National Library of Energy BETA

Sample records for rbca risk-based corrective

  1. USING RISK-BASED CORRECTIVE ACTION (RBCA) TO ASSESS (THEORETICAL) CANCER DEATHS AVERTED COMPARED TO THE (REAL) COST OF ENVIRONMENTAL REMEDIATION

    SciTech Connect (OSTI)

    Miller, M. L.; Hylko, J. M.

    2002-02-25

    In 1978, on the basis of existing health studies at the time, the Uranium Mill Tailings Remedial Action (UMTRA) Project legislation was proposed that would authorize remedial action at inactive uranium processing sites and vicinity properties. The cost of the program to the Federal Government was expected to be $180 million. With the completion of this project, approximately 1300 theoretical cancer deaths were prevented in the next 100 years at a cost of $1.45 billion, based on the Fiscal Year 1998 Federal UMTRA budget. The individual site costs ranged from $0.2 million up to $18 billion spent per theoretical cancer death averted over the next 100 years. Resources required to sustain remediation activities such as this are subject to reduction over time, and are originally based on conservative assumptions that tend to overestimate risks to the general public. This evaluation used a process incorporating risk-based corrective action (RBCA); a three-tiered, decision-making process tailoring corrective action activities according to site-specific conditions and risks. If RBCA had been applied at the start of the UMTRA Project, and using a criterion of >1 excess cancer death prevented as justification to remediate the site, only 50% of the existing sites would have been remediated, yielding a cost savings of $303.6 million to the Federal Government and affected States, which share 10% of the cost. This cost savings equates to 21% of the overall project budget. In addition, only 22% of the vicinity properties had structural contamination contributing to elevated interior gamma exposure and radon levels. Focusing only on these particular properties could have saved an additional $269.3 million, yielding a total savings of $573 million; 40% of the overall project budget. As operational experience is acquired, including greater understanding of the radiological and nonradiological risks, decisions should be based on the RBCA process, rather than relying on conservative

  2. Soils Project Risk-Based Corrective Action Evaluation Process with ROTC 1 and ROTC 2, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick; Sloop, Christina

    2012-04-01

    This document formally defines and clarifies the NDEP-approved process the NNSA/NSO Soils Activity uses to fulfill the requirements of the FFACO and state regulations. This process is used to establish FALs in accordance with the risk-based corrective action (RBCA) process stipulated in Chapter 445 of the Nevada Administrative Code (NAC) as described in the ASTM International (ASTM) Method E1739-95 (NAC, 2008; ASTM, 1995). It is designed to provide a set of consistent standards for chemical and radiological corrective actions.

  3. Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the August 2001, Corrective Action Decision Document / Closure Report for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 22-99-05, Fuel Storage Area. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because

  4. Addendum to the Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the April 2003, Closure Report for Corrective Action Unit 398: Area 25 Spill Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 25-25-17, Subsurface Hydraulic Oil Spill. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above

  5. Addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for Corrective Action Unit 403: Second Gas Station, Tonopah Test Range, Nevada, September 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-004-0360, Underground Storage Tanks. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR

  6. Addendum to the Closure Report for Corrective Action Unit 214: Bunkers and Storage Areas Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the September 2006, Closure Report for Corrective Action Unit 214: Bunkers and Storage Areas as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 25-23-01, Contaminated Materials • CAS 25-23-19, Radioactive Material Storage These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove

  7. Addendum to the Closure Report for Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the January 2004, Closure Report for Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 20-23-02, Postshot Cellar • CAS 20-23-03, Cellar • CAS 20-23-04, Postshot Cellar • CAS 20-23-05, Postshot Cellar • CAS 20-23-06, Cellar • CAS 20-37-01, Cellar & Mud Pit • CAS 20-37-05, Cellar These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action

  8. Addendum 2 to the Closure Report for Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits, Nevada Test Site, Nevada, Revison 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for Corrective Action Unit 358: Areas 18, 19, 20 Cellars/Mud Pits, Nevada Test Site, Nevada, January 2004 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 19-09-05, Mud Pit. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for

  9. Addendum to the Closure Report for Corrective Action Unit 423: Area 3 Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the July 1999, Closure Report for Corrective Action Unit 423: Area 3 Building 0360 Underground Discharge Point, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 03-02-002-0308, Underground Discharge Point. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the

  10. Addendum to the Closure Report for Corrective Action Unit 394: Areas 12, 18, and 29 Spill/Release Sites Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the September 2003, Closure Report for Corrective Action Unit 394: Areas 12, 18, and 29 Spill/Release Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 12-25-04, UST 12-16-2 Waste Oil Release • CAS 18-25-01, Oil Spills • CAS 18-25-02, Oil Spills • CAS 18-25-03, Oil Spill • CAS 29-44-01, Fuel Spill These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the

  11. Addendum to the Closure Report for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the April 2000, Closure Report for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 23-56-01, Former Mercury Fire Training Pit. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at

  12. Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 25-25-09, Spill H940825C (from UST 25-3101-1) • 25-25-14, Spill H940314E (from UST 25-3102-3) • 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs

  13. Addendum to the Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada (Revision 1), December 2002 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 06-25-01, CP-1 Heating Oil Release. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to

  14. Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Undrground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the April 1998, Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-25-09, Spill 960722-02 (from UST 12-B-3). This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a

  15. Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 12-25-08, Spill H950524F (from UST 12-B-1) • 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be

  16. Addendum to the Closure Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2, 6, Tonopah Test Range, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the April 1999, Closure Report for Corrective Action Unit 427: Area 3 Septic Waste Systems 2, 6, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 03-05-002-SW02, Septic Waste System • CAS 03-05-002-SW06, Septic Waste System These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re

  17. Addendum to the Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2006, Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 01-25-01, AST Release • CAS 03-25-03, Mud Plant AST Diesel Release These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to

  18. Addendum to the Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada, Revison 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2003, Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 06-20-02, 20-inch Cased Hole • CAS 06-23-03, Drain Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because

  19. Addendum to the Closure Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2009-05-01

    This document constitutes an addendum to the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, December 1997 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-19-01, A12 Fleet Ops Steam Cleaning Efflu. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the

  20. Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2009-12-01

    Corrective Action Unit 367 is located in Area 10 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 367 comprises the four corrective action sites (CASs) listed below: • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-09-03, Mud Pit • 10-45-03, Uncle Crater Site The CASs in CAU 367 are being investigated because hazardous and/or radioactive contaminants may be present in concentrations that exceed risk-based corrective action (RBCA) levels. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting CAAs. The scope of the corrective action investigation for CAU 367 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine the area where TED at the site exceeds FALs (i.e., corrective action boundary). • Evaluate TED to potential receptors in areas along Mercury Highway that have been impacted by a release of radionuclides from the Sedan test. • Collect and submit environmental samples for laboratory analysis related to the drilling mud within CAS 10-09-03, Mud Pit, and any encountered stains or waste as necessary to determine whether COCs are present. • If COCs are present, collect additional step-out samples to define the extent of the contamination. • Collect samples of investigation-derived waste, as needed, for waste management purposes.

  1. Addendum to the Closure Report for Corrective Action Unit 355: Area 2 Cellars/Mud Pits Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the November 2003, Closure Report for Corrective Action Unit 355: Area 2 Cellars/Mud Pits as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 02-37-01, Cellar & Mud Pit • CAS 02-37-03, Cellar & Mud Pit • CAS 02-37-04, Cellar & Mud Pit • CAS 02-37-05, Cellar & Mud Pit • CAS 02-37-06, Cellar & Mud Pit • CAS 02-37-07, Cellar & Mud Pit • CAS 02-37-10, Cellar & Mud Pit • CAS 02-37-11, Cellar & Mud Pit • CAS 02-37-12, Cellar & Mud Pit • CAS 02-37-13, Cellar & Mud Pit • CAS 02-37-14, Cellar & Mud Pit • CAS 02-37-15, Cellar & Mud Pit • CAS 02-37-16, Cellar & Mud Pit • CAS 02-37-17, Cellar • CAS 02-37-18, Cellar & Tanks These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed

  2. Recommendations and Justifications for Modifications To Downgrade Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order, Revision 1

    SciTech Connect (OSTI)

    Birney, Cathleen; Krauss, Mark J

    2013-10-01

    This document is part of an effort to reevaluate 37 FFACO and Administrative URs against the current Soils Risk-Based Corrective Action Evaluation Process. After reviewing 37 existing FFACO and Administrative URs, 11 URs addressed in this document have sufficient information to determine that these current URs may be downgraded to Administrative URs based on the RBCA criteria. This document presents recommendations on modifications to existing URs that will be consistent with the RBCA criteria.

  3. Recommendations and Justifications To Remove Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order, Revision 0

    SciTech Connect (OSTI)

    Birney, Cathleen; Krauss, Mark J

    2013-09-01

    This document is part of an effort to reevaluate 37 FFACO and Administrative URs against the current Soils Risk-Based Corrective Action Evaluation Process. After reviewing 37 existing FFACO and Administrative URs, 3 URs addressed in this document have sufficient information to determine that these current URs may be removed, based on the RBCA criteria. This document presents recommendations on modifications to existing URs that will be consistent with the RBCA criteria.

  4. Use of Risk-Based End States

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-07-15

    The policy addresses conducting cleanup that is aimed at, and achieves, clearly defined, risk-based end states. Canceled by DOE N 251.106.

  5. Soils RBCA Eval Process.book

    National Nuclear Security Administration (NNSA)

    within these craters would require personnel entering the craters to position drilling and excavation equipment. This would present significant logistical concerns and...

  6. Risk-based technical specifications program: Site interview results

    SciTech Connect (OSTI)

    Andre, G.R.; Baker, A.J. ); Johnson, R.L. )

    1991-08-01

    The Electric Power Research Institute and Pacific Gas and Electric Company are sponsoring a program directed at improving Technical Specifications using risk-based methods. The major objectives of the program are to develop risk-based approaches to improve Technical Specifications and to develop an Interactive Risk Advisor (IRA) prototype. The IRA is envisioned as an interactive system that is available to plant personnel to assist in controlling plant operation. Use of an IRA is viewed as a method to improve plant availability while maintaining or improving plant safety. In support of the program, interviews were conducted at several PWR and BWR plant sites, to elicit opinions and information concerning risk-based approaches to Technical Specifications and IRA requirements. This report presents the results of these interviews, including the functional requirements of an IRA. 2 refs., 6 figs., 2 tabs.

  7. Protecting the Smart Grid: A Risk Based Approach

    SciTech Connect (OSTI)

    Clements, Samuel L.; Kirkham, Harold; Elizondo, Marcelo A.; Lu, Shuai

    2011-10-10

    This paper describes a risk-based approach to security that has been used for years in protecting physical assets, and shows how it could be modified to help secure the digital aspects of the smart grid and control systems in general. One way the smart grid has been said to be vulnerable is that mass load fluctuations could be created by quickly turning off and on large quantities of smart meters. We investigate the plausibility.

  8. Risk-Based Sensor Placement Methodology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Risk-Based Sensor Placement Methodology Providing Optimal Monitoring of Hazardous Releases Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Current methods for sensor placement are based on qualitative approaches ranging from "best guess" to expensive, customized studies. Description Scientists at ORNL have developed a model for

  9. Corrective Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Corrective Action Complete is demonstrated by one of the following: Eliminate Exposure (11 SMAs, 16 Sites) SMA SITE Submittal Date Document 2M-SMA-2.2 03-003(k) September...

  10. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective...

  11. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective measures process

  12. MO-E-9A-01: Risk Based Quality Management: TG100 In Action

    SciTech Connect (OSTI)

    Huq, M; Palta, J; Dunscombe, P; Thomadsen, B

    2014-06-15

    One of the goals of quality management in radiation therapy is to gain high confidence that patients will receive the prescribed treatment correctly. To accomplish these goals professional societies such as the American Association of Physicists in Medicine (AAPM) has published many quality assurance (QA), quality control (QC), and quality management (QM) guidance documents. In general, the recommendations provided in these documents have emphasized on performing device-specific QA at the expense of process flow and protection of the patient against catastrophic errors. Analyses of radiation therapy incidents find that they are most often caused by flaws in the overall therapy process, from initial consult through final treatment, than by isolated hardware or computer failures detectable by traditional physics QA. This challenge is shared by many intrinsically hazardous industries. Risk assessment tools and analysis techniques have been developed to define, identify, and eliminate known and/or potential failures, problems, or errors, from a system, process and/or service before they reach the customer. These include, but are not limited to, process mapping, failure modes and effects analysis (FMEA), fault tree analysis (FTA), and establishment of a quality management program that best avoids the faults and risks that have been identified in the overall process. These tools can be easily adapted to radiation therapy practices because of their simplicity and effectiveness to provide efficient ways to enhance the safety and quality of treatment processes. Task group 100 (TG100) of AAPM has developed a risk-based quality management program that uses these tools. This session will be devoted to a discussion of these tools and how these tools can be used in a given radiotherapy clinic to develop a risk based QM program. Learning Objectives: Learn how to design a process map for a radiotherapy process. Learn how to perform a FMEA analysis for a given process. Learn what

  13. Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order with ROTC 1, Revision No. 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-02-01

    Many Federal Facility Agreement and Consent Order (FFACO) Use Restrictions (URs) have been established at various corrective action sites (CASs) as part of FFACO corrective actions (FFACO, 1996; as amended January 2007). Since the signing of the FFACO in 1996, practices and procedures relating to the implementation of risk-based corrective action (RBCA) have evolved. This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). Based on this evaluation, the URs were sorted into the following categories: 1. Where sufficient information exists to determine that the current UR is consistent with the RCBA criteria 2. Where sufficient information exists to determine that the current UR may be removed or downgraded based on RCBA criteria. 3. Where sufficient information does not exist to evaluate the current UR against the RCBA criteria. After reviewing all the existing FFACO URs, the 49 URs addressed in this document have sufficient information to determine that these current URs may be removed or downgraded based on RCBA criteria. This document presents recommendations on modifications to existing URs that will be consistent with the RCBA criteria.

  14. Status of Corrective Actions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP AIB Report Status of Corrective Actions Status of Corrective Actions at LANL Department of Energy Issues Accident Investigation Board (AIB) Report on February 14 Incident ...

  15. Corrective Actions Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Environmental Cleanup » Corrective Actions Corrective Actions Process The general process for evaluating and remediating potential release sites is called the corrective action process. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Corrective actions The Laboratory's corrective actions process refers to the way in which the Laboratory investigates, stabilizes,

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 504: 16a-Tunnel Muckpile, Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 504, 16a-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 504 is comprised of four Corrective Action Sites (CASs): • 16-06-01, Muckpile • 16-23-01, Contaminated Burial Pit • 16-23-02, Contaminated Area • 16-99-01, Concrete Construction Waste Corrective Action Site 16-23-01 is not a burial pit; it is part of CAS 16-06-01. Therefore, there is not a separate data analysis and assessment for CAS 16-23-01; it is included as part of the assessment for CAS 16-06-01. In addition to these CASs, the channel between CAS 16-23-02 (Contaminated Area) and Mid Valley Road was investigated with walk-over radiological surveys and soil sampling using hand tools. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictions for CAU 504. A CADD was originally submitted for CAU 504 and approved by the Nevada Division of Environmental Protection (NDEP). However, following an agreement between NDEP, DTRA, and the DOE, National Nuclear Security Administration Nevada Site Office to change to a risk-based approach for assessing the corrective action investigation (CAI) data, NDEP agreed that the CAU could be re-evaluated using the risk-based approach and a CADD/CR prepared to close the site.

  17. 2008-07 "Use of Risk-Based End States" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 "Use of Risk-Based End States" 2008-07 "Use of Risk-Based End States" The intent is to provide a means for assuring that long-term future land use of the LANL site is appropriately considered when evaluating the risk of clean-up options. Rec 2008-07 - September 24, 2008 (31.42

  18. The application of risk-based inspection methodology in the petroleum and petrochemical industry

    SciTech Connect (OSTI)

    Reynolds, J.T.

    1996-12-01

    Nineteen petrochemical companies are currently sponsoring a project to develop risk-based inspection (RBI) methodology for application in the refining and petrochemical industry. This paper describes that particular RBI methodology and gives an update of the progress toward developing an industry standard (API Recommended Practice 580) that will allow all companies to access the technology for their own benefit. Also included is a review of the first pilot project to validate the methodology by applying RBI to several existing refining units. The failure of pressure equipment in a process unit can have several undesirable effects. For the purpose of RBI analysis, the API RBI program categorizes these effects into four basic risk outcomes: flammable events, toxic releases, major environmental damage, and business interruption losses. API RBI is both a qualitative and quantitative process for understanding and reducing these risks associated with operating pressure equipment. This paper shows how API RBI assesses the potential consequences of a failure of the pressure boundary, as well as assessing the likelihood of failure. Risk-based inspection prioritizes risk levels in a systematic manner so that the owner-user can then plan an inspection program that focuses more resources on the higher risk equipment; while possibly saving inspection resources that are not doing an effective job of reducing risk.

  19. Risk-based inspection methodology for the petroleum and petrochemical industry

    SciTech Connect (OSTI)

    Reynolds, J.T.; Aller, J.E.

    1996-11-01

    Seventeen API member companies are currently sponsoring a project to develop risk-based inspection (RBI) methodology for application in the refining and petrochemical industry. This paper describes that particular RBI methodology and gives an update of the progress toward developing an industry standard (API Recommended Practice 580) that will allow all companies to access the technology for their own benefit. Also included is a review of the first pilot project to validate the methodology by applying RBI to several existing refining units. The failure of pressure equipment in a process unit can have several undesirable effects. For the purpose of RBI analysis, this program categorizes these effects into four basic risk outcomes: flammable event, toxic releases, major environmental damage, and business interruption losses. RBI is both a qualitative and quantitative process for understanding and reducing the risks associated with operating pressure equipment. This paper will show how RBI assesses the potential consequences of a failure of the pressure boundary, as well as assessing the likelihood of failure. Risk-based inspection prioritizes risk levels in a systematic manner so that the owner-user can then plan an inspection program that focuses more resources on the higher risk equipment; while possibly saving inspection resources that are not doing an effective job of reducing risk.

  20. Waste management project's alternatives: A risk-based multi-criteria assessment (RBMCA) approach

    SciTech Connect (OSTI)

    Karmperis, Athanasios C.; Sotirchos, Anastasios; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We examine the evaluation of a waste management project's alternatives. Black-Right-Pointing-Pointer We present a novel risk-based multi-criteria assessment (RBMCA) approach. Black-Right-Pointing-Pointer In the RBMCA the evaluation criteria are based on the quantitative risk analysis of the project's alternatives. Black-Right-Pointing-Pointer Correlation between the criteria weight values and the decision makers' risk preferences is examined. Black-Right-Pointing-Pointer Preference to the multi-criteria against the one-criterion evaluation process is discussed. - Abstract: This paper examines the evaluation of a waste management project's alternatives through a quantitative risk analysis. Cost benefit analysis is a widely used method, in which the investments are mainly assessed through the calculation of their evaluation indicators, namely benefit/cost (B/C) ratios, as well as the quantification of their financial, technical, environmental and social risks. Herein, a novel approach in the form of risk-based multi-criteria assessment (RBMCA) is introduced, which can be used by decision makers, in order to select the optimum alternative of a waste management project. Specifically, decision makers use multiple criteria, which are based on the cumulative probability distribution functions of the alternatives' B/C ratios. The RBMCA system is used for the evaluation of a waste incineration project's alternatives, where the correlation between the criteria weight values and the decision makers' risk preferences is analyzed and useful conclusions are discussed.

  1. Status of Corrective Actions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report on February 14 Incident at the Waste Isolation Pilot Project in Carlsbad, New Mexico April 12, 2012 x x Contact Communication Office (505) 667-7000 Corrective Actions...

  2. Corrective Action Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-02

    This Guide was developed to assist the Department of Energy (DOE) organizations and contractors in the development, implementation, and followup of corrective action programs utilizing the feedback and improvement core safety function within DOE's Integrated Safety Management System. This Guide outlines some of the basic principles, concepts, and lessons learned that DOE managers and contractors might consider when implementing corrective action programs based on their specific needs. Canceled by DOE G 414.1-2B. Does not cancel other directives.

  3. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  4. Environmental restoration risk-based prioritization work package planning and risk ranking methodology. Revision 2

    SciTech Connect (OSTI)

    Dail, J.L.; Nanstad, L.D.; White, R.K.

    1995-06-01

    This document presents the risk-based prioritization methodology developed to evaluate and rank Environmental Restoration (ER) work packages at the five US Department of Energy, Oak Ridge Field Office (DOE-ORO) sites [i.e., Oak Ridge K-25 Site (K-25), Portsmouth Gaseous Diffusion Plant (PORTS), Paducah Gaseous Diffusion Plant (PGDP), Oak Ridge National Laboratory (ORNL), and the Oak Ridge Y-12 Plant (Y-12)], the ER Off-site Program, and Central ER. This prioritization methodology was developed to support the increased rigor and formality of work planning in the overall conduct of operations within the DOE-ORO ER Program. Prioritization is conducted as an integral component of the fiscal ER funding cycle to establish program budget priorities. The purpose of the ER risk-based prioritization methodology is to provide ER management with the tools and processes needed to evaluate, compare, prioritize, and justify fiscal budget decisions for a diverse set of remedial action, decontamination and decommissioning, and waste management activities. The methodology provides the ER Program with a framework for (1) organizing information about identified DOE-ORO environmental problems, (2) generating qualitative assessments of the long- and short-term risks posed by DOE-ORO environmental problems, and (3) evaluating the benefits associated with candidate work packages designed to reduce those risks. Prioritization is conducted to rank ER work packages on the basis of the overall value (e.g., risk reduction, stakeholder confidence) each package provides to the ER Program. Application of the methodology yields individual work package ``scores`` and rankings that are used to develop fiscal budget requests. This document presents the technical basis for the decision support tools and process.

  5. Development of a Risk-Based Comparison Methodology of Carbon Capture Technologies

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Thompson, Julie; Leclaire, Rene; Edward, Bryan; Jones, Edward

    2014-06-01

    Given the varying degrees of maturity among existing carbon capture (CC) technology alternatives, an understanding of the inherent technical and financial risk and uncertainty associated with these competing technologies is requisite to the success of carbon capture as a viable solution to the greenhouse gas emission challenge. The availability of tools and capabilities to conduct rigorous, riskbased technology comparisons is thus highly desirable for directing valuable resources toward the technology option(s) with a high return on investment, superior carbon capture performance, and minimum risk. To address this research need, we introduce a novel risk-based technology comparison method supported by an integrated multi-domain risk model set to estimate risks related to technological maturity, technical performance, and profitability. Through a comparison between solid sorbent and liquid solvent systems, we illustrate the feasibility of estimating risk and quantifying uncertainty in a single domain (modular analytical capability) as well as across multiple risk dimensions (coupled analytical capability) for comparison. This method brings technological maturity and performance to bear on profitability projections, and carries risk and uncertainty modeling across domains via inter-model sharing of parameters, distributions, and input/output. The integration of the models facilitates multidimensional technology comparisons within a common probabilistic risk analysis framework. This approach and model set can equip potential technology adopters with the necessary computational capabilities to make risk-informed decisions about CC technology investment. The method and modeling effort can also be extended to other industries where robust tools and analytical capabilities are currently lacking for evaluating nascent technologies.

  6. Correction coil cable

    DOE Patents [OSTI]

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  7. Appendix VI Corrective Action Strategy

    National Nuclear Security Administration (NNSA)

    ......... 15 3.0 Underground Test Area............ 13 3-1 Underground Test Area Corrective Action ...

  8. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect (OSTI)

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  9. Risk-based approach for bioremediation of fuel hydrocarbons at a major airport

    SciTech Connect (OSTI)

    Wiedemeier, T.H.; Guest, P.R.; Blicker, B.R.

    1994-12-31

    This paper describes a risk-based approach for bioremediation of fuel-hydrocarbon-contaminated soil and ground water at a major airport in Colorado. In situ bioremediation pilot testing, natural attenuation modeling, and full-scale remedial action planning and implementation for soil and ground water contamination has conducted at four airport fuel farms. The sources of fuel contamination were leaking underground storage tanks (USTs) or pipelines transporting Jet A fuel and aviation gasoline. Continuing sources of contamination were present in several small cells of free-phase product and in fuel residuals trapped within the capillary fringe at depths 15 to 20 feet below ground surface. Bioventing pilot tests were conducted to assess the feasibility of using this technology to remediate contaminated soils. The pilot tests included measurement of initial soil gas chemistry at the site, determination of subsurface permeability, and in situ respiration tests to determine fuel biodegradation rates. A product recovery test was also conducted. ES designed and installed four full-scale bioventing systems to remediate the long-term sources of continuing fuel contamination. Benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) were detected in ground water at concentrations slightly above regulatory guidelines.

  10. Auxiliary feedwater system risk-based inspection guide for the Ginna Nuclear Power Plant

    SciTech Connect (OSTI)

    Pugh, R.; Gore, B.F.; Vo, T.V.; Moffitt, N.E. )

    1991-09-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Ginna was selected as the eighth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Ginna plant. 23 refs., 1 fig., 1 tab.

  11. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    SciTech Connect (OSTI)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant.

  12. Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant

    SciTech Connect (OSTI)

    Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1994-05-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant.

  13. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    SciTech Connect (OSTI)

    Lloyd, R C; Moffitt, N E; Gore, B F; Vo, T V; Vehec, T A

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant.

  14. Auxiliary feedwater system risk-based inspection guide for the J. M. Farley Nuclear Power Plant

    SciTech Connect (OSTI)

    Vo, T.V.; Pugh, R.; Gore, B.F.; Harrison, D.G. )

    1990-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment(PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. J. M. Farley was selected as the second plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important at the J. M. Farley plant. 23 refs., 1 fig., 1 tab.

  15. Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant

    SciTech Connect (OSTI)

    Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V.; Garner, L.W.

    1993-08-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant.

  16. Auxiliary feedwater system risk-based inspection guide for the Byron and Braidwood nuclear power plants

    SciTech Connect (OSTI)

    Moffitt, N.E.; Gore, B.F.: Vo, T.V. )

    1991-07-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Byron and Braidwood were selected for the fourth study in this program. The produce of this effort is a prioritized listing of AFW failures which have occurred at the plants and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Byron/Braidwood plants. 23 refs., 1 fig., 1 tab.

  17. Correction coil cable

    DOE Patents [OSTI]

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  18. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  19. Example of a Risk-Based Disposal Approval: Solidification of Hanford Site Transuranic Waste

    SciTech Connect (OSTI)

    Barnes, B.M.; Hyatt, J.E.; Martin, P.W.; Prignano, A.L.

    2008-07-01

    The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26, 2005 to June 9, 2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP. (authors)

  20. EXAMPLE OF A RISK BASED DISPOSAL APPROVAL SOLIDIFICATION OF HANFORD SITE TRANSURANIC (TRU) WASTE

    SciTech Connect (OSTI)

    PRIGNANO AL

    2007-11-14

    The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26,2005 to June 9,2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP.

  1. Radiation camera motion correction system

    DOE Patents [OSTI]

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  2. RCRA corrective action and closure

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators` interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE`s permitted facilities and interim status facilities.

  3. Corrective Action Investigation Plan for Corrective Action Unit...

    Office of Legacy Management (LM)

    ... Number Title Page 1-1 Process Flow Diagram for Underground Test Area Corrective Action ... NPDES National Pollutant Discharge Elimination System NTS Nevada Test Site pdf Probability ...

  4. Risk-based maintenance modeling. Prioritization of maintenance importances and quantification of maintenance effectiveness

    SciTech Connect (OSTI)

    Vesely, W.E.; Rezos, J.T.

    1995-09-01

    This report describes methods for prioritizing the risk importances of maintenances using a Probabilistic Risk Assessment (PRA). Approaches then are described for quantifying their reliability and risk effects. Two different PRA importance measures, minimal cutset importances and risk reduction importances, were used to prioritize maintenances; the findings show that both give similar results if appropriate criteria are used. The justifications for the particular importance measures also are developed. The methods developed to quantify the reliability and risk effects of maintenance actions are extensions of the usual reliability models now used in PRAs. These extended models consider degraded states of the component, and quantify the benefits of maintenance in correcting degradations and preventing failures. The negative effects of maintenance, including downtimes, also are included. These models are specific types of Markov models. The data for these models can be obtained from plant maintenance logs and from the Nuclear Plant Reliability Data System (NPRDS). To explore the potential usefulness of these models, the authors analyzed a range of postulated values of input data. These models were used to examine maintenance effects on a components reliability and performance for various maintenance programs and component data. Maintenance schedules were analyzed to optimize the component`s availability. In specific cases, the effects of maintenance were found to be large.

  5. Barometric and Earth Tide Correction

    Energy Science and Technology Software Center (OSTI)

    2005-11-10

    BETCO corrects for barometric and earth tide effects in long-term water level records. A regression deconvolution method is used ot solve a series of linear equations to determine an impulse response function for the well pressure head. Using the response function, a pressure head correction is calculated and applied.

  6. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  7. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    SciTech Connect (OSTI)

    Tim Echelard

    2006-03-01

    of Energy (DOE) determined that the degree of uncertainty in transport predictions for PSA remained unacceptably large. As a result, a second CAIP was developed by DOE and approved by the Nevada Division of Environmental Protection (NDEP) in December 1998 (DOE/NV, 1998a). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and quantification of methods of reducing uncertainty through data collection. This analysis is termed a Data Decision Analysis (Pohll et al., 1999a) and formed the basis for a second major characterization effort at PSA (Pohll et al., 1999b). The details for this second field effort are presented in an Addendum to the CAIP, which was approved by NDEP in April 1999 (DOE/NV, 1999a). Four additional characterization wells were drilled at PSA during summer and fall of 1999; details of the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et al. (2000). A key component of the second field program was a tracer test between two of the new wells (Carroll et al., 2000; Reimus et al., 2003). Based on the potential exposure pathways, two corrective action objectives were identified for CAU 447: Prevent or mitigate exposure to groundwater contaminants of concern at concentrations exceeding regulatory maximum contaminant levels or risk-based levels; and Reduce the risk to human health and the environment to the extent practicable. Based on the review of existing data, the results of the modeling, future use, and current operations at PSA, the following alternatives have been developed for consideration at CAU 447: Alternative 1--No Further Action; Alternative 2--Proof-of-Concept and Monitoring with Institutional Controls; and Alternative 3--Contaminant Control. The corrective action alternatives were evaluated based on the approach outlined in the ''Focused Evaluation of Selected Remedial Alternatives for the Underground Test Area'' (DOE/NV, 1998b). Each alternative was assessed against nine

  8. Entropic corrections to Einstein equations

    SciTech Connect (OSTI)

    Hendi, S. H. [Physics Department, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Sheykhi, A. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, P.O. Box 76175-132, Kerman (Iran, Islamic Republic of)

    2011-04-15

    Considering the general quantum corrections to the area law of black hole entropy and adopting the viewpoint that gravity interprets as an entropic force, we derive the modified forms of Modified Newtonian dynamics (MOND) theory of gravitation and Einstein field equations. As two special cases we study the logarithmic and power-law corrections to entropy and find the explicit form of the obtained modified equations.

  9. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    SciTech Connect (OSTI)

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  10. USING A RISK-BASED METHODOLOGY FOR THE TRANSFER OF RADIOACTIVE MATERIAL WITHIN THE SAVANNAH RIVER SITE BOUNDARY

    SciTech Connect (OSTI)

    Loftin, B.; Watkins, R.; Loibl, M.

    2010-06-03

    Shipment of radioactive materials (RAM) is discussed in the Code of Federal Regulations in parts of both 49 CFR and 10 CFR. The regulations provide the requirements and rules necessary for the safe shipment of RAM across public highways, railways, waterways, and through the air. These shipments are sometimes referred to as in-commerce shipments. Shipments of RAM entirely within the boundaries of Department of Energy sites, such as the Savannah River Site (SRS), can be made using methodology allowing provisions to maintain equivalent safety while deviating from the regulations for in-commerce shipments. These onsite shipments are known as transfers at the SRS. These transfers must follow the requirements approved in a site-specific Transportation Safety Document (TSD). The TSD defines how the site will transfer materials so that they have equivalence to the regulations. These equivalences are documented in an Onsite Safety Assessment (OSA). The OSA can show how a particular packaging used onsite is equivalent to that which would be used for an in-commerce shipment. This is known as a deterministic approach. However, when a deterministic approach is not viable, the TSD allows for a risk-based OSA to be written. These risk-based assessments show that if a packaging does not provide the necessary safety to ensure that materials are not released (during normal or accident conditions) then the worst-case release of materials does not result in a dose consequence worse than that defined for the SRS. This paper will discuss recent challenges and successes using this methodology at the SRS.

  11. Re: Corrected Memorandum Summarizing Ex Parte Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    via email) Re: Corrected Memorandum Summarizing Ex Parte Communication This memorandum is submitted to revise and correct our earlier memorandum submitted on September 23 rd . ...

  12. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  13. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    SciTech Connect (OSTI)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.

  14. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate dailymore » intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.« less

  15. Radiosondes Corrected for Inaccuracy in RH Measurements

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miloshevich, Larry

    2008-01-15

    Corrections for inaccuracy in Vaisala radiosonde RH measurements have been applied to ARM SGP radiosonde soundings. The magnitude of the corrections can vary considerably between soundings. The radiosonde measurement accuracy, and therefore the correction magnitude, is a function of atmospheric conditions, mainly T, RH, and dRH/dt (humidity gradient). The corrections are also very sensitive to the RH sensor type, and there are 3 Vaisala sensor types represented in this dataset (RS80-H, RS90, and RS92). Depending on the sensor type and the radiosonde production date, one or more of the following three corrections were applied to the RH data: Temperature-Dependence correction (TD), Contamination-Dry Bias correction (C), Time Lag correction (TL). The estimated absolute accuracy of NIGHTTIME corrected and uncorrected Vaisala RH measurements, as determined by comparison to simultaneous reference-quality measurements from Holger Voemel's (CU/CIRES) cryogenic frostpoint hygrometer (CFH), is given by Miloshevich et al. (2006).

  16. CORRECTIVE ACTION PLAN FOR CORRECTIVE ACTION UNIT 543: LIQUID DISPOSAL UNITS, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    2006-09-01

    The purpose of this Corrective Action Plan is to provide the detailed scope of work required to implement the recommended corrective actions as specified in the approved Corrective Action Decision Document.

  17. Program Course Corrections Based on Evaluation Results

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Data and Evaluation Peer Exchange Call: Program Course Corrections Based on Evaluation Results, Call Slides and Discussion Summary, April 12, 2012, This call discussed using evaluation results as the basis for course corrections.

  18. Request for Correction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Correction Request for Correction In the Department of Energy's correction request process, the burden of proof rests with the requester. An affected person who believes that information the Department disseminates does not adhere to the information quality guidelines of OMB or the Department, or who would like to request correction of specific information, needs to provide the following information within 60 calendar days of the initial information dissemination: Requester

  19. Environmental Management Headquarters Corrective Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II Environmental Management Headquarters Corrective Action Plan - Radiological Release ... actions for addressing Office of Environmental Management (EM) Headquarters (HQ) ...

  20. Clothes Washer Test Cloth Correction Factor Information

    Broader source: Energy.gov [DOE]

    This page contains the information used to determine the test cloth correction factors for each test cloth lot.

  1. Phase and birefringence aberration correction

    DOE Patents [OSTI]

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  2. Phase and birefringence aberration correction

    DOE Patents [OSTI]

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  3. Rulison Site corrective action report

    SciTech Connect (OSTI)

    1996-09-01

    Project Rulison was a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, conducted under the AEC`s Plowshare Program, to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface (BGS). This Corrective Action Report describes the cleanup of petroleum hydrocarbon- and heavy-metal-contaminated sediments from an old drilling effluent pond and characterization of the mud pits used during drilling of the R-EX well at the Rulison Site. The Rulison Site is located approximately 65 kilometers (40 miles) northeast of Grand Junction, Colorado. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for the 1969 gas stimulation test conducted by the AEC. This report also describes the activities performed to determine whether contamination is present in mud pits used during the drilling of well R-EX, the gas production well drilled at the site to evaluate the effectiveness of the detonation in stimulating gas production. The investigation activities described in this report were conducted during the autumn of 1995, concurrent with the cleanup of the drilling effluent pond. This report describes the activities performed during the soil investigation and provides the analytical results for the samples collected during that investigation.

  4. Los Alamos National Laboratory Accident Investigation Board Corrective...

    Office of Environmental Management (EM)

    Accident Investigation Board Corrective Action Plan Update Los Alamos National Laboratory Accident Investigation Board Corrective Action Plan Update Topic: Status of the Corrective ...

  5. Proposed Rule Correction, Federal Register, 75 FR 66008, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Rule Correction, Federal Register, 75 FR 66008, October 27, 2010 Proposed Rule Correction, Federal Register, 75 FR 66008, October 27, 2010 Document displays a correction ...

  6. Monthly Progress Report for Corrective Actions 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress Reports for Corrective Actions 2016 Monthly Progress Report for Corrective Actions Prescribed in Attachment A of the Settlement Agreement and Stipulated Final Order, Dated January 22, 2016, NO. HWB-14-21 (CO) Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF dated August 31, 2016 Monthly Progress Report for Corrective Actions Prescribed in Attachment A of the Settlement Agreement and Stipulated Final Order, Dated January 22, 2016, NO. HWB-14-21 (CO) Waste Isolation Pilot

  7. Weather-Corrected Performance Ratio

    SciTech Connect (OSTI)

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  8. Dispersion corrections to parity violating electron scattering

    SciTech Connect (OSTI)

    Gorchtein, M.; Horowitz, C. J. [Nuclear Theory Center, Indiana University, Bloomington, IN 47408 (United States); Ramsey-Musolf, M. J. [University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2010-08-04

    We consider the dispersion correction to elastic parity violating electron-proton scattering due to {gamma}Z exchange. In a recent publication, this correction was reported to be substantially larger than the previous estimates. In this paper, we study the dispersion correction in greater detail. We confirm the size of the disperion correction to be {approx}6% for the QWEAK experiment designed to measure the proton weak charge. We enumerate parameters that have to be constrained to better than relative 30% in order to keep the theoretical uncertainty for QWEAK under control.

  9. ARM - Evaluation Product - Corrected Precipitation Radar Moments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would...

  10. Model Requests for Access or Correction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model-Requests-for-Access-or-Correction Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  11. Linux Kernel Error Detection and Correction

    Energy Science and Technology Software Center (OSTI)

    2007-04-11

    EDAC-utils consists fo a library and set of utilities for retrieving statistics from the Linux Kernel Error Detection and Correction (EDAC) drivers.

  12. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Title: Correcting radar range measurements for atmospheric propagation effects. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2013-12-01 OSTI Identifier: ...

  13. Fuel cell flooding detection and correction

    DOE Patents [OSTI]

    DiPierno Bosco, Andrew; Fronk, Matthew Howard

    2000-08-15

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  14. Electroweak Corrections at the LHC with MCFM

    SciTech Connect (OSTI)

    Campbell, John M.; Wackeroth, Doreen; Zhou, Jia

    2015-07-10

    Electroweak (EW) corrections at the LHC can be enhanced at high energies due to soft/collinear radiation of W and Z bosons, being dominated by Sudakov-like corrections in the form of $\\alpha_W^l\\log^n(Q^2/M_W^2)$ $(n \\le 2l, \\alpha_W = \\alpha/(4\\pi\\sin\\theta_W^2))$ when the energy scale $Q$ enters the TeV regime. Thus, the inclusion of EW corrections in LHC predictions is important for the search of possible signals of new physics in tails of kinematic distributions. EW corrections should also be taken into account in virtue of their comparable size ($\\mathcal{O}(\\alpha)$) to that of higher order QCD corrections ($\\mathcal{O}(\\alpha_s^2)$). We calculated the next-to-leading-order (NLO) weak corrections to the neutral-current (NC) Drell-Yan process, top-quark pair production and di-jet producion, and implemented them in the Monte-Carlo program MCFM. This enables a combined study with the corresponding NLO QCD corrections. We provide both the full NLO weak corrections and their weak Sudakov approximation valid at high energies. The latter is often used for a fast evaluation of weak effects, and having the exact result available as well allows to quantify the validity of the Sudakov approximation.

  15. Detector signal correction method and system

    DOE Patents [OSTI]

    Carangelo, Robert M.; Duran, Andrew J.; Kudman, Irwin

    1995-07-11

    Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.

  16. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  17. Final corrective action study for the former CCC/USDA facility in Ramona, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.

    2011-04-20

    Past operations at a grain storage facility formerly leased and operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Ramona, Kansas, resulted in low concentrations of carbon tetrachloride in groundwater that slightly exceed the regulatory standard in only one location. As requested by the Kansas Department of Health and Environment, the CCC/USDA has prepared a Corrective Action Study (CAS) for the facility. The CAS examines corrective actions to address groundwater impacted by the former CCC/USDA facility but not releases caused by other potential groundwater contamination sources in Ramona. Four remedial alternatives were considered in the CAS. The recommended remedial alternative in the CAS consists of Environmental Use Control to prevent the inadvertent use of groundwater as a water supply source, coupled with groundwater monitoring to verify the continued natural improvement in groundwater quality. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) has directed Argonne National Laboratory to prepare a Corrective Action Study (CAS), consistent with guidance from the Kansas Department of Health and Environment (KDHE 2001a), for the CCC/USDA grain storage facility formerly located in Ramona, Kansas. This effort is pursuant to a KDHE (2007a) request. Although carbon tetrachloride levels at the Ramona site are low, they remain above the Kansas Tier 2 risk-based screening level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5 {micro}g/L (Kansas 2003, 2004). In its request for the CAS, the KDHE (2007a) stated that, because of these levels, risk is associated with potential future exposure to contaminated groundwater. The KDHE therefore determined that additional measures are warranted to limit future use of the property and/or exposure to contaminated media as part of site closure. The KDHE further requested comparison of at least two corrective

  18. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect (OSTI)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos; Pavey, Todd; Alexan, Tamer; Bainbridge, Ian

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  19. Dead-time Corrected Disdrometer Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bartholomew, Mary Jane

    2008-03-05

    Original and dead-time corrected disdrometer results for observations made at SGP and TWP. The correction is based on the technique discussed in Sheppard and Joe, 1994. In addition, these files contain calculated radar reflectivity factor, mean Doppler velocity and attenuation for every measurement for both the original and dead-time corrected data at the following wavelengths: 0.316, 0.856, 3.2, 5, and 10cm (W,K,X,C,S bands). Pavlos Kollias provided the code to do these calculations.

  20. Perimeter security for Minnesota correctional facilities

    SciTech Connect (OSTI)

    Crist, D.; Spencer, D.D.

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  1. Quantum error-correcting codes and devices

    DOE Patents [OSTI]

    Gottesman, Daniel

    2000-10-03

    A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.

  2. Assessing the Security Vulnerabilities of Correctional Facilities

    SciTech Connect (OSTI)

    Morrison, G.S.; Spencer, D.S.

    1998-10-27

    The National Institute of Justice has tasked their Satellite Facility at Sandia National Laboratories and their Southeast Regional Technology Center in Charleston, South Carolina to devise new procedures and tools for helping correctional facilities to assess their security vulnerabilities. Thus, a team is visiting selected correctional facilities and performing vulnerability assessments. A vulnerability assessment helps to identi~ the easiest paths for inmate escape, for introduction of contraband such as drugs or weapons, for unexpected intrusion fi-om outside of the facility, and for the perpetration of violent acts on other inmates and correctional employees, In addition, the vulnerability assessment helps to quantify the security risks for the facility. From these initial assessments will come better procedures for performing vulnerability assessments in general at other correctional facilities, as well as the development of tools to assist with the performance of such vulnerability assessments.

  3. Corrective Action Plan for Environmenta' Management Headquarters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrective Action Plan for Environmenta' Management Headquarters Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant on February 14~ 2014 Washington, DC 20585 August 2015 Corrective Action Plan for Environmental Management Headquarters Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014 Deputy Assistant Secretary for Safety, Security, and Quality Programs Environmental Management Approved by: Monica Regalbuto Assistant Secretary for

  4. Detector signal correction method and system

    DOE Patents [OSTI]

    Carangelo, R.M.; Duran, A.J.; Kudman, I.

    1995-07-11

    Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.

  5. Re: Corrected Memorandum Summarizing Ex Parte Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 25, 2014 To: expartecommunication@hq.doe.gov (sent via email) Re: Corrected Memorandum Summarizing Ex Parte Communication This memorandum is submitted to revise and correct our earlier memorandum submitted on September 23 rd . On September 12, 2014, representatives of the American Gas Association (AGA) met with staff of the U.S. Department of Energy (DOE) to share and discuss the results of a national survey of builders and contractors designed to identify the likely rates of fuel

  6. Environmental Management Headquarters Corrective Action Plan - Radiological

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Release Phase II | Department of Energy II Environmental Management Headquarters Corrective Action Plan - Radiological Release Phase II The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014. The report identified

  7. CORRECTION SYSTEMS UPGRADE FOR THE SNS RING.

    SciTech Connect (OSTI)

    PAPAPHILIPPOU,Y.; GARDNER,C.J.; LEE,Y.Y.; WEI,J.

    2001-06-18

    In view of the changes in the design of the SNS ring from the original FODO lattice [l] to the 220m hybrid lattice [2] and finally 1.3GeV compatible 248m ring [3], complementary studies have been undertaken, in order to upgrade its correction packages. We review the evolution of the correction systems and present the accelerator physics studies for the adopted schemes and powering plan.

  8. A risk-based focused decision-management approach for justifying characterization of Hanford tank waste. June 1996, Revision 1; April 1997, Revision 2

    SciTech Connect (OSTI)

    Colson, S.D.; Gephart, R.E.; Hunter, V.L.; Janata, J.; Morgan, L.G.

    1997-12-31

    This report describes a disciplined, risk-based decision-making approach for determining characterization needs and resolving safety issues during the storage and remediation of radioactive waste stored in Hanford tanks. The strategy recommended uses interactive problem evaluation and decision analysis methods commonly used in industry to solve problems under conditions of uncertainty (i.e., lack of perfect knowledge). It acknowledges that problem resolution comes through both the application of high-quality science and human decisions based upon preferences and sometimes hard-to-compare choices. It recognizes that to firmly resolve a safety problem, the controlling waste characteristics and chemical phenomena must be measurable or estimated to an acceptable level of confidence tailored to the decision being made.

  9. CORRECTIVE ACTION PLAN FOR CORRECTIVE ACTION UNIT 528: POLYCHLORINATED BIPHENYLS CONTAMINATION NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2005-06-01

    Corrective Action Unit (CAU) 528: Polychlorinated Biphenyls Contamination is listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996) and is located in Area 25 of the Nevada Test Site. CAU 528 was created to address polychlorinated biphenyl (PCB) contamination identified during the CAU 262 corrective action investigation. CAU 528 consists of one Corrective Action Site (CAS): CAS 25-27-03, Polychlorinated Biphenyls Surface Contamination.

  10. Housekeeping category corrective action unit work plan

    SciTech Connect (OSTI)

    1996-08-01

    The purpose of this Corrective Action Unit (CAU) Work Plan is to provide a strategy to be used by the US Department of Energy Nevada Operations Office (DOE/NV), the US Department of Defense (DoD) Defense Special Weapons Agency (DSWA) (formerly the Defense Nuclear Agency), and contractor personnel for conducting corrective actions at the Nevada Test Site (NTS) and Nevada off-site locations including the Tonopah Test Range (TTR), the Project Shoal Area, and the Central Nevada Test Area. This Work Plan applies to housekeeping category CAUs already listed in the Federal Facility Agreement and Consent Order (FFACO) Appendices (FFACO, 1996) as well as newly identified Corrective Action Sites (CASs) that will follow the housekeeping process.

  11. RCRA corrective action program guide (Interim)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) is responsible for compliance with an increasingly complex spectrum of environmental regulations. One of the most complex programs is the corrective action program proposed by the US Environmental Protection Agency (EPA) under the authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments (HSWA). The proposed regulations were published on July 27, 1990. The proposed Subpart S rule creates a comprehensive program for investigating and remediating releases of hazardous wastes and hazardous waste constituents from solid waste management units (SWMUs) at facilities permitted to treat, store, or dispose of hazardous wastes. This proposed rule directly impacts many DOE facilities which conduct such activities. This guidance document explains the entire RCRA Corrective Action process as outlined by the proposed Subpart S rule, and provides guidance intended to assist those persons responsible for implementing RCRA Corrective Action at DOE facilities.

  12. Mixed-Precision Spectral Deferred Correction: Preprint

    SciTech Connect (OSTI)

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  13. Cylinder yard inspections and corrective actions

    SciTech Connect (OSTI)

    Barlow, C.R.; Ziehlke, K.T.; Pryor, W.A.

    1990-07-31

    Inspection of valves on stored uranium hexafluoride (UF{sub 6}) cylinders was initiated at the three diffusion plant sites in Oak Ridge, Tennessee, Paducah, Kentucky, and Portsmouth, Ohio as the result of the discovery of valve defects and evidence of valve leaks at the Oak Ridge K-25 plant. The coordinated inspection culminated in the identification of additional factors related to long-term safe storage of UF{sub 6}, and plans for correction of such deficiencies are presently being developed and implemented. These corrective actions supplement existing programs aimed at assurance of safe storage as summarized in the report.

  14. QCD Corrections to Heavy Quarkonium Production

    SciTech Connect (OSTI)

    Artoisenet, P.

    2008-08-29

    I discuss J/{psi} and {upsilon} production at the Tevatron. Working in the framework of NRQCD, I review the current theoretical status. Motivated by the polarization puzzle at the Tevatron, I present the brand-new computation of higher-order {alpha}{sub s} corrections to the color-singlet production and discuss the impact of these corrections both on the differential cross section and on the polarization of the quarkonium state. I finally comment on the relative importance of the various transitions that feed quarkonium hadroproduction.

  15. ROOT CAUSE ANALYSIS AND CORRECTIVE ACTION PLAN CLOSURE REPORT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ROOT CAUSE ANALYSIS AND CORRECTIVE ACTION PLAN CLOSURE REPORT ROOT CAUSE ANALYSIS AND CORRECTIVE ACTION PLAN CLOSURE REPORT The Department conducted a root cause analysis (RCA) ...

  16. Corrective Action Tracking System User's Guide | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    September 07, 2004 Corrective Action Tracking System (CATS) User's Guide for Direct Web Access The Department of Energy (DOE) Corrective Action Management Program (CAMP) prescribes...

  17. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological ... Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. ...

  18. Tonopah Test Range Environmental Restoration Corrective Action Sites

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-08-04

    This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites and Corrective Action Units at the Tonopah Test Range

  19. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This consolidated CAP specifies the CBFO corrective actions responsive to the three Accident Investigation Boards' reports. Each corrective action includes the associated JON, the ...

  20. Environmental Management Los Alamos Field Corrective Action Plan...

    Energy Savers [EERE]

    Los Alamos Field Corrective Action Plan - Radiological Release Phase II Environmental Management Los Alamos Field Corrective Action Plan - Radiological Release Phase II On March...

  1. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Simulating Wavefront Correction via Deformable Mirrors at X-Ray Beamlines Citation Details In-Document Search Title: Simulating Wavefront Correction via Deformable ...

  2. 2014-10-14 Issuance: Test Procedures Correction for Fluorescent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Issuance: Test Procedures Correction for Fluorescent Lamp Ballasts; Notice of Proposed Rulemaking 2014-10-14 Issuance: Test Procedures Correction for Fluorescent Lamp Ballasts; ...

  3. Corrective Action Investigation Plan for the Central Nevada Test...

    Office of Legacy Management (LM)

    CORRECTIVE ACTION INVESTIGATION PLAN FOR THE CENTRAL NEVADA TEST AREA SUBSURFACE SITES ... CORRECTIVE ACTION INVESTIGATION PLAN FOR THE CENTRAL NEVADA TEST AREA SUBSURFACE SITES ...

  4. ATVM Interim Final Rule Correction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A few corrections to the final rule regarding fuel economy numbers. ATVM Interim Final Rule Correction More Documents & Publications Updated Guidance For Applicants To Advanced...

  5. Los Alamos National Security Corrective Action Plan - Radiological...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release

  6. NSA AERI Hatch Correction Data Set

    SciTech Connect (OSTI)

    Turner, David

    2012-03-23

    From 2000-2008, the NSA AERI hatch was determined to be indicated as open too frequently. Analysis suggests that the hatch was actually opening and closing properly but that its status was not being correctly reported by the hatch controller to the datastream. An algorithm was written to determine the hatch status from the observed

  7. FTCP Corrective Action Plan- Revision 2

    Broader source: Energy.gov [DOE]

    March 2009 FTCP Corrective Action Plan, Revision 2, which is Deliverable B for Commitment 13 in the Department of Energy (DOE) Implementation Plan to Improve Oversight of Nuclear Operations, issued in response to Defense Nuclear Facilities Safety Board Recommendation 2004-1, Oversight of Complex, High-Hazard Nuclear Operations

  8. FTCP Corrective Action Plan- Revision 1

    Broader source: Energy.gov [DOE]

    January 2007 FTCP Corrective Action Plan, Revision 1, which is Deliverable B for Commitment 13 in the Department of Energy (DOE) Implementation Plan to Improve Oversight of Nuclear Operations, issued in response to Defense Nuclear Facilities Safety Board Recommendation 2004- 1, Oversight of Complex, High-Hazard Nuclear Operations

  9. Errata Corrections as of February 7, 2012

    Gasoline and Diesel Fuel Update (EIA)

    February 7, 2012 1. On Table 21 of the Scenario Case Data spreadsheet files for the Credit Cap 2.1 and Credit Cap 3.0 tables, data for "Total Penalty" (line 2846) and "CES Payments" (lines 2867 through 2875) were corrected

  10. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-04-30

    year. These boundaries will be defined as follows: It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers

  11. Los Alamos National Security Corrective Action Plan - Radiological Release

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase II | Department of Energy Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II Los Alamos National Security Corrective Action Plan - Radiological Release Phase II (7.59 MB) More Documents & Publications Environmental Management Los Alamos Field Office Corrective Action Plan - Radiological Release Phase II

  12. State Assistance with Risk-Based Data Management: Inventory and needs assessment of 25 state Class II Underground Injection Control programs. Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    As discussed in Section I of the attached report, state agencies must decide where to direct their limited resources in an effort to make optimum use of their available manpower and address those areas that pose the greatest risk to valuable drinking water sources. The Underground Injection Practices Research Foundation (UIPRF) proposed a risk-based data management system (RBDMS) to provide states with the information they need to effectively utilize staff resources, provide dependable documentation to justify program planning, and enhance environmental protection capabilities. The UIPRF structured its approach regarding environmental risk management to include data and information from production, injection, and inactive wells in its RBDMS project. Data from each of these well types is critical to the complete statistical evaluation of environmental risk and selected automated functions. This comprehensive approach allows state Underground Injection Control (UIC) programs to effectively evaluate the risk of contaminating underground sources of drinking water, while alleviating the additional work and associated problems that often arise when separate data bases are used. CH2M Hill and Digital Design Group, through a DOE grant to the UIPRF, completed an inventory and needs assessment of 25 state Class II UIC programs. The states selected for participation by the UIPRF were generally chosen based on interest and whether an active Class II injection well program was in place. The inventory and needs assessment provided an effective means of collecting and analyzing the interest, commitment, design requirements, utilization, and potential benefits of implementing a in individual state UIC programs. Personal contacts were made with representatives from each state to discuss the applicability of a RBDMS in their respective state.

  13. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect (OSTI)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  14. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  15. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation

  16. Corrective Action Investigation Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada, with Errata Sheet, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 563, Septic Systems, is located in Areas 3 and 12 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 563 is comprised of the four corrective action sites (CASs) below: • 03-04-02, Area 3 Subdock Septic Tank • 03-59-05, Area 3 Subdock Cesspool • 12-59-01, Drilling/Welding Shop Septic Tanks • 12-60-01, Drilling/Welding Shop Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  17. Method for correcting imperfections on a surface

    DOE Patents [OSTI]

    Sweatt, William C.; Weed, John W.

    1999-09-07

    A process for producing near perfect optical surfaces. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.

  18. Corrective Action Tracking System (CATS) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The CATS web-based database is used to enter, track, and report the status of corrective actions developed and implemented in the DOE Corrective Action Management Program (CAMP) to...

  19. Tonopah Test Range Summary of Corrective Action Units

    SciTech Connect (OSTI)

    Ronald B. Jackson

    2007-05-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress.

  20. Merged and corrected 915 MHz Radar Wind Profiler moments (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Merged and corrected 915 MHz Radar Wind Profiler moments Title: Merged and corrected 915 MHz Radar Wind Profiler moments The radar wind profiler (RWP) present at the SGP central ...

  1. Guidelines for Correctly Using the DOE Zero Energy Ready Home...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo Guidelines for Correctly Using the DOE Zero Energy Ready Home Name and Logo PDF icon ZERH Logo Use ...

  2. Electroweak and QCD corrections to top-pair hadroproduction in...

    Office of Scientific and Technical Information (OSTI)

    Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons Citation Details In-Document Search Title: Electroweak and QCD corrections to top-pair ...

  3. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  4. Equations for plutonium and americium-241 decay corrections ...

    Office of Scientific and Technical Information (OSTI)

    PLUTONIUM; ACCOUNTING; CORRECTIONS; DIFFERENTIAL EQUATIONS; ISOTOPE RATIO; NUCLEAR MATERIALS MANAGEMENT; TIME DEPENDENCE; ACTINIDE ISOTOPES; ACTINIDE NUCLEI; ACTINIDES; ALPHA ...

  5. Federal Correctional Institution - Phoenix, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Correctional Institution - Phoenix, Arizona Federal Correctional Institution - Phoenix, Arizona Photo of a Parabolic-Trough Solar Water-Heating System Installed at the Federal Correctional Institution Facility north of Phoenix, Arizona A parabolic-trough solar water-heating system was installed at the Federal Correctional Institution (FCI) facility north of Phoenix, Arizona. This medium security prison for males has a current population of about 1,200 inmates and uses an average of

  6. Earned Value Management System (EVMS) Corrective Action Standard Operating Procedure

    Office of Environmental Management (EM)

    Corrective Action Standard Operating Procedure (ECASOP) Issued by Office of Project Management, Oversight, and Assessments (PMOA) PM-1 September 21, 2015 DEPARTMENT OF ENERGY EVMS CORRECTIVE ACTION SOP SEPTEMBER 21, 2015 ii Earned Value Management System (EVMS) Corrective Action (CA) Standard Operating Procedure (ECASOP) OPR: PM-30 Issue Date: September 21, 2015 1. PURPOSE. This EVMS Corrective Action Standard Operating Procedure (ECASOP) serves as a primary reference for PMOA PM-1 for

  7. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Phase I | Department of Energy - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt Haul Truck Fire Corrective Action Plan and the Radiological Release Event Corrective Action Plan under Nuclear Waste Partnership LLC Contract DE-EM0001971. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I (4.46

  8. Corrections Notice, Federal Register, 71 FR 10097, February 28, 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Corrections Notice, Federal Register, 71 FR 10097, February 28, 2006 Corrections Notice, Federal Register, 71 FR 10097, February 28, 2006 Document displays a correction notice pertaining to Energy Conservation Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings, which was published in the Federal Register on February 28, 2006. Download the corrections notice document. (33.34 KB) More

  9. ARM - PI Product - Radiosondes Corrected for Inaccuracy in RH Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsRadiosondes Corrected for Inaccuracy in RH Measurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Radiosondes Corrected for Inaccuracy in RH Measurements Corrections for inaccuracy in Vaisala radiosonde RH measurements have been applied to ARM SGP radiosonde soundings. The magnitude of the corrections can vary considerably between soundings. The radiosonde measurement accuracy, and

  10. Corrective Action Plan (CAP) 2008 | Department of Energy

    Energy Savers [EERE]

    Corrective Action Plan (CAP) 2008 Corrective Action Plan (CAP) 2008 The Root Cause Analysis Corrective Action Plan ensures that the root causes identified in the Root Cause Analysis report are addressed with meaningful and lasting solutions in order to improve contract and project management performance. Corrective Action Plan (CAP) 2008 (5.93 MB) Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates More Documents & Publications National Defense

  11. CORRECTIVE ACTION PLAN FOR CORRECTIVE ACTION UNIT 224: DECON PAD AND SEPTIC SYSTEMS NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    2006-07-01

    The purpose of this Corrective Action Plan is to provide the detailed scope of work required to implement the recommended corrective actions as specified in the approved CAU 224 CADD.

  12. Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0

    SciTech Connect (OSTI)

    Susan Evans

    2004-11-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a transport model of radionuclide release

  13. Superdense coding interleaved with forward error correction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Humble, Travis S.; Sadlier, Ronald J.

    2016-05-12

    Superdense coding promises increased classical capacity and communication security but this advantage may be undermined by noise in the quantum channel. We present a numerical study of how forward error correction (FEC) applied to the encoded classical message can be used to mitigate against quantum channel noise. By studying the bit error rate under different FEC codes, we identify the unique role that burst errors play in superdense coding, and we show how these can be mitigated against by interleaving the FEC codewords prior to transmission. As a result, we conclude that classical FEC with interleaving is a useful methodmore » to improve the performance in near-term demonstrations of superdense coding.« less

  14. Figure correction of multilayer coated optics

    DOE Patents [OSTI]

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  15. Final Report: Correctness Tools for Petascale Computing

    SciTech Connect (OSTI)

    Mellor-Crummey, John

    2014-10-27

    In the course of developing parallel programs for leadership computing systems, subtle programming errors often arise that are extremely difficult to diagnose without tools. To meet this challenge, University of Maryland, the University of Wisconsin—Madison, and Rice University worked to develop lightweight tools to help code developers pinpoint a variety of program correctness errors that plague parallel scientific codes. The aim of this project was to develop software tools that help diagnose program errors including memory leaks, memory access errors, round-off errors, and data races. Research at Rice University focused on developing algorithms and data structures to support efficient monitoring of multithreaded programs for memory access errors and data races. This is a final report about research and development work at Rice University as part of this project.

  16. Chiral corrections to hyperon axial form factors

    SciTech Connect (OSTI)

    Jiang Fujiun; Tiburzi, B. C.

    2008-05-01

    We study the complete set of flavor-changing hyperon axial-current matrix elements at small momentum transfer. Using partially quenched heavy baryon chiral perturbation theory, we derive the chiral and momentum behavior of the axial and induced pseudoscalar form factors. The meson pole contributions to the latter posses a striking signal for chiral physics. We argue that the study of hyperon axial matrix elements enables a systematic lattice investigation of the efficacy of three-flavor chiral expansions in the baryon sector. This can be achieved by considering chiral corrections to SU(3) symmetry predictions, and their partially quenched generalizations. In particular, despite the presence of eight unknown low-energy constants, we are able to make next-to-leading order symmetry breaking predictions for two linear combinations of axial charges.

  17. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    SciTech Connect (OSTI)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

  18. Corrective Action Investigation Plan for Corrective Action Unit 560: Septic Systems, Nevada Test Site, Nevada with ROTC1, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2008-05-01

    Corrective Action Unit (CAU) 560 is located in Areas 3 and 6 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 560 is comprised of the seven corrective action sites (CASs) listed below: • 03-51-01, Leach Pit • 06-04-02, Septic Tank • 06-05-03, Leach Pit • 06-05-04, Leach Bed • 06-59-03, Building CP-400 Septic System • 06-59-04, Office Trailer Complex Sewage Pond • 06-59-05, Control Point Septic System These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 22, 2008, by representatives from the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 560.

  19. Corrective Action Investigation plan for Corrective Action Unit 546: Injection Well and Surface Releases, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-03-01

    Corrective Action Unit (CAU) 546 is located in Areas 6 and 9 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 546 is comprised of two Corrective Action Sites (CASs) listed below: •06-23-02, U-6a/Russet Testing Area •09-20-01, Injection Well These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 8, 2007, by representatives of the Nevada Division of Environmental Protection and U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process has been used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 546.

  20. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release | Department of Energy Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire and Radiological Release The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) actions for addressing issues identified in the March 2014, accident investigation report for the Underground Salt Haul Truck Fire at the Waste

  1. Simultaneous linear optics and coupling correction for storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data Citation Details In-Document Search Title:...

  2. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum...

    Office of Environmental Management (EM)

    Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective ... the underground (UG) repository at the Waste Isolation Pilot Plant (WIPP), which ...

  3. Method of absorbance correction in a spectroscopic heating value sensor

    DOE Patents [OSTI]

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  4. Corrections Notice, Federal Register, 71 FR 10097, February 28...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Document displays a correction notice pertaining to Energy Conservation Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal ...

  5. ARM - Evaluation Product - MPL Corrected for Ship Motion (MPLPOLFSSHIP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is provided as an evaluation product for the MAGIC and ACAPEX campaigns. The signal return values and the rangebinwidth are corrected to account for the motion (pitch,...

  6. Using ARM data to correct plane-parallel satellite retrievals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM data to correct plane-parallel satellite retrievals of cloud properties Dong, Xiquan University of North Dakota Minnis, Patrick NASA Langley Research Center Xi, Baike...

  7. Internal Audit Management of Corrective Action Plans | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Audit Management of Corrective Action Plans Version Number: 1.0 Document Number: Procedure 10300.001 Effective Date: 01...

  8. ARM - PI Product - Dead-time Corrected Disdrometer Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsDead-time Corrected Disdrometer Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Dead-time Corrected Disdrometer Data Original and dead-time corrected disdrometer results for observations made at SGP and TWP. The correction is based on the technique discussed in Sheppard and Joe, 1994. In addition, these files contain calculated radar reflectivity factor, mean Doppler velocity and

  9. Feed-forward digital phase and amplitude correction system

    DOE Patents [OSTI]

    Yu, D.U.L.; Conway, P.H.

    1994-11-15

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.

  10. Feed-forward digital phase and amplitude correction system

    DOE Patents [OSTI]

    Yu, David U. L.; Conway, Patrick H.

    1994-01-01

    Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.

  11. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the...

  12. Earned Value Management System (EVMS) Corrective Action Standard...

    Broader source: Energy.gov (indexed) [DOE]

    EVMS Corrective Action Standard Operating Procedure (ECASOP) serves as PM's primary ... Action Plans (CAPs) in accordance with the EIA-748 (current version) EVMS standard. ...

  13. Viscous corrections to the resistance of nanojunctions: A dispersion...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Viscous corrections to the resistance of nanojunctions: A dispersion relation approach Citation Details In-Document Search Title: ...

  14. Internal Audit Management of Corrective Action Plans | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Audit Management of Corrective Action Plans Version Number: 1.0 Document Number: Procedure 10300.001 Effective Date: 01

  15. Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-03-31

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document. The scope of work required to implement the recommended closure alternatives is summarized below. CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. CAS 12

  16. Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-04-01

    Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites - Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  18. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  19. Device for wavefront correction in an ultra high power laser

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Comaskey, Brian J. (Walnut Creek, CA); Kuklo, Thomas C. (Oakdale, CA)

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  20. Self-interaction corrections in density functional theory

    SciTech Connect (OSTI)

    Tsuneda, Takao; Hirao, Kimihiko

    2014-05-14

    Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.

  1. Corrective measures evaluation report for Tijeras Arroyo groundwater.

    SciTech Connect (OSTI)

    Witt, Johnathan L; Orr, Brennon R.; Dettmers, Dana L.; Hall, Kevin A.; Howard, M. Hope

    2005-08-01

    This Corrective Measures Evaluation report was prepared as directed by a Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for Tijeras Arroyo Groundwater. Supporting information includes background concerning the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. The evaluation of remedial alternatives included identifying and describing four remedial alternatives, an overview of the evaluation criteria and approach, comparing remedial alternatives to the criteria, and selecting the preferred remedial alternative. As a result of the Corrective Measures Evaluation, monitored natural attenuation of the contaminants of concern (trichloroethene and nitrate) is the preferred remedial alternative for implementation as the corrective measure for Tijeras Arroyo Groundwater. Design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are also presented.

  2. Corrective Action Investigation plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfield, Nevada Test Site, Nevada, March 1999

    SciTech Connect (OSTI)

    ITLV

    1999-03-01

    The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

  3. Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-02-01

    Corrective Action Unit 374 is located in Areas 18 and 20 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 374 comprises the five corrective action sites (CASs) listed below: • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on October 20, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 374.

  4. Corrective Action Decision Document for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-03-15

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 528: Polychlorinated Biphenyls (PCBs) Contamination, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 25 of the NTS, CAU 528 consists of one Corrective Action Site (CAS): 25-27-03, Polychlorinated Biphenyls Surface Contamination. Corrective Action Unit 528 was created to address the presence of PCBs around the Test Cell C concrete pad. Corrective action investigation activities were performed from August 24, 2003, through January 8, 2004. The PCBs and total petroleum hydrocarbons-diesel range organics were identified as contaminants of concern in the surface and shallow subsurface soils in 12 areas (Areas 1 through 12) at CAS 25-27-03. Based on the review of existing data, future use, and current operations at the NTS, the following alternatives have been developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Clean Closure; Alternative 3 - Closure in Place with Administrative Controls. The three corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. Alternative 3 is the preferred corrective action for CAS 25-27-03. The selected alternative was judged to meet all requirements for the technical components evaluated for closure of the sites and additionally to minimize potential future exposure pathways to the contaminated media at CAU 528.

  5. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0

    SciTech Connect (OSTI)

    Robert F. Boehlecke

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

  6. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David A. Strand

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

  7. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  8. Industrial Sites Project Establishment of Final Action Levels, Rev. No.: 0

    SciTech Connect (OSTI)

    Boehlecke, Robert F.

    2006-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) oversees numerous sites on the Nevada Test Site (NTS) and other locations in the State of Nevada that have been impacted by activities related to the development and testing of nuclear devices and by other activities. NNSA/NSO is responsible for protecting members of the public, including site workers, from harmful exposure to both chemical and radiological contaminants at these sites as they remediate these sites. The Nevada Division of Environmental Protection (NDEP) is the primary state agency responsible for protection of human health and the environment with respect to chemical and radiological wastes. In 1996 the DOE, U.S. Department of Defense, and the State of Nevada entered into an agreement known as the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Appendix VI to the FFACO describes the strategy employed to plan, implement, and complete environmental corrective action activities at NTS and other locations in the state of Nevada. One of the categories of corrective action units (CAUs) is Industrial Sites, which consists of approximately 1,150 locations that may require some level of investigation and corrective action. To evaluate the need for the extent of corrective action at a particular site, NNSA/NSO assesses the potential impacts to receptors by comparing measurements of contaminant concentrations to risk-based (chemical) and dose-based (radionuclide) standards (action levels). Preliminary action levels (PALs) are established as part of the data quality objective (DQO) process, and are presented in one or more FFACO documents generated as part of the corrective action process. This document formally defines and clarifies the NDEP-approved process NNSA/NSO Industrial Sites Project uses to fulfill the requirements of the FFACO and state regulations. This process establishes final action levels (FALs) based on the risk-based

  9. ARM - PI Product - NSA AERI Hatch Correction Data Set

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsNSA AERI Hatch Correction Data Set ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : NSA AERI Hatch Correction Data Set From 2000-2008, the NSA AERI hatch was determined to be indicated as open too frequently. Analysis suggests that the hatch was actually opening and closing properly but that its status was not being correctly reported by the hatch controller to the datastream. An algorithm was

  10. System and method for generating motion corrected tomographic images

    DOE Patents [OSTI]

    Gleason, Shaun S.; Goddard, Jr., James S.

    2012-05-01

    A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom.

  11. Earned Value Management System (EVMS) Corrective Action Standard Operating Procedure

    Broader source: Energy.gov [DOE]

    This EVMS Corrective Action Standard Operating Procedure (ECASOP) serves as PM's primary reference for development of Corrective Action Requests (CARs) and Continuous Improvement Opportunities (CIOs), as well as the assessment of contractors procedures and implementation associated with Variance Analysis Reports (VARs) and Corrective Action Plans (CAPs) in accordance with the EIA-748 (current version) EVMS standard. The SOP is based on regulatory guidance and standardized processes based upon a common understanding of EVMS Industry and Government best practices for use by the Department of Energy (DOE). All information contained herein provides detailed processes to implement the requirements in DOE O 413.3 Current Version.

  12. NLO QCD corrections to ZZ jet production at hadron colliders

    SciTech Connect (OSTI)

    Binoth, T.; Gleisberg, T.; Karg, S.; Kauer, N.; Sanguinetti, G.

    2010-05-26

    A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new physics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.

  13. Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-12-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for the CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The site will be investigated based on the data quality objectives (DQOs) developed on July 6, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for the Baneberry site. The primary release associated with Corrective Action Unit 365 was radiological contamination from the Baneberry nuclear test. Baneberry was an underground weapons-related test that vented significant quantities of radioactive gases from a fissure located in close proximity to ground zero. A crater formed shortly after detonation, which stemmed part of the flow from the fissure. The scope of this investigation includes surface and shallow subsurface (less than 15 feet below ground surface) soils. Radionuclides from the Baneberry test with the potential to impact groundwater are included within the Underground Test Area Subproject. Investigations and corrective actions associated with the Underground Test Area Subproject include the radiological inventory resulting from the Baneberry test.

  14. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  15. Corrective Actin Tracking System CATS User's Guide for Direct...

    Broader source: Energy.gov (indexed) [DOE]

    09072004 Corrective Action Tracking System (CATS) User's Guide for Direct Web Access Document Number EH-33-2004-09-0001.Ver.4.0 The United States Department of...

  16. ARM - Evaluation Product - MWACR Corrected for Ship Motion (MWACRSHIPC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAGIC and ACAPEX campaigns. The MWACR is installed on a stable table, so only the mean Doppler velocity must be corrected for the heave of the ship. A source variable indicates...

  17. Spectral and temperature correction of silicon photovoltaic solar radiation detectors

    SciTech Connect (OSTI)

    Michalsky, J.J.; Perez, R.; Harrison, L. ); LeBaron, B.A. )

    1991-01-01

    Silicon photovoltaic sensors are an inexpensive alternative to standard thermopile sensors for the measurement of solar radiation. However, their temperature and spectral response render them less accurate for global horizontal irradiance and unsuitable for direct beam and diffuse horizontal irradiance unless they can be reliably corrected. A correction procedure for the rotating shadowband radiometer, which measures all three components, based on a three-way parameterization of the solar position and sky conditions is proposed. After correction, root-mean-square errors for the global and diffuse horizontal irradiance and the direct normal irradiance are about 10, 12, and 13 W/m{sup 2} in comparison with coincident, 5-minute thermopile measurements. While the numerical results are specific to the rotating shadowband instrument, the correction algorithm should apply universally.

  18. CONTRIBUTIONS TO THE THEORY OF SHELL CORRECTIONS (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: CONTRIBUTIONS TO THE THEORY OF SHELL CORRECTIONS Authors: Fano, U. ; Turner, J. E. Publication Date: 1964-01-01 OSTI Identifier: 4887409 ...

  19. ARM - Evaluation Product - KAZR Corrected for Ship Motion (KAZRSHIPCOR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluation product for the MAGIC and ACAPEX campaigns. Reflectivity, spectral width, and signal to noise ratio are corrected to account for the pitch and roll of the ship. Mean...

  20. Factorization, power corrections, and the pion form factor

    SciTech Connect (OSTI)

    Rothstein, Ira Z.

    2004-09-01

    This paper is an investigation of the pion form factor utilizing recently developed effective field theory techniques. The primary results reported are both the transition and electromagnetic form factors are corrected at order {lambda}/Q due to time ordered products which account for deviations of the pion from being a state composed purely of highly energetic collinear quarks in the lab frame. The usual higher twist wave function corrections contribute only at order {lambda}{sup 2}/Q{sup 2}, when the quark mass vanishes. In the case of the electromagnetic form factor the {lambda}/Q power correction is enhanced by a power of 1/{alpha}{sub s}(Q) relative to the leading order result of Brodsky and Lepage, if the scale {radical}({lambda}Q) is nonperturbative. This enhanced correction could explain the discrepancy with the data.

  1. Passive background correction method for spatially resolved detection

    DOE Patents [OSTI]

    Schmitt, Randal L.; Hargis, Jr., Philip J.

    2011-05-10

    A method for passive background correction during spatially or angularly resolved detection of emission that is based on the simultaneous acquisition of both the passive background spectrum and the spectrum of the target of interest.

  2. Energy dependence of acceptance-corrected dielectron excess mass...

    Office of Scientific and Technical Information (OSTI)

    Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at sNN19.6 and 200 GeV Citation Details In-Document Search Title:...

  3. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-09-01

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of

  4. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  5. Method and system for photoconductive detector signal correction

    DOE Patents [OSTI]

    Carangelo, Robert M.; Hamblen, David G.; Brouillette, Carl R.

    1992-08-04

    A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.

  6. Method and system for photoconductive detector signal correction

    DOE Patents [OSTI]

    Carangelo, R.M.; Hamblen, D.G.; Brouillette, C.R.

    1992-08-04

    A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.

  7. Environmental Management Headquarters Corrective Action Plan - Truck Fire |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Truck Fire Environmental Management Headquarters Corrective Action Plan - Truck Fire The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of Energy (DOE) actions for addressing Office of Environmental Management (EM) Headquarters (HQ) issues identified in the Accident Investigation Report for the Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant (WIPP) February 5, 2014. The report identified 22 Conclusions and 35 Judgments of

  8. Environmental Management Los Alamos Field Office Corrective Action Plan -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Phase II | Department of Energy Los Alamos Field Office Corrective Action Plan - Radiological Release Phase II Environmental Management Los Alamos Field Office Corrective Action Plan - Radiological Release Phase II On March 22, 2015, the Department of Energy established an Environmental Management Los Alamos Field Office (EM-LA) responsible for management of the environmental restoration and the legacy waste management programs at Los Alamos National Laboratory (LANL).

  9. On Correction of Diffuse Radiation Measured by MFRSR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Correction of Diffuse Radiation Measured by MFRSR T. B. Zhuravleva Institute of Atmospheric Optics, SB RAS Tomsk, Russia M. A. Sviridenkov and P. P. Anikin A. M. Obukhov Institute of Atmospheric Physics, RAS Moscow, Russia Introduction The multi-filter rotated shadowband radiometer (MFRSR) provides spectral direct, diffuse, and total horizontal solar irradiance measurements. Because the MFRSR's receiver has a non-Lambertian response, for a correct interpretation of measured radiation an

  10. Chiral corrections and the axial charge of the delta

    SciTech Connect (OSTI)

    Jiang Fujiun; Tiburzi, Brian C.

    2008-07-01

    Chiral corrections to the delta axial charge are determined using heavy baryon chiral perturbation theory. Knowledge of this axial coupling is necessary to assess virtual-delta contributions to nucleon and delta observables. We give isospin relations useful for a lattice determination of the axial coupling. Furthermore, we detail partially quenched chiral corrections, which are relevant to address partial quenching and/or mixed action errors in lattice calculations of the delta axial charge.

  11. ROOT CAUSE ANALYSIS AND CORRECTIVE ACTION PLAN CLOSURE REPORT | Department

    Energy Savers [EERE]

    of Energy ROOT CAUSE ANALYSIS AND CORRECTIVE ACTION PLAN CLOSURE REPORT ROOT CAUSE ANALYSIS AND CORRECTIVE ACTION PLAN CLOSURE REPORT The Department conducted a root cause analysis (RCA) workshop on October 16-17, 2007, to identify the systemic challenges of planning and managing DOE projects. During the workshop participants singled out 143 issues, which they consolidated and prioritized. The Department published the results of the RCA workshop in an April 2008 DOE report entitled, U.S.

  12. Better band gaps with asymptotically corrected local exchange potentials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Prashant; Harbola, Manoj K.; Hemanadhan, M.; Mookerjee, Abhijit; Johnson, D. D.

    2016-02-22

    In this study, we formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local density approximation (LDA) exchange potential [R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994)] that enforces the ionization potential (IP) theorem following T. Stein et al. [Phys. Rev. Lett. 105, 266802 (2010)]. For electronic-structure problems, the vLB correction replicates the behavior of exact-exchange potentials, with improved scaling and well-behaved asymptotics, but with the computational cost of semilocal functionals. The vLB + IP correction produces a large improvement in the eigenvalues over those from the LDA due to correct asymptotic behaviormore » and atomic shell structures, as shown in rare-gas, alkaline-earth, zinc-based oxides, alkali halides, sulfides, and nitrides. In half-Heusler alloys, this asymptotically corrected LDA reproduces the spin-polarized properties correctly, including magnetism and half-metallicity. We also consider finite-sized systems [e.g., ringed boron nitride (B12N12) and graphene (C24)] to emphasize the wide applicability of the method.« less

  13. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  14. Corrective Action Decision Document/Corrective Action Plan for CAU 443: Central Nevada Test Area-Subsurface CNTA, NV

    Office of Legacy Management (LM)

    Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada Controlled Copy No.: Revision No.: 0 November 2004 Approved for public release; further dissemination unlimited. DOE/NV--977 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering:

  15. Corrective Action Decision Document for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2008-02-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended January 2007). The corrective action sites (CASs) for CAU 563 are located in Areas 3 and 12 of the Nevada Test Site, Nevada, and are comprised of the following four sites: •03-04-02, Area 3 Subdock Septic Tank •03-59-05, Area 3 Subdock Cesspool •12-59-01, Drilling/Welding Shop Septic Tanks •12-60-01, Drilling/Welding Shop Outfalls The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative (CAA) for the four CASs within CAU 563. Corrective action investigation (CAI) activities were performed from July 17 through November 19, 2007, as set forth in the CAU 563 Corrective Action Investigation Plan (NNSA/NSO, 2007). Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern (COCs) for each CAS. The results of the CAI identified COCs at one of the four CASs in CAU 563 and required the evaluation of CAAs. Assessment of the data generated from investigation activities conducted at CAU 563 revealed the following: •CASs 03-04-02, 03-59-05, and 12-60-01 do not contain contamination at concentrations exceeding the FALs. •CAS 12-59-01 contains arsenic and chromium contamination above FALs in surface and near-surface soils surrounding a stained location within the site. Based on the evaluation of analytical data from the CAI, review of future and current operations at CAS 12-59-01, and the detailed and comparative analysis of the potential CAAs, the following corrective actions are recommended for CAU 563.

  16. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  17. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. L. Gustafason

    2001-02-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2009-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

  19. Corrective Action Decision Document for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krause

    2010-08-01

    This Corrective Action Decision Document (CADD) presents information supporting the selection of corrective action alternatives (CAAs) leading to the closure of Corrective Action Unit (CAU) 562, Waste Systems, in Areas 2, 23, and 25 of the Nevada Test Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 562 comprises the following corrective action sites (CASs): • 02-26-11, Lead Shot • 02-44-02, Paint Spills and French Drain • 02-59-01, Septic System • 02-60-01, Concrete Drain • 02-60-02, French Drain • 02-60-03, Steam Cleaning Drain • 02-60-04, French Drain • 02-60-05, French Drain • 02-60-06, French Drain • 02-60-07, French Drain • 23-60-01, Mud Trap Drain and Outfall • 23-99-06, Grease Trap • 25-60-04, Building 3123 Outfalls The purpose of this CADD is to identify and provide the rationale for the recommendation of CAAs for the 13 CASs within CAU 562. Corrective action investigation (CAI) activities were performed from July 27, 2009, through May 12, 2010, as set forth in the CAU 562 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether COCs are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. A data quality assessment (DQA) performed on the CAU 562 data demonstrated the quality and acceptability of the data for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the COCs for each CAS. The results of the CAI identified COCs at 10 of the 13 CASs in CAU 562, and thus corrective

  20. Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2008-07-01

    Corrective Action Unit (CAU) 557 is located in Areas 1, 3, 6, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada, and is comprised of the four corrective action sites (CASs) listed below: • 01-25-02, Fuel Spill • 03-02-02, Area 3 Subdock UST • 06-99-10, Tar Spills • 25-25-18, Train Maintenance Bldg 3901 Spill Site These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 3, 2008, by representatives of the Nevada Division of Environmental Protection (NDEP); U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 557. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 557 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological survey at CAS 25-25-18. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern are present. • If contaminants of concern are present, collect additional step

  1. Segmentation-free empirical beam hardening correction for CT

    SciTech Connect (OSTI)

    Schller, Sren; Sawall, Stefan; Stannigel, Kai; Hlsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrie, Marc

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  2. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect (OSTI)

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole 10 lens with so-called Russian or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called non-local correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero roll

  3. Bunch mode specific rate corrections for PILATUS3 detectors

    SciTech Connect (OSTI)

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  4. Higher order corrections in minimal supergravity models of inflation

    SciTech Connect (OSTI)

    Ferrara, Sergio; Kallosh, Renata; Linde, Andrei; Porrati, Massimo E-mail: kallosh@stanford.edu E-mail: massimo.porrati@nyu.edu

    2013-11-01

    We study higher order corrections in new minimal supergravity models of a single scalar field inflation. The gauging in these models leads to a massive vector multiplet and the D-term potential for the inflaton field with a coupling g{sup 2} ? 10{sup ?10}. In the de-Higgsed phase with vanishing g{sup 2}, the chiral and vector multiplets are non-interacting, and the potential vanishes. We present generic manifestly supersymmetric higher order corrections for these models. In particular, for a supersymmetric gravity model ?R+R{sup 2} we derive manifestly supersymmetric corrections corresponding to R{sup n}. The dual version corresponds to a standard supergravity model with a single scalar and a massive vector. It includes, in addition, higher Maxwell curvature/scalar interaction terms of the Born-Infeld type and a modified D-term scalar field potential. We use the dual version of the model to argue that higher order corrections do not affect the last 60 e-foldings of inflation; for example the ?R{sup 4} correction is irrelevant as long as ? < 10{sup 24}.

  5. Corrective measures evaluation report for technical area-v groundwater.

    SciTech Connect (OSTI)

    Witt, Johnathan L; Orr, Brennon R.; Dettmers, Dana L.; Hall, Kevin A.; Howard, Hope

    2005-07-01

    This Corrective Measures Evaluation Report was prepared as directed by the Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for contaminated groundwater at Technical Area V. Supporting information includes background information about the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. Evaluation of remedial alternatives included identification and description of four remedial alternatives, an overview of the evaluation criteria and approach, qualitative and quantitative evaluation of remedial alternatives, and selection of the preferred remedial alternative. As a result of the Corrective Measures Evaluation, it was determined that monitored natural attenuation of all contaminants of concern (trichloroethene, tetrachloroethene, and nitrate) was the preferred remedial alternative for implementation as the corrective measure to remediate contaminated groundwater at Technical Area V of Sandia National Laboratories/New Mexico. Finally, design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are presented.

  6. Bunch mode specific rate corrections for PILATUS3 detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less

  7. Signatures of Planck corrections in a spiralling axion inflation model

    SciTech Connect (OSTI)

    McDonald, John

    2015-05-08

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a ϕ{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|{sup 2} to the topological charge density of the strongly-coupled gauge sector FF{sup ~} satisfies ξ∼1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its ϕ{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Δn{sub s}=−Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple ϕ{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  8. 55-Gallon Drum Attenuation Corrections for Waste Assay Measurements

    SciTech Connect (OSTI)

    Casella, V.R.

    2002-04-03

    The present study shows how the percent attenuation for low-level waste (LLW), carbon-steel 55-gallon drums (44 and 46 mil) and for transuranic (TRU) DOT Type 7A 55-gallon drums (approximately 61 mil) changes with gamma energy from 60 keV to 1400 keV. Attenuation for these drums is in the range of 5 to 15 percent at energies from 400 to 1400 keV and from 15 to 35 percent at energies from 120 to 400 keV. At 60 keV, these drums attenuate 70-80 percent of the gamma rays. Correction factors were determined in order to correct for gamma attenuation of a TRU drum if a calibration is performed with a LLW drum. These correction factors increase the activities of the TRU drum by from 10 percent to 2 percent in the energy range of 165 to 1400 keV, with an increase of about 50 percent at 60 keV. Correction factors for TRU drums and for analyses without a drum were used to adjust the percent yield for frequently measured gamma rays, so that the assay libraries could be modified to provide the drum attenuation corrections.

  9. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  10. Subtitle D: Groundwater monitoring and corrective action requirements

    SciTech Connect (OSTI)

    Ward, C.G.; McDaniel, L. )

    1993-01-01

    The newly promulgated Subtitle-D landfill regulations (40 CFR 258) require that landfill owners and operators adhere to certain design or performance standards for the location, design, operation and closure of municipal solid waste landfill facilities. This paper addresses the groundwater monitoring requirements and corrective action requirements of those regulations. The section of the regulations addressing groundwater monitoring and corrective action, Subpart-E, is the most comprehensive section of the regulations. As with other parts of the regulation, Subpart-E also contains inherent flexibility. This paper addresses the compliance schedules, exemptions to Subpart-E, and groundwater monitoring systems which include: background determination, multi-unit systems, hydrogeologic investigations, and monitoring well installation. The paper further addresses sampling and analysis requirements for detection and assessment monitoring, and the requirements for corrective action such as remedy assessment, selection, and implementation.

  11. Coordinated joint motion control system with position error correction

    DOE Patents [OSTI]

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  12. Coordinated joint motion control system with position error correction

    DOE Patents [OSTI]

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  13. Corrective Action Investigation Plan for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-04-01

    Corrective Action Unit 562 is located in Areas 2, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 562 is comprised of the 13 corrective action sites (CASs) listed below: • 02-26-11, Lead Shot • 02-44-02, Paint Spills and French Drain • 02-59-01, Septic System • 02-60-01, Concrete Drain • 02-60-02, French Drain • 02-60-03, Steam Cleaning Drain • 02-60-04, French Drain • 02-60-05, French Drain • 02-60-06, French Drain • 02-60-07, French Drain • 23-60-01, Mud Trap Drain and Outfall • 23-99-06, Grease Trap • 25-60-04, Building 3123 Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 11, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 562. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 562 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling.

  14. Corrective Action Investigation Plan for Corrective Action Unit 409: Other Waste Sites, Tonopah Test Range, Nevada (Rev. 0)

    SciTech Connect (OSTI)

    DOE /NV

    2000-10-05

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 409 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 409 consists of three Corrective Action Sites (CASs): TA-53-001-TAB2, Septic Sludge Disposal Pit No.1; TA-53-002-TAB2, Septic Sludge Disposal Pit No.2; and RG-24-001-RGCR, Battery Dump Site. The Septic Sludge Disposal Pits are located near Bunker Two, close to Area 3, on the Tonopah Test Range. The Battery Dump Site is located at the abandoned Cactus Repeater Station on Cactus Peak. The Cactus Repeater Station was a remote, battery-powered, signal repeater station. The two Septic Sludge Disposal Pits were suspected to be used through the late 1980s as disposal sites for sludge from septic tanks located in Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern are the same for the disposal pits and include: volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPHs) as gasoline- and diesel-range organics, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and radionuclides (including plutonium and depleted uranium). The Battery Dump Site consists of discarded lead-acid batteries and associated construction debris, placing the site in a Housekeeping Category and, consequently, no contaminants are expected to be encountered during the cleanup process. The corrective action the at this CAU will include collection of discarded batteries and construction debris at the Battery Dump Site for proper disposal and recycling, along with photographic documentation as the process progresses. The corrective action for the remaining CASs involves the collection of background radiological data through borings drilled at

  15. Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points Nevada Test Site, Nevada (Draft), Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2007-02-01

    Corrective Action Unit  (CAU) 556, Dry Wells and Surface Release Points, is located in Areas 6 and 25 of the Nevada Test Site, 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 556 is comprised of four corrective action sites (CASs) listed below: •06-20-04, National Cementers Dry Well •06-99-09, Birdwell Test Hole •25-60-03, E-MAD Stormwater Discharge and Piping •25-64-01, Vehicle Washdown and Drainage Pit These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 383: Area E-Tunnel Sites, Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document/Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is the joint responsibility of DTRA and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense. Corrective Action Unit 383 is comprised of three Corrective Action Sites (CASs) and two adjacent areas: • CAS 12-06-06, Muckpile • CAS 12-25-02, Oil Spill • CAS 12-28-02, Radioactive Material • Drainage below the Muckpile • Ponds 1, 2, and 3 The purpose of this CADD/CR is to provide justification and documentation to support the recommendation for closure with no further corrective action, by placing use restrictions at the three CASs and two adjacent areas of CAU 383.

  17. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    SciTech Connect (OSTI)

    Aucott, T.

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  18. Scalable error correction in distributed ion trap computers

    SciTech Connect (OSTI)

    Oi, Daniel K. L.; Devitt, Simon J.; Hollenberg, Lloyd C. L.

    2006-11-15

    A major challenge for quantum computation in ion trap systems is scalable integration of error correction and fault tolerance. We analyze a distributed architecture with rapid high-fidelity local control within nodes and entangled links between nodes alleviating long-distance transport. We demonstrate fault-tolerant operator measurements which are used for error correction and nonlocal gates. This scheme is readily applied to linear ion traps which cannot be scaled up beyond a few ions per individual trap but which have access to a probabilistic entanglement mechanism. A proof-of-concept system is presented which is within the reach of current experiment.

  19. Study of orbit correction for eRHIC FFAG design

    SciTech Connect (OSTI)

    Liu, C.; Hao, Y.; Litvinenko, V.; Meot, F.; Minty, M.; Ptitsyn, V.; Trbojevic, D.

    2015-05-03

    The unique feature of the orbits in the eRHIC Fixed Field Alternating Gradient (FFAG) design is that multiple accelerating and decelerating bunches pass through the same magnets with different horizontal offsets. Therefore, it is critical for the eRHIC FFAG to correct multiple orbits in the same vacuum pipe for better spin transmission and alignment of colliding beams. In this report, the effects on orbits from multiple error sources will be studied. The orbit correction method will be described and results will be presented.

  20. Thermodynamically constrained correction to ab initio equations of state

    SciTech Connect (OSTI)

    French, Martin; Mattsson, Thomas R.

    2014-07-07

    We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence of the exchange-correlation functional used.

  1. Parton distributions in the presence of target mass corrections

    SciTech Connect (OSTI)

    F. M. Steffens,M. D. Brown,W. Melnitchouk,S. Sanches

    2012-12-01

    We study the consistency of parton distribution functions in the presence of target mass corrections (TMCs) at low Q{sup 2}. We review the standard operator product expansion derivation of TMCs in both x- and moment-space, and present the results in closed form for all unpolarized structure functions and their moments. To avoid the unphysical region at x > 1 in the standard analysis, we propose an expansion of the target mass corrected structure functions order by order in M{sup 2}/Q{sup 2}, and assess the convergence properties of the resulting forms numerically.

  2. Relativistic Corrections to e+e- {yields} J/{psi} + {eta}c in...

    Office of Scientific and Technical Information (OSTI)

    Relativistic Corrections to e+e- yields Jpsi + etac in a Potential Model Citation Details In-Document Search Title: Relativistic Corrections to e+e- yields Jpsi + ...

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  4. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  5. Spatial corrections for pulsed-neutron reactivity measurements.

    SciTech Connect (OSTI)

    Cao, Y.; Lee, J.; Nuclear Engineering Division; Univ. of Michigan

    2010-07-01

    For pulsed-neutron experiments performed in a subcritical reactor, the reactivity obtained from the area-ratio method is sensitive to detector positions. The spatial effects are induced by the presence of both the prompt neutron harmonics and the delayed neutron harmonics in the reactor. The traditional kinetics distortion factor is only limited to correcting the spatial effects caused by the fundamental prompt-{alpha} mode. In this paper, we derive spatial correction factors fp and fd to account for spatial effects induced by the prompt neutron harmonics and the delayed neutron harmonics, respectively. Our numerical simulations with the FX2-TH time-dependent multigroup diffusion code indicate that the high-order prompt neutron harmonics lead to significant spatial effects and cannot be neglected in calculating the spatial correction factors. The prompt spatial correction factor fp can be simply determined by the ratio of the normalized detector responses corresponding to the fundamental k-mode and the prompt neutron flux integrated over the pulse period. Thus, it is convenient to calculate and provides physically intuitive explanations on the spatial dependence of reactivity measured in the MUSE-4 experiments: overestimation of the subcriticality in regions close to the external neutron source and underestimation of the subcriticality away from the source but within the fuel region.

  6. Optimization-based mesh correction with volume and convexity constraints

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; Bochev, Pavel; Shashkov, Mikhail

    2016-02-24

    Here, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. Also, this volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimization problemmore » in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less

  7. Error Detection and Correction LDMS Plugin Version 1.0

    SciTech Connect (OSTI)

    Shoga, Kathleen; Allan, Ben

    2015-11-02

    Sandia's Lightweight Distributed Metric Service (LDMS) is a data collection and transport system used at Livermore Computing to gather performance data across the center. While Sandia has a set of plugins available, they do not include all the data we need to capture. The ECAC plugin that we have developed enables collection of the Error Detection and Correction (EDAC) counters.

  8. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  9. RCRA corrective action determination of no further action

    SciTech Connect (OSTI)

    1996-06-01

    On July 27, 1990, the U.S. Environmental Protection Agency (EPA) proposed a regulatory framework (55 FR 30798) for responding to releases of hazardous waste and hazardous constituents from solid waste management units (SWMUs) at facilities seeking permits or permitted under the Resource Conservation and Recovery Act (RCRA). The proposed rule, `Corrective Action for Solid Waste Management Units at Hazardous Waste Facilities`, would create a new Subpart S under the 40 CFR 264 regulations, and outlines requirements for conducting RCRA Facility Investigations, evaluating potential remedies, and selecting and implementing remedies (i.e., corrective measures) at RCRA facilities. EPA anticipates instances where releases or suspected releases of hazardous wastes or constituents from SWMUs identified in a RCRA Facility Assessment, and subsequently addressed as part of required RCRA Facility Investigations, will be found to be non-existent or non-threatening to human health or the environment. Such releases may require no further action. For such situations, EPA proposed a mechanism for making a determination that no further corrective action is needed. This mechanism is known as a Determination of No Further Action (DNFA) (55 FR 30875). This information Brief describes what a DNFA is and discusses the mechanism for making a DNFA. This is one of a series of Information Briefs on RCRA corrective action.

  10. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.