phenomenology for fluctuating optical properties rationalizes this switch. Foundational equations for this generalized transport model are stated in integral form for $d=1,2,3$ spatial dimensions. A deterministic numerical solution is developed in $d=1$ using Markov Chain formalism, verified with Monte Carlo, and used to investigate internal radiation fields. Standard two-stream theory, where diffusion is exact, is recovered when $a=\\infty$. Differential diffusion equations are not presently known when $a<\\infty$, nor is the integro-differential form of the generalized transport equation. Monte Carlo simulations are performed in $d=2$, as a model for transport on random surfaces, to explore scaling behavior of transmittance $T$ when transport optical thickness $\\tau_\\text{t} \\gg 1$. Random walk theory correctly predicts $T \\propto \\tau_\\text{t}^{-\\min\\{1,a/2\\}}$ in the absence of absorption. Finally, single scattering theory in $d=3$ highlights the model's violation of angular reciprocity when $a<\\infty$, a desirable property at least in atmospheric applications. This violation is traced back to a key trait of generalized transport theory, namely, that we must distinguish more carefully between two kinds of propagation: one that ends in a virtual or actual detection, the other in a transition from one position to another in the medium.

  15. Simplified 1-D Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquin Delta: Sea Level Rise and Water Diversion Effects

    E-Print Network [OSTI]

    Fleenor, William E.; Bombardelli, Fabian

    2013-01-01T23:59:59.000Z

    Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquinhydrodynamic and salinity transport mod- eling of the Sacramento–San Joaquin

  16. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect (OSTI)

    Cheng, Yu-Ting [Univ. of Massachusetts, Amherst, MA (United States); Huber, George W. [Univ. of Massachusetts, Amherst, MA (United States)

    2011-06-03T23:59:59.000Z

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?–C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water), decarbonylation (e.g., furan forms CO and allene), oligomerization (allene forms olefins and aromatics plus hydrogen), and alkylation (e.g., furan plus olefins). The product distribution was far from thermodynamic equilibrium.

  17. Event simulations in a transport model for intermediate energy heavy ion collisions: Applications to multiplicity distributions

    E-Print Network [OSTI]

    Mallik, S; Chaudhuri, G

    2015-01-01T23:59:59.000Z

    We perform transport model calculations for central collisions of mass 120 on mass 120 at laboratory beam energy in the range 20 MeV/nucleon to 200 MeV/nucleon. A simplified yet accurate method allows calculation of fluctuations in systems much larger than what was considered feasible in a well-known and already existing model. The calculations produce clusters. The distribution of clusters is remarkably similar to that obtained in equilibrium statistical model.

  18. Event simulations in a transport model for intermediate energy heavy ion collisions: Applications to multiplicity distributions

    E-Print Network [OSTI]

    S. Mallik; S. Das Gupta; G. Chaudhuri

    2015-03-19T23:59:59.000Z

    We perform transport model calculations for central collisions of mass 120 on mass 120 at laboratory beam energy in the range 20 MeV/nucleon to 200 MeV/nucleon. A simplified yet accurate method allows calculation of fluctuations in systems much larger than what was considered feasible in a well-known and already existing model. The calculations produce clusters. The distribution of clusters is remarkably similar to that obtained in equilibrium statistical model.

  19. Heat Transport in Groundwater Systems--Finite Element Model

    E-Print Network [OSTI]

    Grubaugh, E. K.; Reddell, D. L.

    into groundwater aquifers for long term energy storage. Analytical solutions are available that predict water temperatures as hot water is injected into a groundwater aquifer, but little field and laboratory data are available to verify these models. The objectives...

  20. Modeling of Transport in Lithium Ion Battery Electrodes

    E-Print Network [OSTI]

    Martin, Michael

    2012-07-16T23:59:59.000Z

    to model the solid state diffusion behavior in several generated electrode morphologies. Developed computational codes were used to generate targeted structures under prescribed conditions of particle shape, size, and overall morphology. The diffusion...

  1. Comprehensive computer model for magnetron sputtering. II. Charged particle transport

    SciTech Connect (OSTI)

    Jimenez, Francisco J., E-mail: fjimenez@ualberta.ca; Dew, Steven K. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4 (Canada); Field, David J. [Smith and Nephew (Alberta) Inc., Fort Saskatchewan T8L 4K4 (Canada)

    2014-11-01T23:59:59.000Z

    Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.

  2. Heat Transport in Groundwater Systems--Finite Element Model 

    E-Print Network [OSTI]

    Grubaugh, E. K.; Reddell, D. L.

    1980-01-01T23:59:59.000Z

    into groundwater aquifers for long term energy storage. Analytical solutions are available that predict water temperatures as hot water is injected into a groundwater aquifer, but little field and laboratory data are available to verify these models. The objectives...

  3. Thermalization at lowest energies? A view from a transport model

    E-Print Network [OSTI]

    C Hartnack; H Oeschler; J Aichelin

    2010-10-05T23:59:59.000Z

    Using the Isospin Quantum Molecular Dynamics (IQMD) model we analyzed the production of pions and kaons in the energy range of 1-2 AGeV in order to study the question why thermal models could achieve a successful description. For this purpose we study the variation of pion and kaon yields using different elementary cross sections. We show that several ratios appear to be rather robust versus their variations.

  4. Radiation transport modeling using extended quadrature method of moments

    SciTech Connect (OSTI)

    Vikas, V., E-mail: vvikas@iastate.edu [Department of Aerospace Engineering, 2271 Howe Hall, Iowa State University, Ames, IA 50011 (United States); Hauck, C.D., E-mail: hauckc@ornl.gov [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, Z.J., E-mail: zjw@ku.edu [Department of Aerospace Engineering, 2120 Learned Hall, University of Kansas, Lawrence, KS 66045 (United States); Fox, R.O., E-mail: rofox@iastate.edu [Department of Chemical and Biological Engineering, 2114 Sweeney Hall, Iowa State University, Ames, IA 50011 (United States)

    2013-08-01T23:59:59.000Z

    The radiative transfer equation describes the propagation of radiation through a material medium. While it provides a highly accurate description of the radiation field, the large phase space on which the equation is defined makes it numerically challenging. As a consequence, significant effort has gone into the development of accurate approximation methods. Recently, an extended quadrature method of moments (EQMOM) has been developed to solve univariate population balance equations, which also have a large phase space and thus face similar computational challenges. The distinct advantage of the EQMOM approach over other moment methods is that it generates moment equations that are consistent with a positive phase space density and has a moment inversion algorithm that is fast and efficient. The goal of the current paper is to present the EQMOM method in the context of radiation transport, to discuss advantages and disadvantages, and to demonstrate its performance on a set of standard one-dimensional benchmark problems that encompass optically thin, thick, and transition regimes. Special attention is given in the implementation to the issue of realizability—that is, consistency with a positive phase space density. Numerical results in one dimension are promising and lay the foundation for extending the same framework to multiple dimensions.

  5. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    SciTech Connect (OSTI)

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

    2012-01-01T23:59:59.000Z

    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–? turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  6. Chemical Reaction Mechanisms for Modeling the Fluorocarbon Plasma Etch of Silicon Oxide and Related Materials

    SciTech Connect (OSTI)

    HO,PAULINE; JOHANNES,JUSTINE E.; BUSS,RICHARD J.; MEEKS,ELLEN

    2001-05-01T23:59:59.000Z

    As part of a project with SEMATECH, detailed chemical reaction mechanisms have been developed that describe the gas-phase and surface chemistry occurring during the fluorocarbon plasma etching of silicon dioxide and related materials. The fluorocarbons examined are C{sub 2}F{sub 6}, CHF{sub 3} and C{sub 4}F{sub 8}, while the materials studied are silicon dioxide, silicon, photoresist, and silica-based low-k dielectrics. These systems were examined at different levels, ranging from in-depth treatment of C{sub 2}F{sub 6} plasma etch of oxide, to a fairly cursory examination of C{sub 4}F{sub 8} etch of the low-k dielectric. Simulations using these reaction mechanisms and AURORA, a zero-dimensional model, compare favorably with etch rates measured in three different experimental reactors, plus extensive diagnostic absolute density measurements of electron and negative ions, relative density measurements of CF, CF{sub 2}, SiF and SiF{sub 2} radicals, ion current densities, and mass spectrometric measurements of relative ion densities.

  7. GREET 1.5 - transportation fuel-cycle model - Vol. 1 : methodology, development, use, and results.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1999-10-06T23:59:59.000Z

    This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy associated with various transportation fuels and advanced vehicle technologies for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with diameters of 10 micrometers or less, and sulfur oxides) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates total energy consumption, fossil fuel consumption, and petroleum consumption when various transportation fuels are used. The GREET model includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, dimethyl ether, and Fischer-Tropsch diesel; and landfill gases to methanol. This report also presents the results of the analysis of fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies to be applied to passenger cars and light-duty trucks.

  8. Hydrologic Nuclide Transport Models in Cyder, A Geologic Disposal Software Library - 13328

    SciTech Connect (OSTI)

    Huff, Kathryn D. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL (United States)] [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL (United States)

    2013-07-01T23:59:59.000Z

    Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder open source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)

  9. Electron spin and the origin of Bio-homochirality II. Prebiotic inorganic-organic reaction model

    E-Print Network [OSTI]

    Wang, Wei

    2014-01-01T23:59:59.000Z

    The emergence of biomolecular homochirality is a critically important question about life phenomenon and the origins of life. In a previous paper (arXiv:1309.1229), I tentatively put forward a new hypothesis that the emergence of a single chiral form of biomolecules in living organisms is specifically determined by the electron spin state during their enzyme-catalyzed synthesis processes. However, how a homochirality world of biomolecules could have formed in the absence of enzymatic networks before the origins of life remains unanswered. Here I discussed the electron spin properties in Fe3S4, ZnS, and transition metal doped dilute magnetic ZnS, and their possible roles in the prebiotic synthesis of chiral molecules. Since the existence of these minerals in hydrothermal vent systems is matter of fact, the suggested prebiotic inorganic-organic reaction model, if can be experimentally demonstrated, may help explain where and how life originated on early Earth.

  10. Specifications for the development of a fully three-dimensional numerical groundwater model for regional mass transport of radionuclides from a deep waste repository

    SciTech Connect (OSTI)

    Prickett, T.A.

    1980-04-01T23:59:59.000Z

    Specifications are given which are necessary to develop a three-dimensional numerical model capable of simulating regional mass transport of radionuclides from a deep waste repository. The model to be developed will include all of the significant mass transport processes including flow, chemical, and thermal advection, mechanical dispersion, molecular diffusion, ion exchange reactions, and radioactive decay. The model specifications also include that density and viscosity fluid properties be functions of pressure, temperature, and concentration and take into account fluid and geologic heterogenieties by allowing possible assignment of individual values to every block of the model. The model specifications furthermore include the repository shape, input/output information, boundary conditions, and the need for documentation and a user's manual. Model code validation can be accomplished with the included known analytical or laboratory solutions. It is recommended that an existing finite-difference model (developed by INTERCOMP and INTERA, Inc.) be used as a starting point either as an acceptable basic code for modification or as a pattern for the development of a completely different numerical scheme. A ten-step plan is given to outline the general procedure for development of the code.

  11. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect (OSTI)

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24T23:59:59.000Z

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  12. A fractional dispersion model for overland solute transport

    E-Print Network [OSTI]

    Deng, Zhi-Qiang; de Lima, M. Isabel P.; Singh, Vijay P.; de Lima, Jo??o L. M. P.

    2006-03-18T23:59:59.000Z

    . It is apparent from Figure 1 and the above-mentioned variance analysis that (1) the relationship between variance and time does not simply follow a power law, although approximate power-law relations may be found in some cases; and (2) a polynomial equation... with a variable power index can best describe the relation between vari- ance and time. These characteristics of the variance of observed concentration distributions are difficult to predict using existing integer-order models. In fact, the infinite...

  13. Holographic transports and stability in anisotropic linear axion model

    E-Print Network [OSTI]

    Xian-Hui Ge; Yi Ling; Chao Niu; Sang-Jin Sin

    2015-01-15T23:59:59.000Z

    We study thermoelectric conductivities and shear viscosities in a holographically anisotropic model. Momentum relaxation is realized through perturbing the linear axion field. AC conductivity exhibits a conherent/incoherent metal transition. The longitudinal shear viscosity for prolate anisotropy violates the bound conjectured by Kovtun-Son-Starinets. We also find that thermodynamic and dynamical instabilities are not always equivalent, which provides a counter example of the Gubser-Mitra conjecture.

  14. Transport Modeling Working Group Meeting Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets PeopleTransmissionModeling Working Group

  15. Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Modeling transport of disposed dredged material from placement sites in Grays Harbor, WA E- to mid- term dredge material management strategies for the Federal Navigation Project at Grays Harbor dredging quantities. However, the most heavily used dredged material placement sites lie in proximity

  16. Controlling chaotic transport in a Hamiltonian model of interest to magnetized plasmas

    E-Print Network [OSTI]

    Guido Ciraolo; Cristel Chandre; Ricardo Lima; Michel Vittot; Marco Pettini; Charles Figarella; Philippe Ghendrih

    2004-02-25T23:59:59.000Z

    We present a technique to control chaos in Hamiltonian systems which are close to integrable. By adding a small and simple control term to the perturbation, the system becomes more regular than the original one. We apply this technique to a model that reproduces turbulent ExB drift and show numerically that the control is able to drastically reduce chaotic transport.

  17. Reduced Order Model Compensator Control of Species Transport in a CVD Reactor

    E-Print Network [OSTI]

    Reduced Order Model Compensator Control of Species Transport in a CVD Reactor G.M. Kepler, H for computation of feedback controls and compensators in a high pressure chemical vapor deposition (HPCVD) reactor University to design and build such a HPCVD reactor with real­time sensing and control as an innovative

  18. Stochastic Dynamic Demand Inventory Models with Explicit Transportation Costs and Decisions

    E-Print Network [OSTI]

    Zhang, Liqing

    2011-07-01T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . 71 III.4.1. Factorial Design Experiment . . . . . . . . . . . . 72 III.4.2. Impact of System Parameters on Policy Values . . 73 III.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 IV EXACT MODELS AND OPTIMAL POLICIES FOR SHIP....3.1. Problem Formulation . . . . . . . . . . . . . . . . 93 IV.3.2. Exact Optimal Policy . . . . . . . . . . . . . . . . 95 IV.4. Common Carriage Transportation . . . . . . . . . . . . . 100 IV.4.1. Problem Formulation...

  19. A mixed finite-element scheme of a semiconductor energy-transport model

    E-Print Network [OSTI]

    Hanke-Bourgeois, Martin

    A mixed finite-element scheme of a semiconductor energy-transport model using dual entropy which are able to deal with physical effects such as carrier heating and velocity overshoot. The energy that the Joule heating term vanishes if the dual entropy variables w1 = (µ - V )/T and w2 = -1/T are employed

  20. MODELING TRITIUM TRANSPORT IN PBLI BREEDER BLANKETS UNDER STEADY STATE , M. Abdou1

    E-Print Network [OSTI]

    Abdou, Mohamed

    MODELING TRITIUM TRANSPORT IN PBLI BREEDER BLANKETS UNDER STEADY STATE H. Zhang1 , A. Ying1 , M breeder blankets under realistic reactor-like conditions in this paper. Tritium concentration. Tritium behavior in the liquid metal breeder blanket requires a thorough understanding of the sequence

  1. Transport Phenomena in Polymer Electrolyte Membranes II. Binary Friction Membrane Model

    E-Print Network [OSTI]

    Struchtrup, Henning

    is derived to represent conditions found in alternating current ac impedance conductivity measurements the conditions of ac impedance conductivity measurements. Using em- pirically fitted transport parameters dynamic models required for fundamental simulation of in situ processes that are difficult to ob- serve

  2. TESTS OF 1-D TRANSPORT MODELS, AND THEIR PREDICTIONS FOR ITER

    E-Print Network [OSTI]

    Vlad, Gregorio

    of Technology, Göteborg, Sweden Abstract A number of proposed tokamak thermal transport models are tested foundation for extrapolations of energy confinement scalings to the ITER regime, 2) a means for optimizing Profile Database [2] which contains fully analyzed profile data, readily accessible, specified

  3. User's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT).

    SciTech Connect (OSTI)

    Reeves, Mark; Cranwell, Robert M.

    1981-11-01T23:59:59.000Z

    This report describes a three-dimensional finite-difference model (SWIFT) which is used to simulate flow and transport processes in geologic media. The model was developed for use by the Nuclear Regulatory Commission in the analysis of deep geologic nuclear waste-disposal facilities. This document, as indicated by the title, is a user's manual and is intended to facilitate the use of the SWIFT simulator. Mathematical equations, submodels, application notes, and a description of the program itself are given herein. In addition, a complete input data guide is given along with several appendices which are helpful in setting up a data-input deck. Computer code SWIFT (Sandia Waste Isolation, Flow and Transport Model) is a fully transient, three-dimensional model which solves the coupled equations for transport in geologic media. The processes considered are: (1) fluid flow; (2) heat transport; (3) dominant-species miscible displacement; and (4) trace-species miscible displacement. The first three processes are coupled via fluid density and viscosity. Together they provide the velocity field on which the fourth process depends.

  4. A three-dimensional model of microbial transport and biodegradation at the Schoolcraft, Michigan, site

    E-Print Network [OSTI]

    ; revised 3 January 2005; accepted 21 January 2005; published 13 May 2005. [1] Bioremediation can be a cost-dimensional reactive transport modeling of carbon tetrachloride (CT) bioremediation at the Schoolcraft site in western success- ful application of bioremediation has been documented at several sites containing chlorinated

  5. A model of sediment resuspension and transport dynamics in southern Lake Michigan

    E-Print Network [OSTI]

    A model of sediment resuspension and transport dynamics in southern Lake Michigan Jing Lou and David J. Schwab NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan Dmitry Beletsky1 Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor Nathan Hawley NOAA

  6. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,

    E-Print Network [OSTI]

    Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

  7. A Lagrangian subgridscale model for particle transport improvement and application in the Adriatic Sea

    E-Print Network [OSTI]

    Ozgökmen, Tamay M.

    such as dispersion of pollutants, biological species, and sediments. Forecasting of the Lagrangian pathways of the dispersion of pollutants, biological species, and sediments. At the basis of such applications is the transA Lagrangian subgridscale model for particle transport improvement and application in the Adriatic

  8. COMSOL Modeling of Groundwater Flow and Contaminant Transport in Two-Dimensional Geometries With Heterogeneities

    E-Print Network [OSTI]

    Gobbert, Matthias K.

    COMSOL Modeling of Groundwater Flow and Contaminant Transport in Two-Dimensional Geometries, Environmental Sys- tems. 1 Introduction Groundwater contributes an large portion of stream flow and subsequently% of a streams nitrogen load has been discharged from groundwater. The surficial aquifer geometry in this area

  9. Transport and dispersion of pollutants in surface impoundments: a finite element model

    SciTech Connect (OSTI)

    Yeh, G.T.

    1980-07-01T23:59:59.000Z

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  10. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    SciTech Connect (OSTI)

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15T23:59:59.000Z

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic behaviors of injected CO{sub 2}, identifying and characterizing potential storage sites, and managing injection performance and reducing costs.

  11. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Journal of Power Sources 164 (2007) 189­195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  12. The Ising model and critical behavior of transport in binary composite N. B. Murphy and K. M. Golden

    E-Print Network [OSTI]

    Golden, Kenneth M.

    nanotube composites,37 and sea ice.26,27 A key feature of these materials is the critical dependenceThe Ising model and critical behavior of transport in binary composite media N. B. Murphy and K. M) The Ising model and critical behavior of transport in binary composite media N. B. Murphy and K. M. Golden

  13. Transport-theoretic model for the electron-proton-hydrogen atom auroa. II. Model results

    SciTech Connect (OSTI)

    Strickland, D.J. [Computational Physics, Inc., Fairfax, VA (United States); Daniell, R.E. Jr. [Computational Physics, Inc., Newton, MA (United States); Basu, B. [Hanscom Air Force Base, MA (United States)] [and others

    1993-12-01T23:59:59.000Z

    In a companion paper, a self-consistent transport-theoretic model for the combined electron-proton-hydrogen atom aurora was described. In this paper, numberical results based on the model are presented. This is done for the pure electron aurora, the pure proton-hydrogen atom aurora, and finally for the combined aurora. Adopting commonly used types of energy distributions for the incident particle (electron and proton) fluxes, the authors give numerical solutions for the precipitating electron, proton, and hydrogen atom differential number fluxes. Results are also given for ionization yields and emission yields of the following features: N{sub 2}{sup +} first negative group (3914 {Angstrom}), N{sub 2} second positive group (3371 {Angstrom}), selected N{sub 2} Lyman-Birge-Hopfields bands (1325, 1354, 1383, 1493, and all bands between 1700 and 1800 {Angstrom}), O I (1356 {Angstrom}), L{sub {alpha}} (1216 {Angstrom}), H{sub {beta}} (4861 {Angstrom}), and H{sub {alpha}} (6563 {Angstrom}). The yield at 1493 {Angstrom} also contains a contribution from N I (1493 {Angstrom}), which in fact dominates LBH emission. A major new result of this study is that the secondary electron flux produced by the proton-hydrogen atom aurora is much softer than that produced by the electron aurora. This increased softness is due to the fact that (for energies of aurora interest) cross sections for secondary electron flux produced by the proton-hydrogen atom aurora is much softer than that produced by the electron aurora. This increased softness is due to the fact that (for energies of auroral interest) cross sections for secondary electron production by proton and hydrogen atom impact decrease exponentially with increasing secondary electron energy, whereas the cross sections for electron impact decrease as an inverse power law with increasing secondary energy.

  14. A critical view on transport and entanglement in models of photosynthesis

    E-Print Network [OSTI]

    Tiersch, Markus; Briegel, Hans J

    2011-01-01T23:59:59.000Z

    Quantum effects in biological light-harvesting molecules, such as quantum coherence of excitonic states and entanglement have recently gained much attention. We observe a certain discrepancy between the original experimental work and several theoretical treatments of coherent excitation transport in light-harvesting molecules. Contrary to what is generally stated, we argue that entanglement in such molecules is generally not equivalent to the presence of coherence but mostly introduced by initial assumptions underlying the models, and that entanglement, as opposite to coherence, seems to play no role in the transport efficiency.

  15. Application of canonical profiles transport model to the H-mode shots in tokamaks

    SciTech Connect (OSTI)

    Dnestrovskij, Yu. N.; Dnestrovskij, A. Yu.; Danilov, A. V.; Lysenko, S. E.; Cherkasov, S. V. [Institute of Tokamak Physics, Russian Research Centre Kurchatov Institute (Russian Federation); Gerasimov, S. N.; Hender, T. C.; Voitsekhovitch, I. A.; Roach, C. M.; Walsh, M. J. [Culham Science Centre, EURATOM/CCFE Fusion Association (United Kingdom)

    2010-08-15T23:59:59.000Z

    The linear and nonlinear versions of the Canonical Profiles Transport Model (CPTM), which includes both heat and particle transport equations, are used to simulate core and pedestal plasma for JET, and MAST H-mode shots. Simulations by the nonlinear version show reasonable agreement with experiment for both ELMy and ELM-free shots. RMS deviations of calculated results from the experimental ones are on the level 10-12% in main. The calculated ion and electron temperature profiles are very insensitive to the change of the deposited peaked power profiles. The calculated pedestal temperature rapidly increases with plasma current; density profile peaking increases at low collisionalities.

  16. GREET 1.0 -- Transportation fuel cycles model: Methodology and use

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-06-01T23:59:59.000Z

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  17. A scaleable architecture for the modeling and simulation of intelligent transportation systems.

    SciTech Connect (OSTI)

    Ewing, T.; Tentner, A.

    1999-03-17T23:59:59.000Z

    A distributed, scaleable architecture for the modeling and simulation of Intelligent Transportation Systems on a network of workstations or a parallel computer has been developed at Argonne National Laboratory. The resulting capability provides a modular framework supporting plug-in models, hardware, and live data sources; visually realistic graphics displays to support training and human factors studies; and a set of basic ITS models. The models and capabilities are described, along with atypical scenario involving dynamic rerouting of smart vehicles which send probe reports to and receive traffic advisories from a traffic management center capable of incident detection.

  18. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    SciTech Connect (OSTI)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  19. Rattling and freezing in a 1-D transport model

    E-Print Network [OSTI]

    Jean-Pierre Eckmann; Lai-Sang Young

    2010-07-04T23:59:59.000Z

    We consider a heat conduction model introduced in \\cite{Collet-Eckmann 2009}. This is an open system in which particles exchange momentum with a row of (fixed) scatterers. We assume simplified bath conditions throughout, and give a qualitative description of the dynamics extrapolating from the case of a single particle for which we have a fairly clear understanding. The main phenomenon discussed is {\\it freezing}, or the slowing down of particles with time. As particle number is conserved, this means fewer collisions per unit time, and less contact with the baths; in other words, the conductor becomes less effective. Careful numerical documentation of freezing is provided, and a theoretical explanation is proposed. Freezing being an extremely slow process, however, the system behaves as though it is in a steady state for long durations. Quantities such as energy and fluxes are studied, and are found to have curious relationships with particle density.

  20. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01T23:59:59.000Z

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  1. A general methodology for quantum modeling of free-energy profile of reactions in solution: An application to the Menshutkin NH3 CH3Cl

    E-Print Network [OSTI]

    Truong, Thanh N.

    A general methodology for quantum modeling of free-energy profile of reactions in solution methodology for calculating free-energy profile of reaction in solution using quantum mechanical methods screening model GCOSMO was employed in this study, though any continuum model with existing free-energy

  2. Modeling and Diagnostics of Fuel Cell Porous Media for Improving Water Transport

    SciTech Connect (OSTI)

    Allen, Jeff; M'edici, Ezequiel

    2011-07-01T23:59:59.000Z

    When a fuel cell is operating at high current density, water accumulation is a significant cause of performance and component degradation. Investigating the water transport inside the fuel cell is a challenging task due to opacity of the components, the randomness of the porous materials, and the difficulty in gain access to the interior for measurement due to the small dimensions of components. Numerical simulation can provide a good insight of the evolution of the water transport under different working condition. However, the validation of those simulations is remains an issue due the same experimental obstacles associated with in-situ measurements. The discussion herein will focus on pore-network modeling of the water transport on the PTL and the insights gained from simulations as well as in the validation technique. The implications of a recently published criterion to characterize PTL, based on percolation theory, and validate numerical simulation are discussed.

  3. Assimilation of satellite images into a sediment transport model of Lake Michigan.

    SciTech Connect (OSTI)

    Stroud, J.; Lesht, B.; Beletsky, D.; Stein, M.; Univ. of Pennsylvania; NOAA; Univ. of Michigan; Univ. of Chicago

    2009-01-01T23:59:59.000Z

    In this paper we develop and examine several schemes for combining daily images obtained from the Sea-viewing Wide Field Spectrometer (SeaWiFS) with a two-dimensional sediment transport model of Lake Michigan. We consider two data assimilation methods, direct insertion and a kriging-based approach, and perform a forecasting study focused on a 2-month period in spring 1998 when a large storm caused substantial amounts of sediment resuspension and horizontal sediment transport in the lake. By beginning with the simplest possible forecast method and sequentially adding complexity we are able to assess the improvements offered by combining the satellite data with the numerical model. In our application, we find that data assimilation schemes that include both the data and the lake dynamics improve forecast root mean square error by 40% over purely model-based approaches and by 20% over purely data-based approaches.

  4. Local models of stellar convection: Reynolds stresses and turbulent heat transport

    E-Print Network [OSTI]

    P. J. Käpylä; M. J. Korpi; I. Tuominen

    2004-09-06T23:59:59.000Z

    We study stellar convection using a local three-dimensional MHD model, with which we investigate the influence of rotation and large-scale magnetic fields on the turbulent momentum and heat transport. The former is studied by computing the Reynolds stresses, the latter by calculating the correlation of velocity and temperature fluctuations, both as functions of rotation and latitude. We find that the horisontal correlation, Q_(theta phi), capable of generating horisontal differential rotation, is mostly negative in the southern hemisphere for Coriolis numbers exceeding unity, corresponding to equatorward flux of angular momentum in accordance with solar observations. The radial component Q_(r phi) is negative for slow and intermediate rotation indicating inward transport of angular momentum, while for rapid rotation, the transport occurs outwards. Parametrisation in terms of the mean-field Lambda-effect shows qualitative agreement with the turbulence model of Kichatinov & R\\"udiger (1993) for the horisontal part H \\propto Q_(theta phi)/cos(theta), whereas for the vertical part, V \\propto Q_(r phi)/sin(theta), agreement only for intermediate rotation exists. The Lambda-coefficients become suppressed in the limit of rapid rotation, this rotational quenching being stronger for the V component than for H. We find that the stresses are enhanced by the presence of the magnetic field for field strengths up to and above the equipartition value, without significant quenching. Concerning the turbulent heat transport, our calculations show that the transport in the radial direction is most efficient at the equatorial regions, obtains a minimum at midlatitudes, and shows a slight increase towards the poles. The latitudinal heat transport does not show a systematic trend as function of latitude or rotation.

  5. Analytical model of electron transport in polycrystalline, degenerately doped ZnO films

    SciTech Connect (OSTI)

    Bikowski, André, E-mail: andre.bikowski@helmholtz-berlin.de; Ellmer, Klaus [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2014-10-14T23:59:59.000Z

    An analytical description of the charge carrier transport, valid for non-degenerated and degenerated semiconductors, was developed, critically reviewed, and fitted to the temperature-dependent Hall mobility data of magnetron sputtered, degenerately doped ZnO:Al films. Our extended model for grain boundary scattering in semiconductors of arbitrary degeneracy is based on previous models from literature and suitable to describe the Hall mobility of the carriers as a function of the free carrier concentration and the temperature at the same time. It is mathematically simple enough for a fast fit procedure, which is not possible with most of the previous models. Applying a combined transport model consisting of ionized impurity scattering, phonon scattering, and grain boundary scattering in degenerate semiconductors, we were able to determine the trap density at the grain boundaries N{sub t} ? 3?×?10{sup 13} to 5?×?10{sup 13?}cm{sup ?2} and the deformation potential E{sub ac} in the range of 5?eV to 9?eV depending on the details of the transport model.

  6. FINAL REPORT:Observation and Simulations of Transport of Molecules and Ions Across Model Membranes

    SciTech Connect (OSTI)

    MURAD, SOHAIL [University of Illinois at Chicago] [University of Illinois at Chicago; JAMESON, CYNTHIA J [University of Illinois at Chicago] [University of Illinois at Chicago

    2013-10-22T23:59:59.000Z

    During the this new grant we developed a robust methodology for investigating a wide range of properties of phospho-lipid bilayers. The approach developed is unique because despite using periodic boundary conditions, we can simulate an entire experiment or process in detail. For example, we can follow the entire permeation process in a lipid-membrane. This includes transport from the bulk aqueous phase to the lipid surface; permeation into the lipid; transport inside the lipid; and transport out of the lipid to the bulk aqueous phase again. We studied the transport of small gases in both the lipid itself and in model protein channels. In addition, we have examined the transport of nanocrystals through the lipid membrane, with the main goal of understanding the mechanical behavior of lipids under stress including water and ion leakage and lipid flip flop. Finally we have also examined in detail the deformation of lipids when under the influence of external fields, both mechanical and electrostatic (currently in progress). The important observations and conclusions from our studies are described in the main text of the report

  7. Elements of fractal generalization of dual-porosity model for solute transport in unsaturated fractured rocks

    SciTech Connect (OSTI)

    Bolshov, L.; Kondratenko, P.; Matveev, L.; Pruess, K.

    2008-09-01T23:59:59.000Z

    In this study, new elements were developed to generalize the dual-porosity model for moisture infiltration on and solute transport in unsaturated rocks, taking into account fractal aspects of the percolation process. Random advection was considered as a basic mechanism of solute transport in self-similar fracture systems. In addition to spatial variations in the infiltration velocity field, temporal fluctuations were also taken into account. The rock matrix, a low-permeability component of the heterogeneous geologic medium, acts as a trap for solute particles and moisture. Scaling relations were derived for the moisture infiltration flux, the velocity correlation length, the average velocity of infiltration, and the velocity correlation function. The effect of temporal variations in precipitation intensity on the infiltration processes was analyzed. It showed that the mode of solute transport is determined by the power exponent in the advection velocity correlation function and the dimensionality of the trapping system, both of which may change with time. Therefore, depending on time, various transport regimes may be realized: superdiffusion, subdiffusion, or classical diffusion. The complex structure of breakthrough curves from changes in the transport regimes was also examined. A renormalization of the solute source strength due to characteristic fluctuations of highly disordered media was established.

  8. Non-Markovian polymer reaction kinetics

    E-Print Network [OSTI]

    Thomas Guérin; Olivier Bénichou; Raphaël Voituriez

    2012-09-07T23:59:59.000Z

    Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times significantly shorter than predicted by the existing classical Markovian theory.

  9. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters waters. The sources we consider are point-wise and simulate stationary or moving pollution sources to measure the pollution extent due to organic agents and then to evaluate the water characteristics. Another

  10. Modeling the Effect of Sedimentation on Cesium Transport in Fourmile Branch

    SciTech Connect (OSTI)

    Chen, K.F.

    2001-02-22T23:59:59.000Z

    The major mechanisms of radioactive material transport and fate in surface water are (1) sources, (2) dilution, advection and dispersion of radionuclides by flow and surface waves, (3) radionuclide decay, and (4) interaction between sediment and radionuclides. STREAM II, an aqueous transport module of the Savannah River Site emergency response WIND system, accounts for the source term, and the effects of dilution, advection and dispersion. Although the model has the capability to account for nuclear decay, due to the short time interval of interest for emergency response, the effect of nuclear decay is very small and so it is not employed. The interactions between the sediment and radionuclides are controlled by the flow conditions and physical and chemical characteristics of the radionuclides and the sediment constituents. The STREAM II version used in emergency response does not model the effects of sediment deposition/resuspension to minimize computing time. This study estimates the effects of sediment deposition/resuspension on radionuclide aqueous transport. For radionuclides that adsorb onto suspended sediment, the omission of deposition/resuspension effects overestimates the downstream radionuclide peak concentration and is therefore conservative. For the case of cesium transport in the Fourmile Branch, the calculated reduction in peak concentration as the cesium is transported downstream is greater with sediment deposition modeled than without. For example, including the effects of sediment deposition/resuspension in the STREAM II calculation results in a 72 percent reduction in the downstream (5075 meters downstream from H-Area) peak cesium concentration. It is important to note that the high partition coefficient appropriate for cesium enhances the importance of sediment deposition/resuspension; the reduction in the calculated peak concentration would be less for radioisotopes with lower partition coefficients.

  11. Computing observables in curved multifield models of inflation - A guide (with code) to the transport method

    E-Print Network [OSTI]

    Mafalda Dias; Jonathan Frazer; David Seery

    2015-02-10T23:59:59.000Z

    We describe how to apply the transport method to compute inflationary observables in a broad range of multiple-field models. The method is efficient and encompasses scenarios with curved field-space metrics, violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes and models with quasi-single-field dynamics. In this note we focus on practical issues. It is accompanied by a Mathematica code which can be used to explore suitable models, or as a basis for further development.

  12. Computing observables in curved multifield models of inflation - A guide (with code) to the transport method

    E-Print Network [OSTI]

    Dias, Mafalda; Seery, David

    2015-01-01T23:59:59.000Z

    We describe how to apply the transport method to compute inflationary observables in a broad range of multiple-field models. The method is efficient and encompasses scenarios with curved field-space metrics, violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes and models with quasi-single-field dynamics. In this note we focus on practical issues. It is accompanied by a Mathematica code which can be used to explore suitable models, or as a basis for further development.

  13. Modeling hydrology and reactive transport in roads: The effect of cracks, the edge, and contaminant properties

    SciTech Connect (OSTI)

    Apul, Defne S. [Department of Civil Engineering, University of Toledo, 2801 W. Bancroft St., Mail Stop 307, Toledo, OH 43606 (United States)], E-mail: Defne.apul@utoledo.edu; Gardner, Kevin H. [Environmental Research Group, Department of Civil Engineering, 35 Colovos Road, Durham, NH 03824 (United States)], E-mail: Kevin.gardner@unh.edu; Eighmy, T. Taylor [Environmental Research Group, Department of Civil Engineering, 35 Colovos Road, Durham, NH 03824 (United States)], E-mail: Taylor.eighmy@unh.edu

    2007-07-01T23:59:59.000Z

    The goal of this research was to provide a tool for regulators to evaluate the groundwater contamination from the use of virgin and secondary materials in road construction. A finite element model, HYDRUS2D, was used to evaluate generic scenarios for secondary material use in base layers. Use of generic model results for particular applications was demonstrated through a steel slag example. The hydrology and reactive transport of contaminants were modeled in a two-dimensional cross section of a road. Model simulations showed that in an intact pavement, lateral velocities from the edge towards the centerline may transport contaminants in the base layer. The dominant transport mechanisms are advection closer to the edge and diffusion closer to the centerline. A shoulder joint in the pavement allows 0.03 to 0.45 m{sup 3}/day of infiltration per meter of joint length as a function of the base and subgrade hydrology and the rain intensity. Scenario simulations showed that salts in the base layer of pavements are depleted by 99% in the first 20 years, whereas the metals may not reach the groundwater in 20 years at any significant concentrations if the pavement is built on adsorbing soils.

  14. Microscopic Description of the Exotic Nuclei Reactions by Using Folding model Potentials

    SciTech Connect (OSTI)

    Ibraheem, Awad A. [Physics Department, Al-Azhar University, Assiut Branch, Assiut 71524 (Egypt); Physics Department, King Khalid University, Abha (Saudi Arabia); Hassanain, M. A. [Physics Department, King Khalid University, Abha (Saudi Arabia); Sciences Department, New-Valley Faculty of Education, Assiut University, El-Kharga, New-Valley (Egypt); Mokhtar, S. R.; El-Azab Farid, M. [Physics Department, Assiut University, Assiut 71516 (Egypt); Zaki, M. A. [Physics Department, South-Valley University, Aswan (Egypt); Mahmoud, Zakaria M. M. [Sciences Department, New-Valley Faculty of Education, Assiut University, El-Kharga, New-Valley (Egypt)

    2011-10-27T23:59:59.000Z

    A microscopic folding approach based upon the effective M3Y nucleon-nucleon interaction and the nuclear matter densities of the interacting nuclei has been carried out to explain recently measured experimental data of the {sup 6}He+{sup 120}Sn elastic scattering reaction at four different laboratory energies near the Coulomb barrier. The corresponding reaction cross sections are also considered.

  15. Determining the Effect of Concerted Elimination Reactions in the Pyrolysis of Lignin Using Model Compounds

    SciTech Connect (OSTI)

    Robichaud, D.; Clark, J.; Nimlos, M.

    2012-01-01T23:59:59.000Z

    Lignin pyrolysis is a significant impediment in forming liquid fuel from biomass. Lignin pyrolyzes at a higher temperature than other biomass components (ie cellulose, hemicellulose) and tends to form radicals which lead to cross linking and ultimately char formation. A primary step in advances biomass-to-fuel technology will be to discover mechanisms that can disassemble lignin at lower temperatures and depolymerize lignin into more stable products. We have investigated the thermochemistry of the various inter-linkage units found in lignin ({beta}-O4, {alpha}-O4, {beta}-{beta}, {beta}-O5, etc) using electronic structure calculations at the M06-2x/6-311++G(d,p) on a series of dimer model compounds. In addition to the usually-assumed bond homolysis reactions, we have investigated a variety of concerted elimination pathways that will tend to produce closed-shell stable products. Such a bottom-up approach could aid in the targeted development of catalysts that produce more desirable products under less severe reactor conditions.

  16. TransCom model simulations of CH? and related species: linking transport, surface flux and chemical loss with CH? variability in the troposphere and lower stratosphere

    E-Print Network [OSTI]

    Patra, P. K.

    A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH?) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model ...

  17. Evaluation of Transport and Dispersion Models: A Controlled Comparison of HPAC and NARAC Predictions

    SciTech Connect (OSTI)

    Warner, S; Heagy, J F; Platt, N; Larson, D; Sugiyama, G; Nasstrom, J S; Foster, K T; Bradley, S; Bieberbach, G

    2001-05-01T23:59:59.000Z

    During fiscal year 2000, a series of studies in support of the Defense Threat Reduction Agency (DTRA) was begun. The goal of these studies is to improve the verification, validation, and accreditation (VV&A) of hazard prediction and assessment models and capabilities. These studies are part of a larger joint VV&A collaborative effort that DTRA and the Department of Energy (DOE), via the Lawrence Livermore National Laboratory (LLNL), are conducting. This joint effort includes comparisons of the LLNL and DTRA transport and dispersion (T&D) modeling systems, NARAC and HPAC, respectively. The purpose of this work is to compare, in a systematic way, HPAC and NARAC model predictions for a set of controlled hypothetical release scenarios. Only ''model-versus-model'' comparisons are addressed in this work. Model-to-field trial comparisons for HPAC and NARAC have been addressed in a recent companion study, in support of the same joint VV&A effort.

  18. Introduction Transport in disordered graphene

    E-Print Network [OSTI]

    Fominov, Yakov

    Introduction Transport in disordered graphene Summary Ballistic transport in disordered graphene P, Gornyi, Mirlin Ballistic transport in disordered graphene #12;Introduction Transport in disordered graphene Summary Outline 1 Introduction Model Experimental motivation Transport in clean graphene 2

  19. Simplified 1-D Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquin Delta: Sea Level Rise and Water Diversion Effects

    E-Print Network [OSTI]

    Fleenor, William E.; Bombardelli, Fabian

    2013-01-01T23:59:59.000Z

    Hydrodynamic and Salinity Transport Modeling of the Sacramento–San Joaquin Delta: Sea Level Rise and Water Diversion Effects

  20. Triangular flow in heavy ion collisions in a multiphase transport model 

    E-Print Network [OSTI]

    Xu, Jun; Ko, Che Ming.

    2011-01-01T23:59:59.000Z

    (RHIC) have provided important information on the properties of produced quark-gluon plasma (QGP) [1?4]. In particular, the large elliptic flow observed in experiments has led to the conclusion that the produced quark-gluon plasma is strongly...,10]. With the large parton scattering cross section, the transport model is also able to describe the hexadecupole flow measured at RHIC [11]. More recently, the importance of the triangular flow, which originates from fluctuations in the initial collision...

  1. Stochastic Dynamic Demand Inventory Models with Explicit Transportation Costs and Decisions 

    E-Print Network [OSTI]

    Zhang, Liqing

    2011-07-01T23:59:59.000Z

    Peters August 2011 Major Subject: Industrial Engineering iii ABSTRACT Stochastic Dynamic Demand Inventory Models with Explicit Transportation Costs and Decisions. (August 2011) Liqing Zhang, B.S.; M.S., Tsinghua University, P.R. China Chair... An Illustration of (Q,~s, ~S) Policy ( m = ? s1n?Qn C ? + 1 ) . . . . . . . . 52 5 Optimal Policies for Special Case . . . . . . . . . . . . . . . . . . . . 71 6 Influence of Parameter K . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Influence...

  2. Groundwater transport modeling of constituents originating from the Burial Grounds Complex

    SciTech Connect (OSTI)

    Andersen, P.F.; Shupe, M.G.; Spalding, C.P. [GeoTrans, Inc., Sterling, VA (US)

    1992-10-30T23:59:59.000Z

    The Savannah River Site (SRS), operates a number of sites for the land disposal of various leachable radionuclide, organic, and inorganic wastes. Located within the General Separations Area (GSA) of SRS are the Low Level Radioactive Waste Disposal Facility (LLRWDF) and the Old Burial Ground (OBG). A portion of the LLRWDF has been designated as the Mixed Waste Management Facility (MWMF). The OBG began receiving waste in 1952 and was closed in 1974. Various wastes, including transuranic, intermediate and low level beta-gamma, and solvents, were received during this period of operation. In 1969, prior to the closing of the OBG, a portion of the MWMF/LLRWDF (the MWMF) began receiving waste. GeoTrans, Inc. was contracted by WSRC to conduct a numerical modeling study to assess groundwater flow and contaminant transport in the vicinity of the MWMF in support of an Alternate Concentration Limits demonstration for the Part B permit. The project was divided into two phases: development of a groundwater flow model of the hydrogeologic system underlying the MWMF which includes the entire GSA, and development of a solute transport model to assess migration of 19 designated constituents of concern (COCs) over a period 30 years into the future. The first phase was completed in May of 1992 and the results documented in GeoTrans (1992). That report serves as the companion volume to the present contaminant transport modeling report. The transport study is intended to develop predictions of concentration and mass flux of the 19 COCs at downgradient exposure points over the 30 year period of interest. These results are to be used in human health and ecological risk assessments which are also being performed in support of the Part B permit.

  3. A multi-model assessment of pollution transport to the Arctic

    SciTech Connect (OSTI)

    Shindell, D T; Chin, M; Dentener, F; Doherty, R M; Faluvegi, G; Fiore, A M; Hess, P; Koch, D M; MacKenzie, I A; Sanderson, M G; Schultz, M G; Schulz, M; Stevenson, D S; Teich, H; Textor, C; Wild, O; Bergmann, D J; Bey, I; Bian, H; Cuvelier, C; Duncan, B N; Folberth, G; Horowitz, L W; Jonson, J; Kaminski, J W; Marmer, E; Park, R; Pringle, K J; Schroeder, S; Szopa, S; Takemura, T; Zeng, G; Keating, T J; Zuber, A

    2008-03-13T23:59:59.000Z

    We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute {approx}40% of total BC deposition to Greenland, with {approx}20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O{sub 3}, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.

  4. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    SciTech Connect (OSTI)

    Hufnagel, Todd C.

    2014-06-09T23:59:59.000Z

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  5. A model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

  6. Model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

  7. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12T23:59:59.000Z

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  8. Area-preserving maps models of gyro-averaged ${\\bf E} \\times {\\bf B}$ chaotic transport

    E-Print Network [OSTI]

    J. D. da Fonseca; D. del-Castillo-Negrete; I. L. Caldas

    2014-09-10T23:59:59.000Z

    Discrete maps have been extensively used to model 2-dimensional chaotic transport in plasmas and fluids. Here we focus on area-preserving maps describing finite Larmor radius (FLR) effects on ${\\bf E} \\times {\\bf B}$ chaotic transport in magnetized plasmas with zonal flows perturbed by electrostatic drift waves. FLR effects are included by gyro-averaging the Hamiltonians of the maps which, depending on the zonal flow profile, can have monotonic or non-monotonic frequencies. In the limit of zero Larmor radius, the monotonic frequency map reduces to the standard Chirikov-Taylor map, and, in the case of non-monotonic frequency, the map reduces to the standard nontwist map. We show that in both cases FLR leads to chaos suppression, changes in the stability of fixed points, and robustness of transport barriers. FLR effects are also responsible for changes in the phase space topology and zonal flow bifurcations. Dynamical systems methods based on recurrence time statistics are used to quantify the dependence on the Larmor radius of the threshold for the destruction of transport barriers.

  9. A critical view on transport and entanglement in models of photosynthesis

    E-Print Network [OSTI]

    Markus Tiersch; Sandu Popescu; Hans J. Briegel

    2012-08-23T23:59:59.000Z

    We revisit critically the recent claims, inspired by quantum optics and quantum information, that there is entanglement in the biological pigment protein complexes, and that it is responsible for the high transport efficiency. While unexpectedly long coherence times were experimentally demonstrated, the existence of entanglement is, at the moment, a purely theoretical conjecture; it is this conjecture that we analyze. As demonstrated by a toy model, a similar transport phenomenology can be obtained without generating entanglement. Furthermore, we also argue that even if entanglement does exist, it is purely incidental and seems to plays no essential role for the transport efficiency. We emphasize that our paper is not a proof that entanglement does not exist in light-harvesting complexes - this would require a knowledge of the system and its parameters well beyond the state of the art. Rather, we present a counter-example to the recent claims of entanglement, showing that the arguments, as they stand at the moment, are not sufficiently justified and hence cannot be taken as proof for the existence of entanglement, let alone of its essential role, in the excitation transport.

  10. Predicting Fate and Transport of Contaminants in the Vadose Zone using a Soil Screening Model

    SciTech Connect (OSTI)

    Rucker, G.

    2002-08-14T23:59:59.000Z

    Soil Screening Levels (SSLs) are threshold concentrations below which there is no concern for the migration of residual soil contaminants to the aquifer above maximum contaminant levels (MCLs). At sites where contaminant concentrations exceed SSLs, further study maybe warranted under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). SSLs are based upon simplified fate and transport assumptions, but the guidance allows the flexibility to develop a detailed modeling approach that accounts for complex site variables such as degradation and thickness of the vadose zone. The distinct advantage of the detailed modeling is that individual sites may calculate a less restrictive, but still protective SSL. A Multi-Layer Vadose Zone Contaminant Migration Model [VZCOMML(C)] was developed at the Savannah River Site to allay the higher costs of detailed modeling and achieve a higher clean-up level. The software model is faster, simpler, and less expensive to us e than other commercially available codes.

  11. Using a scalable modeling and simulation framework to evaluate the benefits of intelligent transportation systems.

    SciTech Connect (OSTI)

    Ewing, T.; Tentner, A.

    2000-03-21T23:59:59.000Z

    A scalable, distributed modeling and simulation framework has been developed at Argonne National Laboratory to study Intelligent Transportation Systems. The framework can run on a single-processor workstation, or run distributed on a multiprocessor computer or network of workstations. The framework is modular and supports plug-in models, hardware, and live data sources. The initial set of models currently includes road network and traffic flow, probe and smart vehicles, traffic management centers, communications between vehicles and centers, in-vehicle navigation systems, roadway traffic advisories. The modeling and simulation capability has been used to examine proposed ITS concepts. Results are presented from modeling scenarios from the Advanced Driver and Vehicle Advisory Navigation Concept (ADVANCE) experimental program to demonstrate how the framework can be used to evaluate the benefits of ITS and to plan future ITS operational tests and deployment initiatives.

  12. Model microfluidic platform prototyping : design and fabrication of a Polymerase Chain Reaction (PCR) chip

    E-Print Network [OSTI]

    Kumar, Sumeet, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Polymerase Chain Reaction (PCR) is a molecular biology method for the in vitro amplification of nucleic acid molecules, which has wide applications in the areas of genetics, medicine and biochemistry. MEMS technology offers ...

  13. Triangular flow in heavy ion collisions in a multiphase transport model

    E-Print Network [OSTI]

    Jun Xu; Che Ming Ko

    2011-06-28T23:59:59.000Z

    We have obtained a new set of parameters in a multiphase transport (AMPT) model that are able to describe both the charged particle multiplicity density and elliptic flow measured in Au+Au collisions at center of mass energy $\\sqrt{s_{NN}}=200$ GeV at the Relativistic Heavy Ion Collider (RHIC), although they still give somewhat softer transverse momentum spectra. We then use the model to predict the triangular flow due to fluctuations in the initial collision geometry and study its effect relative to those from other harmonic components of anisotropic flows on the di-hadron azimuthal correlations in both central and mid-central collisions.

  14. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    SciTech Connect (OSTI)

    Lovley, Derek R.

    2012-10-31T23:59:59.000Z

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  15. Automated reaction mechanism generation : data collaboration, Heteroatom implementation, and model validation

    E-Print Network [OSTI]

    Harper, Michael Richard, Jr

    2011-01-01T23:59:59.000Z

    Nearly two-thirds of the United States' transportation fuels are derived from non-renewable fossil fuels. This demand of fossil fuels requires the United States to import ~ 60% of its total fuel consumption. Relying so ...

  16. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect (OSTI)

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01T23:59:59.000Z

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  17. Development and applications of GREET 2.7 -- The Transportation Vehicle-CycleModel.

    SciTech Connect (OSTI)

    Burnham, A.; Wang, M. Q.; Wu, Y.

    2006-12-20T23:59:59.000Z

    Argonne National Laboratory has developed a vehicle-cycle module for the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The fuel-cycle GREET model has been cited extensively and contains data on fuel cycles and vehicle operations. The vehicle-cycle model evaluates the energy and emission effects associated with vehicle material recovery and production, vehicle component fabrication, vehicle assembly, and vehicle disposal/recycling. With the addition of the vehicle-cycle module, the GREET model now provides a comprehensive, lifecycle-based approach to compare the energy use and emissions of conventional and advanced vehicle technologies (e.g., hybrid electric vehicles and fuel cell vehicles). This report details the development and application of the GREET 2.7 model. The current model includes six vehicles--a conventional material and a lightweight material version of a mid-size passenger car with the following powertrain systems: internal combustion engine, internal combustion engine with hybrid configuration, and fuel cell with hybrid configuration. The model calculates the energy use and emissions that are required for vehicle component production; battery production; fluid production and use; and vehicle assembly, disposal, and recycling. This report also presents vehicle-cycle modeling results. In order to put these results in a broad perspective, the fuel-cycle model (GREET 1.7) was used in conjunction with the vehicle-cycle model (GREET 2.7) to estimate total energy-cycle results.

  18. Prediction of continental shelf sediment transport using a theoretical model of the wave-current boundary layer

    E-Print Network [OSTI]

    Goud, Margaret R

    1987-01-01T23:59:59.000Z

    This thesis presents an application of the Grant-Madsen-Glenn bottom boundary layer model (Grant and Madsen, 1979; Glenn and Grant, 1987) to predictions of sediment transport on the continental shelf. The analysis is a ...

  19. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake

    E-Print Network [OSTI]

    Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 sediment resuspension of mixed (cohesive plus noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics

  20. Modeling the Energy Use of a Connected and Automated Transportation System (Poster)

    SciTech Connect (OSTI)

    Gonder, J.; Brown, A.

    2014-07-01T23:59:59.000Z

    Early research points to large potential impacts of connected and automated vehicles (CAVs) on transportation energy use - dramatic savings, increased use, or anything in between. Due to a lack of suitable data and integrated modeling tools to explore these complex future systems, analyses to date have relied on simple combinations of isolated effects. This poster proposes a framework for modeling the potential energy implications from increasing penetration of CAV technologies and for assessing technology and policy options to steer them toward favorable energy outcomes. Current CAV modeling challenges include estimating behavior change, understanding potential vehicle-to-vehicle interactions, and assessing traffic flow and vehicle use under different automation scenarios. To bridge these gaps and develop a picture of potential future automated systems, NREL is integrating existing modeling capabilities with additional tools and data inputs to create a more fully integrated CAV assessment toolkit.

  1. Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode

    SciTech Connect (OSTI)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Hollmann, E. M. [University of California at San Diego, La Jolla, California 92093 (United States); Rognlien, T. D.; Lasnier, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Unterberg, E. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-06-15T23:59:59.000Z

    Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.

  2. Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode

    SciTech Connect (OSTI)

    Pigarov, A. Yu. [University of California, San Diego; Krasheninnikov, S. I. [University of California, La Jolla; Rognlien, T. D. [Lawrence Livermore National Laboratory (LLNL); Hollmann, E. M. [University of California, San Diego; Lasnier, C. J. [Lawrence Livermore National Laboratory (LLNL); Unterberg, Ezekial A [ORNL

    2014-01-01T23:59:59.000Z

    Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.

  3. PARTICLE TRANSPORTATION AND DEPOSITION IN HOT GAS FILTER VESSELS - A COMPUTATIONAL AND EXPERIMENTAL MODELING APPROACH

    SciTech Connect (OSTI)

    Goodarz Ahmadi

    2002-07-01T23:59:59.000Z

    In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.

  4. A transmission/escape probabilities model for neutral particle transport in the outer regions of a diverted tokamak

    SciTech Connect (OSTI)

    Stacey, W.M.

    1992-12-01T23:59:59.000Z

    A new computational model for neutral particle transport in the outer regions of a diverted tokamak plasma chamber is presented. The model is based on the calculation of transmission and escape probabilities using first-flight integral transport theory and the balancing of fluxes across the surfaces bounding the various regions. The geometrical complexity of the problem is included in precomputed probabilities which depend only on the mean free path of the region.

  5. Upscaling of Long-Term U(VI) Desorption from Pore Scale Kinetics to Field-Scale Reactive Transport Models

    SciTech Connect (OSTI)

    Steefel, Carl I.; Li Li; Davis, J.A.; Curtis, G.P.; Honeyman, B.D.; Kent, D.B.; Kohler, M.; Rodriguez, D.R.; Johnson, K.J.; Miller, A.

    2006-06-01T23:59:59.000Z

    The focus of the project is the development of scientifically defensible approaches for upscaling reactive transport models (RTM) through a detailed understanding of U(VI) desorption across several spatial scales: bench-, intermediate-, and field-scales. The central hypothesis of the project is that the development of this methodology will lead to a scientifically defensible approach for conceptual model development for multicomponent RTM at contaminated DOE sites, leading to predictive transport simulations with reduced uncertainty.

  6. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    SciTech Connect (OSTI)

    SCHWARTZ,S.E.; MCGRAW,R.; BENKOVITZ,C.M.; WRIGHT,D.L.

    2001-04-01T23:59:59.000Z

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  7. Groundwater Fate and Transport Modeling for Texarkana Wood Preserving Company Superfund Site, Texarkana, Texas

    SciTech Connect (OSTI)

    Arnett, Ronald Chester

    1999-08-01T23:59:59.000Z

    Fate and transport model results are presented for the Texarkana Wood Preserving Company (TWPC)superfund site. The conceptual model assumes two sources of contamination, specifically, the areas around the old and new process areas. Recent data show the presence of non-aqueous phase liquids (NAPL) in the aquifer that are also sources of dissolved contamination in the aquifer. A flow model was constructed and calibrated against measured hydraulic heads at permanent monitoring wells. Good matches were obtained between model simulated heads and most measured heads. An unexplained exception occurs at monitoring well MW-13 down gradient of the site beyond the measured contaminant plume where the model predicts heads that are more than 2 ft. lower than reported field measurements. Adjusting hydraulic parameters in the model could not account for this anomaly and still preserve the head matches at other wells. There is likely a moderate deficiency in the conceptual model or perhaps a data error. Other information such as substantial amounts of infiltrating surface water in the area or a correction in surveyed elevation would improve the flow model. A particle tracking model calculated a travel time from the new process area to the Day’s Creek discharge location on the order of 40 years. Travel times from the old process area to Day’s Creek were calculated to be on the order of 80 years. While these calculations are subject to some uncertainty, travel times of decades are indicated.

  8. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to...

  9. Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach

    E-Print Network [OSTI]

    Cottier, P; Camenen, Y; Gurcan, O D; Casson, F J; Garbet, X; Hennequin, P; Tala, T

    2014-01-01T23:59:59.000Z

    QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the ExB shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the ExB shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ~10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments.

  10. Modeling of the recycling particle flux and electron particle transport in the DIII-D tokamak

    SciTech Connect (OSTI)

    Baker, D.R.; Jackson, G.L. [General Atomics, San Diego, CA (United States); Maingi, R. [Oak Ridge Associated Universities, Inc., TN (United States); Owen, L.W. [Oak Ridge National Lab., TN (United States); Porter, G.D. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    One of the most difficult aspects of performing an equilibrium particle transport analysis in a diverted tokamak is the determination of the particle flux which enters the plasma after recycling from the divertor plasma, the divertor target plates or the vessel wall. An approach which has been utilized in the past is to model the edge, scrape-off layer (SOL), and divertor plasma to match measured plasma parameters and then use a neutral transport code to obtain an edge recycling flux while trying to match the measured divertor D(x emissivity. Previous simulations were constrained by electron density (n{sub e}) and temperature (T{sub e}), ion temperature (T{sub i}) data at the outer midplane, divertor heat flux from infrared television cameras, and n{sub e}, T{sub e} and particle flux at the target from fixed Langmuir probes, along with the divertor D{sub {alpha}} emissivity. In this paper, we present results of core fueling calculations from the 2-D modeling for ELM-free discharges, constrained by data from the new divertor diagnostics. In addition, we present a simple technique for estimating the recycling flux just after the L-H transition and demonstrate how this technique is supported by the detailed modeling. We will show the effect which inaccuracies in the recycling flux have on the calculated particle flux in the plasma core. For some specific density profiles, it is possible to separate the convective flux from the conductive flux. The diffusion coefficients obtained show a sharp decrease near a normalized radius of 0.9 indicating the presence of a transport barrier.

  11. Initialization of hydrodynamics in relativistic heavy ion collisions with an energy-momentum transport model

    E-Print Network [OSTI]

    V. Yu. Naboka; S. V. Akkelin; Iu. A. Karpenko; Yu. M. Sinyukov

    2015-01-14T23:59:59.000Z

    A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a pre-thermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the pre-thermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.

  12. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15T23:59:59.000Z

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  13. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    SciTech Connect (OSTI)

    Smolander, S.; He, Q.; Mogensen, Ditte; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, Alex B.; Aaltonen, H.; Kulmala, M.; Boy, Michael

    2014-10-07T23:59:59.000Z

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain.

  14. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    SciTech Connect (OSTI)

    Kang, Qinjin [Los Alamos National Laboratory; Wang, Moran [Los Alamos National Laboratory; Mukherjee, Partha P [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

  15. Workshop on Functional Requirements for the Modeling of Fate and Transport of Waterborne CBRN Materials

    SciTech Connect (OSTI)

    Giles, GE

    2005-02-03T23:59:59.000Z

    The purpose of this Workshop on ''Functional Requirements for the Modeling of Fate and Transport of Waterborne CBRN Materials'' was to solicit functional requirements for tools that help Incident Managers plan for and deal with the consequences of industrial or terrorist releases of materials into the nation's waterways and public water utilities. Twenty representatives attended and several made presentations. Several hours of discussions elicited a set of requirements. These requirements were summarized in a form for the attendees to vote on their highest priority requirements. These votes were used to determine the prioritized requirements that are reported in this paper and can be used to direct future developments.

  16. Asymmetric quantum transport in a double-stranded Kronig-Penney model

    E-Print Network [OSTI]

    Taksu Cheon; Sergey S. Poghosyan

    2015-03-03T23:59:59.000Z

    We introduce a double-stranded Kronig-Penney model and analyze its transport properties. The asymmetric fluxes between two strands with suddenly alternating localization patterns are found as the energy is varied. The zero-size limit of the internal lines connecting two strands is examined using quantum graph vertices with four edges. We also consider a two-dimensional Kronig-Penney lattice with two types of alternating layers with $\\delta$ and $\\delta'$ connections, and show that the existence of energy bands in which the quantum flux can flow only in selected directions.

  17. The freeze-out properties of hyperons in a microscopic transport model

    E-Print Network [OSTI]

    Xie, Zhenglian; Bass, Steffen A

    2009-01-01T23:59:59.000Z

    The excitation function of freeze-out time, average freeze-out temperature and freeze-out energy density of (multi-) strange baryons created in relativistic heavy-ion collisions is investigated in the framework of a microscopic transport model. We find that the Omega on average freezes out earlier than the nucleon, Xi and Lambda. The average freeze-out temperature and energy density as well as the spread between the different baryonicstates increase monotonously with increasing beam energy and should approach a universal value in the case of a hadronizing Quark-Gluon-Plasma.

  18. The freeze-out properties of hyperons in a microscopic transport model

    E-Print Network [OSTI]

    Zhenglian Xie; Pingzhi Ning; Steffen A. Bass

    2009-11-23T23:59:59.000Z

    The excitation function of freeze-out time, average freeze-out temperature and freeze-out energy density of (multi-) strange baryons created in relativistic heavy-ion collisions is investigated in the framework of a microscopic transport model. We find that the Omega on average freezes out earlier than the nucleon, Xi and Lambda. The average freeze-out temperature and energy density as well as the spread between the different baryonicstates increase monotonously with increasing beam energy and should approach a universal value in the case of a hadronizing Quark-Gluon-Plasma.

  19. Constraint-Based Routing Models for the Transport of Radioactive Materials

    SciTech Connect (OSTI)

    Peterson, Steven K [ORNL

    2015-01-01T23:59:59.000Z

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway, highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via a constrained shortest-path Dijkstra algorithm that has an assigned impedance factor. The route constraints modify the various impedance weights to bias or prefer particular network characteristics as desired by the user. Both the basic route model and the constrained impedance function calculations are determined by a series of network characteristics and shipment types. The study examines solutions under various constraints modeled by WebTRAGIS including possible routes from select shut-down reactor sites in the US to specific locations in the US. For purposes of illustration, the designated destinations are Oak Ridge National Laboratory in Tennessee and the Savannah River Site in South Carolina. To the degree that routes express sameness or variety under constraints serves to illustrate either a) the determinism of particular transport modes by either configuration or regulatory compliance, and/or b) the variety of constrained routes that are regulation compliant but may not be operationally feasible.

  20. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J. [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.] [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.] [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.

    1996-02-01T23:59:59.000Z

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  1. A Classical Approach in Simple Nuclear Fusion Reaction 1H2 + 1H3 using Two-Dimension Granular Molecular Dynamics Model

    E-Print Network [OSTI]

    Sparisoma Viridi; Rizal Kurniadi; Abdul Waris; Yudha Satya Perkasa

    2011-09-30T23:59:59.000Z

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between 1H2 and 1H3 is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary 2He4 nucleus.

  2. The K{sup ¯}N?K? reaction in coupled channel chiral models up to next-to-leading order

    SciTech Connect (OSTI)

    Magas, V. K.; Ramos, A. [Dept. d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Martí Franquès 1, E08028 Barcelona, Spain and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí Franquès 1, E08028 Bar (Spain); Feijoo, A. [Dept. d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Martí Franquès 1, E08028 Barcelona (Spain)

    2014-07-23T23:59:59.000Z

    We study the meson-baryon interaction in S-wave in the strangeness S=?1 sector using a chiral unitary approach based on a next-to-leading order chiral SU(3) Lagrangian. We fit our model to the large set of experimental data in different two-body channels. We pay particular attention to the K{sup ¯}N?K? reaction, where the effect of the next-to-leading order terms in the Lagrangian are sufficiently large to be observed, since at tree level the cross section of this reaction is zero. For these channels we improve our approach by phenomenologically taking into account effects of the high spin hyperonic resonances.

  3. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    SciTech Connect (OSTI)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22T23:59:59.000Z

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model “General NOAA Operational Modeling Environment (GNOME).” Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.

  4. Carbon-nitrogen bond-forming reactions in supercritical and expanded-liquid carbon dioxide media : green synthetic chemistry with multiscale reaction and phase behavior modeling

    E-Print Network [OSTI]

    Ciccolini, Rocco P

    2008-01-01T23:59:59.000Z

    The goal of this work was to develop a detailed understanding of carbon-nitrogen (C-N) bond-forming reactions of amines carried out in supercritical and expanded-liquid carbon dioxide (CO2) media. Key motivations behind ...

  5. Modeling reactive transport in deformable porous media using the theory of interacting continua.

    SciTech Connect (OSTI)

    Turner, Daniel Zack

    2012-01-01T23:59:59.000Z

    This report gives an overview of the work done as part of an Early Career LDRD aimed at modeling flow induced damage of materials involving chemical reactions, deformation of the porous matrix, and complex flow phenomena. The numerical formulation is motivated by a mixture theory or theory of interacting continua type approach to coupling the behavior of the fluid and the porous matrix. Results for the proposed method are presented for several engineering problems of interest including carbon dioxide sequestration, hydraulic fracturing, and energetic materials applications. This work is intended to create a general framework for flow induced damage that can be further developed in each of the particular areas addressed below. The results show both convincing proof of the methodologies potential and the need for further validation of the models developed.

  6. Three-dimensional transport and concentration of SF{sub 6} - a model intercomparison study (transcom 2)

    SciTech Connect (OSTI)

    Denning, A.S.; Holzer, M.; Burney, K.R.; Heimann, M.; Law, R.M.; Rayner, P.J.; Fund, I.Y.; Fan, S.M.; Taguchi, S.; Friedlingstein, P.; Balkanski, Y.; Taylor, J.; Maiss, M.; Levin, I.

    1999-01-02T23:59:59.000Z

    Sulfur hexafluoride (SF6) is an excellent tracer of large-scale atmospheric transport, because it has slowly increasing sources mostly confined to northern midlatitudes, and has a lifetime of thousands of years. We have simulated the emissions, transport, and concentration of SF, for a 5-year period, and compared the results with atmospheric observations. In addition, we have performed an intercomparison of interhemispheric transport among 11 models to investigate the reasons for the differences among the simulations. Most of the models are reasonably successful at simulating the observed meridional gradient of SF6 in the remote marine boundary layer, though there is less agreement at continental sites. Models that compare well to observations in the remote marine boundary layer tend to systematically overestimate SF6 at continental locations in source regions, suggesting that vertical trapping rather than meridional transport may be a dominant control on the simulated meridional gradient. The vertical structure of simulated SF6 in the models supports this interpretation. Some of the models perform quite well in terms of the simulated seasonal cycle at remote locations, while others do not. Interhemispheric exchange time varies by a factor of 2 when estimated from 1-dimensional meridional profiles at the surface, as has been done for observations. The agreement among models is better when the global surface mean mole fraction is used, and better still when the full 3-dimensional mean mixing ratio is used. The ranking of the interhemispheric exchange time among the models is not sensitive to the change From station values to surface means, but is very sensitive to the change from surface means to the full 3-dimensional tracer fields. This strengthens the argument that vertical redistribution dominates over interhemispheric transport in determining the meridional gradient at the surface. Vertically integrated meridional transport in the models is divided roughly equally into transport by the mean motion, the standing eddies, and the transient eddies. The vertically integrated mass flux is a good index of the degree to which resolved advection vs. parameterized diffusion accomplishes the meridional transport of SF6. Observational programs could provide a much better constraint on simulated chemical tracer transport if they included regular sampling of vertical profiles of nonreactive trace gases over source regions and meridional profiles in the middle to upper troposphere. Further analysis of the SF6 simulations will focus on the subgrid-scale parameterized transports.

  7. International Conference 'Transport and Air Pollution' 2008, Graz EMISSION FACTOR MODELLING FOR LIGHT VEHICLES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - 16th International Conference 'Transport and Air Pollution' 2008, Graz EMISSION FACTOR in Europe: The European MEET (Methodologies for Estimating air pollutant Emissions from Transport) project. Transport and Air Pollution, Graz : Austria (2008)" #12;- 2 - 16th International Conference 'Transport

  8. Streambank Stability: Modeling Channel Evolution and Pollutant Transport in an Urban Stream

    E-Print Network [OSTI]

    Clark, Shirley E.

    ­ Harrisburg, Middletown, PA 17057 Abstract This study evaluates the channel evolution and transport capacity

  9. A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture

    E-Print Network [OSTI]

    Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

    2013-01-01T23:59:59.000Z

    The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

  10. Comparison of surface meteorological data representativeness for the Weldon Spring transport and dispersion modeling analysis

    SciTech Connect (OSTI)

    Lazaro, M.

    1989-06-01T23:59:59.000Z

    The US Department of Energy is conducting the Weldon Spring Site Remedial Action Project under the Surplus Facilities Management Program (SFMP). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that associated with contamination at SFMP sites and to make surplus property available for other uses to the extent possible. This report presents the results of analysis of available meteorological data from stations near the Weldon Spring site. Data that are most representative of site conditions are needed to accurately model the transport and dispersion of air pollutants associated with remedial activities. Such modeling will assist the development of mitigative measures. 17 refs., 12 figs., 6 tabs.

  11. A model for motor-mediated bidirectional transport along an antipolar microtubule bundle

    E-Print Network [OSTI]

    Congping Lin; Peter Ashwin; Gero Steinberg

    2012-11-21T23:59:59.000Z

    Long-distance bidirectional transport of organelles depends on the motor proteins kinesin and dynein. Using quantitative data obtained from a fungal model system, we previously developed ASEP-models of bidirectional motion of motors along unipolar microtubules (MTs) near the cell ends of the elongated hyphal cells (herein referred as "unipolar section"). However, recent quantitative live cell imaging in this system has demonstrated that long-range motility of motors and their endosomal cargo mainly occurs along extended antipolar microtubule bundles within the central part of the cell (herein referred to as "bipolar section"). Dynein and kinesin-3 motors coordinate their activity to move early endosomes (EEs) in a bidirectional fashion, with dynein mediating retrograde motility along the unipolar section near the cell poles, whereas kinesin-3 is responsible for bidirectional motions along the antipolar section. Here we extend our modelling approach to simulate bidirectional motility along an antipolar microtubule bundle. In our model, cargos (particles) change direction on each MT with a turning rate $\\Omega$ and the MTs are linked to each other at the minus ends where particles can hop between MTs with a rate $q_1$ (obstacle-induced switching rate) or $q_2$ (end-induced switching rate). By numerical simulations and mean-field approximations, we investigate the distribution of particles along the MTs for different overall densities $\\Theta$. We find that even if $\\Theta$ is low, the system can exhibit shocks in the density profiles near plus and minus ends caused by queueing of particles. We also discuss how the switching rates $q_{1,2}$ influence the type of motor that dominates the active transport in the bundle.

  12. Numerical Modeling of 90Sr and 137Cs Transport from a Spill in the B-Cell of the 324 Building, Hanford Site 300 Area

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.

    2012-03-19T23:59:59.000Z

    To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.

  13. THE APPLICATION OF THE LAND TRANSFORMATION, GROUNDWATER FLOW AND SOLUTE TRANSPORT MODELS FOR MICHIGAN'S GRAND TRAVERSE BAY

    E-Print Network [OSTI]

    1 THE APPLICATION OF THE LAND TRANSFORMATION, GROUNDWATER FLOW AND SOLUTE TRANSPORT MODELS). The two hydrogeologic models that are being used here allow us to explore the dynamics of groundwater flow Meeting, New Orleans, Louisiana, March 14, 2001. #12;2 INTRODUCTION Grand Traverse Bay and the Grand

  14. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10T23:59:59.000Z

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  15. Additional resonant contribution to the potential model for the 12C(alpha,gamma)16O reaction

    E-Print Network [OSTI]

    M. Katsuma

    2014-04-15T23:59:59.000Z

    The additional resonant contribution to the potential model is examined in $\\alpha$+$^{12}$C elastic scattering and the low-energy $^{12}$C($\\alpha$,$\\gamma$)$^{16}$O reaction. The excitation function of elastic scattering below $E_{c.m.}= 5$ MeV seems to be reproduced by the potential model satisfactorily, and it is not profoundly disturbed by the additional resonances. The weak coupling is good enough to describe the $^{16}$O structure in the vicinity of the $\\alpha$-particle threshold, especially below $E_{c.m.}= 8$ MeV, corresponding to the excitation energy $E_x \\approx 15$ MeV. The additional resonances give the complement of the astrophysical $S$-factors from the simple potential model. The $S$-factor of $^{12}$C($\\alpha$,$\\gamma$)$^{16}$O at $E_{c.m.}=300$ keV is dominated by the $E$2 transition, which is enhanced by the subthreshold 2$^+_1$ state at $E_x= 6.92$ MeV. The contribution from the subthreshold 1$^-_1$ state at $E_x= 7.12$ MeV is predicted to be small. The additional resonances do not give the large contribution to the thermonuclear reaction rates of $^{12}$C($\\alpha$,$\\gamma$)$^{16}$O at helium burning temperatures.

  16. ATOMIC-LEVEL MODELING OF CO2 DISPOSAL AS A CARBONATE MINERAL: A SYNERGETIC APPROACH TO OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect (OSTI)

    A.V.G. Chizmeshya; M.J. McKelvy; J.B. Adams

    2001-11-01T23:59:59.000Z

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar hydroxide mineral carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. In this investigation Mg(OH){sub 2} was selected as a model Mg-rich lamellar hydrocide carbonation feedstock material due to its chemical and structural simplicity. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. The aim of the current innovative concepts project is to develop a specialized advanced computational methodology to complement the ongoing experimental inquiry of the atomic level processes involved in CO{sub 2} mineral sequestration. The ultimate goal is to integrate the insights provided by detailed predictive simulations with the data obtained from optical microscopy, FESEM, ion beam analysis, SIMS, TGA, Raman, XRD, and C and H elemental analysis. The modeling studies are specifically designed to enhance the synergism with, and complement the analysis of, existing mineral-CO{sub 2} reaction process studies being carried out under DOE UCR Grant DE-FG2698-FT40112. Direct contact between the simulations and the experimental measurements is provided by computing, from first principles, the equilibrium structures, elastic, optical, and vibrational properties of Mg(OH){sub 2} (brucite), MgO (periclase), MgCO{sub 3} (magnesite), as well as the energetics of the dehydroxylation reaction (Mg(OH){sub 2} {yields} MgO + H{sub 2}O), and the reactivity of CO{sub 2} with MgO and Mg(OH){sub 2}. From these calculations, thermodynamic characteristics of the reaction conditions can be inferred. This kind of information, when integrated with the atomic level data obtained from experimental gas-solid dehydroxylation/carbonation studies, will be used to design optimized reaction processes leading to the practical and cost-effective sequestration of CO{sub 2} in mineral form.

  17. Comprehensive inverse modeling for the study of carrier transport models in sub-50nm MOSFETs

    E-Print Network [OSTI]

    Djomehri, Ihsan Jahed, 1976-

    2002-01-01T23:59:59.000Z

    Direct quantitative 2-D characterization of sub-50 nm MOSFETs continues to be elusive. This research develops a comprehensive indirect inverse modeling technique for extracting 2-D device topology using combined log(I)-V ...

  18. On the electrodynamic model of ultra-relativistic laser-plasma interactions caused by radiation reaction effects

    SciTech Connect (OSTI)

    Bashinov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation)] [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Kim, A. V. [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation) [Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation)

    2013-11-15T23:59:59.000Z

    A simple electrodynamic model is developed to define plasma-field structures in self-consistent ultra-relativistic laser-plasma interactions when the radiation reaction effects come into play. An exact analysis of a circularly polarized laser interacting with plasmas is presented. We define fundamental notions, such as nonlinear dielectric permittivity, ponderomotive and dissipative forces acting in a plasma. Plasma-field structures arising during the ultra-relativisitc interactions are also calculated. Based on these solutions, we show that about 50% of laser energy can be converted into gamma-rays in the optimal conditions of laser-foil interaction.

  19. Modeling of particle and energy transport in the edge plasma of Alcator C-Mod

    SciTech Connect (OSTI)

    Umansky, M.V.; Krasheninnikov, S.I.; LaBombard, B.; Lipschultz, B.; Terry, J.L. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1999-07-01T23:59:59.000Z

    In the present study recycling and transport in the edge plasma of Alcator C-Mod [I. H. Hutchinson {ital et al.}, Phys. Plasmas {bold 1}, 1511 (1994)] is modeled and analyzed with the multi-fluid code UEDGE [T. D. Rognlien {ital et al.}, J. Nucl. Mater. {bold 196{endash}198}, 347 (1992)]. Matching the experimental plasma density profiles in the scrape-off layer (SOL) requires a spatially dependent effective anomalous diffusion coefficient D{sub {perpendicular}} growing rapidly towards the wall. The midplane pressure of neutral gas, P{sub mid}, is a key parameter that reflects the magnitude of anomalous transport of plasma from the core. Recycling of plasma on the main chamber wall appears to be quite significant, especially in the case of high P{sub mid}{approximately}0.3 mTorr when the main wall provides {approximately}70{percent} of recycling neutrals in the main chamber. In the upper SOL (well above the {ital x} point) draining of particles by the poloidal flow is weak and thus the particle balance is predominantly radial. For the radial heat transport it is found that energy flux carried by radial plasma convection and by charge-exchange (CX) neutrals is quite significant in SOL. In the high P{sub mid} case, heat conduction by CX neutrals along with radial heat convection by plasma carries most of the power flux ({approximately}75{percent}) across the last closed flux surface. Even in the low P{sub mid} case, heat conduction by CX neutrals dominates the radial heat flux far out in the SOL. {copyright} {ital 1999 American Institute of Physics.}

  20. Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles Yi Zeng1, Martin Z. Bazant1,2

    E-Print Network [OSTI]

    Bazant, Martin Z.

    cathode material for lithium-ion batteries, present ongoing challenges for mathematical modeling. In spite of the fundamental lithium-ion battery dynamics. The first mathematical model on two-phase intercalation dynamicsCahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles Yi Zeng1, Martin Z. Bazant1,2 1

  1. A coarse-grained transport model for neutral particles in turbulent plasmas

    SciTech Connect (OSTI)

    Mekkaoui, A.; Reiter, D.; Boerner, P. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Euratom Association, D-52425 Juelich (Germany); Marandet, Y.; Genesio, P.; Rosato, J.; Capes, H.; Koubiti, M.; Godbert-Mouret, L.; Stamm, R. [Aix-Marseille Universite, CNRS, PIIM, UMR 7345, F-13397 Marseille Cedex 20 (France)

    2012-12-15T23:59:59.000Z

    The transport of neutral particles in turbulent plasmas is addressed from the prospect of developing coarse-grained transport models which can be implemented in code suites like B2-EIRENE, currently used for designing the ITER divertor. The statistical properties of turbulent fluctuations are described by a multivariate Gamma distribution able to retain space and time correlations through a proper choice of covariance function. We show that in the scattering free case, relevant for molecules and impurity atoms, the average neutral particle density obeys a Boltzmann equation with an ionization rate renormalized by fluctuations. This result lends itself to a straightforward implementation in the EIRENE Monte Carlo solver for neutral particles. Special emphasis is put on the inclusion of time correlations, and in particular on the ballistic motion of coherent turbulent structures. The role of these time dependent effects is discussed for D{sub 2} molecules and beryllium atoms. The sensitivity of our results to the assumptions on the statistical properties of fluctuations is investigated.

  2. Transport theory for cold relativistic superfluids from an analogue model of gravity

    E-Print Network [OSTI]

    Massimo Mannarelli; Cristina Manuel

    2008-02-04T23:59:59.000Z

    We write a covariant transport equation for the phonon excitations of a relativistic superfluid valid at small temperatures. The hydrodynamical equations for this system are derived from the effective field theory associated to the superfluid phonons. We describe how to construct the kinetic theory for the phonon quasiparticles using a relativistic generalization of the analogue model of gravity developed by Unruh. This gravity analogy relies on the equivalence between the action of a phonon field moving in a superfluid background with that of a boson propagating in a given curved space-time. Exploiting this analogy we obtain continuity equations for the phonon current, entropy and energy-momentum tensor in a covariant form, valid in any reference frame. Our aim is to shed light on some aspects of transport phenomena of relativistic superfluidity. In particular, we are interested in the low temperature regime of the color flavor locked phase, which is a color superconducting and superfluid phase of high density QCD that may be realized in the core of neutron stars.

  3. Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models

    SciTech Connect (OSTI)

    McGraw R.

    2012-03-01T23:59:59.000Z

    Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

  4. Mechanistic modeling of increased oxygen transport using functionalized magnetic fluids in bioreactors

    E-Print Network [OSTI]

    Ollé Pocurull, Bernat

    2007-01-01T23:59:59.000Z

    Absorption of gases into a liquid is of crucial importance to multiphase reactions because diffusion of a sparingly soluble gas across a gas-liquid interface generally limits the relevant reaction rates. Pertinent examples ...

  5. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  6. REACTIVE TRANSPORT MODELING USING A PARALLEL FULLY-COUPLED SIMULATOR BASED ON PRECONDITIONED JACOBIAN-FREE NEWTON-KRYLOV

    SciTech Connect (OSTI)

    Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston

    2012-06-01T23:59:59.000Z

    Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.

  7. On the modeling and simulation of reaction-transfer dynamics in semiconductor-electrolyte solar cells

    E-Print Network [OSTI]

    Ren, Kui

    -performance semiconductor-liquid junction solar cells. We propose in this work a macroscopic mathematical model, a sys- tem-liquid junction, solar cell simulation, naso-scale device modeling. 1 Introduction The mathematical modeling by the increasing need of simulation tools for designing efficient solar cells to harvest sunlight for clean energy

  8. The H2O2+OH ? HO2+H2O reaction in aqueous solution from a charge-dependent continuum model of solvation

    SciTech Connect (OSTI)

    Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel

    2008-07-07T23:59:59.000Z

    We applied our recently developed protocol of the conductor-like continuum model of solvation to describe the title reaction in aqueous solution. The model has the unique feature of the molecular cavity being dependent on the atomic charges in the solute, and can be extended naturally to transition states and reaction pathways. It was used to calculate the reaction energetics and reaction rate in solution for the title reaction. The rate of reaction calculated using canonical variational transition state theory CVT in the context of the equilibrium solvation path (ESP) approximation, and including correction for tunneling through the small curvature approximation (SCT) was found to be 3.6 106 M-1 s-1, in very good agreement with experiment, These results suggest that the present protocol of the conductor-like continuum model of solvation with the charge-dependent cavity definition captures accurately the solvation effects at transition states and allows for quantitative estimates of reaction rates in solutions. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  9. Modeling regional transportation demand in China and the impacts of a national carbon constraint

    E-Print Network [OSTI]

    Kishimoto, Paul

    2015-01-30T23:59:59.000Z

    Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

  10. A general performance model for parallel sweeps on orthogonal grids for particle transport calculations

    E-Print Network [OSTI]

    Mathis, Mark Michael

    2000-01-01T23:59:59.000Z

    particle transport calculations is an important problem in many applications targeted by the Accelerated Strategic Computing Initiative of the United States Department of Energy. One common approach to deterministic particle transport calculations...

  11. Transport and seismoelectric properties of porous permeable rock : numerical modeling and laboratory measurements

    E-Print Network [OSTI]

    Zhan, Xin, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The objective of this thesis is to better understand the transport and seismoelectric (SE) properties of porous permeable rock. Accurate information of rock transport properties, together with pore geometry, can aid us to ...

  12. A Description of ELM-Free H-modes in Terms of a Neoclassical Edge Barrier and a ‘Mixed’ Model for Energy and Particle Transport

    E-Print Network [OSTI]

    A Description of ELM-Free H-modes in Terms of a Neoclassical Edge Barrier and a ‘Mixed’ Model for Energy and Particle Transport

  13. Modeling electronic structure and transport properties of graphene with resonant scattering centers

    E-Print Network [OSTI]

    Shengjun Yuan; Hans De Raedt; Mikhail I. Katsnelson

    2010-09-17T23:59:59.000Z

    We present a detailed numerical study of the electronic properties of single-layer graphene with resonant ("hydrogen") impurities and vacancies within a framework of noninteracting tight-binding model on a honeycomb lattice. The algorithms are based on the numerical solution of the time-dependent Schr\\"{o}dinger equation and applied to calculate the density of states, \\textit{quasieigenstates}, AC and DC conductivities of large samples containing millions of atoms. Our results give a consistent picture of evolution of electronic structure and transport properties of functionalized graphene in a broad range of concentration of impurities (from graphene to graphane), and show that the formation of impurity band is the main factor determining electrical and optical properties at intermediate impurity concentrations, together with a gap opening when approaching the graphane limit.

  14. Validation Analysis of the Groundwater Flow and Transport Model of the Central Nevada Test Area

    SciTech Connect (OSTI)

    A. Hassan; J. Chapman; H. Bekhit; B. Lyles; K. Pohlmann

    2006-09-30T23:59:59.000Z

    The Central Nevada Test Area (CNTA) is a U.S. Department of Energy (DOE) site undergoing environmental restoration. The CNTA is located about 95 km northeast of Tonopah, Nevada, and 175 km southwest of Ely, Nevada (Figure 1.1). It was the site of the Faultless underground nuclear test conducted by the U.S. Atomic Energy Commission (DOE's predecessor agency) in January 1968. The purposes of this test were to gauge the seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley (outside the Nevada Test Site [NTS]) and to determine the suitability of the site for future large detonations. The yield of the Faultless underground nuclear test was between 200 kilotons and 1 megaton (DOE, 2000). A three-dimensional flow and transport model was created for the CNTA site (Pohlmann et al., 1999) and determined acceptable by DOE and the Nevada Division of Environmental Protection (NDEP) for predicting contaminant boundaries for the site.

  15. Transport model analysis of the transverse momentum and rapidity dependence of pion interferometry at SPS energies

    E-Print Network [OSTI]

    Qingfeng Li; Marcus Bleicher; Xianglei Zhu; Horst Stoecker

    2006-12-07T23:59:59.000Z

    Based on the UrQMD transport model, the transverse momentum and the rapidity dependence of the Hanbury-Brown-Twiss (HBT) radii $R_L$, $R_O$, $R_S$ as well as the cross term $R_{OL}$ at SPS energies are investigated and compared with the experimental NA49 and CERES data. The rapidity dependence of the $R_L$, $R_O$, $R_S$ is weak while the $R_{OL}$ is significantly increased at large rapidities and small transverse momenta. The HBT "life-time" issue (the phenomenon that the calculated $\\sqrt{R_O^{2}-R_S^{2}}$ value is larger than the correspondingly extracted experimental data) is also present at SPS energies.

  16. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    SciTech Connect (OSTI)

    Solovyeva, Alisa [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany); Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany)

    2012-05-21T23:59:59.000Z

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations. In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.

  17. Transportation Secure Data Center: Real-world Data for Planning, Modeling, and Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    The Transportation Secure Data Center (TSDC) at www.nrel.gov/tsdc provides free, web-based access to detailed transportation data from a variety of travel surveys conducted across the nation. While preserving the privacy of survey participants, this online repository makes vital transportation data broadly available to users from the comfort of their own desks via a secure online connection.

  18. A model for enhanced fusion reaction in a solid matrix of metal deuterides

    E-Print Network [OSTI]

    K. P. Sinha; A. Meulenberg

    2009-01-16T23:59:59.000Z

    Our study shows that the cross-section for fusion improves considerably if d-d pairs are located in linear (one-dimensional) chainlets or line defects. Such non-equilibrium defects can exist only in a solid matrix. Further, solids harbor lattice vibrational modes (quanta, phonons) whose longitudinal-optical modes interact strongly with electrons and ions. One such interaction, resulting in potential inversion, causes localization of electron pairs on deuterons. Thus, we have attraction of D+ D- pairs and strong screening of the nuclear repulsion due to these local electron pairs (local charged bosons: acronym, lochons). This attraction and strong coupling permits low-energy deuterons to approach close enough to alter the standard equations used to define nuclear-interaction cross-sections. These altered equations not only predict that low-energy-nuclear reactions (LENR) of D+ D- (and H+ H-) pairs are possible, they predict that they are probable.

  19. A model for enhanced fusion reaction in a solid matrix of metal deuterides

    E-Print Network [OSTI]

    Sinha, K P

    2009-01-01T23:59:59.000Z

    Our study shows that the cross-section for fusion improves considerably if d-d pairs are located in linear (one-dimensional) chainlets or line defects. Such non-equilibrium defects can exist only in a solid matrix. Further, solids harbor lattice vibrational modes (quanta, phonons) whose longitudinal-optical modes interact strongly with electrons and ions. One such interaction, resulting in potential inversion, causes localization of electron pairs on deuterons. Thus, we have attraction of D+ D- pairs and strong screening of the nuclear repulsion due to these local electron pairs (local charged bosons: acronym, lochons). This attraction and strong coupling permits low-energy deuterons to approach close enough to alter the standard equations used to define nuclear-interaction cross-sections. These altered equations not only predict that low-energy-nuclear reactions (LENR) of D+ D- (and H+ H-) pairs are possible, they predict that they are probable.

  20. Modeling Complex Organic Molecules in dense regions: Eley-Rideal and complex induced reaction

    E-Print Network [OSTI]

    Ruaud, M; Hickson, K M; Gratier, P; Hersant, F; Wakelam, V

    2014-01-01T23:59:59.000Z

    Recent observations have revealed the existence of Complex Organic Molecules (COMs) in cold dense cores and prestellar cores. The presence of these molecules in such cold conditions is not well understood and remains a matter of debate since the previously proposed "warm- up" scenario cannot explain these observations. In this article, we study the effect of Eley- Rideal and complex induced reaction mechanisms of gas-phase carbon atoms with the main ice components of dust grains on the formation of COMs in cold and dense regions. Based on recent experiments we use a low value for the chemical desorption efficiency (which was previously invoked to explain the observed COM abundances). We show that our introduced mechanisms are efficient enough to produce a large amount of complex organic molecules in the gas-phase at temperatures as low as 10K.

  1. Mathematical transport modeling for determination of effectiveness of Kepone clean up activities in the James River estuary

    SciTech Connect (OSTI)

    Onishi, Y.

    1980-01-01T23:59:59.000Z

    During the period of 1966-1975, a highly chlorinated pesticide, Kepone, was discharged to the environment around Hopewell, Virginia. Much of the Kepone that reached the James River estuary was adsorbed by river sediment, becoming a long-term source of pollution. In order to identify an optimal location to remove Kepone from the river bed and to assess the effectiveness of the clean up activities to reduce the Kepone level in the river, the mathematical simulation of sediment and Kepone transport in the James River estuary was performed by applying the sediment-containment transport model, FETRA, to an 86-km river reach between Bailey and Burwell Bays. The FETRA code is an unsteady, two-dimensional, finite element interactions. The submodels are: (1) a sediment transport submodel, (2) a dissolved contaminant transport submodel, and (3) a particulate contaminant (contaminant adsorbed by sediment) transport submodel. FETRA also predicts changes in river bed conditions of sediment and contaminant. The value of applying models to dredging activity goes beyond this specific example. Through the sensitivity analysis, one can employ models to predict the most cost effective strategy for dredging. Properly constructed strategies will take advantage of river and coastal water dynamics to reduce the total volume of sediments to be dredged. Results of the simulation can also be used to predict subsequent environmental impacts.

  2. Numerical modeling of a thermohydrochemical (T-H-C) coupling and the implications to radionuclide transport.

    SciTech Connect (OSTI)

    Esh, D. W.; Scheetz, B. E.

    1999-09-21T23:59:59.000Z

    Thermohydrochemical (T-H-C) processes result from the placement of heat-generating radioactive materials in unsaturated, fractured geologic materials. The placement of materials in the proposed Yucca Mountain repository will result in complex environmental conditions. Simple models are developed liking the thermohydrological effects simulated with TOUGHZ to system chemistry, with an example presented for chloride. Perturbations to near-field chemistry could have a significant impact on the migration of actinides and fission products in geologic materials. Various conceptual models to represent fractures are utilized in TOUGHZ simulations of thermohydrological processes. The simulated moisture redistribution is then coupled to simple chemical models to demonstrate the potential magnitude of T-H-C processes. The concentration of chloride in solution (returning to the engineered barrier system) is demonstrated, in extreme cases, to exceed 100,000 mg/L. The implication is that the system (typically ambient chemical and hydrological conditions) in which radionuclide transport is typically simulated and measured may be significantly different from the perturbed system.

  3. Final Technical Report - Stochastic Analysis of Advection-Diffusion-reaction Systems with Applications to Reactive Transport in Porous Media - DE-FG02-07ER24818

    SciTech Connect (OSTI)

    Karniadakis, George Em [Brown University] [Brown University

    2014-03-11T23:59:59.000Z

    The main objective of this project is to develop new computational tools for uncertainty quantifica- tion (UQ) of systems governed by stochastic partial differential equations (SPDEs) with applications to advection-diffusion-reaction systems. We pursue two complementary approaches: (1) generalized polynomial chaos and its extensions and (2) a new theory on deriving PDF equations for systems subject to color noise. The focus of the current work is on high-dimensional systems involving tens or hundreds of uncertain parameters.

  4. Laboratory And Lysimeter Experimentation And Transport Modeling Of Neptunium And Strontium In Savannah River Site Sediments

    SciTech Connect (OSTI)

    Kaplan, Daniel I.; Powell, B. A.; Miller, Todd J.

    2012-09-24T23:59:59.000Z

    The Savannah River Site (SRS) conducts performance assessment (PA) calculations to determine the appropriate amount of low-level radiological waste that can be safely disposed on site. Parameters are included in these calculations that account for the interaction between the immobile solid phase and the mobile aqueous phase. These parameters are either the distribution coefficient (K{sub d} value) or the apparent solubility value (K{sub sp}). These parameters are readily found in the literature and are used throughout the DOE complex. One shortcoming of K{sub d} values is that they are only applicable to a given set of solid and aqueous phase conditions. Therefore, a given radionuclide may have several K{sub d} values as it moves between formations and comes into contact with different solids and different aqueous phases. It is expected that the K{sub d} construct will be appropriate to use for a majority of the PA and for a majority of the radionuclides. However, semi-mechanistic models would be more representative in isolated cases where the chemistry is especially transitory or the radionuclide chemistry is especially complex, bringing to bear multiple species of varying sorption tendencies to the sediment. Semi-mechanistic models explicitly accommodate the dependency of K{sub d} values, or other sorption parameters, on contaminant concentration, competing ion concentrations, pH-dependent surface charge on the adsorbent, and solute species distribution. Incorporating semi-mechanistic concepts into geochemical models is desirable to make the models more robust and technically defensible. Furthermore, these alternative models could be used to augment or validate a Kd?based DOE Order 435.1 Performance Assessment. The objectives of this study were to: 1) develop a quantitative thermodynamically-based model for neptunium sorption to SRS sediments, and 2) determine a sorption constant from an SRS 11-year lysimeter study. The modeling studies were conducted with existing data sets. The first data set used laboratory generated Np sorption data as a function of concentration (three orders of magnitude) and as a function of pH (four orders of magnitude of proton concentration). In this modeling exercise, a very simple solution was identified by assuming that all sorption occurred only to the iron oxides in the sediment and that all the added NpO{sub 4}{sup -} remained in the oxidized state and was not reduced to the Np(IV) state (as occurs rapidly with Pu(V)). With rather limited input data, very good agreement between experimental and modeling results was observed. This modeling approach would be easy to add to the PA with little additional data requirements. This model would be useful in a system where pH is expected to change greatly, such as directly beneath a grout or concrete structure. The second model discussed in the report was to derive strontium K{sub d} values from data collected in an 11-year-old field transport study. In this controlled lysimeter study, a sensitivity analysis was conducted of hydrological and chemical processes that influence contaminant transport, including diffusion coefficients, seepage velocity, and K{sub d} value. The best overall K{sub d} derived from the model fit to the data was 32 L kg{sup -1}, which was the same value that was previously measured in traditional laboratory batch sorption studies. This was an unexpected result given the differences in experimental conditions between the batch test and the lysimeter flow through test, in particular the differences between strontium adsorption and desorption processes occurring in the latter test and not in the former. There were some trends in the lysimeter strontium data that were not predicted by the K{sub d} model, which suggest that other geochemical processes are likely also controlling strontium transport. Strontium release and cation exchange are being evaluated. These results suggest that future modeling efforts (e.g., PAs) could be improved by employing a more robust semi-empirical modeling approach to transient or complex conditio

  5. THE INFLUENCE OF UNCERTAINTIES IN THE {sup 15}O({alpha}, {gamma}){sup 19}Ne REACTION RATE ON MODELS OF TYPE I X-RAY BURSTS

    SciTech Connect (OSTI)

    Davids, Barry [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Cyburt, Richard H. [Joint Institute for Nuclear Astrophysics and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI (United States); Jose, Jordi [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya and Institut d'Estudis Espacials de Catalunya, Barcelona (Spain); Mythili, Subramanian [Physics Department, George Mason University, Fairfax, VA (United States)

    2011-07-01T23:59:59.000Z

    We present a Monte Carlo calculation of the astrophysical rate of the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction based on an evaluation of published experimental data. By considering the likelihood distributions of individual resonance parameters derived from measurements, estimates of upper and lower limits on the reaction rate at the 99.73% confidence level are derived in addition to the recommended, median value. These three reaction rates are used as input for three separate calculations of Type I X-ray bursts (XRBs) using spherically symmetric, hydrodynamic simulations of an accreting neutron star. In this way the influence of the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction rate on the peak luminosity, recurrence time, and associated nucleosynthesis in models of Type I XRBs is studied. Contrary to previous findings, no substantial effect on any of these quantities is observed in a sequence of four bursts when varying the reaction rate between its lower and upper limits. Rather, the differences in these quantities are comparable to the burst-to-burst variations with a fixed reaction rate, indicating that uncertainties in the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction rate do not strongly affect the predictions of this Type I XRB model.

  6. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01T23:59:59.000Z

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  7. Alkyl chain length-dependent surface reaction of dodecahydro-N-alkylcarbazoles on Pt model catalysts

    SciTech Connect (OSTI)

    Gleichweit, Christoph; Amende, Max; Bauer, Udo; Schernich, Stefan; Höfert, Oliver; Lorenz, Michael P. A.; Zhao, Wei; Bachmann, Philipp; Papp, Christian, E-mail: christian.papp@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Müller, Michael; Koch, Marcus [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Wasserscheid, Peter [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Libuda, Jörg; Steinrück, Hans-Peter [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2014-05-28T23:59:59.000Z

    The concept of liquid organic hydrogen carriers (LOHC) holds the potential for large scale chemical storage of hydrogen at ambient conditions. Herein, we compare the dehydrogenation and decomposition of three alkylated carbazole-based LOHCs, dodecahydro-N-ethylcarbazole (H{sub 12}-NEC), dodecahydro-N-propylcarbazole (H{sub 12}-NPC), and dodecahydro-N-butylcarbazole (H{sub 12}-NBC), on Pt(111) and on Al{sub 2}O{sub 3}-supported Pt nanoparticles. We follow the thermal evolution of these systems quantitatively by in situ high-resolution X-ray photoelectron spectroscopy. We show that on Pt(111) the relevant reaction steps are not affected by the different alkyl substituents: for all LOHCs, stepwise dehydrogenation to NEC, NPC, and NBC is followed by cleavage of the C–N bond of the alkyl chain starting at 380–390 K. On Pt/Al{sub 2}O{sub 3}, we discern dealkylation on defect sites already at 350 K, and on ordered, (111)-like facets at 390 K. The dealkylation process at the defects is most pronounced for NEC and least pronounced for NBC.

  8. The diffusion of photovoltaics : background, modeling and initial reaction of the agricultural - irrigation sector

    E-Print Network [OSTI]

    Lilien, Gary Louis

    1978-01-01T23:59:59.000Z

    This paper deals with the background, development and calibration of a model of innovation-diffusion, designed to help allocate government field test and demonstration resources in support of a photovoltaic technology ...

  9. A fundamental study of model fuel conversion reactions in sub and supercritical water

    E-Print Network [OSTI]

    Lachance, Russell Philip

    2005-01-01T23:59:59.000Z

    Model reactants under hydrothermal conditions were examined to improve our understanding of chemical transformations in this high temperature and pressure environment. Results have a direct impact on present and future ...

  10. Computer Modeling of Transport of Oxidizing Species in Grain Boundaries during Zirconium Corrosion

    SciTech Connect (OSTI)

    Xian-Ming Bai; Yongfeng Zhang; Michael R. Tonks

    2014-06-01T23:59:59.000Z

    Zirconium (Zr) based alloys are widely used as the cladding materials in light-water reactors. The water-side corrosion of these alloys degrades their structural integrity and poses serious safety concerns. During the Zr corrosion process, a thin Zr oxide (ZrO2) layer forms on the alloy surface and serves as a barrier layer for further corrosion. The majority of the oxide has the monoclinic phase. At the transition region between the oxide and the metal, the oxide contains a thin layer of stabilized tetragonal phase. It is found that the texture of the tetragonal layer determines the protectiveness of the oxide for corrosion. The transport of oxidizing species, such as anion defects, cation defects, and electron through the tetragonal oxide layer could be the rate limiting step of the corrosion. The defect diffusion can be affected by the growing stresses and microstructures such as grain boundaries and dislocations. In this work molecular dynamics simulations are used to investigate the anion and cation diffusion in bulk and at grain boundaries in tetragonal ZrO2. The results show that defect diffusion at grain boundaries is complex and the behavior strongly depends on the grain boundary type. For most of the grain boundaries studied the defect diffusion are much slower than in the bulk, implying that grain boundaries may not be fast defect transport paths during corrosion. The connection between the modeling results and published experimental work will also be discussed. This work is funded by the Laboratory Directed Research and Development (LDRD) program at Idaho National Laboratory.

  11. The International Symposium on Transportation and Traffic Theory 00 (2013) 119 Linear-Quadratic Model Predictive Control

    E-Print Network [OSTI]

    Nazarathy, Yoni

    2013-01-01T23:59:59.000Z

    al., 1996). The more recent works on traffic control systems have adopted results of modern control responsibility of Delft University of Technology Keywords: Model Predictive Control, Intelligent Transport System, Congestion Control 1. Introduction Increasing population and economic activities in modern societies have led

  12. Canadian Coastal Conference 1999 Conference Canadian sur la littoral 1999 SUSPENDED SEDlMENT TRANSPORT MODELING IN LAKE MICHIGAN

    E-Print Network [OSTI]

    MENT TRANSPORT MODELING IN LAKE MICHIGAN IJ. Lou, ID.J. Schwab, and 2D. Beletsky INOAAlGreat Lakes Environmental and Marine Engineering, University of Michigan~ Cooperative Institute for Limnology and Ecosystems ResearchfNOAA Great Lakes Environmental Research Laboratory and University of Michigan, 2205 Commonwealth Blvd., Ann

  13. GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal Wetland Hydrology, and Deep Well Injection

    E-Print Network [OSTI]

    Sukop, Mike

    GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal, but is also lost to surface water drainage and potential submarine groundwater discharge. There are also to deal with issues such as submarine groundwater discharge and coastal wetland hydrology. SEAWAT also has

  14. Enabling HCCI modeling: The RIOT/CMCS Web Service for Automatic Reaction Mechanism Reduction

    SciTech Connect (OSTI)

    Oluwole, O; Pitz, W J; Schuchardt, K; Rahn, L A; Green, Jr., W H; Leahy, D; Pancerella, C; Sj?berg, M; Dec, J

    2005-12-12T23:59:59.000Z

    New approaches are being developed to facilitate multidisciplinary collaborative research of Homogeneous Charge Compression Ignition (HCCI) combustion processes. In this paper, collaborative sharing of the Range Identification and Optimization Toolkit (RIOT) and related data and models is discussed. RIOT is a developmental approach to reduce the computational complexity of detailed chemical kinetic mechanisms, enabling their use in modeling kinetically-controlled combustion applications such as HCCI. These approaches are being developed and piloted as a part of the Collaboratory for Multiscale Chemical Sciences (CMCS) project. The capabilities of the RIOT code are shared through a portlet in the CMCS portal that allows easy specification and processing of RIOT inputs, remote execution of RIOT, tracking of data pedigree and translation of RIOT outputs (such as the reduced model) to a table view and to the commonly-used CHEMKIN mechanism format. The reduced model is thus immediately ready to be used for more efficient simulation of the chemically reacting system of interest. This effort is motivated by the need to improve computational efficiency in modeling HCCI systems. Preliminary use of the web service to obtain reduced models for this application has yielded computational speedup factors of up to 20 as presented in this paper.

  15. Exact PDF equations and closure approximations for advective-reactive transport

    SciTech Connect (OSTI)

    Venturi, D.; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.; Karniadakis, George E.

    2013-06-01T23:59:59.000Z

    Mathematical models of advection–reaction phenomena rely on advective flow velocity and (bio) chemical reaction rates that are notoriously random. By using functional integral methods, we derive exact evolution equations for the probability density function (PDF) of the state variables of the advection–reaction system in the presence of random transport velocity and random reaction rates with rather arbitrary distributions. These PDF equations are solved analytically for transport with deterministic flow velocity and a linear reaction rate represented mathematically by a heterog eneous and strongly-correlated random field. Our analytical solution is then used to investigate the accuracy and robustness of the recently proposed large-eddy diffusivity (LED) closure approximation [1]. We find that the solution to the LED-based PDF equation, which is exact for uncorrelated reaction rates, is accurate even in the presence of strong correlations and it provides an upper bound of predictive uncertainty.

  16. A Two Transition State Model for Radical-Molecule Reactions: A Case Study of the Addition of OH to C2H4

    E-Print Network [OSTI]

    North, Simon W.

    A Two Transition State Model for Radical-Molecule Reactions: A Case Study of the Addition of OH; In Final Form: April 6, 2005 A two transition state model is applied to the study of the addition of both inner and outer transition states. The outer transition state is treated with a recently derived

  17. Semiclassical Distorted Wave Model Analysis of Backward Proton Emission from $(p,p^{\\prime}x)$ Reactions at Intermediate Energies

    E-Print Network [OSTI]

    M. K. Gaidarov; Y. Watanabe; K. Ogata; M. Kohno; M. Kawai; A. N. Antonov

    2003-07-28T23:59:59.000Z

    A semiclassical distorted wave (SCDW) model with Wigner transform of one-body density matrix is presented for multistep direct $(p,p^{\\prime}x)$ reactions to the continuum. The model uses Wigner distribution functions obtained in methods which include nucleon-nucleon correlations to a different extent, as well as Woods-Saxon (WS) single-particle wave function. The higher momentum components of target nucleons that play a crucial role in reproducing the high-energy part of the backward proton spectra are properly taken into account. This SCDW model is applied to analyses of multistep direct processes in $^{12}$C$(p,p^{\\prime}x)$, $^{40}$Ca$(p,p^{\\prime}x)$ and $^{90}$Zr$(p,p^{\\prime}x)$ in the incident energy range of 150--392 MeV. The double differential cross sections are calculated up to three-step processes. The calculated angular distributions are in good agreement with the experimental data, in particular at backward angles where the previous SCDW calculations with the WS single-particle wave function showed large underestimation. It is found that the result with the Wigner distribution function based on the coherent density fluctuation model provides overall better agreement with the experimental data over the whole emission energies.

  18. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; Hetue, Jackson D.; Lake, Katherine A.; Ellison, Paul A.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, Robert J.; Williams, Paul H.; et al

    2015-01-01T23:59:59.000Z

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹?F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore »of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹?F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less

  19. Fluctuation level bursts in a model of internal transport barrier formation D. Lopez-Bruna, D. E. Newman, and B. A. Carreras

    E-Print Network [OSTI]

    Newman, David

    features of ITB models the phase transition character with a power threshold, barrier front propagation radial electric field.10,11 As happens with the edge transport barriers, the system reacts to the extraFluctuation level bursts in a model of internal transport barrier formation D. Lo´pez-Bruna, D. E

  20. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    Duty Vehicle and Truck Emissions. Transportation Researchin on-highway truck emission certification standards in theclass (e.g. , car, truck), emission technology (e.g. , no

  1. Laboratory Measurements of Wave Forcing and Reactions on a Model Submerged Mesh Breakwater

    E-Print Network [OSTI]

    Knoll, Alex Baxter

    2014-07-30T23:59:59.000Z

    of 3.4 ft and a length of 10 ft. The estimated forcing on the structure came from measurements during model testing in the Haynes Coastal Engineering Laboratory wave tank. Both regular sinusoidal waves and irregular waves were generated. The significant...

  2. Acidbase chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    E-Print Network [OSTI]

    June 18, 2012) Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmo be a significant source of condensation nuclei (2) and cloud condensation nuclei (CCN) (3). The cloud albedo effect

  3. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2004 37 Monte Carlo Modeling of the Light Transport in

    E-Print Network [OSTI]

    Kanicki, Jerzy

    absorption, thin-film coatings, and uneven or irregular surfaces by tracking the photon polarization aerogel layer [10]. Several models have also been proposed for modeling optical transport in organic light

  4. Light-induced degradation and metastable-state recovery with reaction kinetics modeling in boron-doped Czochralski silicon solar cells

    SciTech Connect (OSTI)

    Kim, Soo Min; Chun, Seungju; Bae, Suhyun; Park, Seungeun; Lee, Hae-seok, E-mail: lhseok@korea.ac.kr; Kim, Donghwan, E-mail: donghwan@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Kang, Min Gu; Song, Hee-eun [Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Kang, Yoonmook, E-mail: ddang@korea.ac.kr [KU-KIST Green School, Graduate School of Energy and Environment, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2014-08-25T23:59:59.000Z

    Solar cells fabricated from boron-doped p-type Czochralski silicon suffer from light-induced degradation that can lower the conversion efficiency by up to 10% relative. When solar cells are exposed to temperatures between 100?°C and 200?°C under illumination, regeneration, in which the minority carrier lifetime is gradually recovered, occurs after the initial light-induced degradation. We studied the light-induced degradation and regeneration process using carrier injection within a design chamber and observed open-circuit voltage trends at various sample temperatures. We proposed a cyclic reaction kinetics model to more precisely analyze the degradation and recovery phenomenon. Our model incorporated the reaction paths that were not counted in the original model between the three states (annealed, degradation, and regeneration). We calculated a rate constant for each reaction path based on the proposed model, extracted an activation energy for each reaction using these rate constants at various temperatures, and calculated activation energies of redegradation and the stabilization reaction.

  5. Comparison of Average Transport and Dispersion Among a Gaussian Model, a Two-Dimensional Model and a Three-Dimensional Model

    SciTech Connect (OSTI)

    Mitchell, J A; Molenkamp, C R; Bixler, N E; Morrow, C W; Ramsdell, Jr., J V

    2004-05-10T23:59:59.000Z

    The Nuclear Regulatory Commission uses MACCS2 (MELCOR Accident Consequence Code System, Version 2) for regulatory purposes such as planning for emergencies and cost-benefit analyses. MACCS2 uses a straight-line Gaussian model for atmospheric transport and dispersion. This model has been criticized as being overly simplistic, although only expected values of metrics of interest are used in the regulatory arena. To test the assumption that averaging numerous weather results adequately compensates for the loss of structure in the meteorology that occurs away from the point of release, average MACCS2 results have been compared with average results from a state-of-the-art, 3-dimensional LODI (Lagrangian Operational Dispersion Integrator)/ADAPT (Atmospheric Data Assimilation and Parameterization Technique) and a Lagrangian trajectory, Gaussian puff transport and dispersion model from RASCAL (Radiological Assessment System for consequence Analysis). The weather sample included 610 weather trials representing conditions for a hypothetical release at the Central Facility of the Department of Energy's Atmospheric Radiation Measurement site. The values compared were average ground concentrations and average surface-level air concentrations at several distances out to 100 miles (160.9 km) from the assumed release site.

  6. Vehicle Technologies Office Merit Review 2015: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about transportation...

  7. Theory of gated hemicarcerands and Diels-Alder reactions of tetrazines

    E-Print Network [OSTI]

    LIU, FANG

    2014-01-01T23:59:59.000Z

    consistent reaction field (SCRF) using the CPCM model, [9]consistent reaction field (SCRF) using the CPCM model, whereconsistent reaction field (SCRF) using the CPCM model, [26-

  8. Bedload Transport. Part 1: Two-Phase Model and 3D Numerical Implementation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by Ouriemi et al. (2009a) to study bedload transport in pipe flows. The governing equations are discretized flows with the hydrate or sand issues in oil production and granular transport in food or pharmaceutical the fluid-particle interaction is assumed to follow a Darcy law. This approach allows to predict

  9. A sediment transport model for incision of gullies on steep Erkan Istanbulluoglu,1

    E-Print Network [OSTI]

    Tarboton, David

    higher than those for bed load transport in alluvial rivers but is in the range of shear stress exponents derived from flume experiments on steep slopes and with total load equations. The concavity index of the gully profiles obtained theoretically from the area and slope exponents of the sediment transport

  10. Transport Model Linear Evaluation Parametric Scan: limit of Te,i = 0

    E-Print Network [OSTI]

    Hammett, Greg

    , G. W. Hammett Princeton Plasma Physics Laboratory, Princeton, NJ 2011 U.S. Transport Task Force]. In addition, the outward heat flux is less than the convective heat flux, due to preferential transport of low-ion coupling suppress the edge Ti resulting in a steep ion temperature gradient and low Ti /Te which drive

  11. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    SciTech Connect (OSTI)

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K. [Sandia National Labs., Albuquerque, NM (United States); Heames, T.J. [ITSC, Albuquerque, NM (United States)

    1998-04-01T23:59:59.000Z

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in the quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.

  12. Nuclear Level Densities for Modeling Nuclear Reactions: An Efficient Approach Using Statistical Spectroscopy

    SciTech Connect (OSTI)

    Calvin W. Johnson

    2005-08-10T23:59:59.000Z

    The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A {approx} 50-100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. Second year goals and milestones: Develop two or three competing interactions (based upon surface-delta, Gogny, and NN-scattering) suitable for application to nuclei up to A = 100. Begin calculations for nuclides with A = 50-70.

  13. Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse

    E-Print Network [OSTI]

    Charles N. Vittitoe; Mario Rabinowitz

    2003-06-03T23:59:59.000Z

    A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  14. Radiative reactions and coherence modeling in the high-altitude electromagnetic pulse

    SciTech Connect (OSTI)

    Vittitoe, C.N.; Rabinowitz, M.

    1988-03-15T23:59:59.000Z

    A high-altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10/sup 4/ V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self-field effect. The Compton electron interaction with the self-generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self-generated electric field accounts for the energy-flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  15. A Nonlinear Model of a Quantum Minisuperspace System with Back Reaction

    E-Print Network [OSTI]

    Marcos Rosenbaum; Michael P. Ryan; Sukanya Sinha

    1992-12-16T23:59:59.000Z

    We consider the quantum evolution of the space-independent mode of a $\\lambda {\\phi}^4$ theory as a minisuperspace in the space of all $\\phi$. The motion of the wave packet in the minisuperspace is then compared to the motion of a wave packet in a larger minisuperspace consisting of the original minisuperspace plus one space-dependent mode. By comparing the motion of the two packets we develop criteria that tell us when the quantum evolution in the space-independent minisuperspace gives us useful information about the true evolution in the larger minisuperspace. These criteria serve as a toy model for similar(but much more complex) criteria that will tell us whether or when quantized gravitational minisuperspaces can possibly give any useful information about quantum gravity.

  16. Phase transitions in a reaction-diffusion model on a line with boundaries

    SciTech Connect (OSTI)

    Khorrami, Mohammad, E-mail: mamwad@mailaps.org; Aghamohammadi, Amir, E-mail: mohamadi@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran 19938-93973 (Iran, Islamic Republic of)] [Department of Physics, Alzahra University, Tehran 19938-93973 (Iran, Islamic Republic of)

    2014-03-15T23:59:59.000Z

    A one-dimensional model on a line of length L is investigated, which involves particle diffusion as well as single particle annihilation. There are also creation and annihilation at the boundaries. The static and dynamical behaviors of the system are studied. It is seen that the system could exhibit a dynamical phase transition. For small drift velocities, the relaxation time does not depend on the absorption rates at the boundaries. This is the fast phase. For large velocities, the smaller of the absorption rates at boundaries enter the relaxation rate and makes it longer. This is the slow phase. Finally, the effect of a random particle creation in the bulk is also investigated.

  17. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    John McCord

    2007-09-01T23:59:59.000Z

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  18. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    SciTech Connect (OSTI)

    Peyton, Brent M. [Montana State University; Timothy, Ginn R. [University of California Davis; Sani, Rajesh K. [South Dakota School of Mines and Technology

    2013-08-14T23:59:59.000Z

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO2. We have shown that SRB reduce U(VI) to nanometer-sized UO2 particles (1-5 nm) which are both intra- and extracellular, with UO2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phase when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 ?M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO2 reoxidation with an initial rate of 9.5?M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO2 reoxidation with ferrihydrite. The highest rate of UO2 reoxidation occurred when the chelator promoted UO2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO2 dissolution did not occur, UO2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and citrate. To complement to these laboratory studies, we collected U-bearing samples from a surface seep at the Rifle field site and have measured elevated U concentrations in oxic iron-rich sediments. To translate experimental results into numerical analysis of U fate and transport, a reaction network was developed based on Sani et al. (2004) to simulate U(VI) bioreduction with concomitant UO2 reoxidation in the presence of hematite or ferrihydrite. The reduction phase considers SRB reduction (using lactate) with the reductive dissolution of Fe(III) solids, which is set to be microbially mediated as well as abiotically driven by sulfide. Model results show the oxidation of HS– by Fe(III) directly competes with UO2 reoxidation as Fe(III) oxidizes HS– preferentially over UO2. The majority of Fe reduction is predicted to be abiotic, with ferrihydrite becoming fully consumed by reaction with sulfide. Predicted total dissolved carbonate concentrations from the degradation of lactate are elevated (log(pCO2) ~ –1) and, in the hematite system, yield close to two orders-of-magnitude higher U(VI) concentrations than under initial carbonate concentrations of 3 mM. Modeling of U(VI) bioreduction with concomitant reoxidation of UO2 in the presence of ferrihydrite was also extended to a two-dimensional field-scale groundwater flow and biogeochemically reactive transport model for the South Oyster site in eastern Virginia. This model was developed to simulate the field-scale immobilization and subsequent reoxidation of U by a biologically mediated reaction network.

  19. A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area

    SciTech Connect (OSTI)

    Ahmed Hassan

    2003-01-01T23:59:59.000Z

    Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and applied to determine the validity of site-specific groundwater models. This is true for both deterministic and stochastic models, with the latter posing a more difficult and challenging problem when it comes to validation. This report then proposes a general validation approach for the CNTA model, which addresses some of the important issues recognized in previous validation studies, conferences, and symposia as crucial to the process. The proposed approach links model building, model calibration, model predictions, data collection, model evaluations, and model validation in an iterative loop. The approach focuses on use of collected validation data to reduce model uncertainty and narrow the range of possible outcomes of stochastic numerical models. It accounts for the stochastic nature of the numerical CNTA model, which used Monte Carlo simulation approach. The proposed methodology relies on the premise that absolute validity is not even a theoretical possibility and is not a regulatory requirement. Rather, it highlights the importance of testing as many aspects of the model as possible and using as many diverse statistical tools as possible for rigorous checking and confidence building in the model and its predictions. It is this confidence that will eventually allow for regulator and public acceptance of decisions based on the model predictions.

  20. FIELD MEASUREMENT OF HIGH TEMPERATURE BULK REACTION RATES I: THEORY AND TECHNIQUE

    E-Print Network [OSTI]

    Baxter, Ethan F.

    and mineral chemistry. The local equilibrium assumption, used in geochronology, geothermobarometry describe in detail the theory and methodology of a technique for extracting bulk reaction rates directly for the exchange process. Forward modeling of the reactive transport process using numerical methods

  1. Use of principal components analysis and three-dimensional atmospheric-transport models for reactor-consequence evaluation

    SciTech Connect (OSTI)

    Gudiksen, P.H.; Walton, J.J.; Alpert, D.J.; Johnson, J.D.

    1982-01-01T23:59:59.000Z

    This work explores the use of principal components analysis coupled to three-dimensional atmospheric transport and dispersion models for evaluating the environmental consequences of reactor accidents. This permits the inclusion of meteorological data from multiple sites and the effects of topography in the consequence evaluation; features not normally included in such analyses. The technique identifies prevailing regional wind patterns and their frequencies for use in the transport and dispersion calculations. Analysis of a hypothetical accident scenario involving a release of radioactivity from a reactor situated in a river valley indicated the technique is quite useful whenever recurring wind patterns exist, as is often the case in complex terrain situations. Considerable differences were revealed in a comparison with results obtained from a more conventional Gaussian plume model using only the reactor site meteorology and no topographic effects.

  2. The Evaluation of Transportation and Land Use Plans Using Linked Economic and GIS Models

    E-Print Network [OSTI]

    Johnston, Robert A.

    1995-01-01T23:59:59.000Z

    Attempts to base the economic evaluation travel no state isurban economyand and economic evaluations. for devlsing andEvaluation of Transportation and Land Use Plans Using Linked Economic and

  3. Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy

    E-Print Network [OSTI]

    Paltsev, Sergey.

    Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

  4. Computations and modeling of oil transport between piston lands and liner in internal combustion engines

    E-Print Network [OSTI]

    Fang, Tianshi

    2014-01-01T23:59:59.000Z

    The consumption of lubricating oil in internal combustion engines is a continuous interest for engine developers and remains to be one of the least understood areas. A better understanding on oil transport is critical to ...

  5. Transportation Secure Data Center: Real-World Data for Planning, Modeling and Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database gives, metropolitan planning organizations, universities, national laboratories, air quality management districts, disaster planning agencies and auto manufacturers free-of-charge web-based access to valuable transportation data. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  6. Pore-scale modeling of electrical and fluid transport in Berea sandstone

    E-Print Network [OSTI]

    Zhan, Xin

    The purpose of this paper is to test how well numerical calculations can predict transport properties of porous permeable rock, given its 3D digital microtomography (?CT) image. For this study, a Berea 500 sandstone sample ...

  7. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    E-Print Network [OSTI]

    Danko, G.

    2010-01-01T23:59:59.000Z

    stages after waste emplacement, the coupled, in-drift heat,waste emplacement, forced ventilation removes the majority of the heatheat and moisture transport processes. domain includes the waste

  8. Transportation Secure Data Center: Real-World Data for Planning, Modeling, and Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    This fact sheet describes the Transportation Secure Data Center (TSDC) - an NREL-operated resource that provides secure access to detailed GPS travel data for valuable research purposes in a way that protects original participant privacy.

  9. PARALLEL PROCESSING OF THREE-DIMENSIONAL FIELD-SCALE REACTIVE TRANSPORT APPLICATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    BRGM (French Geological Survey), Water Department, Groundwater and Geochemistry Modeling 3, Avenue C for the mixed hybrid finite element kernel. Com- putations of the reaction step are performed using a newly- tions. 1. INTRODUCTION The shape and scope of multi-component reactive transport models changed dramati

  10. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Gregg Ruskuaff

    2010-01-01T23:59:59.000Z

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  11. CLEAR (Calculates Logical Evacuation And Response): A Generic Transportation Network Model for the Calculation of Evacuation Time Estimates

    SciTech Connect (OSTI)

    Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.

    1982-03-01T23:59:59.000Z

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.

  12. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. II. Inclusion of Radiative Transfer with RADYN

    E-Print Network [OSTI]

    da Costa, Fatima Rubio; Petrosian, Vahe'; Carlsson, Mats

    2015-01-01T23:59:59.000Z

    Solar flares involve complex processes that are coupled together and span a wide range of temporal, spatial, and energy scales. Modeling such processes self-consistently has been a challenge in the past. Here we present such a model to simulate the coupling of high-energy particle kinetics with hydrodynamics of the atmospheric plasma. We combine the Stanford unified Fokker-Planck code that models particle acceleration, transport, and bremsstrahlung radiation with the RADYN hydrodynamic code that models the atmospheric response to collisional heating by non-thermal electrons through detailed radiative transfer calculations. We perform simulations using different injection electron spectra, including an {\\it ad hoc} power law and more realistic spectra predicted by the stochastic acceleration model due to turbulence or plasma waves. Surprisingly, stochastically accelerated electrons, even with energy flux $\\ll 10^{10}$ erg s$^{-1}$ cm$^{-2}$, cause "explosive" chromospheric evaporation and drive stronger up- an...

  13. Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Annual report, 1996--1997

    SciTech Connect (OSTI)

    Hoak, T.; Jenkins, R. [Science Applications International Corp., McLean, VA (United States); Ortoleva, P.; Ozkan, G.; Shebl, M.; Sibo, W.; Tuncay, K. [Laboratory for Computational Geodynamics (United States); Sundberg, K. [Phillips Petroleum Company (United States)

    1998-07-01T23:59:59.000Z

    The methodology and results of this project are being tested using the Andector-Goldsmith Field in the Permian Basin, West Texas. The study area includes the Central Basin Platform and the Midland Basin. The Andector-Goldsmith Field lies at the juncture of these two zones in the greater West Texas Permian Basin. Although the modeling is being conducted in this area, the results have widespread applicability to other fractured carbonate and other reservoirs throughout the world.

  14. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    None

    1997-10-01T23:59:59.000Z

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the underground testing areas on a regional scale. The groundwater flow model was used in conjunction with a particle-tracking code to define the pathlines followed by groundwater particles originating from 415 points associated with 253 nuclear test locations. Three of the most rapid pathlines were selected for transport simulations. These pathlines are associated with three nuclear test locations, each representing one of the three largest testing areas. These testing locations are: BOURBON on Yucca Flat, HOUSTON on Central Pahute Mesa, and TYBO on Western Pahute Mesa. One-dimensional stochastic tritium transport simulations were performed for the three pathlines using the Monte Carlo method with Latin hypercube sampling. For the BOURBON and TYBO pathlines, sources of tritium from other tests located along the same pathline were included in the simulations. Sensitivity analyses were also performed on the transport model to evaluate the uncertainties associated with the geologic model, the rates of groundwater flow, the tritium source, and the transport parameters. Tritium concentration predictions were found to be mostly sensitive to the regional geology in controlling the horizontal and vertical position of transport pathways. The simulated concentrations are also sensitive to matrix diffusion, an important mechanism governing the migration of tritium in fractured carbonate and volcanic rocks. Source term concentration uncertainty is most important near the test locations and decreases in importance as the travel distance increases. The uncertainty on groundwater flow rates is as important as that on matrix diffusion at downgradient locations. The risk assessment was performed to provide conservative and bounding estimates of the potential risks to human health and the environment from tritium in groundwater. Risk models were designed by coupling scenario-specific tritium intake with tritium dose models and cancer and genetic risk estimates using the Monte Carlo method. Estimated radiation doses received by individuals from chronic exposure to tritium, and the corre

  15. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Lindquist, W Brent

    2009-03-03T23:59:59.000Z

    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  16. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan.

    SciTech Connect (OSTI)

    Lee, C.; Schwab, D. J.; Beletsky, D.; Stroud, J.; Lesht, B.; PNNL; NOAA; Univ. of Michigan; Univ. of Pennsylvania

    2007-02-17T23:59:59.000Z

    A two-dimensional sediment transport model capable of simulating sediment resuspension of mixed (cohesive plus noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics of the model are the capability to incorporate several floc size classes, a physically based settling velocity formula, bed armoring, and sediment availability limitation. Important resuspension parameters were estimated from field and laboratory measurement data. The model reproduced the resuspension plume (observed by the SeaWIFS satellite and field instruments) and recently measured sedimentation rate distribution (using radiotracer techniques) fairly well. Model results were verified with field measurements of suspended sediment concentration and settling flux (by ADCPs and sediment traps). Both wave conditions and sediment bed properties (critical shear stress, fine sediment fraction, and limited sediment availability or source) are the critical factors that determine the concentration distribution and width of the resuspension plume. The modeled sedimentation pattern shows preferential accumulation of sediment on the eastern side of the lake, which agrees with the observed sedimentation pattern despite a predominance of particle sources from the western shoreline. The main physical mechanisms determining the sedimentation pattern are (1) the two counter-rotating circulation gyres producing offshore mass transport along the southeastern coast during northerly wind and (2) the settling velocity of sediment flocs which controls the deposition location.

  17. Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan

    SciTech Connect (OSTI)

    Lee, Cheegwan; Schwab, David J.; Beletsky, Dmitry; Stroud, Jonathan; Lesht, B. M.

    2007-02-17T23:59:59.000Z

    A two-dimensional sediment transport model capable of simulating sediment resuspension of mixed (cohesive+noncohesive) sediment is developed and applied to quantitatively simulate the March 1998 resuspension events in southern Lake Michigan. Some characteristics of the model are the capability to incorporate several floc size classes, a physically-based settling velocity formula, bed armoring, and sediment availability limitation. Important resuspension parameters were estimated from field and laboratory measurement data. The model reproduced the resuspension plume (observed by the SeaWIFS satellite and field instruments) and recently measured sedimentation rate distribution (using radiotracer techniques) fairly well. Model results were verified with field measurements of suspended sediment concentration and settling flux (by ADCPs and sediment traps). Both wave conditions and sediment bed properties (critical shear stress, fine sediment fraction, and limited sediment availability or source) are the critical factors that determine the concentration distribution and width of the resuspension plume. The modeled sedimentation pattern shows preferential accumulation of sediment on the eastern side of the lake, which agrees with the observed sedimentation pattern despite a predominance of particle sources from the western shoreline. The main physical mechanisms determining the sedimentation pattern are 1) the two counter-rotating circulation gyres producing offshore mass transport along the southeastern coast during northerly wind and 2) the settling velocity of sediment flocs which controls the deposition location.

  18. Inhomogeneous transport in model hydrated polymer electrolyte supported ultra-thin films

    E-Print Network [OSTI]

    D. Damasceno Borges; A. A. Franco; K. Malek; G. Gebel; S. Mossa

    2013-10-02T23:59:59.000Z

    Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films and, in turn, on transport properties, has not been sufficiently explored yet. Here, we report about classical Molecular Dynamics simulations of hydrated Nafion thin-films in contact with unstructured supports, characterized by their global wetting properties only. We have investigated structure and transport in different regions of the film and found evidences of strongly heterogeneous behavior. We speculate about the implications of our work on experimental and technological activity.

  19. The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    SciTech Connect (OSTI)

    McSweeney; Thomas; Winnard; Ross; Steven B.; Best; Ralph E.

    2001-02-06T23:59:59.000Z

    Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft{reg_sign} Access database was created. In the Microsoft{reg_sign} Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation. Temporarily restricting the query to one origin, one shipment, or one state and validating that the query calculation is returning the expected result allows simple validation. The paper will show the flexibility of the assessment tool to consider a wide variety of impacts. Through the use of pre-designed queries, impacts by origin, mode, fuel type or many other parameters can be obtained.

  20. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01T23:59:59.000Z

    measured second-by-second fuel use. Mesoscale Modeling DataSet and Mesoscale ModelCalibration Mesoscale model calibration and validation