Sample records for rcra facility assessment

  1. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  2. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  3. RCRA Facility Investigation/Remedial Investigation Report with the Baseline Risk Assessment for the 716-A Motor Shops Seepage Basin

    SciTech Connect (OSTI)

    Palmer, E.

    1997-08-25T23:59:59.000Z

    This document describes the RCRA Facility Investigation/Remedial Investigation/Baseline Risk Assessment of the 716-A Motor Shops Seepage Basin.

  4. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-01T23:59:59.000Z

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  5. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  6. Phase report 1C, TA-21 operable unit RCRA Facility Investigation, Outfalls Investigation

    SciTech Connect (OSTI)

    Not Available

    1994-02-28T23:59:59.000Z

    This phase report summarizes the results of field investigations conducted in 1992 at Technical Area 21 of Los Alamos National Laboratory, as prescribed by the RCRA Facility Investigation work plan for the Technical Area 21 operable unit (also known as OU 1106). This phase report is the last part of a three-part phase report describing the results of field work conducted in 1992 at this operable unit. Phase Report lA, issued on l4 June l993, summarized site geologic characterization activities. Phase report 1B, issued on 28 January 1994, included an assessment of site-wide surface soil background, airborne emissions deposition, and contamination in the locations of two former air filtration buildings. The investigations assessed in Phase Report 1C include field radiation surveys and surface and near-surface sampling to characterize potential contamination at 25 outfalls and septic systems listed as SWMUs in the RFI work plan. Based on the RFI data, it is recommended that no further action is warranted for 8 SWMUs and further action is recommended for 3 SWMUs addressed in this phase report. For 14 SWMUs which represent no immediate threat to human health or environment, deferral of further action/no further action decisions is recommended until outstanding analytical data are received, sampling of adjacent SWMUs is completed, or decisions are made about the baseline risk assessment approach.

  7. RCRA, superfund and EPCRA hotline training module. Introduction to: RCRA treatment, storage, and disposal facilities (40 cfr parts 264/265, subparts a-e) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The management of hazardous waste at treatment, storage, and disposal facilities (TSDFs) plays a large and critical role in the Resource Conservation and Recovery Act (RCRA) regulatory scheme. The training module presents an overview of the general TSDF standards found in 40 CFR Parts 264/265, Subparts A through E.

  8. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  9. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01T23:59:59.000Z

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

  10. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    SciTech Connect (OSTI)

    Not Available

    1989-06-01T23:59:59.000Z

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations.

  11. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  12. Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Idaho Cleanup Project

    2006-06-01T23:59:59.000Z

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

  13. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-02-01T23:59:59.000Z

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  14. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    SciTech Connect (OSTI)

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-01-01T23:59:59.000Z

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents.

  15. Fall Semiannual Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    D. F. Gianotto

    2007-01-12T23:59:59.000Z

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment.

  16. RCRA, superfund and EPCRA hotline training module. Introduction to: Municipal solid waste disposal facility criteria updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs) and provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It gives the part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It compares the MSWLF environmental performance standards described in part 258 to the corresponding requirements for hazardous waste TSDFs in part 264, which are generally more stringent.

  17. NEPA/CERCLA/RCRA integration: Policy vs. practice

    SciTech Connect (OSTI)

    Hansen, R.P. (Hansen Environmental Consultants, Englewood, CO (United States)); Wolff, T.A. (Sandia National Lab., Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    Overwhelmed with environmental protection documentation requirements, a number of Federal agencies are grappling with the complexities of attempting to integrate'' the documentation requirements of the National Environmental Policy Act (NEPA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and the Resource Conservation and Recovery Act (RCRA). While there is some overlap between the general environmental policy objectives of NEPA, and the much more specific waste cleanup objectives of CERCLA and RCRA, there are also major differences and outright conflicts. This paper identifies both problems and opportunities associated with implementing emerging and evolving Federal agency policy regarding integration of the procedural and documentation requirements of NEPA, CERCLA, and RCRA. The emphasis is on NEPA/CERCLA/RCRA integration policy and practice at US Department of Energy (DOE) facilities. The paper provides a comparative analysis of NEPA, CERCLA, and RCRA processes and discusses special integration issues including scoping, development and analysis of alternatives, risk assessment, tiering, scheduling, and the controversy surrounding applicability of NEPA to CERCLA or RCRA cleanup activities. Several NEPA/CERCLA/RCRA integration strategy options are evaluated and an annotated outline of an integrated NEPA/CERCLA document is included.

  18. Results of RCRA groundwater quality assessment program at the 216-U-12 crib

    SciTech Connect (OSTI)

    Williams, B.A.; Chou, C.J.

    1997-05-01T23:59:59.000Z

    The 216-U-12 crib has been in a Resource Conservation and Recovery Act of 1976 (RCRA) interim-status groundwater quality assessment program since the first quarter of 1993. Specific conductance measured in downgradient wells 299-W22-41 and 299-W22-42 exceeds its critical mean. This report presents the results and findings of Phases I and II of the assessment monitoring program, as required by 40 CFR 265.93. The elevated levels of specific conductance in the downgradient {open_quotes}triggering{close_quotes} wells are attributed to nitrate, the mobile anion released when nitric acid is diluted in water, and calcium which is released from the sediments as acid is neutralized. Technetium-99 levels have been elevated in these same downgradient wells since 1991. The source of these constituents is the 216-U-12 crib. Downward migration of nitrate and technetium-99 from the vadose zone (and continued elevated specific conductance in the two downgradient wells) is still occurring because the driving force is still present.

  19. EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with...

  20. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    SciTech Connect (OSTI)

    Palmer, E.

    1998-10-02T23:59:59.000Z

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  1. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23T23:59:59.000Z

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  2. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    ROGERS, P.M.

    2000-06-01T23:59:59.000Z

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  3. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  4. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  5. Exiting RCRA Subtitle C regulation data for supporting a new regulatory path for immobilized mixed debris

    SciTech Connect (OSTI)

    Porter, C.L. [Jetseal, Inc., Idaho Falls, ID (United States); Carson, S.D.; Cheng, Wu-Ching [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    This paper presents analytical and empirical data that provide technical support for the position that mixed debris (debris contaminated with both radioactive and hazardous constituents) treated by immobilization in accordance with 40 CFR 268.45 can exit RCRA Subtitle C requirements at the time the treatment is complete. Pathways analyses and risk assessments of low-level waste and RCRA mixed waste disposal facilities show that these two types of facilities provide equivalent long-term (> 100 years) performance and protection of human health and the environment. A proposed two-tier approach for waste form performance criteria is discussed.

  6. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann

    2010-11-01T23:59:59.000Z

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

  7. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect (OSTI)

    Arnold, Patrick [NSTec] [NSTec

    2014-02-14T23:59:59.000Z

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  8. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Municipal solid waste disposal facility criteria, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs). It provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It also provides the Part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of Part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It compares the MSWLF environmental performance standards described in Part 258 to the corresponding requirements for hazardous waste TSDFs in Part 264, which are generally more stringent.

  9. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03T23:59:59.000Z

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  10. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  11. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    SciTech Connect (OSTI)

    MCCARTHY, M.M.

    1999-08-01T23:59:59.000Z

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  12. Verification and Validation of Facilities Procedures Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Verification and Validation of Facilities Procedures Assessment Plan NNSANevada Site Office Independent Oversight Division Performance Objective: The purpose of this assessment is...

  13. RCRA corrective action program guide (Interim)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for compliance with an increasingly complex spectrum of environmental regulations. One of the most complex programs is the corrective action program proposed by the US Environmental Protection Agency (EPA) under the authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments (HSWA). The proposed regulations were published on July 27, 1990. The proposed Subpart S rule creates a comprehensive program for investigating and remediating releases of hazardous wastes and hazardous waste constituents from solid waste management units (SWMUs) at facilities permitted to treat, store, or dispose of hazardous wastes. This proposed rule directly impacts many DOE facilities which conduct such activities. This guidance document explains the entire RCRA Corrective Action process as outlined by the proposed Subpart S rule, and provides guidance intended to assist those persons responsible for implementing RCRA Corrective Action at DOE facilities.

  14. Assessing the Security Vulnerabilities of Correctional Facilities

    SciTech Connect (OSTI)

    Morrison, G.S.; Spencer, D.S.

    1998-10-27T23:59:59.000Z

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  15. RCRA Assessment Plan for Single-Shell Tank Waste Management Area B-BX-BY at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.

    2006-09-29T23:59:59.000Z

    This document was prepared as a groundwater quality assessment plan revision for the single-shell tank systems in Waste Management Area B-BX-BY at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with 40 CFR Part 265, Subpart F. In FY 1996, the groundwater monitoring program was changed from detection-level indicator evaluation to a groundwater quality assessment program when elevated specific conductance in downgradient monitoring well 299 E33-32 was confirmed by verification sampling. During the course of the ensuing investigation, elevated technetium-99 and nitrate were observed above the drinking water standard at well 299-E33-41, a well located between 241-B and 241-BX Tank Farms. Earlier observations of the groundwater contamination and tank farm leak occurrences combined with a qualitative analysis of possible solutions, led to the conclusion that waste from the waste management area had entered the groundwater and were observed in this well. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  16. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  17. RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    SciTech Connect (OSTI)

    Chou, C.J.; Johnson, V.G.

    1999-10-06T23:59:59.000Z

    A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan.

  18. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1994-06-01T23:59:59.000Z

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  19. RCRA Facility Investigation/Remedial Investigation Report for the Gunsite 113 Access Road Unit (631-24G) - March 1996

    SciTech Connect (OSTI)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01T23:59:59.000Z

    Gunsite 113 Access Road Unit is located in the northeast corner of SRS. In the mid 1980`s, sparse vegetation, dead trees, and small mounds of soil were discovered on a portion of the road leading to Gunsite 113. This area became the Gunsite 113 Access Road Unit (Gunsite 113). The unit appears to have been used as a spoil dirt and / or road construction debris disposal area. There is no documentation or record of any hazardous substance management, disposal, or any type of waste disposal at this unit. Based upon the available evidence, there are no potential contaminants of concern available for evaluation by a CERCLA baseline risk assessment. Therefore, there is no determinable health risk associated with Gunsite 113. In addition, it is also reasonable to conclude that, since contamination is below risk-based levels, the unit presents no significant ecological risk. It is recommended that no further remedial action be performed at this unit.

  20. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Sections 4 through 9: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`s) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  1. Exclusions and exemptions from RCRA hazardous waste regulation. RCRA Information Brief

    SciTech Connect (OSTI)

    Powers, J.

    1993-05-01T23:59:59.000Z

    The provisions in 40 CFR 261 establish which solid waste and are regulated under Subtitle C of the Resource Considered hazardous waste and are regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). These provisions also exclude or exempt certain wastes from regulation. Wastes are excluded or exempted from coverage for a variety of reasons. The original RCRA legislation excluded a number of wastes that did not present a significant threat to human health or the environment or that were managed under other environmental programs. Other wastes were excluded by EPA to encourage their recycling or reuse as feedstocks in manufacturing processes. Some exclusions or exemptions serve to establish when a waste material becomes subject to regulation or when waste quantities are too minimal to be fully covered by the Federal hazardous waste regulatory program. As new regulations have caused the universe of RCRA generators and facilities to increase, the number of exclusions and exemptions have increased as well. This information Brief provides an overview of the types of waste and hazardous waste management units/facilities that may be excluded or exempted from regulation under the Federal hazardous waste (RCRA) Subtitle C) regulatory program. These wastes and units/facilities may or may not be excluded or exempted from coverage under authorized State RCRA programs.

  2. AGING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    R.L. Thacker

    2005-03-24T23:59:59.000Z

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Aging Facility performing operations to transfer aging casks to the aging pads for thermal and logistical management, stage empty aging casks, and retrieve aging casks from the aging pads for further processing in other site facilities. Doses received by workers due to aging cask surveillance and maintenance operations are also included. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation. There are no Category 1 event sequences associated with the Aging Facility (BSC 2004 [DIRS 167268], Section 7.2.1). The results of this calculation will be used to support the design of the Aging Facility and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Environmental and Nuclear Engineering.

  3. RCRA groundwater monitoring data. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between April and June 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter, but also data from earlier sampling events that were not previously reported.

  4. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  5. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and {open_quotes}Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities{close_quotes} (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported.

  6. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-16T23:59:59.000Z

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  7. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21T23:59:59.000Z

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  8. RCRA, superfund and EPCRA hotline training module. Introduction to: RCRA enforcement and compliance updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module describes enforcement procedures and cites the statutory authority and describes the two different types of enforcement (i.e., administrative and judicial). It explains when and how EPA can enforce the RCRA regulations in authorized states. It describes the enforcement mechanisms available to EPA. It states the differences between enforcement at interim status and permitted facilities. It describes enforcement at federal facilities and identifies relevant resource documents.

  9. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  10. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    SciTech Connect (OSTI)

    Jungers, D.K.

    1993-10-01T23:59:59.000Z

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  11. Quarterly report of RCRA groundwater monitoring data for period July 1, 1991 through September 30, 1991

    SciTech Connect (OSTI)

    none,

    1991-12-01T23:59:59.000Z

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and 40 CFR 265, Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (EPA 1989). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303 (Ecology 1991). This submittal provides data obtained from groundwater monitoring activities for July 1, 1991 through September 30, 1991. This report contains groundwater monitoring data from Hanford Site groundwater projects. A RCRA network is currently being established at the 100-D Pond. Groundwater chemistry analyses have not yet been performed.

  12. Enterprise Assessments Review, Hanford K-West Annex Facility...

    Energy Savers [EERE]

    Review, Hanford K-West Annex Facility Construction Quality - January 2015 Enterprise Assessments Review, Hanford K-West Annex Facility Construction Quality - January 2015 January,...

  13. Quarterly report of RCRA groundwater monitoring data for period October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Jungers, D.K.

    1994-04-01T23:59:59.000Z

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between November 20 and February 25, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported.

  14. Environmental Assessment for Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared pursuant to the implementing regulations to the National Environmental Policy Act (NEPA), which require federal agencies to assess the environmental impacts of a proposed action to determine whether that action requires the preparation of an Environmental Impact Statement (EIS) or if a Finding of No Significant Impact (FONSI) can be issued. The Pantex Plant does not possess permanent containerized waste staging facilities with integral secondary containment or freeze protection. Additional deficiencies associated with some existing staging facilities include: no protection from precipitation running across the staging pads; lack of protection against weathering; and facility foundations not capable of containing leaks, spills or accumulated precipitation. These shortcomings have raised concerns with respect to requirements under Section 3001 of the Resource Conservation and Recovery Act (RCRA). Deficiencies for these waste staging areas were also cited by a government audit team (Tiger Team) as Action Items. The provision for the staging of hazardous, mixed, and low level waste is part of the no-action altemative in the Programmatic Environmental Impact Statement for the integrated ER/WM program. Construction of this proposed project will not prejudice whether or not this integration will occur, or how.

  15. Impacts of proposed RCRA regulations and other related federal environmental regulations on fossil fuel-fired facilities: Final report, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    Estimation of the costs associated with implementation of the Resource Conservation and Recovery Act (RCRA) regulations for non-hazardous and hazardous material disposal in the utility industry are provided. These costs are based on engineering studies at a number of coal-fired power plants in which the costs for hazardous and non-hazardous disposal are compared to the costs developed for the current practice design for each utility. The relationship of the three costs is displayed. The emphasis of this study is on the determination of incremental costs rather than the absolute costs for each case (current practice, non-hazardous, or hazardous). For the purpose of this project, the hazardous design cost was determined for minimum versus maximum compliance.

  16. Impacts of proposed RCRA regulations and other related federal environmental regulations on fossil fuel-fired facilities: Final report, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    Estimation of the costs associated with implementation of the Resource Conservation and Recovery Act (RCRA) regulations for non-hazardous and hazardous material disposal in the utility industry are provided. These costs are based on engineering studies at a number of coal-fired power plants in which the costs for hazardous and non-hazardous disposal are compared to the costs developed for the current practice design for each utility. The relationship of the three costs is displayed. The emphasis of this study is on the determination of incremental costs rather than the absolute costs for each case (current practice, non-hazardous, or hazardous). For the purpose of this project, the hazardous design cost was determined for both minimum and maximum compliance.

  17. RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.; Chou, Charissa J.

    2006-03-03T23:59:59.000Z

    This document describes a groundwater assessment plan for the single-shell tank systems in Waste Management Area A-AX at the Hanford Site.

  18. Environmental assessment: South microwave communication facilities

    SciTech Connect (OSTI)

    Not Available

    1989-06-01T23:59:59.000Z

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  19. Radiological assessments for the National Ignition Facility

    SciTech Connect (OSTI)

    Hong, Kou-John; Lazaro, M.A.

    1996-08-01T23:59:59.000Z

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer.

  20. The surplus facility inventory and assessment project

    SciTech Connect (OSTI)

    Weiner, L.A.; Szilagyi, A.P. [DOE, Washington, DC (United States); Rae, L.J.

    1994-12-31T23:59:59.000Z

    As a result of the ending of the Cold War, the Department of Energy (DOE) is experiencing a downsizing of the DOE nuclear weapons complex similar to the downsizing and base closures being experienced by the armed forces. Declining budgets across all DOE programs have further contributed to the extent and rate at which DOE`s assets are being declared surplus. The Surplus Facility Inventory and Assessment (SFIA) Project will define the magnitude of risk associated with the DOE surplus, contaminated assets. The results of the SFIA Project will be fundamental to all planning, budgeting, and management associated with the surplus, contaminated inventory.

  1. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    SciTech Connect (OSTI)

    Hartman, Mary J.

    2006-11-01T23:59:59.000Z

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  2. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  3. RCRA corrective action permit requirements and modifications under proposed Subpart S rule. RCRA Information Brief

    SciTech Connect (OSTI)

    Coalgate, J.

    1993-07-01T23:59:59.000Z

    Corrective action is required under the authority of the Resource Conservation and Recovery Act (RCRA) Sections 3004(u) and(v) which were added by the Hazardous and Solid Waste Amendments of 1984 (HSWA). In response to HSWA, the US Environmental Protection Agency(EPA) proposed a comprehensive corrective action program under 40 CFR 264 Subpart S [55 FR 30798, July 27, 1990]. Although Subpart S is still only proposed, it is being implemented by the EPA Regions until the rule is finalized. Proposed Subpart S corrective action applies to releases to any media from any solid waste management unit (SWMU) at a treatment, storage, or disposal facility (TSDF). Corrective action requirements under proposed Subpart S are imposed through permit conditions or, for interim status facilities, through a RCRA Section 3008(h) order. In general, upon initial regulation of a TSDF, the owner or operator submits a Part A permit application, notifying the regulatory agency of waste management activities. The Part A consists of a form containing general information about the facility, the unit(s) affected, and the wastes managed in the units. Part B of the permit application provides detailed information on the facility, the units affected, and the waste managed. The Part B permit application may consist of several volumes of information. Proposed Subpart S requirements, would be contained in the Part B permit application. The Part B permit application proposes requirements and conditions intended to respond to the various RCRA requirements for permitted units. This submittal initiates the negotiation process for regulated SWMUS, whereby the requirements and conditions for unit operation are established. The term of the permit is typically 5 or 10 years, after which a permit renewal or issuance of a new permit is required. This Information Brief provides information on the permit requirements and process under proposed Subpart S.

  4. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: RCRA enforcement and compliance, update as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module describds enforcement procedures and cites the statutory authority. It describes the two different types of enforcement (i.e., administrative and judicial) and explains when and how EPA can enforce the RCRA regulations in authorized states. It describes the enforcement mechanisms available to EPA. It states the differences between enforcement at interim status, permitted facilities, and Federal facilities. It also identifies relevant resources documents.

  5. RCRA, superfund and EPCRA hotline training module. Introduction to: RCRA corrective action updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module discusses the regulatory and statutory requirements and authorities governing the Resource Conservation and Recovery Act (RCRA) corrective action process. There are minimal regulatory requirements at present, but the Agency has issued a proposed rule (55 FR 30798; July 27, 1990) that would establish a comprehensive regulatory framework for implementing the corrective action program. This proposed rule and other guidance developed pursuant to statutory authorities are used to structure corrective action requirements in facility permits and orders. This module describes the current statutory and regulatory structure and discusses the future of the proposed rule.

  6. RCRA Corrective Action Plan. Interim report (Final)

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    The RCRA Corrective Action Plan (CAP) will assist in the development of Corrective Action Orders (Section 3008(h)) and corrective action requirements in permit applications and permits (Section 3004(u) (v)). The purpose of the CAP is to aid Regions and States in determining and directing the specific work the owner/operator or respondent must perform, as part of a complete corrective action program. The CAP should be used as a technical framework during the development of Corrective Action Orders and corrective action permit regulations. The CAP provides a framework for the development of a site-specific schedule of compliance to be included in a permit or a compliance schedule in a Corrective Action Order. It does so by laying out scopes of work for the three essential phases of a complete corrective action program. These three phases and their objectives are as follows: (1) RCRA Facility Investigation (RFI) - to evaluate thoroughly the nature and extent of the release of hazardous waste and hazardous constituents and to gather necessary data to support the Corrective Measure Study; (2) Corrective Measures Study (CMS) - to develop and evaluate a corrective measure alternative or alternatives and to recommend the final corrective measure or measures; and (3) Corrective Measures Implementation (CMI) - to design, construct, operate, maintain and monitor the performance of the corrective measure or measures selected.

  7. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    SciTech Connect (OSTI)

    Evans, S. K.

    2007-11-07T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  8. 340 Facility emergency preparedness hazards assessment

    SciTech Connect (OSTI)

    CAMPBELL, L.R.

    1998-11-25T23:59:59.000Z

    This document establishes the technical basis in support of Emergency Planning activities for the 340 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone, is demonstrated.

  9. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    SciTech Connect (OSTI)

    Conner, K.R.

    2000-12-12T23:59:59.000Z

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  10. Combination RCRA groundwater monitoring plan for the 216-A-10, 216-A-36B, and 216-A-37-1 PUREX cribs

    SciTech Connect (OSTI)

    Lindberg, J.W.

    1997-06-01T23:59:59.000Z

    This document presents a groundwater quality assessment monitoring plan, under Resource Conservation and Recovery Act of 1976 (RCRA) regulatory requirements for three RCRA sites in the Hanford Site`s 200 East Area: 216-A-10, 216-A-36B, and 216-A-37-1 cribs (PUREX cribs). The objectives of this monitoring plan are to combine the three facilities into one groundwater quality assessment program and to assess the nature, extent, and rate of contaminant migration from these facilities. A groundwater quality assessment plan is proposed because at least one downgradient well in the existing monitoring well networks has concentrations of groundwater constituents indicating that the facilities have contributed to groundwater contamination. The proposed combined groundwater monitoring well network includes 11 existing near-field wells to monitor contamination in the aquifer in the immediate vicinity of the PUREX cribs. Because groundwater contamination from these cribs is known to have migrated as far away as the 300 Area (more than 25 km from the PUREX cribs), the plan proposes to use results of groundwater analyses from 57 additional wells monitored to meet environmental monitoring requirements of US Department of Energy Order 5400.1 to supplement the near-field data. Assessments of data collected from these wells will help with a future decision of whether additional wells are needed.

  11. NEPA/CERCLA/RCRA integration strategy for Environmental Restoration Program, Sandia National Laboratories, Albuquerque

    SciTech Connect (OSTI)

    Hansen, R.P. (International Technology Corp., Englewood, CO (United States))

    1992-10-01T23:59:59.000Z

    This report addresses an overall strategy for complying with DOE Order 5400.4 which directs that DOE offices and facilities integrate the procedural and documentation requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Environmental Policy Act (NEPA) wherever practical and appropriate. Integration of NEPA and Resource Conservation and Recovery Act (RCRA) processes is emphasized because RCRA applies to most of the potential release sites at SNL, Albuquerque. NEPA, CERCLA, and RCRA precesses are comparatively analyzed and special integration issues are discussed. Three integration strategy options are evaluated and scheduling and budgeting needs are identified. An annotated outline of an integrated project- or site-specific NEPA/RCRA RFI/CMS EIS or EA is included as an appendix.

  12. Impacts assessment for the National Ignition Facility

    SciTech Connect (OSTI)

    Bay Area Economics

    1996-12-01T23:59:59.000Z

    This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

  13. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge fileHazardous Waste

  14. RCRA, superfund and EPCRA hotline training module. Introduction to: RCRA statutory overview updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module presents a brief overview of the Resource Conservation and Recovery Act (RCRA). It explains the relationship between RCRA statutory language and codified regulatory language. It describes the major components of each subtitle of RCRA and identifies the major provisions established by the Hazardous and Solid Waste Amendments (HSWA).

  15. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

  16. DRY TRANSFER FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    J.S. Tang

    2004-09-23T23:59:59.000Z

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Dry Transfer Facility No.1 (DTF-1) performing operations to receive transportation casks, transfer wastes, prepare waste packages, and ship out loaded waste packages and empty casks. Doses received by workers due to maintenance operations are also included in this revision. The specific scope of work contained in this calculation covers both collective doses and individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation from normal operation, excluding the remediation area of the building. The results of this calculation will be used to support the design of the DTF-1 and to provide occupational dose estimates for the License Application. The calculations contained in this document were developed by Environmental and Nuclear Engineering of the Design and Engineering Organization and are intended solely for the use of the Design and Engineering Organization in its work regarding facility operation. Yucca Mountain Project personnel from the Environmental and Nuclear Engineering should be consulted before use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in the Environmental and Nuclear Engineering.

  17. FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Crapse, K; Benjamin Culbertson, B

    2007-03-15T23:59:59.000Z

    The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

  18. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  19. An evaluation of the RCRA Subtitle C financial test mechanism

    SciTech Connect (OSTI)

    Finney, J.R. [Environmental Protection Agency, Atlanta, GA (United States). Region 4; Clark, E.M.; Platt, D.; Johnson, M.F. [PRC Environmental Management, Inc., McLean, VA (United States)

    1994-12-31T23:59:59.000Z

    This paper evaluates the financial test mechanism for providing financial assurance for hazardous waste treatment, storage, and disposal facilities (TSDF), as required under the Resource Conservation and Recovery Act (RCRA). RCRA Subtitle C regulations require that owners and operators of TSDFs demonstrate financial assurance for closure and post-closure care and third-party liability coverage. Such requirements help to ensure that funds are available to pay to properly close TSDFS, to render post-closure care at TSDFS, and to compensate third parties for bodily injuries and property damage caused by sudden or nonsudden releases of pollution related to the TSDFs operations. The paper provides a detailed analysis of the criteria established under RCRA to use the financial test mechanism to demonstrate financial assurance. From a regulator`s point of view, the analysis explores the potential limitations of using the financial test mechanism. The paper also provides recommendations that EPA and state agencies might consider implementing to improve the current regulations.

  20. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01T23:59:59.000Z

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  1. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Air emissions standards, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module provides a regulatory overview of the RCRA air emission standards as they apply to hazardous waste facilities. It outlines the history of RCRA air emission standards as well as the air emission controls required by the standards. It explains the differences between the parts 264/265, Subpart AA BB, CC, air emission standards and summarizes the requirements of each of these Subparts. It identifies the types of units subject to these requirements as well as specific exemptions.

  2. RCRA, superfund and EPCRA hotline training module. Introduction to: Permits and interim status (40 cfr part 270) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    Owners/operators of facilities that treat, store, or dispose of hazardous waste must obtain an operating permit, as required by Subtitle C of the Resource Conservation and Recovery Act (RCRA). The module presents an overview of the RCRA permitting process and the requirements that apply to TSDFs operating under interim status until a permit is issued. The regulations governing the permit process are found in 40 CFR Parts 124 through 270.

  3. Screening Level Risk Assessment for the New Waste Calcining Facility

    SciTech Connect (OSTI)

    M. L. Abbott; K. N. Keck; R. E. Schindler; R. L. VanHorn; N. L. Hampton; M. B. Heiser

    1999-05-01T23:59:59.000Z

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidify (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.

  4. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    SciTech Connect (OSTI)

    MARTINEZ, C.R.

    2003-12-16T23:59:59.000Z

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1.

  5. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-12-08T23:59:59.000Z

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the release of tritium from the southwest plume area to Fourmile Branch between 25 to 35 percent. If this proposed action is undertaken and its effectiveness is demonstrated, it may become a component of the final action in the CAP. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR 1500-1508); and the DOE Regulations for Implementing NEPA (10 CFR 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact (FONSI) or prepare an environmental impact statement (EM).

  6. Performance assessment for the class L-II disposal facility

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

  7. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann M.

    2009-05-31T23:59:59.000Z

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  8. Plantwide Energy Assessment of a Sugarcane Farming and Processing Facility

    SciTech Connect (OSTI)

    Jakeway, L.A.; Turn, S.Q.; Keffer, V.I.; Kinoshita, C.M.

    2006-02-27T23:59:59.000Z

    A plantwide energy assessment was performed at Hawaiian Commercial & Sugar Co., an integrated sugarcane farming and processing facility on the island of Maui in the State of Hawaii. There were four main tasks performed for the plantwide energy assessment: 1) pump energy assessment in both field and factory operations, 2) steam generation assessment in the power production operations, 3) steam distribution assessment in the sugar manufacturing operation, and 4) electric power distribution assessment of the company system grid. The energy savings identified in each of these tasks were summarized in terms of fuel savings, electricity savings, or opportunity revenue that potentially exists mostly from increased electric power sales to the local electric utility. The results of this investigation revealed eight energy saving projects that can be implemented at HC&S. These eight projects were determined to have potential for $1.5 million in annual fuel savings or 22,337 MWh equivalent annual electricity savings. Most of the savings were derived from pump efficiency improvements and steam efficiency improvements both in generation and distribution. If all the energy saving projects were implemented and the energy savings were realized as less fuel consumed, there would be corresponding reductions in regulated air pollutants and carbon dioxide emissions from supplemental coal fuel. As HC&S is already a significant user of renewable biomass fuel for its operations, the projected reductions in air pollutants and emissions will not be as great compared to using only coal fuel for example. A classification of implementation priority into operations was performed for the identified energy saving projects based on payback period and ease of implementation.

  9. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: RCRA statutory overview, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module presents a brief overview of the Resource Conservation and Recovery Act (RCRA). It explains the relationship between RCRA statutory language and codified regulatory language. It describes the major components of each subtitle of RCRA and identifies the major provisions established by the Hazardous and Solid Waste Amendments (HSWA).

  10. RCRA, superfund and EPCRA hotline training module. Introduction to: Air emission standards (40 cfr parts 264/265, subparts aa, bb, and cc) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module provides a regulatory overview of the RCRA air emission standards as they apply to hazardous waste facilities. It outlines the history of RCRA air emission standards as well as the air emission controls required by the standards. It explains the difference in the parts 264/265 and subparts AA, BB and CC, air emission standards. It summarizes the requirements of each of these subparts and identifies the types of units subject to these requirements as well as specific exemptions.

  11. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-12-01T23:59:59.000Z

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation.

  12. RCRA corrective action: Action levels and media cleanup standards

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This Information Brief describes how action levels (ALs), which are used to determine if it is necessary to perform a Corrective Measures Study (CMS), and media cleanup standards (MCSs), which are used to set the standards for remediation performed in conjunction with Corrective Measures Implementation (CMI) are set. It is one of a series of Information Briefs on RCRA Corrective Action. ALs are health-and-environmentally-based levels of hazardous constituents in ground water, surface water, soil, or air, determined to be indicators for protection of human health and the environment. In the corrective action process, the regulator uses ALs to determine if the owner/operator of a treatment, storage, or disposal facility is required to perform a CMS.

  13. Seismic Risk Assessment of Port Facilities Ung Jin Na, Samit Ray Chaudhuri

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Seismic Risk Assessment of Port Facilities Ung Jin Na, Samit Ray Chaudhuri Faculty Advisor : Prof Estimation Methodology Applications (in progress) Port of Long Beach · Seismic Risk Assessment, Decision & Vertical movement, Settlement of Apron Seismic Vulnerability - quay Wall

  14. Quarterly report of RCRA groundwater monitoring data for period October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 CFR 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. Long-term laboratory contracts were approved on October 22, 1991. DataChem Laboratories of Salt Lake City, Utah, performs the hazardous chemicals analyses for the Hanford Site. Analyses for coliform bacteria are performed by Columbia/Biomedical Laboratories and for dioxin by TMS Analytical Services, Inc. International Technology Analytical Services Richland, Washington performs the radiochemical analyses. This quarterly report contains data that were received prior to March 8, 1993. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported.

  15. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D. (Field Test Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1993-01-15T23:59:59.000Z

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000--100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad.

  16. Borehole Data Package for RCRA Well 299-W22-47 at Single-Shell Tank Waste Management Area S-SX, Hanford Site, Washington

    SciTech Connect (OSTI)

    Horton, Duane G.; Chamness, Mickie A.

    2006-04-17T23:59:59.000Z

    One new Resource Conservation and Recovery Act (RCRA) groundwater assessment well was installed at single-shell tank Waste Management Area (WMA) S-SX in fiscal year (FY) 2005 to fulfill commitments for well installations proposed in Hanford Federal Facility Agreement and Consent Order, Milestone M-24-57 (2004). The need for the new well, well 299-W22-47, was identified during a data quality objectives process for establishing a RCRA/ Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)/Atomic Energy Act (AEA) integrated 200 West and 200 East Area Groundwater Monitoring Network. This document provides a compilation of all available geologic data, spectral gamma ray logs, hydrogeologic data and well information obtained during drilling, well construction, well development, pump installation, aquifer testing, and sample collection/analysis activities. Appendix A contains the Well Summary Sheets, the Well Construction Summary Report, the geologist's Borehole Log, well development and pump installation records, and well survey results. Appendix B contains analytical results from groundwater samples collected during drilling. Appendix C contains complete spectral gamma ray logs and borehole deviation surveys.

  17. RCRA, superfund and EPCRA hotline training module. Introduction to: Groundwater monitoring (40 cfr parts 264/265, subpart f) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities (TSDFs) under the Resource Conservation and Recovery Act (RCRA). The goal of the module is to explain the standards and specific requirements for groundwater monitoring programs at interim status and permitted facilities.

  18. Mission and Readiness Assessment for Fusion Nuclear Facilities

    SciTech Connect (OSTI)

    G.H. Neilson, et. al.

    2012-12-12T23:59:59.000Z

    Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential.

  19. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Treatment, storage, and disposal facilities (40 CFR parts 264/265, subparts A-E) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module presents an overview of the general treatment, storage, and disposal facility (TSDF) standards found in 40 CFR parts 264/265, subparts A through E. It identifies and explains each exclusion from parts 264/265, and provides definitions of excluded units, such as wastewater treatment unit and elementary neutralization unit. It locates and describes the requirements for waste analysis and personnel training. It also describes the purpose of a contingency plan and lists the emergency notification procedures. It describes manifest procedures and responsibilities, and lists the unmanifested waste reporting requirements.

  20. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROCESS DESCRIPTION: Temporary storage for non-RCRA regulated laboratory wastes. Storage containers are placed in plastic containment pans. These wastes were generated from...

  1. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 1. Executive summary

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Contents: Introduction and Summary of Results; Facility Background; Facility Emissions; Atmospheric Dispersion and Deposition Modeling of Emissions; Human Health Risk Assessment; Screening Ecological Risk Assessment; Accident Analysis; Additional Analysis in Response to Peer Review Recommendations; References.

  2. The LLNL Heavy Element Facility -- Facility Management, Authorization Basis, and Readiness Assessment Lessons Learned in the Heavy Element Facility (B251) Transition from Category II Nuclear Facility to Radiological Facility

    SciTech Connect (OSTI)

    Mitchell, M; Anderson, B; Brown, E; Gray, L

    2006-04-10T23:59:59.000Z

    This paper presents Facility Management, Readiness Assessment, and Authorization Basis experience gained and lessons learned during the Heavy Element Facility Risk Reduction Program (RRP). The RRP was tasked with removing contaminated glove boxes, radioactive inventory, and contaminated ventilation systems from the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL). The RRP was successful in its goal in April 2005 with the successful downgrade of B251 from a Category II Nuclear Facility to a Radiological Facility. The expertise gained and the lessons learned during the planning and conduct of the RRP included development of unique approaches in work planning/work control (''Expect the unexpected and confirm the expected'') and facility management. These approaches minimized worker dose and resulted in significant safety improvements and operational efficiencies. These lessons learned can help similar operational and management activities at other sites, including facilities restarting operations or new facility startup. B251 was constructed at LLNL to provide research areas for conducting experiments in radiochemistry using transuranic elements. Activities at B251 once included the preparation of tracer sets associated with the underground testing of nuclear devices and basic research devoted to a better understanding of the chemical and nuclear behavior of the transuranic elements. Due to the age of the facility, even with preventative maintenance, facility safety and experimental systems were deteriorating. A variety of seismic standards were used in the facility design and construction, which encompassed eight building increments constructed over a period of 26 years. The cost to bring the facility into compliance with the current seismic and other requirements was prohibitive, and simply maintaining B251 as a Category II nuclear facility posed serious cost considerations under a changing regulatory environment. Considering the high cost of maintenance and seismic upgrades, the RRP was created to mitigate the risk of dispersal of radioactive material during an earthquake by removing the radioactive materials inventory and glove box contamination. LLNL adopted the goal of reducing the hazard categorization of the Facility from a Category II Nuclear Facility to a Radiological Facility. To support the RRP, B251 transitioned from a standby to a fully operational Category II Nuclear Facility, compliant with current regulations. A work control process was developed, procedures were developed, Authorization Basis Documents were created, work plans were written, off-normal drills practiced, a large number of USQ reviews were conducted, and a ''Type II'' Readiness Assessment (RA) was conducted to restart operations. Subsequent RA's focused on specific operations. Finally, a four-step process was followed to reach Radiological Status: (1) Inventory Reduction and D&D activities reduced the inventory and radiological contamination of the facility below the Category III threshold (DOE-STD-1027), (2) Radiological Safety Basis Document (SBD aka HAR) was approved by NNSA, (3) the inventory control system for a Radiological Facility was implemented, and (4) verification by NNSA of radiological status was completed.

  3. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 2. Introduction

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Contents: Overview; Facility Background; Risk Assessment History at WTI; Peer Review Comments and Key Assumptions; and References.

  4. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio)

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  5. RCRA, superfund and EPCRA hotline training module. Introduction to: RCRA state programs updated June 1996

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The module outlines the requirements and procedures for a state to become authorized to manage and oversee its own RCRA program. It also describes how the state authorization system can affect the applicability of certain rules. When one has completed the module they will be familiar with the state authorization process for hazardous waste management programs.

  6. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2006) Units: 3 CCN (2 of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 22 Claims Based on Common: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro to RCRA

  7. An assessment of the video analytics technology gap for transportation facilities

    E-Print Network [OSTI]

    Thornton, Jason R.

    We conduct an assessment of existing video analytic technology as applied to critical infrastructure protection, particularly in the transportation sector. Based on discussions with security personnel at multiple facilities, ...

  8. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01T23:59:59.000Z

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  9. Using vulnerability assessments to design facility safeguards and security systems

    SciTech Connect (OSTI)

    Snell, M.; Jaeger, C.

    1994-08-01T23:59:59.000Z

    The Weapons Complex Reconfiguration (WCR) Program is meant to prepare the Department of Energy (DOE) weapons complex to meet the needs of the next century through construction of now facilities or upgrades-in-place at existing facilities. This paper describes how a vulnerability (VA) was used to identify potential S&S features for the conceptual design for a plutonium storage facility as part of the WCR Program. We distinguish those features of the design that need to be investigated at the conceptual stage from those that can be evaluated later. We also examined what protection features may allow reduced S&S operating costs, with the main focus on protective force costs. While some of these concepts hold the promise for significantly reducing life-cycle protective force costs, their use depends on resolving long-standing tradeoffs between S&S and safety, which are discussed in the study.

  10. TRANSPORTATION CASK RECEIPT AND RETURN FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect (OSTI)

    V. Arakali

    2005-02-24T23:59:59.000Z

    The purpose of this design calculation is to estimate radiation doses received by personnel working in the Transportation Cask Receipt and Return Facility (TCRRF) of the repository including the personnel at the security gate and cask staging areas. This calculation is required to support the preclosure safety analysis (PCSA) to ensure that the predicted doses are within the regulatory limits prescribed by the U.S. Nuclear Regulatory Commission (NRC). The Cask Receipt and Return Facility receives NRC licensed transportation casks loaded with spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TCRRF operation starts with the receipt, inspection, and survey of the casks at the security gate and the staging areas, and proceeds to the process facilities. The transportation casks arrive at the site via rail cars or trucks under the guidance of the national transportation system. This calculation was developed by the Environmental and Nuclear Engineering organization and is intended solely for the use of Design and Engineering in work regarding facility design. Environmental and Nuclear Engineering personnel should be consulted before using this calculation for purposes other than those stated herein or for use by individuals other than authorized personnel in the Environmental and Nuclear Engineering organization.

  11. A retrospective tiered environmental assessment of the Mount Storm Wind Energy Facility, West Virginia,USA

    SciTech Connect (OSTI)

    Efroymson, Rebecca Ann [ORNL; Day, Robin [No Affiliation; Strickland, M. Dale [Western EcoSystems Technology

    2012-11-01T23:59:59.000Z

    Bird and bat fatalities from wind energy projects are an environmental and public concern, with post-construction fatalities sometimes differing from predictions. Siting facilities in this context can be a challenge. In March 2012 the U.S. Fish and Wildlife Service (USFWS) released Land-based Wind Energy Guidelines to assess collision fatalities and other potential impacts to species of concern and their habitats to aid in siting and management. The Guidelines recommend a tiered approach for assessing risk to wildlife, including a preliminary site evaluation that may evaluate alternative sites, a site characterization, field studies to document wildlife and habitat and to predict project impacts, post construction studies to estimate impacts, and other post construction studies. We applied the tiered assessment framework to a case study site, the Mount Storm Wind Energy Facility in Grant County, West Virginia, USA, to demonstrate the use of the USFWS assessment approach, to indicate how the use of a tiered assessment framework might have altered outputs of wildlife assessments previously undertaken for the case study site, and to assess benefits of a tiered ecological assessment framework for siting wind energy facilities. The conclusions of this tiered assessment for birds are similar to those of previous environmental assessments for Mount Storm. This assessment found risk to individual migratory tree-roosting bats that was not emphasized in previous preconstruction assessments. Differences compared to previous environmental assessments are more related to knowledge accrued in the past 10 years rather than to the tiered structure of the Guidelines. Benefits of the tiered assessment framework include good communication among stakeholders, clear decision points, a standard assessment trajectory, narrowing the list of species of concern, improving study protocols, promoting consideration of population-level effects, promoting adaptive management through post-construction assessment and mitigation, and sharing information that can be used in other assessments.

  12. Proposed Microwave Transmission Facility, Malta, Phillips County, Montana: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    Western proposes to construct a microwave communications facility at the Malta site consisting of a 175 foot to 200 foot tall, guyed, lattice-type steel tower, a building approximately 10' x 16' x 8' in size to house electrical and electronic equipment, an approximately 400 square feet graveled parking area for motor vehicles, and a graveled access road about 300 feet in length and about 20 feet ot 30 feet wide. 1 fig.

  13. Assessment of a hot hydrogen nuclear propulsion fuel test facility

    SciTech Connect (OSTI)

    Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

    1991-01-01T23:59:59.000Z

    Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

  14. act rcra facility: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to construct a solar farm capable of generating up to 75 direct current megawatts of photovoltaic solar energy (Project). At the time of the August submittal, it was projected...

  15. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    SciTech Connect (OSTI)

    King, J.W.

    1993-08-01T23:59:59.000Z

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  16. RCRA Hazardous Waste Part A Permit Application: Instructions...

    Open Energy Info (EERE)

    Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste Part A Permit...

  17. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 UNIT NAME: S-709-01 DATE: 01192001 REGULATORY STATUS: SWMU LOCATION: Room 113 APPROXIMATE DIMENSION: 1 ft. X 3 ft. FUNCTION: Storage for PCB RCRA hazardous solid and liquid...

  18. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 UNIT NAME: S-409-20 DATE: 1192001 REGULATORY STATUS: SWMU LOCATION: This SWMU is located in the C-409 Building and is upstairs above the RCRA TCLP laboratory. APPROXIMATE...

  19. Preliminary assessment report for National Guard Facility, Installation 25255, Rehoboth, Massachusetts. Installation Restoration Program

    SciTech Connect (OSTI)

    Haffenden, R.; Flaim, S.; Krokosz, M.

    1993-08-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Massachusetts Army National Guard (MAARNG) property known as the Rehoboth National Guard Facility (RNGF) in Rehoboth, Massachusetts. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for ftirther action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the RNGF property, phase I of the Department of Defense Installation Restoration Program (IRP). The scope of this assessment is limited to the facilities under the control of the MAARNG and the past activities contained within that area.

  20. Assessment of the Integrated Facility Disposition Project at Oak Ridge

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of Training April 30,WindAssessment ofASSESSMENTNational

  1. Facility Energy Decision System (FEDS) Assessment Report for Fort Buchanan, Puerto Rico

    SciTech Connect (OSTI)

    Chvala, William D.; Solana, Amy E.; Dixon, Douglas R.

    2005-02-01T23:59:59.000Z

    This report documents the findings of the Facility Energy Decision System (FEDS) assessment at Fort Buchanan, Puerto Rico, by a team of PNNL engineers under contract to the Installation Management Agency (IMA) Southeast Region Office (SERO). Funding support was also provided by the Department of Energy's Federal Energy Management Program. The purpose of the assessment was to determine how energy is consumed at Fort Buchanan, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  2. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    SciTech Connect (OSTI)

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01T23:59:59.000Z

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.

  3. Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems

    SciTech Connect (OSTI)

    Heimiller, D.; Haase, S.; Melius, J.

    2013-05-01T23:59:59.000Z

    This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report.

  4. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Scott, S.W.

    1997-08-29T23:59:59.000Z

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  5. Final Pantex Report - 2006 [Phase 1 plan for assessment of Former Workers at the Pantex Facility

    SciTech Connect (OSTI)

    Abdo, Ronna

    2013-07-18T23:59:59.000Z

    The purpose of this project was to develop a Phase 1 plan for assessment of Former Workers at the Pantex Facility in Amarillo, TX and to determine the suitability to start a medical surveillance program among former workers for this site.

  6. HWMA/RCRA Closure Plan for the CPP-602 Laboratory Lines

    SciTech Connect (OSTI)

    Idaho Cleanup Project

    2009-09-30T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure (HWMA/RCRA) Plan for the CPP-602 laboratory lines was developed to meet the tank system closure requirements of the Idaho Administrative Procedures Act 58.01.05.008 and 40 Code of Federal Regulations 264, Subpart G. CPP-602 is located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The lines in CPP-602 were part of a liquid hazardous waste collection system included in the Idaho Nuclear Technology and Engineering Center Liquid Waste Management System Permit. The laboratory lines discharged to the Deep Tanks System in CPP-601 that is currently being closed under a separate closure plan. This closure plan presents the closure performance standards and the methods for achieving those standards. The closure approach for the CPP-602 laboratory lines is to remove the lines, components, and contaminants to the extent practicable. Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site CPP-117 includes the CPP-602 waste trench and the area beneath the basement floor where waste lines are direct-buried. Upon completion of rinsing or mopping to remove contamination to the extent practicable from the waste trench and rinsing the intact buried lines (i.e., stainless steel sections), these areas will be managed as part of CERCLA Site CPP-117 and will not be subject to further HWMA/RCRA closure activities. The CPP-602 building is being decontaminated and decommissioned under CERCLA as a non-time critical removal action in accordance with the Federal Facility Agreement/Consent Order. As such, all waste generated by this CERCLA action, including closure-generated waste, will be managed in coordination with that CERCLA action in substantive compliance with HWMA/RCRA regulations. All waste will be subject to a hazardous waste determination for the purpose of supporting appropriate management and will be managed in accordance with this plan. ii

  7. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01T23:59:59.000Z

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  8. Near-Field Hydrology Data Package for the Integrated Disposal Facility 2005 Performance Assessment

    SciTech Connect (OSTI)

    Meyer, Philip D.; Saripalli, Prasad; Freedman, Vicky L.

    2004-06-25T23:59:59.000Z

    CH2MHill Hanford Group, Inc. (CHG) is designing and assessing the performance of an Integrated Disposal Facility (IDF) to receive immobilized low-activity waste (ILAW), Low-Level and Mixed Low-Level Wastes (LLW/MLLW), and the Waste Treatment Plant (WTP) melters used to vitrify the ILAW. The IDF Performance Assessment (PA) assesses the performance of the disposal facility to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. The PA requires prediction of contaminant migration from the facilities, which is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists CHG in its performance assessment activities. One of PNNL’s tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information were previously presented in a report prepared for the 2001 ILAW PA. This report updates the parameter estimates for the 2005 IDF PA using additional information and data collected since publication of the earlier report.

  9. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  10. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  11. HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2007-01-15T23:59:59.000Z

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

  12. An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities

    SciTech Connect (OSTI)

    Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

    2014-07-01T23:59:59.000Z

    Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

  13. Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

    SciTech Connect (OSTI)

    Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

    2010-03-09T23:59:59.000Z

    This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  14. Seismic margins assessment of the plutonium processing facility Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Goen, L.K. [Los Alamos National Lab., NM (United States); Salmon, M.W. [EQE International, Irwine, CA (United States)

    1995-12-01T23:59:59.000Z

    Results of the recently completed seismic evaluation at the Los Alamos National Laboratory site indicate a need to consider seismic loads greater than design basis for many structures systems and components (SSCs). DOE Order 5480.28 requires that existing SSCs be evaluated to determine their ability to withstand the effects of earthquakes when changes in the understanding of this hazard results in greater loads. In preparation for the implementation of DOE Order 5480.28 and to support the update of the facility Safety Analysis Report, a seismic margin assessment of SSCs necessary for a monitored passive safe shutdown of the Plutonium Processing Facility (PF-4) was performed. The seismic margin methodology is given in EPRI NP-6041-SL, ``A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)``. In this methodology, high confidence of low probability of failure (HCLPF) capacities for SSCs are estimated in a deterministic manner. For comparison to the performance goals given in DOE Order 5480.28, the results of the seismic margins assessment were used to estimate the annual probability of failure for the evaluated SSCs. In general, the results show that the capacity for the SSCs comprising PF-4 is high. This is to be expected for a newer facility as PF-4 was designed in the early 1970`s. The methodology and results of this study are presented in this paper.

  15. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01T23:59:59.000Z

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  16. RCRA, superfund and EPCRA hotline training module. Introduction to: Other laws that interface with RCRA, updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module provides a brief overview of some of the major environmental laws that interface with RCRA: Clean Air Act (CAA); Clean Water Act (CWA); Safe Drinking Water Act (SDWA); Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); Toxic Substances Control Act (TSCA); Pollution Prevention Act (PPA); and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund). It also covers regulations administered by other agencies that interface with RCRA, such as health and safety requirements under the occupational health and safety administration, and the hazardous materials transportation requirements administered by the Department of Transportation.

  17. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2008) Units: 3 CCN (2, The Law of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 19 Claims on Federal Law: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro

  18. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 BudgetNate McDowell

  19. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Wilhite, E

    2008-03-31T23:59:59.000Z

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

  20. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Snyder, K.E. [Lockheed Environmental Systems and Technologies, Co., Las Vegas, NV (United States); Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E. [Raytheon Services Nevada, Las Vegas, NV (United States)

    1995-02-01T23:59:59.000Z

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period.

  1. Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505

    SciTech Connect (OSTI)

    Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

    2013-07-01T23:59:59.000Z

    One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

  2. Radiological performance assessment for the Z-Area Saltstone Disposal Facility

    SciTech Connect (OSTI)

    Cook, J.R.; Fowler, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-12-18T23:59:59.000Z

    This radiological performance assessment (RPA) for the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) was prepared in accordance with the requirements of Chapter III of the US Department of Energy Order 5820.2A. The Order specifies that an RPA should provide reasonable assurance that a low-level waste (LLW) disposal facility will comply with the performance objectives of the Order. The performance objectives require that: (1) exposures of the general public to radioactivity in the waste or released from the waste will not result in an effective dose equivalent of 25 mrem per year; (2) releases to the atmosphere will meet the requirements of 40 CFR 61; (3) inadvertent intruders will not be committed to an excess of an effective dose equivalent of 100 mrem per year from chronic exposure, or 500 mrem from a single acute exposure; and (4) groundwater resources will be protected in accordance with Federal, State and local requirements.

  3. Models for environmental impact assessments of releases of radioactive substances from CERN facilities

    E-Print Network [OSTI]

    Vojtyla, P

    2005-01-01T23:59:59.000Z

    The document describes generic models for environmental impact assessments of releases of radioactive substances from CERN facilities. Except for few models developed in the Safety Commission, the models are based on the 1997 Swiss directive HSK-R-41 and on the 2001 IAEA Safety Report No. 19. The writing style is descriptive, facilitating the practical implementation of the models at CERN. There are four scenarios assumed for airborne releases: (1) short-term releases for release limit calculations, (2) actual short-term releases, (3) short-term releases during incidents/accidents, and (4) chronic long-term releases during the normal operation of a facility. For water releases, two scenarios are considered: (1) a release into a river, and (2) a release into a water treatment plant. The document shall be understood as a reference for specific environmental studies involving radioactive releases and as a recommendation of the Safety Commission.

  4. Models for Assessment of the environmental impact of Radioactive releases from CERN facilities

    E-Print Network [OSTI]

    Vojtyla, P

    2002-01-01T23:59:59.000Z

    The document describes generic models for environmental impact assessment of radioactive releases from CERN facilities. Except for few models developed in the TIS Division, the models are based on the 1997 Swiss directive HSK-R-41 and on the 2001 IAEA Safety Report No. 19. The writing style is descriptive, facilitating the practical implementation of the models at CERN. There are four scenarios assumed for airborne releases: (1) short-term releases for release limit calcu¬lations, (2) actual short-term releases, (3) short-term releases during incidents/accidents, and (4) chronic long-term releases during the normal operation of a facility. For water releases, two scenarios are considered: (1) a release into a river, and (2) a release into a water treatment plant. The document shall be understood as a reference for specific environmental studies involving radioactive releases and as a recommendation of the TIS Division.

  5. ANNUAL SUMMARY OF THE INTEGRATED DISPOSAL FACILITY PERFORMANCE ASSESSMENT FOR 2004

    SciTech Connect (OSTI)

    MANN, F M

    2005-02-09T23:59:59.000Z

    As required by the US. Department of Energy (DOE) order on radioactive waste management (DOE 1999a) and as implemented by the ''Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment'' (Mann 2004), an annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a performance assessment is not issued. A draft version of the 2001 ILAW PA was sent to the DOE Headquarters (DOE/HQ) in April 2001 for review and approval. The DOE approved (DOE 2001) the draft version of the 2001 ILAW PA and issued a new version of the Hanford Site waste disposal authorization statement (DAS). Based on comments raised during the review, the draft version was revised and the 2001 ILAW PA was formally issued (Mann et al. 2001). The DOE (DOE 2003a) has reviewed the final 2001 ILAW PA and concluded that no changes to the DAS were necessary. Also as required by the DOE order, annual summaries have been generated and approved. The previous annual summary (Mann 2003b) noted the change of mission from ILAW disposal to the disposal of a range of solid waste types, including ILAW. DOE approved the annual summary (DOE 2003c), noting the expanded mission. Considering the results of data collection and analysis, the conclusions of the 2001 ILAW PA remain valid as they pertain to ILAW disposal. The new data also suggest that impacts from the disposal of the other solid waste will be lower than initially estimated in the ''Integrated Disposal Facility Risk Assessment'' (Mann 2003a). A performance assessment for the Integrated Disposal Facility (IDF) will be issued in the summer of 2005.

  6. Data Quality Assessment and Control for the ARM Climate Research Facility

    SciTech Connect (OSTI)

    Peppler, R

    2012-06-26T23:59:59.000Z

    The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

  7. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    SciTech Connect (OSTI)

    Gary Mecham; Don Konoyer

    2009-11-01T23:59:59.000Z

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

  8. The environmental impact assessment process for nuclear facilities: An examination of the Indian experience

    SciTech Connect (OSTI)

    Ramana, M.V., E-mail: mvramana@gmail.co [Centre for Interdisciplinary Studies in Environment and Development, Bangalore (India); Centre for Interdisciplinary Studies in Environment and Development, ISEC Campus, Nagarbhavi, Bangalore 560 070 (India); Rao, Divya Badami, E-mail: di.badamirao@gmail.co [Centre for Interdisciplinary Studies in Environment and Development, Bangalore (India); Centre for Interdisciplinary Studies in Environment and Development, ISEC Campus, Nagarbhavi, Bangalore 560 070 (India)

    2010-07-15T23:59:59.000Z

    India plans to construct numerous nuclear plants and uranium mines across the country, which could have significant environmental, health, and social impacts. The national Environmental Impact Assessment process is supposed to regulate these impacts. This paper examines how effective this process has been, and the extent to which public inputs have been taken into account. In addition to generic problems associated with the EIA process for all kinds of projects in India, there are concerns that are specific to nuclear facilities. One is that some nuclear facilities are exempt from the environmental clearance process. The second is that data regarding radiation baseline levels and future releases, which is the principle environmental concern with respect to nuclear facilities, is controlled entirely by the nuclear establishment. The third is that members of the nuclear establishment take part in almost every level of the environmental clearance procedure. For these reasons and others, the EIA process with regard to nuclear projects in India is of dubious quality. We make a number of recommendations that could address these lacunae, and more generally the imbalance of power between the nuclear establishment on the one hand, and civil society and the regulatory agencies on the other.

  9. Environmental Assessment for the Leasing of Facilities and Equipment to USEC Inc.

    SciTech Connect (OSTI)

    N /A

    2002-10-18T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office (DOE-ORO) has prepared this Environmental Assessment (EA) for the lease of facilities and equipment to USEC Inc. (USEC), which would be used in its Gas Centrifuge Research and Development (R&D) Project at the East Tennessee Technology Park (ETTP) [hereinafter referred to as the USEC EA]. The USEC EA analyzes the potential environmental impacts of DOE leasing facility K-101 and portions of K-1600, K-1220 and K-1037 at the ETTP to USEC for a minimum 3-year period, with additional option periods consistent with the Oak Ridge Accelerated Clean-up Plan (ACP) Agreement. In July 2002, USEC notified DOE that it intends to use certain leased equipment at an off-site facility at the Centrifuge Technology Center (CTC) on the Boeing Property. The purpose of the USEC Gas Centrifuge R&D Project is to develop an economically attractive gas centrifuge machine and process using DOE's centrifuge technology.

  10. Environmental assessment for device assembly facility operations, Nevada Test Site, Nye County, Nevada. Final report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), has prepared an environmental assessment (EA), (DOE/EA-0971), to evaluate the impacts of consolidating all nuclear explosive operations at the newly constructed Device Assembly Facility (DAF) in Area 6 of the Nevada Test Site. These operations generally include assembly, disassembly or modification, staging, transportation, testing, maintenance, repair, retrofit, and surveillance. Such operations have previously been conducted at the Nevada Test Site in older facilities located in Area 27. The DAF will provide enhanced capabilities in a state-of-the-art facility for the safe, secure, and efficient handling of high explosives in combination with special nuclear materials (plutonium and highly enriched uranium). Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.). Therefore, an environmental impact statement is not required, and DOE is issuing this finding of no significant impact.

  11. Geochemical Data Package for the 2005 Hanford Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Serne, R JEFFREY.; Kaplan, D I.

    2004-09-30T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is designing and assessing the performance of an integrated disposal facility (IDF) to receive low-level waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and failed or decommissioned melters. The CH2M HILL project to assess the performance of this disposal facility is the Hanford IDF Performance Assessment (PA) activity. The goal of the Hanford IDF PA activity is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the vadose zone to groundwater where contaminants may be re-introduced to receptors via drinking water wells or mixing in the Columbia River. Pacific Northwest National Laboratory (PNNL) assists CH2M HILL in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the IDF, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (Kd) and the thermodynamic solubility product (Ksp), respectively. In this data package, we approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. The Kd values and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the IDF system. In addition to the best-estimate Kd values, a reasonable conservative value and a range are provided. The data package does not list estimates for the range in solubility limits or their uncertainty. However, the data package does provide different values for both the Kd values and solution concentration limits for different spatial zones in the IDF system and does supply time-varying Kd values for the cement solidified waste. The Kd values and solution concentration limits presented for each contaminant were previously presented in a report prepared by Kaplan and Serne (2000) for the 2001 ILAW PA, and have been updated to include applicable data from investigations completed since the issuance of that report and improvements in our understanding of the geochemistry specific to Hanford. A discussion is also included of the evolution of the Kd values recommended from the original 1999 ILAW PA through the 2001 ILAW and 2003 Supplement PAs to the current values to be used for the 2005 IDF PA for the key contaminants of concern: Cr(VI), nitrate, 129I, 79Se, 99Tc, and U(VI). This discussion provides the rationale for why certain Kd have changed with time.

  12. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    SciTech Connect (OSTI)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-04-03T23:59:59.000Z

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

  13. Environmental Management Assessment of the Continuous Electron Beam Accelerator Facility (CEBAF)

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This report documents the results of the Environmental Management Assessment performed at the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the CEBAF Site Office; the CEBAF management and operating contractor (M&O), Southeastern Universities Research Association, Inc. (SURA); the Oak Ridge Field Office (OR); and the responsible DOE Headquarters Program Office, the Office of Energy Research (ER). The onsite portion of the assessment was conducted from March 8 through March 19, 1993, by the US Department of Energy`s (DOE`s) Office of Environmental Audit (EH-24) located within the office of Environment, Safety and Health (EH). DOE 5482.1 B, ``Environment, Safety and Health Appraisal Program,`` and Secretary of Energy Notice (SEN)-6E-92, ``Departmental Organizational and Management Arrangements,`` establish the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission utilizing systematic and periodic evaluations of the Department`s environmental programs within line organizations, and through use of supplemental activities which serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations.

  14. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 3. Characterization of the nature and magnitude of emissions. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume III of the report describes the methods used to estimate both stack and fugitive emission rates from the facility.

  15. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

  16. Preliminary assessment report for Army Aviation Support Facility No. 3, Installation 13307, Hunter Army Airfield, Savannah, Georgia. Installation Restoration Program

    SciTech Connect (OSTI)

    Kolpa, R.; Smith, K.

    1993-07-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Georgia Army National Guard property located on Hunter Army Airfield (HAA) near Savannah, Georgia, known as Army Aviation Support Facility (AASF) No. 3. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, types and quantities of hazardous substances utilized, the nature and amounts of wastes generated or stored at the facility, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the AASF No. 3 property, requirements of the Department of Defense Installation Restoration Program (IRP). The scope of this assessment is limited to the facilities and past activities contained within the area now occupied by AASF No. 3. However, this assessment report is intended to be read in conjunction with a previous IRP assessment of HAA completed in 1992 (USATHAMA 1992) and to provide comprehensive information on AASF No. 3 for incorporation with information contained in that previous assessment for the entirety of HAA.

  17. Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507

    SciTech Connect (OSTI)

    Biurrun, E.; Haverkamp, B. [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany)] [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany); Lazaro, A.; Miralles, A. [Westinghouse Electric Spain SAR, Padilla 17, E-28006 Madrid (Spain)] [Westinghouse Electric Spain SAR, Padilla 17, E-28006 Madrid (Spain); Stefanova, I. [SERAW, 52 A Dimitrov Blvd, 6 Fl., 1797 Sofia (Bulgaria)] [SERAW, 52 A Dimitrov Blvd, 6 Fl., 1797 Sofia (Bulgaria)

    2013-07-01T23:59:59.000Z

    Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

  18. Monitored retrievable storage submission to Congress: Volume 2, Environmental assessment for a monitored retrievable storage facility. [Contains glossary

    SciTech Connect (OSTI)

    none,

    1986-02-01T23:59:59.000Z

    This Environmental Assessment (EA) supports the DOE proposal to Congress to construct and operate a facility for monitored retrievable storage (MRS) of spent fuel at a site on the Clinch River in the Roane County portion of Oak Ridge, Tennessee. The first part of this document is an assessment of the value of, need for, and feasibility of an MRS facility as an integral component of the waste management system. The second part is an assessment and comparison of the potential environmental impacts projected for each of six site-design combinations. The MRS facility would be centrally located with respect to existing reactors, and would receive and canister spent fuel in preparation for shipment to and disposal in a geologic repository. 207 refs., 57 figs., 132 tabs.

  19. NUMERICAL FLOW AND TRANSPORT SIMULATIONS SUPPORTING THE SALTSTONE FACILITY PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Flach, G.

    2009-02-28T23:59:59.000Z

    The Saltstone Disposal Facility Performance Assessment (PA) is being revised to incorporate requirements of Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), and updated data and understanding of vault performance since the 1992 PA (Cook and Fowler 1992) and related Special Analyses. A hybrid approach was chosen for modeling contaminant transport from vaults and future disposal cells to exposure points. A higher resolution, largely deterministic, analysis is performed on a best-estimate Base Case scenario using the PORFLOW numerical analysis code. a few additional sensitivity cases are simulated to examine alternative scenarios and parameter settings. Stochastic analysis is performed on a simpler representation of the SDF system using the GoldSim code to estimate uncertainty and sensitivity about the Base Case. This report describes development of PORFLOW models supporting the SDF PA, and presents sample results to illustrate model behaviors and define impacts relative to key facility performance objectives. The SDF PA document, when issued, should be consulted for a comprehensive presentation of results.

  20. Environmental impact assessment for a radioactive waste facility: A case study

    SciTech Connect (OSTI)

    Devgun, J.S.

    1990-01-01T23:59:59.000Z

    A 77-ha site, known as the Niagara Falls Storage Site and located in northwestern New York State, holds about 190, 000 m{sup 3} of soils, wastes, and residues contaminated with radium and uranium. The facility is owned by the US Department of Energy. The storage of residues resulting from the processing of uranium ores started in 1944, and by 1950 residues from a number of plants were received at the site. The residues, with a volume of about 18,000 m{sup 3}, account for the bulk of the radioactivity, which is primarily due to Ra-226; because of the extraction of uranium from the ore, the amount of uranium remaining in the residues is quite small. An analysis of the environmental impact assessment and environmental compliance actions taken to date at this site and their effectiveness are discussed. This case study provides an illustrative example of the complexity of technical and nontechnical issues for a large radiative waste facility. 11 refs., 7 figs., 2 tabs.

  1. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  2. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 6. Screening ecological risk assessment (SERA). Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Screening Ecological Risk Assessment (SERA) is an analysis of the potential significance of risks to ecological receptors (e.g., plants, fish, wildlife) from exposure to facility emissions. The SERA was performed using conservative assumptions and approaches to determine if a further, more refined analysis is warranted. Volume VI describes in detail the methods used in the SERA and reports the results of the SERA in terms of site-specific risks to ecological receptors.

  3. Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Cook, James R.

    2005-12-07T23:59:59.000Z

    Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

  4. RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee

    SciTech Connect (OSTI)

    Pfeffer, J.

    2008-06-10T23:59:59.000Z

    The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state of Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal, cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.

  5. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    SciTech Connect (OSTI)

    Lindell, M.A.; Grape, S.; Haekansson, A.; Jacobsson Svaerd, S. [Department of Physics and Astronomy, Uppsala University: Box 516, SE-75120 Uppsala (Sweden)

    2013-07-01T23:59:59.000Z

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakest barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)

  6. An assessment of the quality and educational adequacy of educational facilities and their perceived impact on the learning environment as reported by middle school administrators and teachers in Humble Independent School District, Humble, Texas 

    E-Print Network [OSTI]

    Monk, Douglas Matthew

    2007-04-25T23:59:59.000Z

    an assessment of the impact that these facilities have on the learning environment. This study also assesses the quality and adequacy of these middle school facilities through a purely quantitative evaluation conducted by an unbiased assessment team. Humble ISD...

  7. An assessment of the quality and educational adequacy of educational facilities and their perceived impact on the learning environment as reported by middle school administrators and teachers in Humble Independent School District, Humble, Texas

    E-Print Network [OSTI]

    Monk, Douglas Matthew

    2007-04-25T23:59:59.000Z

    an assessment of the impact that these facilities have on the learning environment. This study also assesses the quality and adequacy of these middle school facilities through a purely quantitative evaluation conducted by an unbiased assessment team. Humble ISD...

  8. Geomatic techniques for assessing ecological and health risk at U.S. Department of Energy facilities

    SciTech Connect (OSTI)

    Regens, J.L.; White, L. [Tulane Univ. Medical Center, New Orleans, LA (United States); Albers, B.J. [BMD Federal, Germantown, MD (United States); Purdy, C.

    1994-12-31T23:59:59.000Z

    Hazardous substances, including radionuclides, heavy metals, and chlorinated hydrocarbons, pose unique challenges in terms of environmental restoration and waste management, especially in aquatic environments. When stored, used or disposed of improperly, hazardous materials including transuranic wastes, high level wastes, low level wastes, greater than class C wastes, mixed wastes or chemical wastes can contaminate an array of environmental receptors ranging from soils, sediments, groundwater to surface water. Depending on the specific hazardous substance and site attributes, assessing ecological and health risk as a basis for environmental restoration and waste management can be a complex, problematic activity. This is basis for environmental restoration and waste management can be a complex, problematic activity. This is particularly true for the major Defense Programs facilities managed by the U.S. Department of Energy (DOE). The Environmental Restoration (ER) program of DOE was initiated in 1987 to consolidate and coordinate those regulatory activities designed to identify and remediate sites at installations contaminated with radioactive, chemical or mixed wastes. To supply the tools necessary for defining, describing, and characterizing the nature of contaminants within the DOE complex and identifying alternative post-remediation land use options, DOE has implemented a program for the research and development of spatial data technologies to aid in assessing ecological and health risk.

  9. Life cycle assessment of the environmental emissions of waste-to-energy facilities

    SciTech Connect (OSTI)

    Besnainou, J.; Landfield, A. [Ecobalance, Inc., Rockville, MD (United States)

    1997-12-01T23:59:59.000Z

    Over the past ten years, environmental issues have become an increasing priority for both government and industry alike. In the U.S. as well as in Europe, the emphasis has gradually shifted from a site specific focus to a product specific focus. For this reason, tools are needed to scientifically assess the overall environmental performance of products and/or industrial systems. Life Cycle Assessment (LCA) belongs to that category of tools, and is used to perform this study. In numerous industrial countries, LCA is now recognized, and is rapidly becoming the tool of preference, to successfully provide quantitative and scientific analyses of the environmental impacts of industrial systems. By providing an unbiased analysis of entire systems, LCA has shown that the reality behind widely held beliefs regarding {open_quotes}green{close_quotes} issues, such as reusable vs. one way products, and {open_quotes}natural{close_quotes} vs. synthetic products, were far more complex than expected, and sometimes not as {open_quotes}green{close_quotes} as assumed. This paper describes the modeling and assumptions of an LCA, commissioned by the Integrated Waste Services Association (IWSA), that summarizes the environmental emissions of waste-to-energy facilities, and compares them to the environmental emissions generated by major combustible energy sources of the northeast part of the United States (NE). The geographical boundary for this study is, therefore, the NE US.

  10. Development of an ASTM standard guide on performing vulnerability assessments for nuclear facilities

    SciTech Connect (OSTI)

    Wilkey, D.D.

    1995-09-01T23:59:59.000Z

    This paper describes an effort undertaken by subcommittee C26.12 (Safeguards) of the American Society for Testing and Materials (ASTM) to develop a standard guide for performing vulnerability assessments (VAs). VAs are performed to determine the effectiveness of safeguards and security systems for both domestic and international nuclear facilities. These assessments address a range of threats, including theft of nuclear material and sabotage, and use an array of methods. The approach to performing and documenting VAs is varied and is largely dependent upon the tools used to perform them. This diversity can lead to tools being misused, making validation of VAs more difficult. The development of a standard guide for performing VAs would, if generally accepted, alleviate these concerns. ASTM provides a forum for developing guides that includes a high level of peer review to assure that the result is acceptable to all potential users. Additionally, the ASTM is widely recognized for setting standards, and endorsement by the Society may increase the likelihood of acceptance by the nuclear community. The goal of this work is to develop a guide that is independent of the tools being used to perform the VA and applicable to the spectrum of threats described above.

  11. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 2. Introduction. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This volume provides a description of the facility, and its location and setting in the three-state area of Ohio, Pennsylvania, and West Virginia; an overview of previous risk assessments conducted by U.S. EPA for this site, including the preliminary assessment of inhalation exposure and the screening-level risk analyses of indirect exposure; and a summary of comments provided by the Peer Review Panel on the Project Plan.

  12. Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia

    SciTech Connect (OSTI)

    Dennis, C.B.

    1993-09-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.

  13. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    SciTech Connect (OSTI)

    Schneider, K.J.

    1982-09-01T23:59:59.000Z

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  14. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2003

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.

    2003-12-05T23:59:59.000Z

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.

  15. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

    2001-09-28T23:59:59.000Z

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

  16. Incorporating uncertainties into risk assessment with an application to the exploratory studies facilities at Yucca Mountain

    SciTech Connect (OSTI)

    Fathauer, P.M.

    1995-08-01T23:59:59.000Z

    A methodology that incorporates variability and reducible sources of uncertainty into the probabilistic and consequence components of risk was developed. The method was applied to the north tunnel of the Exploratory Studies Facility at Yucca Mountain in Nevada. In this assessment, variability and reducible sources of uncertainty were characterized and propagated through the risk assessment models using a Monte Carlo based software package. The results were then manipulated into risk curves at the 5% and 95% confidence levels for both the variability and overall uncertainty analyses, thus distinguishing between variability and reducible sources of uncertainty. In the Yucca Mountain application, the designation of the north tunnel as an item important to public safety, as defined by 10 CFR 60, was determined. Specifically, the annual frequency of a rock fall breaching a waste package causing an off-site dose of 500 mrem (5x10{sup -3} Sv) was calculated. The annual frequency, taking variability into account, ranged from 1.9x10{sup -9} per year at the 5% confidence level to 2.5x10{sup -9} per year at the 95% confidence level. The frequency range after including all uncertainty was 9.5x10{sup -10} to 1.8x10{sup -8} per year. The maximum observable frequency, at the 100% confidence level, was 4.9x10{sup -8} per year. This is below the 10{sup -6} per year frequency criteria of 10 CFR 60. Therefore, based on this work, the north tunnel does not fall under the items important to public safety designation for the event studied.

  17. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    SciTech Connect (OSTI)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01T23:59:59.000Z

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  18. Data-assessment reports for CEMS (continuous emission monitoring systems) at Subpart DA facilities

    SciTech Connect (OSTI)

    Walsh, G.

    1989-03-01T23:59:59.000Z

    EPA promulgated minimum quality assurance (QA) requirements for Continuous Emission Monitoring Systems (CEMS) in 40 CFR Part 60 Appendix F. Appendix F requires the development of site-specific QA plans and the reporting of results of EPA specified QA activities each calendar quarter. The report of QA activities under Appendix F is called a Data Assessment Report (DAR). The DAR includes identifying and descriptive information for the CEMS, results of periodic audits, identification of periods when calibration drift exceeds specified criteria, identification of periods when the analyzers or CEMS are out of control (OOC), and descriptions of corrective actions in response to OOC conditions. The principal objective of the study is an evaluation of the information in DARs for the first and second quarters of calendar year 1988. Secondary study objectives include the establishment of contacts with agency staff who normally receive the DARs each quarter and identification of facilities for which DARs were apparently not received, for follow-up by the appropriate agency.

  19. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 7. Accident analysis: Selection and assessment of potential release scenarios. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Accident Analysis is an evaluation of the likelihood of occurrence and resulting consequences from several general classes of accidents that could potentially occur during operation of the facility. The Accident Analysis also evaluates the effectiveness of existing mitigation measures in reducing off-site impacts. Volume VII describes in detail the methods used to conduct the Accident Analysis and reports the results of evaluations of likelihood and consequence for the selected accident scenarios.

  20. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26T23:59:59.000Z

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically based nuclear facility assessment; 5. a discussion of a way to engage with the owners of the PR assessment methodology to assess and improve the enhancement concept; 6. a discussion of implementation of the proposed approach, including a discussion of functionality and potential users; and 7. conclusions from the research. This report represents technical deliverables for the NA-22 Simulations, Algorithms, and Modeling program. Specifically this report is the Task 2 and 3 deliverables for project PL09-UtilSocial.

  1. Linking RESRAD-OFFSITE and HYDROGEOCHEM Model for Performance Assessment of Low-Level Radioactive Waste Disposal Facility - 13429

    SciTech Connect (OSTI)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taiwan (China)] [Hydrotech Research Institute, National Taiwan University, Taiwan (China); Yu, Charley; Cheng, Jing-Jy; Kamboj, Sunita; Gnanapragasam, Emmanuel [Argonne National Laboratory, Argonne, IL 60439 (United States)] [Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, Chen-Wuing [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China)] [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)] [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)

    2013-07-01T23:59:59.000Z

    Performance assessments are crucial steps for the long-term radiological safety requirements of low-level waste (LLW) disposal facility. How much concentration of radionuclides released from the near-field to biosphere and what radiation exposure levels of an individual can influence on the satisfactory performance of the LLW disposal facility and safety disposal environment. Performance assessment methodology for the radioactive waste disposal consists of the reactive transport modeling of safety-concerned radionuclides released from the near-field to the far-field, and the potential exposure pathways and the movements of radionuclides through the geosphere, biosphere and man of which the accompanying dose. Therefore, the integration of hydrogeochemical transport model and dose assessment code, HYDROGEOCHEM code and RESRAD family of codes is imperative. The RESRAD family of codes such as RESRAD-OFFSITE computer code can evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The HYDROGEOCHEM is a 3-D numerical model of fluid flow, thermal, hydrologic transport, and biogeochemical kinetic and equilibrium reactions in saturated and unsaturated media. The HYDROGEOCHEM model can also simulate the crucial geochemical mechanism, such as the effect of redox processes on the adsorption/desorption, hydrogeochemical influences on concrete degradation, adsorption/desorption of radionuclides (i.e., surface complexation model) between solid and liquid phase in geochemically dynamic environments. To investigate the safety assessment of LLW disposal facility, linking RESRAD-OFFSITE and HYDROGEOCHEM model can provide detailed tools of confidence in the protectiveness of the human health and environmental impact for safety assessment of LLW disposal facility. (authors)

  2. Probabilistic risk assessment for the Los Alamos Meson Physics Facility worst-case design-basis accident

    SciTech Connect (OSTI)

    Sharirli, M.; Butner, J.M.; Rand, J.L.; Macek, R.J. [Los Alamos National Lab., NM (United States); McKinney, S.J. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Roush, M.L. [Maryland Univ., College Park, MD (United States). Center for Reliability Engineering

    1992-12-01T23:59:59.000Z

    This paper presents results from a Los Alamos National Laboratory Engineering and Safety Analysis Group assessment of the worse-case design-basis accident associated with the Clinton P. Anderson Meson Physics Facility (LAMPF)/Weapons Neutron Research (WNR) Facility. The primary goal of the analysis was to quantify the accident sequences that result in personnel radiation exposure in the WNR Experimental Hall following the worst-case design-basis accident, a complete spill of the LAMPF accelerator 1L beam. This study also provides information regarding the roles of hardware systems and operators in these sequences, and insights regarding the areas where improvements can increase facility-operation safety. Results also include confidence ranges to incorporate combined effects of uncertainties in probability estimates and importance measures to determine how variations in individual events affect the frequencies in accident sequences.

  3. Probabilistic risk assessment for the Los Alamos Meson Physics Facility worst-case design-basis accident

    SciTech Connect (OSTI)

    Sharirli, M.; Butner, J.M.; Rand, J.L.; Macek, R.J. (Los Alamos National Lab., NM (United States)); McKinney, S.J. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)); Roush, M.L. (Maryland Univ., College Park, MD (United States). Center for Reliability Engineering)

    1992-01-01T23:59:59.000Z

    This paper presents results from a Los Alamos National Laboratory Engineering and Safety Analysis Group assessment of the worse-case design-basis accident associated with the Clinton P. Anderson Meson Physics Facility (LAMPF)/Weapons Neutron Research (WNR) Facility. The primary goal of the analysis was to quantify the accident sequences that result in personnel radiation exposure in the WNR Experimental Hall following the worst-case design-basis accident, a complete spill of the LAMPF accelerator 1L beam. This study also provides information regarding the roles of hardware systems and operators in these sequences, and insights regarding the areas where improvements can increase facility-operation safety. Results also include confidence ranges to incorporate combined effects of uncertainties in probability estimates and importance measures to determine how variations in individual events affect the frequencies in accident sequences.

  4. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  5. NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center

    E-Print Network [OSTI]

    Antypas, Katie

    2013-01-01T23:59:59.000Z

    NERSC 2011 High Performance Computing Facility Operationalby providing high-performance computing, information, data,s deep knowledge of high performance computing to overcome

  6. Use of the UNCLE Facility to Assess Integrated Online Monitoring Systems for Detection of Diversions at Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A [ORNL; Chapman, Jeffrey Allen [ORNL; Lee, Denise L [ORNL; Rauch, Eric [Los Alamos National Laboratory (LANL); Hertel, Nolan [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    Historically, the approach to safeguarding nuclear material in the front end of the fuel cycle was implemented only at the stage when UF6 was declared as feedstock for enrichment plants. Recent International Atomic Energy Agency (IAEA) circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exist. Oak Ridge National Laboratory has developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions for a purified uranium-bearing aqueous stream exiting the solvent extraction process conducted in a natural uranium conversion plant (NUCP) operating at 6000 MTU/year. Monitoring instruments, including the 3He passive neutron detector developed at Los Alamos National Laboratory and the Endress+Hauser Promass 83F Coriolis meter, have been tested at UNCLE and field tested at Springfields. The field trials demonstrated the need to perform full-scale equipment testing under controlled conditions prior to field deployment of operations and safeguards monitoring at additional plants. Currently, UNCLE is testing neutron-based monitoring for detection of noncompliant activities; however, gamma-ray source term monitoring is currently being explored complementary to the neutron detector in order to detect undeclared activities in a more timely manner. The preliminary results of gamma-ray source term modeling and monitoring at UNCLE are being analyzed as part of a comprehensive source term and detector benchmarking effort. Based on neutron source term detection capabilities, alternative gamma-based detection and monitoring methods will be proposed to more effectively monitor NUCP operations in verifying or detecting deviations from declared conversion activities.

  7. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect (OSTI)

    Pamela R. Cunningham

    1992-07-01T23:59:59.000Z

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  8. Final voluntary release assessment/corrective action report

    SciTech Connect (OSTI)

    NONE

    1996-11-12T23:59:59.000Z

    The US Department of Energy, Carlsbad Area Office (DOE-CAO) has completed a voluntary release assessment sampling program at selected Solid Waste Management Units (SWMUs) at the Waste Isolation Pilot Plant (WIPP). This Voluntary Release Assessment/Corrective Action (RA/CA) report has been prepared for final submittal to the Environmental protection Agency (EPA) Region 6, Hazardous Waste Management Division and the New Mexico Environment Department (NMED) Hazardous and Radioactive Materials Bureau to describe the results of voluntary release assessment sampling and proposed corrective actions at the SWMU sites. The Voluntary RA/CA Program is intended to be the first phase in implementing the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and corrective action process at the WIPP. Data generated as part of this sampling program are intended to update the RCRA Facility Assessment (RFA) for the WIPP (Assessment of Solid Waste Management Units at the Waste Isolation Pilot Plant), NMED/DOE/AIP 94/1. This Final Voluntary RA/CA Report documents the results of release assessment sampling at 11 SWMUs identified in the RFA. With this submittal, DOE formally requests a No Further Action determination for these SWMUs. Additionally, this report provides information to support DOE`s request for No Further Action at the Brinderson and Construction landfill SWMUs, and to support DOE`s request for approval of proposed corrective actions at three other SWMUs (the Badger Unit Drill Pad, the Cotton Baby Drill Pad, and the DOE-1 Drill Pad). This information is provided to document the results of the Voluntary RA/CA activities submitted to the EPA and NMED in August 1995.

  9. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 1999

    SciTech Connect (OSTI)

    DL Edwards; KD Shields; MJ Sula; MY Ballinger

    1999-09-28T23:59:59.000Z

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP--US Code of Federal Regulations, Title 40 Part 61, Subpart H). In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the US Department of Energy and operated by Pacific Northwest National Laboratory (Pacific Northwest) on the Hanford Site. Two of the facilities evaluated, 325 Building Radiochemical Processing Laboratory, and 331 Building Life Sciences Laboratory met state and federal criteria for continuous sampling of airborne radionuclide emissions. One other building, the 3720 Environmental Sciences Laboratory, was recognized as being in transition with the potential for meeting the continuous sampling criteria.

  10. Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment

    Broader source: Energy.gov [DOE]

    Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energy’s new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code

  11. Environmental assessment of oil degasification at four Strategic Petroleum Reserve facilities in Texas and Louisiana

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) proposes to treat gassy oil at four Strategic Petroleum Reserve (SPR) storage sites to lower the gas content of the stored crude oil and help ensure safe transfer of the oil during drawdown. The crude oil is stored underground in caverns created in salt domes. The degree of gassiness of the oil varies substantially among sites and among caverns within a site. This environmental assessment describes the proposed degasification operation, its alternatives, and potential environmental impacts. The need for degasification has arisen because over time, gases, principally methane and nitrogen, have migrated into and become dissolved in the stored crude oil. This influx of gas has raised the crude oil vapor pressure above limits required by safety and emission guidelines. When oil is drawn from the caverns, excess gases may come out of solution. Based on preliminary data from an ongoing sampling program, between 200 and 350 million of the 587 million barrels of crude oil stored at these four sites would require processing to remove excess gas. Degasification, a commonly used petroleum industry process, would be done at four crude oil storage facilities: Bryan Mound and Big Hill in Texas, and West Hackberry and Bayou Choctaw in Louisiana. DOE would use a turnkey services contract for engineering, procurement, fabrication, installation, operation and maintenance of two degasification plants. These would be installed initially at Bryan Mound and West Hackberry. Degasification would be complete in less than three years of continuous operations. This report summarizes the environmental impacts of this gasification process.

  12. Barge loading facilities in conjunction with wood chipping and sawlog mill, Tennessee River Mile 145. 9R: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    The purpose of this Environmental Assessment (EA) is to evaluate the environmental consequences of approving, denying, or adopting reasonable alternatives to a request for barge loading facilities. These facilities would serve a proposed wood chipping and sawlog products operation at Tennessee River Mile (TRM) 145.9, right descending bank, (Kentucky Lake), in Perry County, Tennessee. The site is located between Short Creek and Peters Landing. The applicant is Southeastern Forest Products, L.P. (SFP), Box 73, Linden, Tennessee and the proposed facilities would be constructed on or adjacent to company owned land. Portions of the barge terminal would be constructed on land over which flood easement rights are held by the United States of America and administered by the Tennessee Valley Authority (TVA). The US Army Corps of Engineers (CE) and TVA have regulatory control over the proposed barge terminal facilities since the action would involve construction in the Tennessee River which is a navigable water of the United States. The wood chipping and sawlog products facilities proposed on the upland property are not regulated by the CE or TVA. On the basis of the analysis which follows, it has been determined that a modified proposal (as described herein) would not significantly affect the quality of the human environment, and does not require the preparation of an environmental impact statement. 8 refs.

  13. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-08-31T23:59:59.000Z

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  14. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01T23:59:59.000Z

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  15. Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility

    SciTech Connect (OSTI)

    Alexander, D.J.; Johnson, V.G.

    1993-09-01T23:59:59.000Z

    In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

  16. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    D. Craig Cooper

    2011-11-01T23:59:59.000Z

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  17. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Permits and interim status (40 CFR part 270) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module presents an overview of the RCRA permitting process and the requirements that apply to treatment, storage, and disposal facilities (TSDFs) operating under interim status until a permit is issued. It lists the types of activities that do and do not require a permit. It provides CFR cites for definitions of existing hazardous waste facility and new hazardous waste facility and identifies CFR sections relevant to Part A and Part B permit information requirements and describes the difference between them. It outlines steps in the process from interim status to receipt of permit. It identifies the differences among permit modification classes, and lists the special forms of permits. It lists the permit-by-rule applications, status and eligibility requirements for interim status and the conditions for termination of interim status and lists the conditions for changes during interim status.

  18. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    SciTech Connect (OSTI)

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01T23:59:59.000Z

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

  19. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 1. Executive summary. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  20. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect (OSTI)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29T23:59:59.000Z

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

  1. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Other laws that interface with RCRA, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module provides a brief overview of some of the major environmental laws that interface with RCRA: Clean Air Act (CAA); Clean Water Act (CWA); Safe Drinking Water Act (SDWA); Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); Toxic Substances Control Act (TSCA); Pollution Prevention Act (PPA); and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund). It also covers regulations administered by other agencies that interface with RCRA, such as health and safety requirements under the Occupational Health and Safety Administration, and the Hazardous Materials Transportation Requirements administered by the Department of Transportation.

  2. NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center

    E-Print Network [OSTI]

    Antypas, Katie

    2013-01-01T23:59:59.000Z

    energy-efficient cooling required for future generations ofpower and/or cooling become inadequate to support future DOEcooling capacity. A new risk, CRT Facility Occupancy Delayed (5.6.3), has been created to address future

  3. An assessment of alternatives and technologies for replacing ozone- depleting substances at DOE facilities

    SciTech Connect (OSTI)

    Purcell, C.W.; Miller, K.B.; Friedman, J.R.; Rapoport, R.D.; Conover, D.R.; Hendrickson, P.L. [Pacific Northwest Lab., Richland, WA (United States); Koss, T.C. [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

    1992-10-01T23:59:59.000Z

    Title VI of the Clean Air Act, as amended, mandates a production phase-out for ozone-depleting substances (ODSs). These requirements will have a significant impact on US Department of Energy (DOE) facilities. Currently, DOE uses ODSs in three major activities: fire suppression (halon), refrigeration and cooling (chlorofluorocarbons [CFCs]), and cleaning that requires solvents (CFCs, methyl chloroform, and carbon tetrachloride). This report provides basic information on methods and strategies to phase out use of ODSs at DOE facilities.

  4. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives

    SciTech Connect (OSTI)

    Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Papageorgiou, A., E-mail: giou6@yahoo.g [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Kalogirou, S. [Waste to Energy Research and Technology Council (Greece)

    2010-07-15T23:59:59.000Z

    The main aim of this study is the integrated assessment of a proposed Waste-to-Energy facility that could contribute in the Municipal Solid Waste Management system of the Region of Central Greece. In the context of this paper alternative transfer schemes for supplying the candidate facility were assessed considering local conditions and economical criteria. A mixed-integer linear programming model was applied for the determination of optimum locations of Transfer Stations for an efficient supplying chain between the waste producers and the Waste-to-Energy facility. Moreover different Regional Waste Management Scenarios were assessed against multiple criteria, via the Multi Criteria Decision Making method ELECTRE III. The chosen criteria were total cost, Biodegradable Municipal Waste diversion from landfill, energy recovery and Greenhouse Gas emissions and the analysis demonstrated that a Waste Management Scenario based on a Waste-to-Energy plant with an adjacent landfill for disposal of the residues would be the best performing option for the Region, depending however on the priorities of the decision makers. In addition the study demonstrated that efficient planning is necessary and the case of three sanitary landfills operating in parallel with the WtE plant in the study area should be avoided. Moreover alternative cases of energy recovery of the candidate Waste-to-Energy facility were evaluated against the requirements of the new European Commission Directive on waste in order for the facility to be recognized as recovery operation. The latter issue is of high significance and the decision makers in European Union countries should take it into account from now on, in order to plan and implement facilities that recover energy efficiently. Finally a sensitivity check was performed in order to evaluate the effects of increased recycling rate, on the calorific value of treated Municipal Solid Waste and the gate fee of the candidate plant and found that increased recycling efforts would not diminish the potential for incineration with energy recovery from waste and neither would have adverse impacts on the gate fee of the Waste-to-Energy plant. In general, the study highlighted the need for efficient planning in solid waste management, by taking into account multiple criteria and parameters and utilizing relevant tools and methodologies into this context.

  5. Preliminary assessment report for Army Aviation Support Facility 2, Installation 25075, Westover Air Force Base, Chicopee, Massachusetts. Installation Restoration Program

    SciTech Connect (OSTI)

    Haffenden, R.; Flaim, S.

    1993-08-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Massachusetts Army National Guard (MAARNG) property known as the Army Aviation Support Facility 2 (AASF 2) near Chicopee, Massachusetts. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF 2 is a 10-acre site located in the western portion of Massachusetts, in the town of Chicopee, in the county of Hampden. The facilities included in this PA are Building 7400, adjacent paved areas, grassy areas, and the hazardous waste drum storage buildings. The environmentally significant operations (ESOS) associated with the property are (1) the waste drum storage area, (2) abandoned underground storage tanks (USTs), and (3) refueling activities.

  6. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19T23:59:59.000Z

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  7. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  8. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    SciTech Connect (OSTI)

    Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

    2012-04-20T23:59:59.000Z

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

  9. Pollution prevention opportunity assessment for MicroFab and SiFab facilities at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Gerard, Morgan Evan

    2011-12-01T23:59:59.000Z

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the MicroFab and SiFab facilities at Sandia National Laboratories/New Mexico in Fiscal Year 2011. The primary purpose of this PPOA is to provide recommendations to assist organizations in reducing the generation of waste and improving the efficiency of their processes and procedures. This report contains a summary of the information collected, the analyses performed, and recommended options for implementation. The Sandia National Laboratories Environmental Management System (EMS) and Pollution Prevention (P2) staff will continue to work with the organizations to implement the recommendations.

  10. A first French assessment of population exposure to tetrachloroethylene from small dry cleaning facilities

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    such as the dry cleaning machine technology (fitted or unfitted with a carbon adsorber) and the ventilation (air that only a few percent of these machines are equipped with a carbon adsorber, CA, to capture PCE vapours buildings housing a dry cleaning facility. These studies involved dry cleaning machines fitted with a Carbon

  11. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  12. Utah Department of Health Bureau of Health Facility Licensing, Certification and Resident Assessment

    E-Print Network [OSTI]

    Tipple, Brett

    Utah Department of Health Bureau of Health Facility Licensing, Certification and Resident of Utah Rule R432-31 (http://health.utah.gov/hflcra/forms.php) This is a physician order sheet based be effectively managed at current setting. ___ Limited additional interventions: Includes care above. May also

  13. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21T23:59:59.000Z

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  14. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  15. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    SciTech Connect (OSTI)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14T23:59:59.000Z

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  16. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09T23:59:59.000Z

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  17. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

    2013-01-26T23:59:59.000Z

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  18. Microsoft Word - 2012 RCRA CRP comment table.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Public Comments to Community Relations Plan Annual Summary of Comments for July 2011 through August 2012 Last saved on: 8242012 Annual Summary of...

  19. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-02-04T23:59:59.000Z

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  20. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2009-10-02T23:59:59.000Z

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  1. Report on the oversight assessment of the operational readiness review of the Replacement Tritium Facility at Savannah River Site

    SciTech Connect (OSTI)

    Lee, B.T.

    1993-03-01T23:59:59.000Z

    This report presents the results of an oversight assessment (OA) conducted by the US Department of Energy's (DOE) Office of Environment, Safety and Health (EH) of operational readiness review (ORR) activities for the Replacement Tritium Facility (RTF) located at Savannah River Site (SRS). The EH OA of this facility took place concurrently with an ORR conducted by the DOE Office of Defense Programs (DP). The DP ORR was conducted from January 19 through February 5, 1993. The EH OA was performed in accordance with the protocol and procedures specified in EH Program for Oversight Assessment of Operational Readiness Evaluations for Startups and Restarts,'' dated September 15, 1992. The EH OA Team evaluated the DP ORR to determine whether it was thorough and demonstrated sufficient inquisitiveness to verify that the implementation of programs and procedures adequately ensures the protection of worker safety and health. The EH OA Team performed its evaluation of the DP ORR in the following technical areas: occupational safety, industrial hygiene, and respiratory protection; fire protection; and chemical safety. In the areas of fire protection and chemical safety, the EH OA Team conducted independent vertical-slice reviews to confirm DP ORR results. Within each technical area, the EH OA Team reviewed the DP ORR Plan, including the Criteria Review and Approach Documents (CRADs); the qualifications of individual DP ORR team members; the performance of planned DP ORR activities; and the results of the DP ORR.

  2. Methodology for assessing alternative water-acquisition-and-use strategies for energy facilities in the American West

    SciTech Connect (OSTI)

    Shaw, J.J.; Adams, E.E.; Harleman, D.R.F.; Marks, D.H.

    1981-12-01T23:59:59.000Z

    A method for assessing alternative strategies for acquiring and using water at western energy plants was developed. The method was tested in a case study of cooling-water use for a hypothetical steam-electric power plant on the Crazy Woman Creek, an unregulated stream in Wyoming. The results from the case study suggest a careful analysis of reservoir design and water-right purchase strategies can reduce the cost of acquiring and using water at an energy facility. The method uses simulation models to assess the capital and operating costs and expected monthly water-consumption rates for different cooling-system designs. The method also uses reservoir operating algorithms to select, for a fixed cooling-system design, the optimal tradeoff between building a make-up water reservoir and purchasing water rights. These tradeoffs can be used to derive the firm's true demand curve for different sources of water. The analysis also reveals the implicit cost of selecting strategies that minimize conflicts with other water users. Results indicate that: (1) cooling ponds are as good as or preferred to wet towers because their costs already include provisions for storing water for use during the normally dry summer months and during occasional drought years; (2) the energy firm's demand for overall water consumption in the cooling system was found to be inversely proportional to both the cost of installing make-up water reservoirs, and the size of the energy facility; and (3) the firm's willingness to pay for existing rights is proportional to both the cost of installing reservoirs, and the size of the energy facility.

  3. Pacific Northwest Laboratory facilities radionuclide inventory assessment CY 1992-1993

    SciTech Connect (OSTI)

    Sula, M.J.; Jette, S.J.

    1994-09-01T23:59:59.000Z

    Assessments for evaluating compliance with airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAPs - U.S. Code of Federal Regulations, Title 40 Part 61, Subparts H and I) were performed for 33 buildings at the U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory on the Hanford Site, and for five buildings owned and operated by Battelle, Pacific Northwest Laboratories in Richland, Washington. The assessments were performed using building radionuclide inventory data obtained in 1992 and 1993. Results of the assessments are summarized in Table S.1 for DOE-PNL buildings and in Table S.2 for Battelle-owned buildings. Based on the radionuclide inventory assessments, four DOE-PNL buildings (one with two emission points) require continuous sampling for radionuclides per 40 CFR 61. None of the Battelle-owned buildings require continuous emission sampling.

  4. Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

  5. Benefits of Multi-day Industrial Center Assessments for Large Energy-Intensive Facilities

    E-Print Network [OSTI]

    Heffington, W.M.; Eggebrecht, J.A.

    that one week of data could be reviewed prior to the one-day assessment visit by the full team for insights into possible ARs. Installing and removing central loggers and sensors on the electrical leads to equipment is labor intensive and safety issues... call for use of an electrician. To address labor and safety issues, four additional plants were monitored for one week prior to each assessment visit with more easily installed, self-contained, sensor-logger units needing neither wiring nor a central...

  6. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 UNIT NAME: G-612-01 DATE: 011901 REGULATORY STATUS: SWMU LOCATION: East Wall of the C-612 facility APPROXIMATE DIMENSION: 8 ft. X 10 ft. FUNCTION: Generator Staging Area (GSA)...

  7. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 UNIT NAME: S-409-60 DATE: 1192001 REGULATORY STATUS: SWMU LOCATION: Downstairs, east-end, in the old hazardous waste treatment pilot facility room. APPROXIMATE DIMENSION: 5 ft....

  8. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 UNIT NAME: S-409-80 DATE: 1192001 REGULATORY STATUS: SWMU LOCATION: Downstairs, east-end, in the old hazardous waste treatment pilot facility room. APPROXIMATE DIMENSION: 10...

  9. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    85 UNIT NAME: G-409-25 DATE: 011901 REGULATORY STATUS: SWMU LOCATION: Downstairs, east-end, in the old hazardous waste treatment pilot facility room. APPROXIMATE DIMENSION: 5 ft....

  10. Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility

    SciTech Connect (OSTI)

    Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

    1986-06-01T23:59:59.000Z

    This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors.

  11. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 5. Human health risk assessment (HHRA): Evaluation of potential risks from multipathway exposure to emissions. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Human Health Risk Assessment (HHRA) portion of the WTI Risk Assessment involves the integration of information about the facility with site-specific data for the surrounding region and population to characterize the potential human health risks due to emissions from the facility. The estimation of human health risks is comprised of the following general steps: (1) identification of substances of potential concern; (2) estimation of the nature and magnitude of chemical releases from the WTI facility; (3) prediction of the atmospheric transport of the emitted contaminants; (4) determination of the types of adverse effects associated with exposure to the substances of potential concern (referred to as hazard identification), and the relationship between the level of exposure and the severity of any health effect (referred to as dose-response assessment); (5) estimation of the magnitude of exposure (referred to as exposure assessment); and (6) characterization of the health risks associated with exposure (referred to as risk characterization).

  12. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 6. Screening ecological risk assessment

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Screening Ecological Risk Assessment (SERA) includes an evaluation of available biotic information from the site vicinity to provide a preliminary description of potential ecological receptors (e.g., rare, threatened and endangered species; migratory birds; and important game species), and important ecological habitats (e.g., wetland areas). A conceptual site model is developed that describe show stressors associated with the WTI facility might affect the ecological components in the surrounding environment through the development and evaluation of specific ecological endpoints. Finally, an estimate of the potential for current and/or future adverse impacts to the biotic component of the environment is provided, based on the integration of potential exposures of ecological receptors to WTI emissions and toxicological threshold values.

  13. RCRA Waste Minimization and Recycling Initiatives at the Health Center (Rev. 12/09)

    E-Print Network [OSTI]

    Kim, Duck O.

    RCRA Waste Minimization and Recycling Initiatives at the Health Center 1/11/08 (Rev. 12/09) PURPOSE, with environmentally-sound recycling as a second and higher priority over treatment and disposal. Section 3002(b feasible; pollution that cannot be prevented should be recycled in an environmentally safe manner, whenever

  14. Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of Training April 30,WindAssessment of Financial

  15. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect (OSTI)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01T23:59:59.000Z

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  16. RELAP-5/MOD 3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    SciTech Connect (OSTI)

    Paul D. Bayless

    2003-01-01T23:59:59.000Z

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior.

  17. RELAP/MOD3.2 Assessment Using an 11% Upper Plenum Break Experiment in the PSB Facility

    SciTech Connect (OSTI)

    Bayless, P.D.

    2003-01-17T23:59:59.000Z

    The RELAP/MOD3.2 computer code has been assessed using an 11% upper plenum break experiment in the PSB test facility at the Electrogorsk Research and Engineering Center. This work was performed as part of the U.S. Department of Energy's International Nuclear Safety Program, and is part of the effort addressing the capability of the RELAP5/MOD3.2 code to model transients in Soviet-designed reactors. Designated VVER Standard Problem PSBV1, the test addressed several important phenomena related to VVER behavior that the code needs to simulate well. The code was judged to reasonably model the phenomena of two-phase flow natural circulation in the primary coolant system, asymmetric loop behavior, leak flow, loop seal clearance in the cold legs, heat transfer in a covered core, heat transfer in a partially covered core, pressurizer thermal-hydraulics, and integral system effects. The code was judged to be in minimal agreement with the experiment data for the mixture level and entrainment in the core, leading to a user recommendation to assess the sensitivity of transient calculations to the interphase drag modeling in the core. No judgments were made for the phenomena of phase separation without mixture level formation, mixture level and entrainment in the steam generators, pool formation in the upper plenum, or flow stratification in horizontal pipes because either the phenomenon did not occur in the test or there were insufficient measurements to characterize the behavior.

  18. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  19. Integrating natural resource damage assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many U.S. Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  20. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many US Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  1. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Bascietto, J.J. [Dept. of Energy, Washington, DC (US). RCRA/CERCLA Div.; Dunford, R.W. [Research Triangle Inst., Research Triangle Park, NC (US); Sharples, F.E.; Suter, G.W. II [Oak Ridge National Lab., TN (US)

    1993-06-01T23:59:59.000Z

    Environmental restoration activities are currently under way at several sites owned by the US Department of Energy (DOE) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120(a) of the Superfund Amendments and Reauthorization Act also subjects DOE to liability under Section 107 of CERCLA for natural resource damages resulting from hazardous substance releases at its sites. The Natural Resource Damage Assessment (NRDA) process, by which natural resource injuries are determined and compensatory monetary damages are calculated, is not well known or understood by DOE staff and contractors involved in environmental restoration activities. Nevertheless, natural resource liabilities are potentially a significant source of additional monetary claims for CERCLA hazardous substance releases. This paper describes the requirements of NRDA and explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, in order to more quickly restore environmental services at the lowest total cost to the public. The first section of the paper explains the statutory and regulatory mandates for the NRDA process. The second section briefly describes the four phases of the NRDA process, while the third section examines the three steps in the assessment phase in considerable detail. Finally, the last section focuses on the integration of the CERCLA and NRDA processes.

  2. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume IV describes the air dispersion model used to estimate air concentrations and particle deposition, as well as the results of the modeling exercise.

  3. Environmental Assessment for the Proposed Increase in the Facility Capacity and Petroleum Inventory at the Strategic Petroleum Reserve's Bryan Mound Storage Facility, Texas

    SciTech Connect (OSTI)

    N /A

    2004-11-24T23:59:59.000Z

    The DOE proposes that the authorized capacity of the BM facility and, upon Administration authorization, the petroleum inventory be increased by 3.5 million m{sup 3} (22 MMB). The proposed action may be subdivided into two distinct actions, the action to increase the facility capacity and the action to increase the facility's petroleum inventory, which is conditioned upon future authorization by the Administration. A portion of the proposed increase in facility capacity would be obtained via modification of the existing internal cavern infrastructure. Specifically, of the proposed increase in cavern capacity, up to 1.4 million m{sup 3} (8.8 MMB) would result from adjustment of the suspended casing of 10 caverns, thereby increasing the working cavern volumes without changing the cavern dimensions. The balance of the proposed increase to facility capacity, 2.1 million m{sup 3} (13.2 MMB), would result from administrative activities including the return of cavern 112 to service at its full capacity [approximately 1.9 million m{sup 3} (12 MMB)] and volume upgrades of at least 0.19 million m{sup 3} (1.2 MMB) based on new information obtained during sonar investigation of caverns.

  4. Texas Facilities Commission's Facility Management Strategic Plan

    E-Print Network [OSTI]

    Ramirez, J. A.

    , Texas, November 17 - 19, 2009 Facility Strategic Plan ?High Performance Building Approach ? Envelope ? Load Reduction ? (Re)Design ? Advanced Tactics ?Building Automation ? Sub-metering ? Controls ?Commissioning ? Assessment ? Continuous ?Facility... International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 Commissioning Assessment ?30 buildings ?CC Opportunities ?O&M Improvements ?Energy/Capital Improvement Opportunities ?Quick Payback Implementation ?Levering DM...

  5. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect (OSTI)

    NONE

    1988-04-01T23:59:59.000Z

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  6. G:\\ESS\\248 RCRA\\SWMU Report Cor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND SWMU ASSESSMENT REPORT UNIT NUMBER: 450 UNIT NAME: S-710-32 DATE: Original: 01192001 Revised: 122303 REGULATORY STATUS: SWMU LOCATION: Attic of the C-710 building....

  7. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    SciTech Connect (OSTI)

    Chase, J.

    2000-06-14T23:59:59.000Z

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events.

  8. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01T23:59:59.000Z

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  9. RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 cfr part 261) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. It analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of `hazardous waste.` It explains concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the `mixture` and `derived-from` rules, the `contained-in` policy, and the hazardous waste identification rules (HWIR).

  10. Calcined solids storage facility closure study

    SciTech Connect (OSTI)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others] [and others

    1998-02-01T23:59:59.000Z

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  11. Addressing Facility Needs for Concrete Assessment Using Ultrasonic Testing: Mid-year Report

    SciTech Connect (OSTI)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Payan, Cedric [EES-17: GEOPHYSICS, Visitor; Roberts, Peter M. [Los Alamos National Laboratory

    2012-03-28T23:59:59.000Z

    The UFD Gap Analysis to Support Extended Storage of Used Nuclear Fuel (June 30, 2011) emphasizes the need for the development of monitoring techniques and technologies for dry storage cask materials. A high priority is given to the development of 'systems for early detection of confinement boundary degradation.' This requires both new techniques for monitoring and inspection, as well as new measurable parameters to quantify mechanical degradation. The use of Nonlinear Elastic Wave Spectroscopy (NEWS) has been shown to provide sensitive parameters correlating to mechanical degradation in a wide variety of materials. Herein we report upon recent research performed to address the high priority of concrete degradation using a selection of these techniques and compare to a ASTM standard ultrasonic technique. Also reported are the near term plans to continue this research in the remaining FY and into the coming years. This research was conducted at Los Alamos National Laboratory (LANL) in the Acoustics Lab of the Geophysics group in the Earth and Environmental Sciences division, and in collaboration with the Laboratory for Nondestructive Evaluation at the University of the Mediterranean (Aix en Provence, France) and the Electrical Power Research Institute (EPRI). The objective of this research project was to determine the feasibility of using an NDE technique based on non-linear ultrasound for determining the depth and degree of microcracking in the near surface of concrete and to assess the degree of sensitivity of such technique. This objective is reached by the means of combining linear and nonlinear measurements, associated with numerical simulation. We first study the global effect of thermal damage on concrete's linear and nonlinear properties by resonance inspection techniques. We show that standard pulse wave speed techniques are not relevant to extract mechanical properties of concrete. The high sensitivity of measured nonlinearity is shown and serves as a validation tool for the rest of the study, i.e., probing the material nonlinearity at various depths through the use of Time Reversal Elastic Nonlinearity Diagnostic (TREND). The basic idea of probing the material nonlinearity at various depths by changing the frequency is validated by exhibiting a similar trend as nonlinear resonance measurements. We address at the end of this report, the potentialities of applying these procedures to real concrete structures.

  12. EPA - RCRA Orientation Manual 2011: Resource Conservation and Recovery Act

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2Ltd Place:Notice| Open Energy

  13. Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.

  14. FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS

    SciTech Connect (OSTI)

    Butcher, T.; Swingle, R.; Crapse, K.; Millings, M.; Sink, D.

    2011-01-01T23:59:59.000Z

    The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SA baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, 3.3 and 3.4, respectively. Section 4.0 contains the CA annual determination similarly organized. SRS low-level waste management is regulated under DOE Order 435.1 (DOE, 1999a) and is authorized under a DAS as a federal permit. The original DAS was issued by the DOE-Headquarters (DOE-HQ) on September 28, 1999 (DOE, 1999b) for the operation of the ELLWF and the Saltstone Disposal Facility (SDF). The 1999 DAS remains in effect for the regulation of the SDF. Those portions of that DAS applicable to the ELLWF were superseded by revision 1 of the DAS on July 15, 2008 (DOE, 2008b). The 2008 PA and DAS were officially implemented by the facility on October 31, 2008 and are the authorization documents for this FY2010 Annual Review. Department of Energy Headquarters approval of the 2008 DAS was subject to numerous conditions specified in the document. Two of those conditions are to update the ELLWF closure plan and monitoring plan to align with the conceptual model analyzed in the PA. Both of these conditions were met with the issuance of the PA Monitoring Plan (Millings, 2009a) and the Closure Plan (Phifer et al, 2009a). The PA Monitoring Plan was approved by DOE on July 22, 2009 and the Closure Plan was approved by DOE on May 21, 2009. Both will be updated as needed to remain consistent with the PA. The DAS also specifies that the maintenance plan include activities to resolve each of the secondary issues identified in the DOEHQ review of the 2008 PA that were not completely addressed either with supplemental material provided to the review team or in final revisions to the PA. These outstanding issues were originally documented in the 2008 update of the PA/CA Maintenance Plan (WSRC, 2008a) and in subsequent PA/CA Maintenance Plans (most recently SRNS, 2010a) as required and are actively being worked.

  15. Responding to regulatory permitting requirements and notices of deficiencies for open burning/open detonation (OB/OD) treatment facilities

    SciTech Connect (OSTI)

    Murphy, K.D.; Rajic, P.I.; Tope, T.J. [Radian Corp., Oak Ridge, TN (United States); Dandeneau, M. [HQ ACC/CEVC, Langley AFB, VA (United States); Johnson, M.B. [Army Dugway Proving Ground, UT (United States)

    1995-12-31T23:59:59.000Z

    Manufacturers and users of energetic material [i.e., propellants, explosives, pyrotechnics (PEP)] generate unserviceable, obsolete, off-specification, and damaged items that are characterized as reactive waste. These items must be safely treated and disposed of or reclaimed/recycled, thereby controlling existing waste inventories at manageable levels. The most commonly used disposal and treatment method, particularly at US Department of Defense (DoD) installations, is open burning/open detonation (OB/OD). However, regulatory constraints and the inability of operators to obtain permits required for treating these waste has led to the recent reductions and limited use of OB/OD treatment at many installations. The discussion herein includes human health and environmental protection concerns that must be addressed in Resource Conservation and Recovery Act (RCRA) Subpart X permit applications. Determining the potential impacts of OB/OD on these areas of concern was performed using data obtained from the Dugway Proving Grounds Propellant, Explosive and Pyrotechnic Thermal Treatment Evaluation and Test Facility, commonly referred to as the BangBox. Specifically, data from the testing of munition items in the BangBox facility were used to support waste characterization, air modeling, and risk assessments required to resolve notice of deficiencies and prepare permit applications for OB/OD facilities at US Air Force (USAF) installations.

  16. Facility Safeguardability Assessment Report

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclear Security21698 Prepared for

  17. Post-Closure RCRA Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch

    SciTech Connect (OSTI)

    Barnett, D BRENT.; Williams, Bruce A.; Chou, Charissa J.; Hartman, Mary J.

    2006-03-17T23:59:59.000Z

    The purpose of this plan is to provide a post-closure groundwater monitoring program for the 216-S-10 Pond and Ditch (S-10) treatment, storage, and/or disposal (TSD) unit. The plan incorporates the sum of knowledge about the potential for groundwater contamination to originate from the S-10, including groundwater monitoring results, hydrogeology, and operational history. The S-10 has not received liquid waste since October 1991. The closure of S-10 has been coordinated with the 200-CS-1 source operable unit in accordance with the Tri-Party Agreement interim milestones M-20-39 and M-15-39C. The S-10 is closely situated among other waste sites of very similar operational histories. The proximity of the S-10 to the other facilities (216-S-17 pond, 216-S-11 Pond, 216-S-5,6 cribs, 216-S-16 ditch and pond, and 216-U-9 ditch) indicate that at least some observed groundwater contamination beneath and downgradient of S-10 could have originated from waste sites other than S-10. Hence, it may not be feasible to strictly discriminate between the contributions of each waste site to groundwater contamination beneath the S-10. A post-closure groundwater monitoring network is proposed that will include the drilling of three new wells to replace wells that have gone dry. When completed, the revised network will meet the intent for groundwater monitoring network under WAC 173-303-645, and enable an improved understanding of groundwater contamination at the S-10. Site-specific sampling constituents are based on the dangerous waste constituents of concern relating to RCRA TSD unit operations (TSD unit constituents) identified in the Part A Permit Application. Thus, a constituent is selected for monitoring if it is: A dangerous waste constituent identified in the Part A Permit Application, or A mobile decomposition product (i.e., nitrate from nitrite) of a Part A constituent, or A reliable indicator of the site-specific contaminants (i.e., specific conductance). Using these criteria, the following constituent list and sampling schedule is proposed: Constituent; Sampling Frequency Site-Specific Parameters; Hexavalent chromium (a); Semiannual Chloride; Semiannual Fluoride; Semiannual Nitrate; Semiannual Nitrite; Semiannual Specific conductance (field)(a); Semiannual Ancillary Parameters; Anions; Annual Alkalinity Annual Metals, (in addition to chromium); Annual pH (field) Semiannual Temperature (field); Semiannual Turbidity (field) Semiannual (a). These constituents will be subject to statistical tests after background is established. It will be necessary to install new monitoring wells and accumulate background data on the groundwater from those wells before statistical comparisons can be made. Until then, the constituents listed above will be evaluated by tracking and trending concentrations in all wells and comparing these results with the corresponding DWS or Hanford Site background concentration for each constituent. If a comparison value (background or DWS) for a constituent is exceeded, DOE will notify Ecology per WAC 173-303-645 (9) (g) requirements (within seven days or a time agreed to between DOE and Ecology).

  18. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  19. Wetland assessment of the effects of construction and operation of a depleteduranium hexafluoride conversion facility at the Portsmouth, Ohio, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation, and potential loss of hydrology necessary to sustain wetland conditions. Construction at Locations B or C would not result in direct impacts to wetlands. However, the hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 are set forth in 10 CFR Part 1022. The impacts at Location A may potentially be avoided by an alternative routing of the entrance road, or mitigation may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the State of Ohio. Unavoidable impacts to isolated wetlands may require an Isolated Wetlands Permit from the Ohio Environmental Protection Agency. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to wetlands are anticipated to be negligible to minor for the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found in this part of Ohio, which in many cases involve previously disturbed habitats.

  20. Annual summary of Immobilized Low-Activity Waste (ILAW) Performance Assessment for 2003 Incorporating the Integrated Disposal Facility Concept

    SciTech Connect (OSTI)

    MANN, F M

    2003-09-01T23:59:59.000Z

    To Erik Olds 09/30/03 - An annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

  1. RADIONUCLIDE DATA PACKAGE FOR PERFORMANCE ASSESSMENT CALCULATIONS RELATED TO THE E-AREA LOW-LEVEL WASTE FACILITY AT THE SAVANNAH RIVER SITE.

    SciTech Connect (OSTI)

    Cook, J

    2007-03-20T23:59:59.000Z

    The Savannah River Site disposes of low-level radioactive waste within on-site engineered disposal facilities. The Savannah River Site must demonstrate that these disposals meet the requirements of DOE Order 435 . 1 through a process known as performance assessment (PA). The objective of this document is to provide the radionuclide -specific data needed for the PA calculations . This work is part of an on-going program to periodically review and update existing PA work as new data becomes available. Revision of the E -Area Low-Level Waste Facility PA is currently underway. The number of radionuclides selected to undergo detailed analysis in the PA is determined by a screening process. The basis of this process is described. Radionuclide-specific data for half-lives, decay modes, daughters, dose conversion factors and groundwater concentration limits are presented with source references and methodologies.

  2. US Department of Energy`s Federal Facility Compliance Act Chief Financial Officer`s Report to Congress for fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Federal Facility Compliance Act of 1992 (FFCAct) (Public Law 102-386) was enacted into law on October 6, 1992. In addition to amending the Resource Conservation and Recovery Act (RCRA), the FFCAct requires the US Department of Energy (DOE) to prepare an annual report from the Chief Financial Officer to the Congress on compliance activities undertaken by the DOE with regard to mixed waste streams and provide an accounting of the fines and penalties imposed upon the DOE for violations involving mixed waste. This document has been prepared to report the necessary information. Mixed waste is defined by the FFCAct to include those wastes containing both hazardous waste as defined in the RCRA and source, special nuclear, or byproduct material subject to the Atomic Energy Act of 1954, as amended (42 U.S.C. Section 2001 et seq.). Section 2 of this report briefly summarizes DOE Headquarters` activities conducted during Fiscal Year 1993 (FY 1993) to comply with the requirements of the FFCAct. Section 3 of this report provides an overview of the site-specific RCRA compliance activities, relating to mixed waste streams, conducted in FY 1993 for those sites that currently generated or store mixed waste that are subject to regulation under RCRA. Section 4 provides information on notifications of alleged RCRA violations involving mixed waste imposed upon the DOE during FY 1993 and an accounting of any fines and penalties associated with these violations. Appendix A provides site-specific summaries of RCRA compliance activities, relating to mixed waste streams, conducted in FY 1993 for those sites that currently generate or store mixed waste that are subject to regulation under RCRA.

  3. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  4. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  5. Corrective action management unit application for the Environmental Restoration Disposal Facility

    SciTech Connect (OSTI)

    Evans, G.C.

    1994-06-01T23:59:59.000Z

    The Environmental Restoration Disposal Facility (ERDF) is to accept both CERCLA (EPA-regulated) and RCRA (Ecology-regulated) remediation waste. The ERDF is considered part of the overall remediation strategy on the Hanford Site, and as such, determination of ERDF viability has followed both RCRA and CERCLA decision making processes. Typically, determination of the viability of a unit, such as the ERDF, would occur as part of record of decision (ROD) or permit modification for each remediation site before construction of the ERDF. However, because construction of the ERDF may take a significant amount of time, it is necessary to begin design and construction of the ERDF before final RODs/permit modifications for the remediation sites. This will allow movement of waste to occur quickly once the final remediation strategy for the RCRA and CERCLA past-practice units is determined. Construction of the ERDF is a unique situation relative to Hanford Facility cleanup, requiring a Hanford Facility specific process be developed for implementing the ERDF that would satisfy both RCRA and CERCLA requirements. While the ERDF will play a significant role in the remediation process, initiation of the ERDF does not preclude the evaluation of remedial alternatives at each remediation site. To facilitate this, the January 1994 amendment to the Tri-Party Agreement recognizes the necessity for the ERDF, and the Tri-Party Agreement states: ``Ecology, EPA, and DOE agree to proceed with the steps necessary to design, approve, construct, and operate such a ... facility.`` The Tri-Party Agreement requires the DOE-RL to prepare a comprehensive ``package`` for the EPA and Ecology to consider in evaluating the ERDF. The package is to address the criteria listed in 40 CFR 264.552(c) for corrective action management unit (CAMU) designation and a CERCLA ROD. This CAMU application is submitted as part of the Tri-Party Agreement-required information package.

  6. Summary environmental site assessment report for the U.S. Department of Energy Oxnard Facility, Oxnard, California

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This report summarizes the investigations conducted by Rust Geotech at the U.S. Department of Energy (DOE) Oxnard facility, 1235 East Wooley Road, Oxnard, California. These investigations were designed to locate, identify, and characterize any regulated contaminated media on the site. The effort included site visits; research of ownership, historical uses of the Oxnard facility and adjacent properties, incidences of and investigations for contaminants on adjacent properties, and the physical setting of the site; sampling and analysis; and reporting. These investigations identified two friable asbestos gaskets on the site, which were removed, and nonfriable asbestos, which will be managed through the implementation of an asbestos management plan. The California primary drinking water standards were exceeded for aluminum on two groundwater samples and for lead in one sample collected from the shallow aquifer underlying the site; remediation of the groundwater in this aquifer is not warranted because it is not used. Treated water is available from a municipal water system. Three sludge samples indicated elevated heavy metals concentrations; the sludge must be handled as a hazardous waste if disposed. Polychlorinated biphenyls (PCBs) were detected at concentrations below remediation criteria in facility soils at two locations. In accordance with U.S. Environmental Protection Agency (EPA) and State of California guidance, remediation of the PCBs is not required. No other hazardous substances were detected in concentrations exceeding regulatory limits.

  7. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994

    SciTech Connect (OSTI)

    Hendrickson, S.M. [ed.] [Lawrence Livermore National Lab., CA (United States)] [ed.; Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis] [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1994-03-01T23:59:59.000Z

    This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  8. Finding of No Significant Impact for the Environmental Assessment for the Strategic Petroleum Reserve West Hackberry Facility Raw Water Intake Pipeline Replacement Cameron and Calcasieu Parishes, Louisiana

    SciTech Connect (OSTI)

    N /A

    2004-08-31T23:59:59.000Z

    DOE has prepared an Environmental Assessment (EA), DOE/EA-1497, for the proposed replacement of the existing 107 centimeter (cm) [42 inch (in)] 6.87 kilometer (km) [4.27 mile (mi)] raw water intake pipeline (RWIPL). This action is necessary to allow for continued, optimum operations at the West Hackberry facility (main site/facility). The EA described the proposed action (including action alternatives) and three alternatives to the proposed action. The EA evaluated only the potential environmental consequences of the proposed action (one action alternative), and Alternative 3, which consisted of the No Build Action that is required by 10 CFR 1021.321(c). Based on the analysis in DOE/EA-1497, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting humans or the natural environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, an Environmental Impact Statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI). To further minimize impacts to environmental media, the DOE will also implement a Mitigation Action Plan (MAP) for this action. The MAP is included as Appendix F of this EA, which is appended to this FONSI. The Energy Policy and Conservation Act of 1975 (EPCA), as amended, authorizes the creation of the Strategic Petroleum Reserve (SPR) to store crude oil to reduce the United States' vulnerability to energy supply disruptions. Crude oil is stored in geologic formations, or salt domes, located under these facilities. The purpose of this proposed project is to construct a new RWIPL at the main site to replace the existing RWIPL which services this facility.

  9. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2007

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Barfuss, Brad C.; Gervais, Todd L.

    2008-01-01T23:59:59.000Z

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP – U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection – Air Emissions. In these NESHAP assessments, potential unabated offsite doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2007.

  10. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. M.

    2011-05-13T23:59:59.000Z

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.

  11. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  12. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System.

  13. Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

    SciTech Connect (OSTI)

    Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11T23:59:59.000Z

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

  14. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.

  15. Consideration of liners and covers in performance assessments

    SciTech Connect (OSTI)

    Phifer, Mark A. [Savannah River National Laboratory, Aiken, SC (United States); Seitz, Robert R. [Savannah River National Laboratory, Aiken, SC (United States); Suttora, Linda C. [USDOE Enviromental Management, Washington, DC (United States)

    2014-09-18T23:59:59.000Z

    On-site disposal cells are in use and being considered at several United States Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the U.S. Environmental Protection Agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management due to the radioactive waste. The USDOE-Environmental Management Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these CERCLA disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to CERCLA risk assessments and DOE Order 435.1 performance assessments in support of a Record of Decision and Disposal Authorization Statement, respectively. One of the issues considered by the working group, which is addressed in this report, was how to appropriately consider the performance of covers and liners/leachate collections systems in the context of a DOE Order 435.1 performance assessment (PA). This same information may be appropriate for consideration within CERCLA risk assessments for these facilities. These OSDCs are generally developed to meet hazardous waste (HW) disposal design standards under the Resource Conservation and Recovery Act (RCRA) as well as the DOE Order 435.1 performance based standards for disposal of radioactive waste. To meet the standards for HW, the facilities typically include engineered covers and liner/leachate collection systems. Thus, when considering such facilities in the context of a DOE Order 435.1 PA, there is a need to address the evolution of performance of covers and liner/leachate collection systems in the context of meeting a performance standard considering time frames of 1,000 years for compliance and potentially thousands of years based on the wastes to test the robustness of the system. Experience has shown that there are a range of expectations and perspectives from the different regulators involved at different sites when reviewing assumptions related to cover and liner/leachate collection system performance. However for HW disposal alone under RCRA the design standards are typically considered sufficient by the regulators without a requirement to assess long-term performance thus avoiding the need to consider the details addressed in this report. This report provides suggestions for a general approach to address covers and liners/leachate collection systems in a DOE Order 435.1 PA and how to integrate assessments with defense-in-depth considerations such as design, operations, and waste acceptance criteria to address uncertainties. The emphasis is on water balances and management in such assessments. Specific information and references are provided for details needed to address the evolution of individual components of cover and liner/leachate collection systems. This information was then synthesized into suggestions for best practices for cover and liner system design and examples of approaches to address the performance of covers and liners as part of a performance assessment of the disposal system. Numerous references are provided for sources of information to help describe the basis for performance of individual components of cover and liner systems.

  16. A methodology for assessing alternative water acquisition and use strategies for energy facilities in the American West

    E-Print Network [OSTI]

    Shaw, John J.

    1981-01-01T23:59:59.000Z

    This report develops a method for assessing alternative strategies for acquiring and using water at western energy plants. The method has been tested in a case study of cooling water use for a hypothetical steam electric ...

  17. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 7. Accident analysis; selection and assessment of potential release scenarios

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    In this part of the assessment, several accident scenarios are identified that could result in significant releases of chemicals into the environment. These scenarios include ruptures of storage tanks, large magnitude on-site spills, mixing of incompatible wastes, and off-site releases caused by tranpsortation accidents. In evaluating these scenarios, both probability and consequence are assessed, so that likelihood of occurrence is coupled with magnitude of effect in characterizing short term risks.

  18. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    SciTech Connect (OSTI)

    D. F. Emer

    2001-03-01T23:59:59.000Z

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the trenches.

  19. Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility

    SciTech Connect (OSTI)

    Cherkas, Dmytro

    2011-10-01T23:59:59.000Z

    As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

  20. Process waste assessment for solid low-level radioactive waste and solid TRU waste

    SciTech Connect (OSTI)

    Haney, L. [Westinghouse Savannah River Co., Aiken, SC (United States); Gamble, G.S. [Law Environmental, Inc., Kennesaw, GA (United States)

    1994-04-01T23:59:59.000Z

    Process Waste Assessments (PWAs) are a necessary and important part of a comprehensive waste management plan. PWAs are required by Federal RCRA regulations, certain state regulations and Department of Energy Orders. This paper describes the assessment process and provides examples used by Law Environmental, Inc., in performing numerous PWAs at the Savannah River Site in Aiken, SC.

  1. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    SciTech Connect (OSTI)

    Sasser, K.

    1994-06-01T23:59:59.000Z

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  2. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect (OSTI)

    Not Available

    2004-07-01T23:59:59.000Z

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  3. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  4. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect (OSTI)

    None

    1998-11-17T23:59:59.000Z

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  5. RCRA and Operational Monitoring (ROM). Multi-Year Program Plan and Fiscal Year 95 Work Plan WBS 1.5.3

    SciTech Connect (OSTI)

    Not Available

    1994-09-17T23:59:59.000Z

    This document contains information concerning the RCRA and Operational Monitoring Program at Hanford Reservation. Information presented includes: Schedules for ground water monitoring activities, program cost baseline, program technical baseline, and a program milestone list.

  6. LANSCE | Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LINAC Outreach Affiliations Visiting LANSCE Facilities Isotope Production Facility Lujan Neutron Scattering Center MaRIE Proton Radiography Ultracold Neutrons Weapons Neutron...

  7. RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 CFR part 261) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. Analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste. It explains the following concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the mixture and derived-from rules, the contained-in policy, and the Hazardous Waste Identification Rule (HWIR).

  8. RCRA, superfund and EPCRA hotline training module. Introduction to: Solid and hazardous waste exclusions (40 cfr section 261.4) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The Resources Conservation and Recovery Act`s (RCRA) Subtitle C hazardous waste management program is a comprehensive and carefully constructed system to ensure wastes are managed safely and lawfully. This program begins with a very specific, formal process to categorize wastes accurately and appropriately called waste identification. The module explains each waste exclusion and its scope, so you can apply this knowledge in determining whether a given waste is or is not regulated under RCRA Subtitle C.

  9. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford, Washington

    SciTech Connect (OSTI)

    Dresel, P. EVAN

    2007-01-19T23:59:59.000Z

    This ICN updates the current wells in the monitoring network and replaces Appendix A in the original report.

  10. Interim Status Groundwater Monitoring Plan for Low-Level Waste Management Areas 1 to 4, RCRA Facilities, Hanford, Washington

    SciTech Connect (OSTI)

    Dresel, P. EVAN

    2006-07-31T23:59:59.000Z

    This ICN updates the current wells in the monitoring network and replaces Appendix A in the original report.

  11. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

  12. PRTR/309 building nuclear facility preliminary

    SciTech Connect (OSTI)

    Cornwell, B.C.

    1994-12-08T23:59:59.000Z

    The hazard classification of the Plutonium Recycle Test Reactor (PRTR)/309 building as a ``Radiological Facility`` and the office portions as ``Other Industrial Facility`` are documented by this report. This report provides: a synopsis of the history and facility it`s uses; describes major area of the facility; and assesses the radiological conditions for the facility segments. The assessment is conducted using the hazard category threshold values, segmentation methodology, and graded approach guidance of DOE-STD-1027-92.

  13. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    SciTech Connect (OSTI)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F. [Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States)

    2007-05-15T23:59:59.000Z

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures ({approx_equal}4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT ({approx_equal}790 atm) in the inner shell, strict concentricity requirements on the two shells (<3 {mu}m), development of nanoporous (<100 nm cell size) low-density (<100 mg/cc) metallic foams for structural support of the inner shell and hydrodynamic instability mitigation, and effective control of hydrodynamic instabilities on the high-Atwood-number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition designs and required materials science advances at the nanoscale are described herein. Two new ignition designs that use rugby-shaped vacuum hohlraums are presented that utilize either 1 or 2 MJ of laser energy at 3{omega}. The capability of the National Ignition Facility to generate the requested 2 MJ reverse-ramp pulse shape for DS ignition is expected to be comparable to the planned high-contrast ({approx_equal}100) pulse shape at 1.8 MJ for the baseline cryogenic target. Nanocrystalline, high-strength, Au-Cu alloy inner shells are under development using electrochemical deposition over a glass mandrel, exhibiting tensile strengths well in excess of 790 atm. Novel, low-density (85 mg/cc) copper foams have recently been demonstrated using 10 mg/cc SiO{sub 2} nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010.

  14. Facility Microgrids

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01T23:59:59.000Z

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  15. Environmental Assessment for the Strategic Petroleum Reserve West Hackberry Facility Raw Water Intake Pipeline Replacement Cameron and Calcasieu Parishes, Louisiana

    SciTech Connect (OSTI)

    N /A

    2004-08-31T23:59:59.000Z

    The proposed action and three alternatives, including a No Build alternative, were evaluated along the existing RWIPL alignment to accommodate the placement of the proposed RWIPL. Construction feasibility, reasonableness and potential environmental impacts were considered during the evaluation of the four actions (and action alternatives) for the proposed RWIPL activities. Reasonable actions were identified as those actions which were considered to be supported by common sense and sound technical principles. Feasible actions were those actions which were considered to be capable of being accomplished, practicable and non-excessive in terms of cost. The evaluation process considered the following design specifications, which were determined to be important to the feasibility of the overall project. The proposed RWIPL replacement project must therefore: (1) Comply with the existing design basis and criteria, (2) Maintain continuity of operation of the facility during construction, (3)Provide the required service life, (4) Be cost effective, (5)Improve the operation and maintenance of the pipeline, and (6) Maintain minimal environmental impact while meeting the performance requirements. Sizing of the pipe, piping construction materials, construction method (e.g., open-cut trench, directional drilling, etc.) and the acquisition of new Right-of-Way (ROW) were additionally evaluated in the preliminary alternative identification, selection and screening process.

  16. Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

  17. Preliminary assessment report for Bee Caves Armory (former Nike BG-80 Fire Control Facility), Installation 48055, Austin, Texas. Installation Restoration Program

    SciTech Connect (OSTI)

    Dennis, C.

    1993-08-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (ARNG) property in Austin, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing, preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining, site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Bee Caves Armory property, the requirements of the Department of Defense Installation Restoration Program. Of concern is the potential for hazardous waste to be present on the property as a result of the former Nike Missile Base operations or in the form of original construction materials. Environmentally sensitive operations associated with the property from that period include (1) underground fuel storage, (2) hazardous materials storage/use, (3) disposal of hazardous waste and (4) release of hazardous waste water.

  18. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont,...

  19. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    SciTech Connect (OSTI)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11T23:59:59.000Z

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  20. Resource Conservation and Recovery Act (RCRA) Closure Plan Summary for Interim reasctive Waste Treatment Area (IRWTA)

    SciTech Connect (OSTI)

    Collins, E.T.

    1997-07-01T23:59:59.000Z

    This closure plan has been prepared for the interim Reactive Waste Treatment Area (IRWT'A) located at the Y-12 Pkmt in oak Ridge, Tennessee (Environmental Protection Agency [EPA] Identification TN 389-009-0001). The actions required to achieve closure of the IRWTA are outlined in this plan, which is being submitted in accordance with Tennessee Ruie 1200- 1-1 1-.0S(7) and Title 40, Code of Federal Regulations (CFR), Part 265, Subpart G. The IRWTA was used to treat waste sodium and potassium (NaK) that are regulated by the Resource Conservation and Recovery Act (RCRA). The location of the IRWT'A is shown in Figures 1 and 2, and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.and a diagram is shown in Figure 3. This pkm details all steps that wdi be petiormed to close the IRWTA. Note that this is a fmai ciosure.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  3. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M. [eds.] [Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1994-06-01T23:59:59.000Z

    The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

  4. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    SciTech Connect (OSTI)

    none,

    1991-12-01T23:59:59.000Z

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  5. ERS 14.1 Satellite Accumulation Ares (RCRA Compliance), 4/30/13

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's management of hazardous and mixed wastes in satellite accumulation areas.  The Facility Representative...

  6. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 8. Additional analysis in response to peer review recommendations

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Contents: Introduction; Combustion Engineering; Air Dispersion and Deposition Modeling; Accident Analysis; Exposure Assessment; Toxicology; and Ecological Risk Assessment.

  7. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-05-12T23:59:59.000Z

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  8. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  9. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01T23:59:59.000Z

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  10. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    SciTech Connect (OSTI)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01T23:59:59.000Z

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

  11. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: State programs, updated as July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module outlines the requirements and procedures for a state to become authorized for the RCRA program. It describes how the State Authorization System can affect the applicability of certain rules, specifies why states are authorized by EPA and lists the elements of an authorized state program. It outlines the delegation process and identifies components of an authorization application. It specifies the applicability of hazardous and solid waste amendments (HSWA) and non-HSWA provisions in authorized and unauthorized states and defines and provides the citation for the cluster rule.

  12. RCRA, superfund and EPCRA hotline training module. Introduction to: RCRA financial assurance (40 cfr parts 264/265, subpart h) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module addresses financial assurance standards explaining first mechanisms and then the extent of coverage required. It describes the applicability of financial assurance for closure and post-closure and identifies necessary factors for calculating cost estimates. It explains allowable mechanisms for financial assurance, including which mechanisms can be used together and under what conditions. It explains how financial assurance works when a company owns several facilities or when a company is owned by one or more larger companies. It presents the financial assurance requirements for accident liability coverage. It identifies who is subject to sudden versus nonsudden liability provisions and cites applicable definitions. It specifies the amount of liability coverage required for single and multiple facilities. It lists allowable mechanisms and combinations of mechanisms that can be used to satisfy financial assurance liability requirements.

  13. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  14. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

  15. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  16. DOE/EA-1310: Environmental Assessment for Decontamination and...

    Broader source: Energy.gov (indexed) [DOE]

    Facility and Coupled Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory DOEEA-1310 Environmental Assessment for...

  17. Maintenance Assessment Plan - Developed By NNSA/Nevada Site Office...

    Broader source: Energy.gov (indexed) [DOE]

    MAINTENANCE Assessment Plan NNSANevada Site Office Facility Representative Division Performance Objective: An effective facilities maintenance program should optimize the material...

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  19. Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL

    SciTech Connect (OSTI)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-04-01T23:59:59.000Z

    The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  20. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect (OSTI)

    JOHNSTON GA

    2008-01-15T23:59:59.000Z

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

  1. Oversight and implementation of Federal Facility Agreement. Annual progress report, FY 1993

    SciTech Connect (OSTI)

    Hucks, R.L.

    1995-07-27T23:59:59.000Z

    South Carolina Department of Health and Environmental Control (SCDHEC) reviewed 57 primary documents during fiscal year 1993 (October 1, 1992 through September 30, 1993). The primary documents reviewed consisted of 24 RCRA Facility Investigation/ Remedial Investigation (RFI/RI) workplans, 26 Site Evaluation (SE) reports, 3 Proposed Plans, 1 Record of Decision (ROD), and 3 miscellaneous primary documents. Numerous other administrative duties were conducted during the reporting period that are not accounted for above. These included, but are not limited to, extension requests, monitoring well approvals, treatability studies, and site visit reports.

  2. Facility Data Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacility Data Policy

  3. National spent fuel program preliminary report RCRA characteristics of DOE-owned spent nuclear fuel DOE-SNF-REP-002. Revision 3

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents information on the preliminary process knowledge to be used in characterizing all Department of Energy (DOE)-owned Spent Nuclear Fuel (SNF) types that potentially exhibit a Resource Conservation and Recovery Act (RCRA) characteristic. This report also includes the process knowledge, analyses, and rationale used to preliminarily exclude certain SNF types from RCRA regulation under 40 CFR {section}261.4(a)(4), ``Identification and Listing of Hazardous Waste,`` as special nuclear and byproduct material. The evaluations and analyses detailed herein have been undertaken as a proactive approach. In the event that DOE-owned SNF is determined to be a RCRA solid waste, this report provides general direction for each site regarding further characterization efforts. The intent of this report is also to define the path forward to be taken for further evaluation of specific SNF types and a recommended position to be negotiated and established with regional and state regulators throughout the DOE Complex regarding the RCRA-related policy issues.

  4. Evaluation of beryllium exposure assessment and control programs at AWE, Cardiff Facility, Rocky Flats Plant, Oak Ridge Y-12 Plant and Lawrence Livermore National Laboratory. Phase 1

    SciTech Connect (OSTI)

    Johnson, J.S.; Foote, K.L. [Lawrence Livermore National Lab., CA (United States); Slawski, J.W. [USDOE, Washington, DC (United States); Cogbill, G. [Cardiff Facility (United Kingdom). Atomic Weapons Establishment

    1995-04-28T23:59:59.000Z

    Site visits were made to DOE beryllium handling facilities at the Rocky Flats Plant; Oak Ridge Y-12 Plant, LLNL; as well as to the AWE Cardiff Facility. Available historical data from each facility describing its beryllium control program were obtained and summarized in this report. The AWE Cardiff Facility computerized Be personal and area air-sampling database was obtained and a preliminary evaluation was conducted. Further validation and documentation of this database will be very useful in estimating worker Be. exposure as well as in identifying the source potential for a variety of Be fabrication activities. Although all of the Be control programs recognized the toxicity of Be and its compounds, their established control procedures differed significantly. The Cardiff Facility, which was designed for only Be work, implemented a very strict Be control program that has essentially remained unchanged, even to today. LLNL and the Oak Ridge Y-12 Plant also implemented a strict Be control program, but personal sampling was not used until the mid 1980s to evaluate worker exposure. The Rocky Flats plant implemented significantly less controls on beryllium processing than the three previous facilities. In addition, records were less available, management and industrial hygiene staff turned over regularly, and less control was evident from a management perspective.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  9. Floodplain Assessment for Installation of a Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Installation of a Renewable Energy Anaerobic Digester Facility Floodplain Assessment for Installation of a Renewable Energy Anaerobic Digester Facility Floodplain Assessment...

  10. 3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Cole, C.M. Sr.

    2001-04-17T23:59:59.000Z

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

  11. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Corrective action, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module reviews the regulatory and statutory requirements and authorities governing the Resource Conservation and Recovery Act correction action process. It lists the statutory authorities for correction action and explains their application and identifies the existing regulatory authorities for corrective action and explains their application. It describes the four primary triggers for corrective action and describes the six main stages of the corrective action process. It defines terms that are specific to the corrective action process (e.g., solid waste management unit, action levels). It identifies the proposed corrective action regulations and the schedule for final rulemaking. It assesses whether or not financial assurance is required for corrective action. It describes how the corrective action program can apply to generators and other facilities that do not require a permit.

  12. Facility effluent monitoring plan for the tank farm facility

    SciTech Connect (OSTI)

    Crummel, G.M.

    1998-05-18T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  15. 303-K Storage Facility closure plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-12-15T23:59:59.000Z

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  16. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

  17. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details.

  18. EA-1795: Diamond Green Diesel Facility in Norco, LA | Department...

    Office of Environmental Management (EM)

    5: Diamond Green Diesel Facility in Norco, LA EA-1795: Diamond Green Diesel Facility in Norco, LA April 1, 2011 EA-1795: Final Environmental Assessment Loan Guarantee to Diamond...

  19. Performance Assessment Monitoring Plan for the Hanford Site Low-Level Burial Grounds

    SciTech Connect (OSTI)

    None

    2006-03-30T23:59:59.000Z

    The U.S. Department of Energy Order 435.1, Radioactive Waste Management, requires a disposal authorization statement authorizing operation (or continued operation) for low-level waste disposal facilities. In fulfillment of these requirements, a disposal authorization statement was issued on October 25, 1999, authorizing the Hanford Site to transfer, receive, possess, and dispose of low-level radioactive waste at the 200 East Area burial grounds and the 200 West Area burial grounds. One of the conditions is that monitoring plans for the 200 East Area and 200 West Area low-level burial grounds be written and approved by the Richland Operations Office. As a result of a record of decision for the Hanford Site Solid Waste Program and acceptance of the Hanford Site Solid Waste Environmental Impact Statement, the use of the low-level burial ground (LLBG) as a disposal facility for low-level and mixed low-level wastes has been restricted to lined trenches and the Navy reactor-compartment trench only. Hence, as of July 2004, only the two lined trenches in burial ground 218-W-5 (trenches 31 and 34, see Appendix A) and the Navy reactor-compartment trench in burial ground 218 E 12B (trench 94) are allowed to receive waste. When the two lined trenches are filled, the LLBG will cease to operate except for reactor compartment disposal at trench 94. Remaining operational lifetime of the LLBG is dependent on waste volume disposal rates. Existing programs for air sampling and analyses and subsidence monitoring are currently adequate for performance assessment at the LLBG. The waste disposal authorization for the Hanford Site is based (in part) on the post-closure performance assessments for the LLBG. In order to maintain a useful link between operational monitoring (e.g., Resource Conservation and Recovery Act [RCRA], Comprehensive Environmental Response, Compensation, and Liability Act, and State Waste Discharge Permits), constituents, monitoring frequencies, and boundaries require regular review and comparison. The annual reports discussed here are the primary sources for these reviews. The pathways of interest are air and groundwater for both operational and post-closure conditions at the LLBG, with groundwater considered to be the most significant long-term exposure pathway. Constituents that contributed at least 0.1% of the total relative hazard were selected as target analytes for monitoring. These are technetium-99, uranium, and iodine-129. Because of its environmental unavailability, carbon 14 was removed from the list of constituents. Given the potential uncertainties in inventories at the 200 Area LLBG and the usefulness of tritium as a contaminant indicator, tritium will be monitored as a constituent of concern at all burial grounds. Preexisting contamination plumes in groundwater beneath low-level waste management areas are attributed to other past-practice liquid waste disposal sites. Groundwater and air will be sampled and analyzed for radiogenic components. Subsidence monitoring will also be performed on a regular basis. The existing near-facility and surveillance air monitoring programs are sufficient to satisfy the performance assessment monitoring. Groundwater monitoring will utilize the existing network of wells at the LLBG, and co-sampling with RCRA groundwater monitoring, to be sampled semiannually. Installation of additional wells is currently underway to replace wells that have gone dry.

  20. Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones

    SciTech Connect (OSTI)

    Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

  1. Facility effluent monitoring plan for the plutonium uranium extraction facility

    SciTech Connect (OSTI)

    Wiegand, D.L.

    1994-09-01T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  2. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  3. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMF Information Science

  4. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy

  5. Facility Representatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of Energy063-2011

  6. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFYRANDOM DRUG TESTING The requirementFacility

  7. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 5. Human health risk assessment; evaluation of potential risks from multipathway exposure to emissions

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The report provide estimates of: (1) individual risks based on central tendency exposure; (2) individual risks based on maximum environmental concentrations; (3) risks to highly exposed or susceptible subgroups of the population (e.g., subsistence farmers and school children); (4) risks associated with specific activities that may result in elevated exposures (e.g., subsistence fishermen and deer hunters); and (5) population risk. This approach allows for the estimation of risks to specific segments of the population taking into consideration activity patterns, number of individuals, and actual locations of individuals in these subgroups with respect to the facility. The fate and transport modeling of emissions from the facility to estimate exposures to identified subgroups is described.

  8. Removal site evaluation report L-area rubble pile (131-3L) gas cylinder disposal facility (131-2L)

    SciTech Connect (OSTI)

    Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

    1997-10-01T23:59:59.000Z

    This Removal Site Evaluation Report (RSER) is prepared in accordance with Sections 300.410 and 300.415 of the National Contingency Plan and Section XIV of the Savannah River Site (SRS) Federal Facility Agreement (FFA). The purpose of this investigation is to report information concerning conditions at the L-Area Rubble Pile (LRP) (131-3L) and the L-Area Gas Cylinder Disposal Facility (LGCDF) (131- 2L) sufficient to assess the threat posed to human health and the environment. This investigation also assesses the need for additional Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) actions. The scope of this investigation included a review of files, limited sampling efforts, and visits to the area. An investigation of the LRP (1131-3L) indicates the presence of semi volatile organic compounds (SVOCs), volatile organic compounds (VOCs), metals, and asbestos. Potential contaminants in the waste piles could migrate into the secondary media (soils and groundwater), and the presence of some of the contaminants in the piles poses an exposure threat to site works. The Department of Energy (DOE), United States Environmental Protection Agency (EPA) and South Carolina Department of Health and Environmental Control (SCDHEC) discussed the need for a removal action at the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation (RFI/RI) work plan scoping meetings on the waste unit, and agreed that the presence of the waste piles limits the access to secondary media for sampling, and the removal of the piles would support future characterization of the waste unit. In addition, the DOE, EPA, and SCDHEC agreed that the proposed removal action for the LRP (131-3L) would be documented in the RFI/RI work plan. The LGCDF (131-2L) consists of a backfilled pit containing approximately 28 gas cylinders. The gas cylinders were supposed to have been vented prior to burial; however, there is a potential that a number of the cylinders are still pressurized. (Abstract Truncated)

  9. Health assessment for Royal Hardage Industrial Hazardous Waste Land Disposal Facility, Criner, Oklahoma, Region 6. CERCLIS No. OKD000400093. Final report

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    The Royal Hardage Industrial Hazardous Waste Land Disposal Facility (Hardage/Criner) National Priorities List Site is located in Criner, McClain County, Oklahoma. The site is located in an agricultural area. There are volatile organic compounds (VOCs) and several heavy metals present in the groundwater and soil, and VOCs in surface water and sediment. The Record of Decision signed November 1986 selected several remedial actions which included excavation of the primary source material and separation of the wastes for treatment, solids to be disposed of in an on-site landfill that meets Resource Conservation and Recovery Act requirements, organic liquids to be incinerated, and inorganic liquids to be treated by other means as necessary. The site is currently in the remedial-design phase.

  10. Public health assessment for Del Amo Facility, Los Angeles, Los Angeles County, California, Region 9. Cerclis No. CAD029544731. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1994-01-12T23:59:59.000Z

    Located in Los Angeles, California, the 280-acre Del Amo hazardous waste site contains contamination resulting from a synthetic rubber manufacturing facility consisting of three plants, which formerly operated on the site from 1943 through the mid to late 1960s. Primary contaminants associated with a 3.7-acre waste disposal area located near the southern boundary of the Del Amo site include volatile aromatic hydrocarbons (such as benzene and ethylbenzene) and polycyclic aromatic hydrocarbons (such as naphthalene, benzo(a)pyrene, phenanthrene, and chrysene). Based on the information available for review, CDHS and ATSDR conclude that the Del Amo site presently poses an indeterminate public health hazard to nearby residents and workers.

  11. Performing Energy Security Assessments - A How-To Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performing Energy Security Assessments - A How-To Guide for Federal Facility Managers Performing Energy Security Assessments - A How-To Guide for Federal Facility Managers Guide...

  12. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  13. EIS-0014: Mound Facility, Miamisburg, Ohio

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to assess the environmental implications of its continuing and future programs at the Mound Facility (formerly designated Mound Laboratory), located in Miamisburg, Ohio.

  14. Groundwater quality assessment report for Solid Waste Storage Area 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee -- 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    Solid Waste Storage Area (SWSA) 6, located at the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) facility, is a shallow land burial site for low-level radioactive waste (LLW) and other waste types. Wastes were disposed of in unlined trenches and auger holes from 1969 until May 1986, when it was determined that Resource Conservation and Recovery Act (RCRA) regulated wastes were being disposed of there. DOE closed SWSA 6 until changes in operating procedures prevented the disposal of RCRA wastes at SWSA 6. The site, which reopened for waste disposal activities in July 1986, is the only currently operating disposal area for low-level radioactive waste at ORNL. In addition to SWSA 6, it was determined that hazardous wastes were treated at the Explosives Detonation Trench (EDT). Explosives and shock-sensitive chemicals such as picric acid, phosphorus, and ammonium nitrate were detonated; debris from the explosions was backfilled into the trench.

  15. NASA Benchmarks Safety Functions Assessment plan - Developed...

    Broader source: Energy.gov (indexed) [DOE]

    SAFETY FUNCTIONS Assessment Plan Developed By NNSANevada Site Office Facility Representative Division Performance Objective: Management should be proactive in addressing...

  16. Office of Security Assessments | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information, personnel security, and foreign visits and assignments. Assesses the information security practices at facilities managing special access programs and...

  17. Property:Specializations, Capabilities, and Key Facility Attributes...

    Open Energy Info (EERE)

    biologists are highly experienced in assessing the impacts of generation devices on fish and the facilities allow for accurate testing with fish in a highly controlled...

  18. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal...

  19. UNIVERSITY OF MISSOURI -COLUMBIA PLANT GROWTH FACILITIES MASTER PLAN

    E-Print Network [OSTI]

    Noble, James S.

    Assessment........................ 2.3a Central Campus Facility Issues...................... 2.3b Ashland.................................... 4.4. Ashland Road Detail Scenario 1..................... 4.5. Phasing

  20. Facility effluent monitoring plan for 242-A evaporator facility

    SciTech Connect (OSTI)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01T23:59:59.000Z

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  1. Colorado State University Industrial Assessment Center Saves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Industrial Assessment Centers...

  2. Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements

    SciTech Connect (OSTI)

    French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

    2011-01-21T23:59:59.000Z

    Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

  3. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III

    SciTech Connect (OSTI)

    Chase, J.

    1998-10-30T23:59:59.000Z

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

  4. Facility Security Officer Contractor Toolcart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacilityOVERVIEW

  5. RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste incinerators (40 cfr parts 264/265, subpart o) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module introduces the concept of burning hazardous wastes in units regulated under RCRA and outlines the requirements for one type of device - the incinerator. It explains what an incinerator is and how incinerators are regulated, and states the conditions under which an owner/operator may be exempt from subpart O. It defines principal organic hazardous constituent (POHC) and describes the criteria under which a POHC is selected. It defines destruction and removal efficiency (DRE) and describes the interaction between compliance with performance standards and compliance with incinerator operating conditions established in the permit. It defines and explains the purpose of a `trial burn`.

  6. RCRA, superfund and EPCRA hotline training module. Introduction to: Containers (40 cfr parts 264/265, subpart i; section 261.7) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module reviews two sets of regulatory requirements for containers: requirements that pertain to the management of hazardous waste containers and regulations governing residues of hazardous waste in empty containers. It defines `container` and `empty container` and provides examples and citations for each. It provides an overview of the requirements for the design and operation of hazardous waste containers. It explains the difference between the container standards set out in part 264 and part 265. It states the requirements for rendering a hazardous waste container `RCRA empty`. It explains when container rinsate must be managed as a hazardous waste.

  7. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Hazardous waste incinerators (40 CFR parts 264/265, subpart O) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module introduces the concept of burning hazardous wastes in units regulated under RCRA and outlines the requirements for one type of device - the incinerator. It explains what an incinerator is and how incinerators are regulated and states the conditions under which an owner/operator may be exempt from Subpart O. It defines principal organic hazardous constituent (POHC) and describes the criteria under which a POHC is selected and defines destruction and removal efficiency (DRE). It describes the interaction between compliance with performance standards and compliance with incinerator operating conditions established in the permit. It also defines and explains the purpose of a trial burn.

  8. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Solid and hazardous waste exclusions (40 CFR section 261.4) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This module explains each waste exclusion and its scope, so one can apply this knowledge in determining wheather a given waste is or is not regulated under RCRA Subtitle C. It cites the regulatory section for exclusions and identifies materials that are not solid wastes and solid wastes that are not hazardous wastes. It locates the manufacturing process unit exclusion and identifies the sample and treatability study exclusions and their applicability. It outlines and specifies the conditions for meeting the exclusions for household wastes and mixtures of domestic sewage.

  9. EA-1638: Final Environmental Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont,...

  10. Guidelines for Evaluation of Nuclear Facility Training Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-22T23:59:59.000Z

    The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

  11. Non-Motorized Facility Inventory CTS Annual Transportation Research Conference

    E-Print Network [OSTI]

    Minnesota, University of

    Non-Motorized Facility Inventory CTS Annual Transportation Research Conference May 23, 2012 Jesse an inventory and assessment of the non-motorized facilities along Carver County roadways 2. Identify the gaps-8 Safety Issues Identified #12;non-motorized facilities inventory #12;GIS mapping capabilities #12;An

  12. from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

  13. Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

  14. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  15. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01T23:59:59.000Z

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  16. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  17. RCRA and operational monitoring (ROM): Multi-year program plan and fiscal year 96 work plan. WBS 1.5.3, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The RCRA & Operational Monitoring (ROM) Program Office manages the Hanford Site direct funded Resource Conservation and Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.01.05.03. The ROM Program Office is included in Hanford Technical Services, a part of Projects & Site Services of Westinghouse Hanford Company (WHC). The 1996 Multi-Year Program Plan (MYPP) includes the Fiscal Year Work Plan (FYWP). The Multi-Year Program Plan takes its direction from the Westinghouse Planning Baseline Integration Organization. The MYPP provides both the near term, enhanced details and the long term, projected details for the Program Office to use as baseline Cost, Scope and Schedule. Change Control administered during the fiscal year is against the baseline provided by near term details of this document. The MYPP process has been developed by WHC to meet its internal planning and integration needs and complies with the requirements of the US Department of Energy, Richland Operations Office (RL) Long Range Planning Process Directive (RLID 5000.2). Westinghouse Hanford Company (WHC) has developed the multi-year planning process for programs to establish the technical, schedule and cost baselines for program and support activities under WHC`s scope of responsibility. The baseline information is developed by both WHC indirect funded support services organization, and direct funded programs in WHC. WHC Planning and Integration utilizes the information presented in the program specific MYPP and the Program Master Baseline Schedule (PMBS) to develop the Site-Wide Integrated Schedule.

  18. DOE/EA-1515: Final Environmental Assessment for Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico (May 2005)

    SciTech Connect (OSTI)

    N /A

    2005-05-01T23:59:59.000Z

    Chapter 1 presents the United States (U.S.) Department of Energy (DOE), National Nuclear Security Administration's (NNSA) requirements under the ''National Environmental Policy Act of 1969'' (NEPA), background information on the proposal, the purpose and need for agency action, and a summary of public involvement activities. This Environmental Assessment (EA) incorporates information (tiers) from the ''Environmental Impact Statement for the Conveyance and Transfer of Certain Land Tracts Administered by the U.S. Department of Energy and Located at Los Alamos National Laboratory'' (LANL) (DOE 1999a), the ''Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory'' (SWEIS; DOE 1999b), the ''RCRA Facility Investigation (RFI) Report for Potential Release Sites 73-001(a)-99 and 73-001(b)-99 (LANL 1998a)'', and the ''Voluntary Corrective Measure (VCM) Plan for Potential Release Sites 73-001(a)-99 and 73-001(b)-99 (LANL 2002)'', and other environmental documents listed in Chapter 7, References.

  19. Future Fixed Target Facilities

    SciTech Connect (OSTI)

    Melnitchouk, Wolodymyr

    2009-01-01T23:59:59.000Z

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  20. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  1. State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  2. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01T23:59:59.000Z

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  3. Post-Closure Inspection Report for Corrective Action Unit 92: Area 6 Decon Pond Facility

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-03-01T23:59:59.000Z

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility. CAU 92 was closed according to the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP], 1995) and the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996; as amended January 2007). Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator, and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in.]) in a 24-hour period. This report covers calendar year 2007. Quarterly site inspections were performed in March, June, September, and December of 2007. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A of this report, and photographs taken during the site inspections are included in Appendix B of this report. Two additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in.) within a 24-hour period during 2007. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. A copy of the inspection checklists and field notes completed during these additional inspections are included in Appendix A. Precipitation records for 2007 are included in Appendix C.

  4. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    SciTech Connect (OSTI)

    Hochel, R.C. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-03-01T23:59:59.000Z

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility.

  5. WIPP RCRA Documents menu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading* (star)8

  6. SEASONAL RECLAIMED WATER QUALITY; AN ASSESSMENT OFQUALITY; AN ASSESSMENT OF

    E-Print Network [OSTI]

    Fay, Noah

    these concerns? Waste Water Treatment Facilities treat water to Waste Water Treatment Facilities treat water and disinfect anyy microorganisms that may be present The majority of Recycled water produced in ArizonaSEASONAL RECLAIMED WATER QUALITY; AN ASSESSMENT OFQUALITY; AN ASSESSMENT OF BIOLOGICAL VARIABILITY

  7. California Energy Commission Systems Assessment & Facilities Division

    E-Print Network [OSTI]

    ,000 1,500 2,000 2,500250 Miles Scale 1:30,000,000 GCS WGS 1984 Projection Legend Worldwide LNG Marine Worldwide Liquefied Natural Gas Marine Terminals June, 2010 T:\\Projects\\CEC\\World LNG FILENAME:World_ LNG_6

  8. Assessment of Energy Use in Multibuilding Facilities

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion Cubic3)/1 Energy

  9. NREL: Resource Assessment and Forecasting - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The followingTest

  10. Technology Transitions Facilities Database

    Broader source: Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  11. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Protection and Technical Services

    2009-09-30T23:59:59.000Z

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  12. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Monthly progress reports and final report, October--December 1994

    SciTech Connect (OSTI)

    Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1995-04-01T23:59:59.000Z

    The objective of Task 7.lD was to (1) establish a collaborative US-USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. At early times following an accident, the direct contamination of pasture and food stuffs, particularly leafy vegetation and grain, can be of great importance. This situation has been modeled extensively. However, models employed then to predict the deposition, retention and transport of radionuclides in terrestrial environments employed concepts and data bases that were more than a decade old. The extent to which these models have been tested with independent data sets was limited. The data gathered in the former-USSR (and elsewhere throughout the Northern Hemisphere) offered a unique opportunity to test model predictions of wet and dry deposition, agricultural foodchain bioaccumulation, and short- and long-term retention, redistribution, and resuspension of radionuclides from a variety of natural and artificial surfaces. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.lD into a multinational effort to evaluate models and data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  13. Composite analysis E-area vaults and saltstone disposal facilities

    SciTech Connect (OSTI)

    Cook, J.R.

    1997-09-01T23:59:59.000Z

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  14. EA-1631: Final Environmental Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for Beacon Power Corporation Frequency Regulation Facility in Stephentown, New York The environmental assessment examines the potential environmental impacts associated...

  15. Confined Spaces Assessment Plan - Developed By NNSA/Nevada Site...

    Broader source: Energy.gov (indexed) [DOE]

    CONFINED SPACES Assessment Plan NNSANevada Site Office Facility Representative Division Performance Objective: This assessment provides a basis for evaluating the safety...

  16. EA-1616: Final Environmental Assessment | Department of Energy

    Energy Savers [EERE]

    : Final Environmental Assessment EA-1616: Final Environmental Assessment National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility...

  17. EA-1692: Final Environmental Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Final Environmental Assessment EA-1692: Final Environmental Assessment Construction and Start-Up of an Activated Carbon Manufacturing Facility in Red River Parish, Louisiana The...

  18. RCRA, superfund and EPCRA hotline training module. Introduction to: Transporters (40 cfr part 263) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The report provides an overview of the regulatory requirements of transporters of hazardous waste. It lists the conditions and requirements for a transfer facility. It identifies transporter recordkeeping and manifesting requirements. It identifies transporter requirements when exporting hazardous waste. It states the conditions under which a transporter is subject to the generator regulations and cites the CFR section covering the transporter responsibilities for hazardous waste discharges.

  19. RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Solid waste programs, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    Solid waste is primarily regulated by the states and municipalities and managed on the local level. The only exception is the 40 CFR Part 258 Federal Solid Waste Disposal Facility Criteria which provides EPA`s requirements for the design and operation of landfills. EPA`s role in implementing solid waste management programs includes setting national goals, providing leadership and technical assistance, and developing educational materials. The module focuses on EPA`s efforts in municipal and industrial solid waste.

  20. Environmental Assessment for the Accelerated Tank Closure Demonstration Project

    SciTech Connect (OSTI)

    N /A

    2003-06-16T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code of Federal Regulations (CFR), Parts 1500-1508. They require the preparation of an Environmental Assessment (EA) that includes an evaluation of alternative means of addressing the problem and a discussion of the potential environmental impacts of a proposed federal action. An EA provides analysis to determine whether an EIS or a finding of no significant impact should be prepared.

  1. Small Power Production Facilities (Montana)

    Broader source: Energy.gov [DOE]

    For the purpose of these regulations, a small power production facility is defined as a facility that:...

  2. Facilities | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 BudgetNateFacilities| National

  3. Facilities | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 BudgetNateFacilities|

  4. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  5. Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010

    Broader source: Energy.gov [DOE]

    On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

  6. H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

  7. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  8. Facility effluent monitoring plan for WESF

    SciTech Connect (OSTI)

    SIMMONS, F.M.

    1999-09-01T23:59:59.000Z

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the effluent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability.

  9. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01T23:59:59.000Z

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

  10. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    SciTech Connect (OSTI)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01T23:59:59.000Z

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation methodology can be adapted for evaluating and assessing the safeguardability of nuclear facilities – both existing, as well as those still on the drawing board. The advantages of the Facility Safeguardability Analysis is that it would not only give the facility designer an analytical method for evaluating and assessing the safeguards measures and approaches for the prospective facility, but also the ability to optimize the design of the facility process for enhancing facility safeguardability. The following report explains the need for Facility Safeguardability Analysis and explains how it could be used in the Safeguards-by-Design, in support of the design and construction of nuclear facilities.

  11. RCRA, superfund and EPCRA hotline training module. Introduction to: Land disposal restrictions (40 cfr parts 268) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module presents an overview of the land disposal restrictions (LDR) program. It defines the basic terms and describes the structure of the LDR regulations. It identifies the statutory basis for LDR and describes the applicability of LDR. It explains how EPA sets treatment standards and identifies treatment standards for wastes subject to land disposal restrictions and cites the CFR section. It describes and identifies how exemptions and variances from treatment requirements are obtained, including federal register citations. It defines generator and Treatment, Storage, and Disposal Facility (TSDF) requirements under the LDR program. It summarizes the schedule of existing restrictions and the plan for restricting newly identified wastes.

  12. CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  13. CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

  14. CRAD, Maintenance- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance program at the Los Alamos National Laboratory TA 55 SST Facility.

  15. CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

  16. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  17. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15T23:59:59.000Z

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  18. DOE Designated Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

  19. Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility Vitaly Yakimenko October 6-7, 2010 ATF User meeting DOE HE, S. Vigdor, ALD - (Contact) T. Ludlam Chair, Physics Department V. Yakimenko Director ATF, Accelerator...

  20. ACCELERATOR TEST FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY PHYSICS DEPARTMENT Effective: 04012004 Page 1 of 2 Subject: Accelerator Test Facility - Linear Accelerator General Systems Guide Prepared by: Michael Zarcone...

  1. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  2. Science and Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

  3. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Climate, Ocean, and Sea Ice Modeling (COSIM) Terrestrial Ecosystem and Climate Dynamics Fusion Energy Sciences Magnetic Fusion Experiments Plasma Surface...

  4. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  5. Existing Facilities Program

    Broader source: Energy.gov [DOE]

    The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

  6. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  7. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News,...

  8. Green Energy Property Tax Assessment (Tennessee) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    the Treasury Tennessee offers a special ad valorem property tax assessment for certified green energy production facilities. Property that generates electricity from a certified...

  9. NASA Benchmarks Communications Assessment Plan - Developed By...

    Broader source: Energy.gov (indexed) [DOE]

    COMMUNICATIONS Assessment Plan NNSANevada Site Office Facility Representative Division Performance Objective: Lines of authority are clearly defined with clear and open...

  10. Sandia National Laboratories: Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Solar Resource Assessment Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital Equipment...

  11. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01T23:59:59.000Z

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  12. Final Environmental Assessment for the Proposed Consolidation...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy DOI (U.S.) Department of the Interior DQF Detonator Qualification Facility DU depleted uranium DX Dynamic Experimentation (Division) EA environmental assessment EDE...

  13. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18T23:59:59.000Z

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  14. Site selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Bowers, J.A.

    2000-01-03T23:59:59.000Z

    The purpose of this report is to identify, assess, and rank potential sites for the proposed Salt Disposition Facility (SDF) at the Savannah River Site.

  15. EA-1849-S1: Phase II Facility- Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV

    Broader source: Energy.gov [DOE]

    This Supplemental Environmental Assessment (SEA) will evaluate the potential impacts of the Phase II Facility of the Ormat Tuscarora Geothermal Power Plant.

  16. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-12-13T23:59:59.000Z

    The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

  17. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    MINERAL FACILITIES MAPPING PROJECT Yadira Soto-Viruet Supervisor: David Menzie, Yolanda Fong-Sam Minerals Information Team (MIT) USGS Summer Internship 2009 U.S. Department of the Interior U.S. Geological Minerals Information Team (MIT): Annually reports on the minerals facilities of more than 180 countries

  18. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  19. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  20. Argonne Leadership Computing Facility

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

  1. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  2. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

  3. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Groundwater monitoring (40 CFR parts 264/265, subpart F) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities. It describes the groundwater monitoring criteria for interim status and permitted facilities. It explains monitoring well placement and outlines the three stages of the groundwater monitoring program for permitted facilities.

  4. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01T23:59:59.000Z

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  5. International Facility Management Association Strategic Facility

    Broader source: Energy.gov (indexed) [DOE]

    be identified between the current situations and analyzed needs. Gap analysis-a business resource assessment tool enabling an organization to compare its actual performance with...

  6. Enhancing the safety of tailings management facilities

    SciTech Connect (OSTI)

    Meggyes, T.; Niederleithinger, E.; Witt, K.J.; Csovari, M.; Kreft-Burman, K.; Engels, J.; McDonald, C.; Roehl, K.E. [BAM, Berlin (Germany). Federal Institute for Material Research & Testing

    2008-07-01T23:59:59.000Z

    Unsafe tailings management facilities (TMFs) have caused serious accidents in Europe threatening human health/life and the environment. While advanced design, construction and management procedures are available, their implementation requires greater emphasis. An integrated research project funded by the European Union was carried out between 2002 and 2005 with the overall goal of improving the safety of TMFs (Sustainable Improvement in Safety of Tailings Facilities - TAILSAFE, http://www.tailsafe.com/). The objective of TAILSAFE was to develop and apply methods of parameter evaluation and measurement for the assessment and improvement of the safety state of tailings facilities, with particular attention to the stability of tailings dams and slurries, the special risks inherent when such materials include toxic or hazardous wastes, and authorization and management procedures for tailings facilities. Aspects of tailings facilities design, water management and slurry transport, non-destructive and minimally intrusive testing methods, monitoring and the application of sensors, intervention and remediation options were considered in TAILSAFE. A risk reduction framework (the TAILSAFE Parameter Framework) was established to contribute to the avoidance of catastrophic accidents and hazards from tailings facilities. Tailings from the mining and primary processing of metals, minerals and coal were included within the scope of TAILSAFE. The project focused on the avoidance of hazards by developing procedures and methods for investigating and improving the stability of tailings dams and tailings bodies.

  7. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacility

  8. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  9. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-07-15T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  10. DOE/NNSA Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Facility Management Contracts Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies LLC...

  11. Test Facility Daniil Stolyarov, Accelerator Test Facility User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

  12. Technological options for management of hazardous wastes from US Department of Energy facilities

    SciTech Connect (OSTI)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01T23:59:59.000Z

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  13. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT...

  14. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  15. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    SciTech Connect (OSTI)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01T23:59:59.000Z

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  16. Renewable Energy Property Tax Assessment

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes. Additionally, low impact hydro, geothermal, and biomass facili...

  17. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  18. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  19. LANL | Physics | Trident Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery science at Trident Laser Facility Several important discoveries and first observations have been made at the Trident Laser Facility, a unique three-beam neodymium-glass...

  20. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  1. Sandia National Laboratories: SWIFT Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWIFT Facility Characterizing Scaled Wind Farm Technology Facility Inflow On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Wind Energy The Scaled...

  2. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and...

  3. Cornell University Facilities Services

    E-Print Network [OSTI]

    Manning, Sturt

    Description: The Large Animal Teaching Complex (LATC) will be a joint facility for the College of Veterinary or increase operating costs of the dairy barn; therefore, the College of Veterinary Medicine has agreed

  4. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  5. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

  6. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    None

    2013-06-12T23:59:59.000Z

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  7. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27T23:59:59.000Z

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  8. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01T23:59:59.000Z

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  9. Facilities Management Department Restructuring

    E-Print Network [OSTI]

    Mullins, Dyche

    ­ Zone 2 ­ Mission Bay/East Side: Includes Mission Bay, Mission Center Bldg, Buchanan Dental, Hunters Point, 654 Minnesota, Oyster Point 2. Recommendation that UCSF align all Facility Services and O

  10. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy, SWIFT, Wind Energy One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes...

  11. Strategies for Facilities Renewal

    E-Print Network [OSTI]

    Good, R. L.

    psig * Plant or Service Air 90 psig * Starting Air for gas engines 220 psig * Instrument Air 80 psig * 02 - process * N2 high purity 4. Water production systems and distribution * Potable water (remote rural site) * Fire water (not treated) * Cooling... sewers 6. Fuel systems * Mixed fuel (both by-product and purchased methane) * Pipeline natural gas * Fuel oil 7. Maintenance and office facilities * Various maintenance/construction shops, stores, offices * Office facilities for technical...

  12. Identification of the source of methane at a hazardous waste treatment facility using isotopic analysis

    SciTech Connect (OSTI)

    Hackley, K.C.; Liu, C.L. (Illinois State Geological Survey, Peabody, IL (United States)); Trainor, D.P. (Dames and Moore, Madison, WI (United States))

    1992-01-01T23:59:59.000Z

    Isotopic analyses have been used to determine the source of methane in subsurface sediments at a hazardous waste treatment facility in the Lake Calumet area of Chicago, Illinois. The study area is surrounded by landfills and other waste management operations and has a long history of waste disposal. The facility property consists of land constructed of approximately 15 feet of fill placed over lake sediments. The fill is underlain by successively older lacustrine and glacial till deposits to a maximum depth of approximately 80 feet. During a subsurface investigation of the site performed for a RCRA Facility Investigation of former solid waste management units (SWMUs) in the fill, significant quantities of methane were encountered in the natural deposits. Gas samples were collected from the headspace of 11 piezometers screened at depths of approximately 30, 40, and 50 feet beneath the surface. Methane concentrations up to 75% by volume were observed in some of the piezometers. Stable isotope analyses were completed on methane and associated CO[sub 2] separated from the gas samples. Radiocarbon (C-14) analyses were also completed on several of the samples. The delta C-13 results for the intermediate and deep zones are indicative of methane produced by microbial reduction of CO[sub 2]. The methane occurring in the shallow zone appears to be a mixture of methane from the intermediate zone and methane produced by microbial fermentation of naturally (nonanthropogenic) buried organic matter within the shallow lacustrine sediments. According to the isotopic and chemical results, the methane does not appear to be related to gas generation from nearby landfills or from organic wastes previously placed in the former facility SWMUs.

  13. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01T23:59:59.000Z

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  14. Mound facility physical characterization

    SciTech Connect (OSTI)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01T23:59:59.000Z

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  15. RESULTS FOR THE MAY 19, 2010 INADVERTENT TRANSFER TO THE SALTSTONE DISPOSAL FACILITY SLURRY: SAMPLE ANALYTICAL RESULTS

    SciTech Connect (OSTI)

    Reigel, M.; Cozzi, A.

    2010-08-17T23:59:59.000Z

    This report details the chemical analysis results for the characterization of the May 19, 2010 inadvertent transfer from the Saltstone Production Facility (SPF) to the Saltstone Disposal Facility (SDF). On May 19, 2010, the Saltstone Processing Facility (SPF) inadvertently transferred approximately 1800 gallons of untreated low-level salt solution from the salt feed tank (SFT) to Cell F of Vault 4. The transfer was identified and during safe configuration shutdown, approximately 70 gallons of SFT material was left in the Saltstone hopper. After the shutdown, the material in the hopper was undisturbed, while the SFT has received approximately 1400 gallons of drain water from the Vault 4 bleed system. The drain water path from Vault 4 to the SFT does not include the hopper (Figure 1); therefore it was determined that the material remaining in the hopper was the most representative sample of the salt solution transferred to the vault. To complete item No.5 of Reference 1, Savannah River National Laboratory (SRNL) was asked to analyze the liquid sample retrieved from the hopper for pH, and metals identified by the Resource Conservation and Recovery Act (RCRA). SRNL prepared a report to complete item No.5 and determine the hazardous nature of the transfer. Waste Solidification Engineering then instructed SRNL to provide a more detailed analysis of the slurried sample to assist in the determination of the portion of Tank 50 waste in the hopper sample.

  16. Resource Conservation and Recovery Act corrective measures study: Area 6 decontamination pond facility, corrective action unit no. 92

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    Corrective Action Unit (CAU) No. 92, the Area 6 Decontamination Pond Facility (DPF), is an historic disposal unit located at the Nevada Test Site (NTS) in Nye County, Nevada (Figures 1 - 1, 1-2, and 1-3). The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV), which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the DPF under the requirements of the Resource Conservation and Recovery Act (RCRA) Part A Permit (NDEP, 1995) for the NTS and Title 40 Code of Federal Regulations (CFR) Part 265 (1996c). The DPF is prioritized in the Federal Facility Agreement and Consent Order (FFACO, 1996) but is governed by the permit. The DPF was characterized through sampling events in 1994, 1996, and 1997. The results of these sampling events are contained in the Final Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Report, Area 6 Decontamination Pond Facility, Revision I (DOE/NV, 1997). This Corrective Measures Study (CMS) for the Area 6 DPF has been prepared for the DOE/NV`s Environmental Restoration Project. The CMS has been developed to support the preparation of a Closure Plan for the DPF. Because of the complexities of the contamination and regulatory issues associated with the DPF, DOE/NV determined a CMS would be beneficial to the evaluation and selection of a closure alternative.

  17. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  18. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  19. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ă?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  20. Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Gervais, Todd L.

    2004-11-15T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

  1. NREL: Energy Systems Integration Facility - Facility Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaffCapabilities TheFacility

  2. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation Effects Facility

  3. EIS-0084: Incineration Facility for Radioactively Contaminated PCBs and Other Wastes, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Uranium Enrichment and Assessment prepared this statement to assess the environmental impacts of the construction and operation of the proposed Oak Ridge Gaseous Diffusion Plant, an incineration facility to dispose of radioactively contaminated polychlorinated biophenyls, as well as combustible waste from the Paducah, Portsmouth and Oak Ridge facilities.

  4. UNIVERSITY BOULEVARD FAU Research Facility

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift

  5. Assessment of natural gas technology opportunities in the treatment of selected metals containing wastes. Topical report, June 1994-August 1995

    SciTech Connect (OSTI)

    McGervey, J.; Holmes, J.G.; Bluestein, J.

    1995-08-01T23:59:59.000Z

    The report analyzes the disposal of certain waste streams that contain heavy metals, as determined by Resource Conservation and Recovery Act (RCRA) regulations. Generation of the wastes, the regulatory status of the wastes, and current treatment practices are characterized, and the role of natural gas is determined. The four hazardous metal waste streams addressed in this report are electric arc furnace (EAF) dust, electroplating sludge wastes, used and off-specification circuit boards and cathode ray tubes, and wastes from lead manufacturing. This report assesses research and development opportunities relevant to natural gas technologies that may result from current and future enviromental regulations.

  6. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Containers (40 CFR parts 264/265, subpart I; section 261.7) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module reviews two sets of regulatory requirements for containers: requirements that pertain to the manage of hazardous waste containers and regulations governing residues of hazardous waste in empty containers. It defines container and empty container and provides examples and citations for each. It provides an overview of the requirements for the design and operation of hazardous waste containers and explains the difference between the container standards set out in Part 264 and Part 265. It states the requirements for rendering a hazardous waste container RCRA empty. It also explains when container rinsate must be managed as a hazardous waste.

  7. POST CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON POND FACILITY, NEVADA TEST SITE, NEVADA; FOR CALENDAR YEAR 2005

    SciTech Connect (OSTI)

    NA

    2006-03-01T23:59:59.000Z

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection (NDEP), 1995) and the Federal Facility Agreement and Consent Order of 1996. Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by the NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period. This report covers calendar year 2005. Quarterly site inspections were performed in March, June, September, and December of 2005. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Five additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in) within a 24-hour period during 2005. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Precipitation records for 2005 are included in Appendix C.

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [Facility News]SPARTICUSJune31, 2005 [Facility

  9. Facilities | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities Facilities

  10. Facility Disposition Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007FY 2014Facilities Facilities

  11. Environmental Assessment for Proposed Access Control and Traffic...

    Broader source: Energy.gov (indexed) [DOE]

    or hazardous constituents as defined by RCRA are called AOCs. The different geologic media of the canyons system-sediments, aquifers, and parent material-are categorized as...

  12. FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES

    E-Print Network [OSTI]

    Laughlin, Robert B.

    to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

  13. Facilities Management Field Services

    E-Print Network [OSTI]

    Hickman, Mark

    Facilities Management Field Services FieldStationsAnnualReport2006 #12;Cover Photo by Dr Mark Jermy coast #12; Introduction A very wet Steve Weaver emerges from the river. Ah, field work! The Government broadband, at least there is now an alternative to the telephone line. Electrical power spikes (and outages

  14. Graph algorithms experimentation facility

    E-Print Network [OSTI]

    Sonom, Donald George

    1994-01-01T23:59:59.000Z

    DRAWADJMAT 2 ~e ~l 2. ~f ~2 2 ~t ~& [g H 2 O? Z Mwd a P d ed d Aid~a sae R 2-BE& T C dbms Fig. 2. External Algorithm Handler The facility is menu driven and implemented as a client to XAGE. Our implementation follows very closely the functionality...

  15. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    for and receive production incentives, referred to as supplemental energy payments (SEPs), from the New RenewableCALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable

  16. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  17. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  18. Base closure: Environmental concerns for transfer of a ``GOCO`` facility

    SciTech Connect (OSTI)

    Henderson, M.R.; Dent, M.J.; McLaurin, E.S.

    1994-12-31T23:59:59.000Z

    Faced with funding restrictions, cutbacks and fiscal restraints, the United States Department of Defense (DOD), over the next few years will be required to downsize its military personnel and equipment and divest or transfer some of its facilities. A program of procedures used to assess the environmental conditions of a government facility for transfer to non-federal ownership is required. An environmental site assessment or an Environmental Baseline Survey (EBS) is a program that can be used to evaluate the environmental conditions at a facility and whether it is in compliance with existing environmental regulations. An EBS will be required at both the large military bases and the smaller Government Owned Contractor Operated (GOCO) facilities. This presentation focuses on a case study of an EBS conducted at a GOCO facility in the upper midwest. The unique challenge offered at this site, as opposed to other military bases, is that the property consisted primarily of manufacturing areas. The use of hazardous substances and petroleum products by several defense contractors over the years resulted in environmental concerns that may have affected soil and ground water. Since this site is one of the first divestitures of a GOCO facility, the data collection process, environmental findings, recommendations and unique problems associated with a GOCO facility can serve as a model for future GOCO divestitures.

  19. Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

  20. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Technology Dept.) won the Best Poster Award for their presentation "Assessing Hydrogen Pipeline Reliability: Quantifying Susceptibility of Pipeline Steels to Hydrogen...