National Library of Energy BETA

Sample records for ray mass attenuation

  1. X-ray Attenuation and Absorption Calculations.

    Energy Science and Technology Software Center (OSTI)

    1988-02-25

    This point-source, polychromatic, discrete energy X-ray transport and energy deposition code system calculates first-order spectral estimates of X-ray energy transmission through slab materials and the associated spectrum of energy absorbed by the material.

  2. Effective atomic numbers and mass attenuation coefficients of some thermoluminescent dosimetric compounds for total photon interaction

    SciTech Connect (OSTI)

    Shivaramu; Amutha, R.; Ramprasath, V.

    1999-05-01

    Effective atomic numbers for total gamma-ray interaction with some selected thermoluminescent dosimetric compounds such as barium acetate, barium sulfate, calcium carbonate, calcium sulfate, calcium sulfate dihydrate, cadmium sulfate (anhydrous), cadmium sulfate, strontium sulfate, and lithium fluoride have been calculated in the 1-keV to 20-MeV energy region. Experimental mass attenuation coefficients and effective atomic numbers for these compounds at selected photon energies of 26.3, 33.2, 59.54, and 661.6 keV have been obtained from good geometry transmission measurements and compared with theoretical values. The effect of absorption edge on effective atomic numbers and its variation with energy, and nonvalidity of the Bragg`s mixture rule at incident photon energies closer to the absorption edges of constituent elements of compounds are discussed.

  3. MASS BALANCE: A KEY TO ADVANCING MONITORED AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    SciTech Connect (OSTI)

    Looney, B; Karen Vangelas, K; Karen-M Adams, K; Francis H. Chappelle; Tom O. Early; Claire H. Sink

    2006-06-30

    Monitored natural attenuation (MNA) and enhanced attenuation (EA) are two environmental management strategies that rely on a variety of attenuation processes to degrade or immobilize contaminants and are implemented at appropriate sites by demonstrating that contaminant plumes have low risk and are stable or shrinking. The concept of a mass balance between the loading and attenuation of contaminants in a groundwater system is a powerful framework for conceptualizing and documenting the relative stability of a contaminant plume. As a result, this concept has significant potential to support appropriate implementation of monitored natural attenuation (MNA) and enhanced attenuation (EA). For mass balance to be useful in engineering practice, however, it is necessary to quantify it in practical ways that facilitate overall site remediation and which are consistent with existing regulatory guidance. Two divergent philosophies exist for quantifying plume stability--empirical and deterministic. The first relies on historical contaminant concentration data and bulk geochemical information from a monitoring well network and documents plume stability using trend analysis and statistical tools. This empirical approach, when feasible, provides powerful and compelling documentation of plume behavior and mass balance. It provides an interpretation on a relevant scale under field conditions. It integrates the operative attenuation processes measured by observing their actual impact on the plume. The power of the empirical approach was recognized early in the development of MNA guidance and protocols and it is currently the basis of the three lines of evidence used in MNA studies. The empirical approach has some weaknesses, however. It requires a relatively long period of undisturbed historical data. Thus it cannot be effectively applied to sites where active remediation was initiated quickly and is currently operating. It cannot be used as a tool to determine how much source

  4. Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion

    SciTech Connect (OSTI)

    Gu, Renliang E-mail: ald@iastate.edu; Dogandžić, Aleksandar E-mail: ald@iastate.edu

    2015-03-31

    We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.

  5. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  6. Gas Dynamics in an X-ray FEL Gas Attenuator under High Repetition Rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation | Stanford Synchrotron Radiation Lightsource Gas Dynamics in an X-ray FEL Gas Attenuator under High Repetition Rate Operation Wednesday, August 17, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Bo Yang, Department of Mechanical Engineering, University of Texas at Arlington Program Description The LCLS-II project seeks to increase the repetition rate of the LCLS X-ray Free-Electron Laser by many orders, up to 1 MHz from the current 120 Hz maximum. It calls into

  7. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOE Patents [OSTI]

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  8. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOE Patents [OSTI]

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  9. THE EXTRAGALACTIC BACKGROUND LIGHT FROM THE MEASUREMENTS OF THE ATTENUATION OF HIGH-ENERGY GAMMA-RAY SPECTRUM

    SciTech Connect (OSTI)

    Gong Yan; Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2013-07-20

    The attenuation of high-energy gamma-ray spectrum due to the electron-positron pair production against the extragalactic background light (EBL) provides an indirect method to measure the EBL of the universe. We use the measurements of the absorption features of the gamma-rays from blazars as seen by the Fermi Gamma-ray Space Telescope to explore the EBL flux density and constrain the EBL spectrum, star formation rate density (SFRD), and photon escape fraction from galaxies out to z = 6. Our results are basically consistent with the existing determinations of the quantities. We find a larger photon escape fraction at high redshifts, especially at z = 3, compared to the result from recent Ly{alpha} measurements. Our SFRD result is consistent with the data from both gamma-ray burst and ultraviolet (UV) observations in the 1{sigma} level. However, the average SFRD we obtain at z {approx}> 3 matches the gamma-ray data better than the UV data. Thus our SFRD result at z {approx}> 6 favors the fact that star formation alone is sufficiently high enough to reionize the universe.

  10. Near edge X-ray absorption mass spectrometry on coronene

    SciTech Connect (OSTI)

    Reitsma, G.; Deuzeman, M. J.; Hoekstra, R.; Schlathölter, T.; Boschman, L.; Hoekstra, S.

    2015-01-14

    We have investigated the photoionization and photodissociation of free coronene cations C{sub 24}H{sub 12}{sup +} upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C{sub 24}H{sub 12}{sup 3+⋆}trications, the experimental data hint at loss of H{sup +} ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.

  11. Single-shot Zeff dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot–Lau x-ray moiré deflectometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2015-03-23

    The Talbot–Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n = 1 - δ + iβ of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both δ and β, which are directly related to the electron density ne and the attenuation coefficient μ, respectively. Since δ and β depend on the effective atomic number Zeff, a map can be obtained from the ratio between phase and absorptionmore » images acquired in a single shot. The Talbot–Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Zeff values of test objects within the 4–12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Zeff mapping of objects does not require previous knowledge of sample length or shape. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest to various domains of HED research, such as shocked materials and ICF experiments, as well as material science and NDT.« less

  12. Enhancing the quality of radiographic images acquired with point-like gamma-ray sources through correction of the beam divergence and attenuation

    SciTech Connect (OSTI)

    Silvani, M. I.; Almeida, G. L.; Lopes, R. T.

    2014-11-11

    Radiographic images acquired with point-like gamma-ray sources exhibit a desirable low penumbra effects specially when positioned far away from the set object-detector. Such an arrangement frequently is not affordable due to the limited flux provided by a distant source. A closer source, however, has two main drawbacks, namely the degradation of the spatial resolution - as actual sources are only approximately punctual - and the non-homogeneity of the beam hitting the detector, which creates a false attenuation map of the object being inspected. This non-homogeneity is caused by the beam divergence itself and by the different thicknesses traversed the beam even if the object were an homogeneous flat plate. In this work, radiographic images of objects with different geometries, such as flat plates and pipes have undergone a correction of beam divergence and attenuation addressing the experimental verification of the capability and soundness of an algorithm formerly developed to generate and process synthetic images. The impact of other parameters, including source-detector gap, attenuation coefficient, ratio defective-to-main hull thickness and counting statistics have been assessed for specifically tailored test-objects aiming at the evaluation of the ability of the proposed method to deal with different boundary conditions. All experiments have been carried out with an X-ray sensitive Imaging Plate and reactor-produced {sup 198}Au and {sup 165}Dy sources. The results have been compared with other technique showing a better capability to correct the attenuation map of inspected objects unveiling their inner structure otherwise concealed by the poor contrast caused by the beam divergence and attenuation, in particular for those regions far apart from the vertical of the source.

  13. MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    SciTech Connect (OSTI)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung; Raymond, John C.; Reeves, Katharine K.

    2015-01-10

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ∼3 × 10{sup 13}-5 × 10{sup 14} g, are smaller in their upper limit than the total masses obtained by LASCO, ∼1 × 10{sup 15} g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  14. Investigation of photon attenuation coefficient of some building materials used in Turkey

    SciTech Connect (OSTI)

    Dogan, B.; Altinsoy, N.

    2015-03-30

    In this study, some building materials regularly used in Turkey, such as concrete, gas concrete, pumice and brick have been investigated in terms of mass attenuation coefficient at different gamma-ray energies. Measurements were carried out by gamma spectrometry containing NaI(Tl) detector. Narrow beam gamma-ray transmission geometry was used for the attenuation measurements. The results are in good agreement with the theoretical calculation of XCOM code.

  15. THE STELLAR MASS–HALO MASS RELATION FOR LOW-MASS X-RAY GROUPS AT 0.5< z< 1 IN THE CDFS WITH CSI

    SciTech Connect (OSTI)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-01-30

    Since z∼1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ∼8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ∼3%–4% of the total mass of group halos with masses 10{sup 12.8}mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar–halo mass relation is σ∼0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar–halo mass relation since z≲1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies.

  16. EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS

    SciTech Connect (OSTI)

    Inoue, Yoshiyuki; Inoue, Susumu; Kobayashi, Masakazu A. R.; Makiya, Ryu; Totani, Tomonori; Niino, Yuu

    2013-05-10

    We present a new model of the extragalactic background light (EBL) and corresponding {gamma}{gamma} opacity for intergalactic gamma-ray absorption from z = 0 up to z = 10, based on a semi-analytical model of hierarchical galaxy formation that reproduces key observed properties of galaxies at various redshifts. Including the potential contribution from Population III stars and following the cosmic reionization history in a simplified way, the model is also broadly consistent with available data concerning reionization, particularly the Thomson scattering optical depth constraints from Wilkinson Microwave Anisotropy Probe (WMAP). In comparison with previous EBL studies up to z {approx} 3-5, our predicted {gamma}{gamma} opacity is in general agreement for observed gamma-ray energy below 400/(1 + z) GeV, whereas it is a factor of {approx}2 lower above this energy because of a correspondingly lower cosmic star formation rate, even though the observed ultraviolet (UV) luminosity is well reproduced by virtue of our improved treatment of dust obscuration and direct estimation of star formation rate. The horizon energy at which the gamma-ray opacity is unity does not evolve strongly beyond z {approx} 4 and approaches {approx}20 GeV. The contribution of Population III stars is a minor fraction of the EBL at z = 0, and is also difficult to distinguish through gamma-ray absorption in high-z objects, even at the highest levels allowed by the WMAP constraints. Nevertheless, the attenuation due to Population II stars should be observable in high-z gamma-ray sources by telescopes such as Fermi or the Cherenkov Telescope Array and provide a valuable probe of the evolving EBL in the rest-frame UV. The detailed results of our model are publicly available in numerical form at http://www.slac.stanford.edu/{approx}yinoue/Download.html.

  17. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    SciTech Connect (OSTI)

    Tuschareon, S. Limkitjaroenporn, P. Kaewkhao, J.

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of ?-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  18. Single-shot Zeff dense plasma diagnostic through simultaneous refraction and attenuation measurements with a Talbot–Lau x-ray moiré deflectometer

    SciTech Connect (OSTI)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2015-03-23

    The Talbot–Lau x-ray moiré deflectometer is a powerful plasma diagnostic capable of delivering simultaneous refraction and attenuation information through the accurate detection of x-ray phase shift and intensity. The diagnostic can provide the index of refraction n = 1 - δ + iβ of an object (dense plasma, for example) placed in the x-ray beam by independently measuring both δ and β, which are directly related to the electron density ne and the attenuation coefficient μ, respectively. Since δ and β depend on the effective atomic number Zeff, a map can be obtained from the ratio between phase and absorption images acquired in a single shot. The Talbot–Lau x-ray moiré deflectometer and its corresponding data acquisition and processing are briefly described to illustrate how the above is achieved; Zeff values of test objects within the 4–12 range were obtained experimentally through simultaneous refraction and attenuation measurements. We show that Zeff mapping of objects does not require previous knowledge of sample length or shape. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest to various domains of HED research, such as shocked materials and ICF experiments, as well as material science and NDT.

  19. THE ORIGIN OF BLACK HOLE SPIN IN GALACTIC LOW-MASS X-RAY BINARIES

    SciTech Connect (OSTI)

    Fragos, T.; McClintock, J. E.

    2015-02-10

    Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH after its formation. In order to test this hypothesis, we calculated extensive grids of detailed binary mass-transfer sequences. For each sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 Galactic LMXBs. The ''successful'' sequences give estimates of the mass that the BH has accreted since the onset of Roche-Lobe overflow. We find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted for by the accreted matter, and we make predictions about the maximum BH spin in LMXBs where no measurement is yet available. Furthermore, we derive limits on the maximum spin that any BH can have depending on current properties of the binary it resides in. Finally we discuss the implication that our findings have on the BH birth-mass distribution, which is shifted by ∼1.5 M {sub ☉} toward lower masses, compared to the currently observed one.

  20. MASS MEASUREMENT OF {sup 45}Cr AND ITS IMPACT ON THE Ca-Sc CYCLE IN X-RAY BURSTS

    SciTech Connect (OSTI)

    Yan, X. L.; Xu, H. S.; Litvinov, Yu. A.; Zhang, Y. H.; Tu, X. L.; Zhou, X. H.; He, J. J.; Sun, Y.; Wang, M.; Yuan, Y. J.; Xia, J. W.; Yang, J. C.; Jia, G. B.; Hu, Z. G.; Ma, X. W.; Mao, R. S.; Schatz, H.; Blaum, K.; Sun, B. H.; Audi, G.; and others

    2013-03-20

    Masses of neutron-deficient {sup 58}Ni projectile fragments have been measured at the HIRFL-CSR facility in Lanzhou, China employing the isochronous mass spectrometry technique. Masses of a series of short-lived T{sub z} = -3/2 nuclides including the {sup 45}Cr nucleus have been measured with a relative uncertainty of about 10{sup -6}-10{sup -7}. The new {sup 45}Cr mass turned out to be essential for modeling the astrophysical rp-process. In particular, we find that the formation of the predicted Ca-Sc cycle in X-ray bursts can be excluded.

  1. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect (OSTI)

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ≲ 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  2. DISTRIBUTION OF HIGH-MASS X-RAY BINARIES IN THE MILKY WAY

    SciTech Connect (OSTI)

    Coleiro, Alexis; Chaty, Sylvain E-mail: chaty@cea.fr

    2013-02-20

    Observations of the high-energy sky, particularly with the INTEGRAL satellite, have quadrupled the number of supergiant X-ray binaries observed in the Galaxy and revealed new populations of previously hidden high-mass X-ray binaries (HMXBs), raising new questions about their formation and evolution. The number of detected HMXBs of different types is now high enough to allow us to carry out a statistical analysis of their distribution in the Milky Way. For the first time, we derive the distance and absorption of a sample of HMXBs using a spectral energy distribution fitting procedure, and we examine the correlation with the distribution of star-forming complexes (SFCs) in the Galaxy. We show that HMXBs are clustered with SFCs with a typical cluster size of 0.3 {+-} 0.05 kpc and a characteristic distance between clusters of 1.7 {+-} 0.3 kpc. Furthermore, we present an investigation of the expected offset between the position of spiral arms and HMXBs, allowing us to constrain age and migration distance due to supernova kick for 13 sources. These new methods will allow us to assess the influence of the environment on these high-energy objects with unprecedented reliability.

  3. X-RAY ECLIPSE DIAGNOSIS OF THE EVOLVING MASS LOSS IN THE RECURRENT NOVA U SCORPII 2010

    SciTech Connect (OSTI)

    Takei, D.; Drake, J. J.; Tsujimoto, M.; Ness, J.-U.; Osborne, J. P.; Starrfield, S.; Kitamoto, S.

    2013-05-20

    We report the Suzaku detection of the earliest X-ray eclipse seen in the recurrent nova U Scorpii 2010. A target-of-opportunity observation 15 days after the outburst found a 27% {+-} 5% dimming in the 0.2-1.0 keV energy band at the predicted center of an eclipse. In comparison with the X-ray eclipse depths seen at two later epochs by XMM-Newton, the source region shrank by about 10%-20% between days 15 and 35 after the outburst. The X-ray eclipses appear to be deeper than or similar to contemporaneous optical eclipses, suggesting the X-ray and optical source region extents are comparable on day 15. We raise the possibility of the energy dependency in the photon escape regions, and that this would be a result of the supersoft X-ray opacity being higher than the Thomson scattering opacity at the photosphere due to bound-free transitions in abundant metals that are not fully ionized. Assuming a spherically symmetric model, we constrain the mass-loss rate as a function of time. For a ratio of actual to Thomson opacity of 10-100 in supersoft X-rays, we find an ejecta mass of about 10{sup -7}-10{sup -6} M{sub Sun }.

  4. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect (OSTI)

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  5. ECLIPSE TIMINGS OF THE TRANSIENT LOW-MASS X-RAY BINARY EXO 0748-676. IV. THE ROSSI X-RAY TIMING EXPLORER ECLIPSES

    SciTech Connect (OSTI)

    Wolff, Michael T.; Ray, Paul S.; Wood, Kent S.; Hertz, Paul L. E-mail: Paul.Ray@nrl.navy.mil E-mail: Paul.Hertz@nasa.gov

    2009-07-01

    We report our complete database of X-ray eclipse timings of the low-mass X-ray binary EXO 0748-676 observed by the Rossi X-Ray Timing Explorer (RXTE) satellite. As of this writing we have accumulated 443 full X-ray eclipses, 392 of which have been observed with the Proportional Counter Array on RXTE. These include both observations where an eclipse was specifically targeted and those eclipses found in the RXTE data archive. Eclipse cycle count has been maintained since the discovery of the EXO 0748-676 system in 1985 February. We describe our observing and analysis techniques for each eclipse and describe improvements we have made since the last compilation by Wolff et al. The principal result of this paper is the database containing the timing results from a seven-parameter fit to the X-ray light curve for each observed eclipse along with the associated errors in the fitted parameters. Based on the standard O - C analysis, EXO 0748-676 has undergone four distinct orbital period epochs since its discovery. In addition, EXO 0748-676 shows small-scale events in the O - C curve that are likely due to short-lived changes in the secondary star.

  6. The 2011 outburst of recurrent nova T Pyx: X-ray observations expose the white dwarf mass and ejection dynamics

    SciTech Connect (OSTI)

    Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Rupen, Michael P.; Mioduszewski, Amy J.; Krauss, Miriam I.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Roy, Nirupam

    2014-06-20

    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (∼45 eV) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (∼1 M {sub ☉}). The late turn-on time of the super-soft component yields a large nova ejecta mass (≳ 10{sup –5} M {sub ☉}), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ∼1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.

  7. BRIGHTEST X-RAY CLUSTERS OF GALAXIES IN THE CFHTLS WIDE FIELDS: CATALOG AND OPTICAL MASS ESTIMATOR

    SciTech Connect (OSTI)

    Mirkazemi, M.; Finoguenov, A.; Lerchster, M.; Erfanianfar, G.; Seitz, S.; Pereira, M. J.; Egami, E.; Tanaka, M.; Brimioulle, F.; Kettula, K.; McCracken, H. J.; Mellier, Y.; Kneib, J. P.; Rykoff, E.; Erben, T.; Taylor, J. E.

    2015-01-20

    The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) presents a unique data set for weak-lensing studies, having high-quality imaging and deep multiband photometry. We have initiated an XMM-CFHTLS project to provide X-ray observations of the brightest X-ray-selected clusters within the wide CFHTLS area. Performance of these observations and the high quality of CFHTLS data allow us to revisit the identification of X-ray sources, introducing automated reproducible algorithms, based on the multicolor red sequence finder. We have also introduced a new optical mass proxy. We provide the calibration of the red sequence observed in the Canada-France-Hawaii filters and compare the results with the traditional single-color red sequence and photo-z. We test the identification algorithm on the subset of highly significant XMM clusters and identify 100% of the sample. We find that the integrated z-band luminosity of the red sequence galaxies correlates well with the X-ray luminosity, with a surprisingly small scatter of 0.20 dex. We further use the multicolor red sequence to reduce spurious detections in the full XMM and ROSAT All-Sky Survey (RASS) data sets, resulting in catalogs of 196 and 32 clusters, respectively. We made spectroscopic follow-up observations of some of these systems with HECTOSPEC and in combination with BOSS DR9 data. We also describe the modifications needed to the source detection algorithm in order to maintain high purity of extended sources in the shallow X-ray data. We also present the scaling relation between X-ray luminosity and velocity dispersion.

  8. ON THE ORIGIN OF THE MASS-METALLICITY RELATION FOR GAMMA-RAY...

    Office of Scientific and Technical Information (OSTI)

    BURST HOST GALAXIES We investigate the nature of the mass-metallicity (M-Z) relation ... The nature of this offset is consistent with suggestions that low-metallicity environments ...

  9. A solar type II radio burst from coronal mass ejection-coronal ray interaction: Simultaneous radio and extreme ultraviolet imaging

    SciTech Connect (OSTI)

    Chen, Yao; Du, Guohui; Feng, Shiwei; Kong, Xiangliang; Wang, Bing; Feng, Li; Guo, Fan; Li, Gang

    2014-05-20

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nanay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  10. Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption

    SciTech Connect (OSTI)

    Donatti, D.A.; Vollet, D.R.; Ibanez Ruiz, A.; Mesquita, A.; Silva, T.F.P. [Unesp-Universidade Estadual Paulista, IGCE, Departamento de Fisica, P.O. Box 178 CEP, 13500-970 Rio Claro, Sao Paulo (Brazil)

    2005-01-01

    A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r{sub w}) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from {approx}2.1 to {approx}2.4 and mass-fractal correlation length {xi} diminishing from {approx}13 nm to {approx}2 nm, as r{sub w} is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500 deg. C, in general, increases the mass-fractal dimension D, diminishes the characteristic length {xi} of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as {approx}2.4 and {approx}2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the 'secondary particle' developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from {approx}2.4 to {approx}2.0 and from {approx}2.7 to {approx}2.5, respectively, as the aerogel bulk density increases from 0.25 (r{sub w}=66) up to 0.91 g/cm{sup 3} (r{sub w}=6)

  11. Some like it hot: Linking diffuse X-ray luminosity, baryonic mass, and star formation rate in compact groups of galaxies

    SciTech Connect (OSTI)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Walker, Lisa May; Johnson, Kelsey E.; Brandt, William N.; Charlton, Jane C.

    2014-08-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L{sub X} -T and L{sub X} -σ, even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and H I masses ≳ 10{sup 11.3} M{sub ☉} are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 μm star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due to gas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  12. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I.; Morris, Christopher L.

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  13. On the Contribution of Gamma Ray Bursts to the Galactic Inventory of Some Intermediate Mass Nuclei

    SciTech Connect (OSTI)

    Pruet, J; Surman, R; McLaughlin, G C

    2004-01-23

    Light curves from a growing number of Gamma Ray Bursts (GRBs) indicate that GRBs copiously produce radioactive Ni moving outward at fractions of the speed of light. We calculate nuclear abundances of elements accompanying the outflowing Ni under the assumption that this Ni originates from a wind blown off of a viscous accretion disk. We also show that GRB's likely contribute appreciably to the galactic inventory of {sup 42}Ca, {sup 45}Sc, {sup 46}Ti, {sup 49}Ti, {sup 63}Cu, and may be an important site for the production of {sup 64}Zn.

  14. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  15. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-31

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

  16. Mass fractal characteristics of wet sonogels as determined by small-angle x-ray scattering and differential scanning calorimetry

    SciTech Connect (OSTI)

    Vollet, D. R.; Donatti, D. A.; Ibanez Ruiz, A.; Gatto, F. R. [Departamento de Fisica, Unesp-Univerisdade Estadual Paulista, IGCE, P.O. Box 178 CEP 13500-970 Rio Claro, SP (Brazil)

    2006-07-01

    Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 deg. C/min from -120 deg. C up to 30 deg. C. Aerogels were obtained by CO{sub 2} supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 deg. C up to practically 0 deg. C, was associated to the melting of ice nanocrystals with a crystal size distribution with 'pore' diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 deg. C, was attributed to the melting of macroscopic crystals. The DSC incremental 'nanopore' volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20{+-}0.01 in a characteristic length scale below {xi}=7.9{+-}0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental ''pore'' volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

  17. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2010-02-01

    The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust

  18. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2010 to January 2011

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2011-02-01

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for

  19. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2011 to January 2012

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

    2012-03-05

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the

  20. Pressure surge attenuator

    DOE Patents [OSTI]

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  1. CONSTRAINTS ON POROSITY AND MASS LOSS IN O-STAR WINDS FROM THE MODELING OF X-RAY EMISSION LINE PROFILE SHAPES

    SciTech Connect (OSTI)

    Leutenegger, Maurice A.; Sundqvist, Jon O.; Owocki, Stanley P.

    2013-06-10

    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant {zeta} Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate ({approx}< 40%) are allowed if moderate porosity effects (h{sub {infinity}} {approx}< R{sub *}) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars.

  2. CONTINUED COOLING OF THE CRUST IN THE NEUTRON STAR LOW-MASS X-RAY BINARY KS 1731-260

    SciTech Connect (OSTI)

    Cackett, Edward M.; Miller, Jon M.; Brown, Edward F.; Cumming, Andrew; Degenaar, Nathalie; Wijnands, Rudy

    2010-10-20

    Some neutron star low-mass X-ray binaries have very long outbursts (lasting several years) which can generate a significant amount of heat in the neutron star crust. After the system has returned to quiescence, the crust then thermally relaxes. This provides a rare opportunity to study the thermal properties of neutron star crusts, putting constraints on the thermal conductivity and hence the structure and composition of the crust. KS 1731-260 is one of only four systems where this crustal cooling has been observed. Here, we present a new Chandra observation of this source approximately eight years after the end of the last outburst and four years since the last observation. We find that the source has continued to cool, with the cooling curve displaying a simple power-law decay. This suggests that the crust has not fully thermally relaxed yet and may continue to cool further. A simple power-law decay is in contrast to theoretical cooling models of the crust, which predict that the crust should now have cooled to the same temperature as the neutron star core.

  3. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    SciTech Connect (OSTI)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Vrsnak, B.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  4. Variable laser attenuator

    DOE Patents [OSTI]

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  5. Variable laser attenuator

    DOE Patents [OSTI]

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  6. Galaxies in x-ray selected clusters and groups in Dark Energy Survey data. I. Stellar mass growth of bright central galaxies since z ~ 1.2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Miller, C.; McKay, T.; Rooney, P.; Evrard, A. E.; Romer, A. K.; R. Perfecto; Song, J.; Desai, S.; Mohr, J.; et al

    2016-01-14

    Here, using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift.

  7. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Collica, Laura

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  8. QUARK-NOVAE IN LOW-MASS X-RAY BINARIES. II. APPLICATION TO G87-7 AND TO GRB 110328A

    SciTech Connect (OSTI)

    Ouyed, Rachid; Staff, Jan; Jaikumar, Prashanth

    2011-12-20

    We propose a simple model explaining two outstanding astrophysical problems related to compact objects: (1) that of stars such as G87-7 (alias EG 50) that constitute a class of relatively low-mass white dwarfs (WDs) which nevertheless fall away from the C/O composition and (2) that of GRB 110328A/Swift J164449.3+57345 which showed spectacularly long-lived strong X-ray flaring, posing a challenge to standard gamma-ray burst models. We argue that both these observations may have an explanation within the unified framework of a quark-nova (QN) occurring in a low-mass X-ray binary (LMXB; neutron star (NS)-WD). For LMXBs, where the binary separation is sufficiently tight, ejecta from the exploding NS triggers nuclear burning in the WD on impact, possibly leading to Fe-rich composition compact WDs with mass 0.43 M{sub Sun} < M{sub WD} < 0.72 M{sub Sun }, reminiscent of G87-7. Our results rely on the assumption, which ultimately needs to be tested by hydrodynamic and nucleosynthesis simulations, that under certain circumstances the WD can avoid the thermonuclear runaway. For heavier WDs (i.e., M{sub WD} > 0.72 M{sub Sun }) experiencing the QN shock, degeneracy will not be lifted when carbon burning begins, and a sub-Chandrasekhar Type Ia supernova may result in our model. Under slightly different conditions and for pure He WDs (i.e., M{sub WD} < 0.43 M{sub Sun }), the WD is ablated and its ashes raining down on the quark star (QS) leads to accretion-driven X-ray luminosity with energetics and duration reminiscent of GRB 110328A. We predict additional flaring activity toward the end of the accretion phase if the QS turns into a black hole.

  9. RADIO FREQUENCY ATTENUATOR

    DOE Patents [OSTI]

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  10. Attenuator And Conditioner

    DOE Patents [OSTI]

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  11. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    SciTech Connect (OSTI)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben; Ray, Paul S.; Wolff, Michael; Wood, Kent S.; Chengalur, Jayaram N.; Deneva, Julia; Camilo, Fernando; Johnson, Tyrel J.; Hessels, Jason W. T.; Bassa, Cees G.; Keane, Evan F.; Ferrara, Elizabeth C.; Harding, Alice K.

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  12. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect (OSTI)

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  13. Long-lasting X-ray emission from type IIb supernova 2011dh and mass-loss history of the yellow supergiant progenitor

    SciTech Connect (OSTI)

    Maeda, Keiichi; Katsuda, Satoru; Bamba, Aya; Terada, Yukikatsu; Fukazawa, Yasushi

    2014-04-20

    Type IIb supernova (SN) 2011dh, with conclusive detection of an unprecedented yellow supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosion. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ?500 days after the explosion on Chandra archival data, providing a solidly derived mass-loss rate of a YSG progenitor for the first time. We find that the circumstellar media should be dense, more than that expected from a Wolf-Rayet (W-R) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a W-R progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact W-R star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass-loss rate is ?3 10{sup 6} M {sub ?} yr{sup 1} for the mass-loss velocity of ?20 km s{sup 1} in the final ?1300 yr before the explosion. The derived mass-loss properties are largely consistent with the standard wind mass-loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at ? 1300 yr before the explosion, is a likely scenario to produce the YSG progenitor.

  14. Radiofrequency attenuator and method

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  15. Radiofrequency attenuator and method

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  16. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    SciTech Connect (OSTI)

    Hoidn, Oliver R.; Seidler, Gerald T.

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  17. Mass calibration and cosmological analysis of the SPT-SZ galaxy cluster sample using velocity dispersion σ v and x-ray Y X measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bocquet, S.; Saro, A.; Mohr, J. J.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; et al

    2015-01-30

    Here, we present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σv) and 16 X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σv and YX are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data setmore » (SZ clusters+σv+YX) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is mν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger Σmν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the YX calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find Σmν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = –1.007 ± 0.065, demonstrating that the eΣxpansion and the growth

  18. ANALYSIS OF PASSIVATED SURFACES FOR MASS SPECTROMETER INLET SYSTEMS BY AUGER ELECTRON AND X-RAY PHOTOELECTRON SPECTROSCOPY

    SciTech Connect (OSTI)

    Ajo, H.; Clark, E.

    2010-09-01

    Stainless steel coupons approximately 0.5' in diameter and 0.125' thick were passivated with five different surface treatments and an untreated coupon was left as a control. These surface treatments are being explored for use in tritium storage containers. These coupons were made to allow surface analysis of the surface treatments using well-know surface analysis techniques. Depth profiles using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on these coupons to characterize the surface and near surface regions. Scanning electron microscope (SEM) images were collected as well. All of the surface treatments studied here appear to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7-0.9 nm thick) as well as the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E's silicon coating appears to be on the order of 200 nm thick.

  19. Low-mass right-handed sneutrino dark matter: SuperCDMS and LUX constraints and the Galactic Centre gamma-ray excess

    SciTech Connect (OSTI)

    Cerdeo, D.G.; Peir, M.; Robles, S. E-mail: miguel.peiro@uam.es

    2014-08-01

    Recent results from direct and indirect searches for dark matter (DM) have motivated the study of particle physics models that can provide weakly interacting massive particles (WIMPs) in the mass range 150 GeV. Viable candidates for light WIMP DM must fulfil stringent constraints. On the one hand, the observation at the LHC of a Higgs boson with Standard Model properties set an upper bound on the coupling of light DM particles to the Higgs, thereby making it difficult to reproduce the correct relic abundance. On the other hand, the recent results from direct searches in the CDMSlite, SuperCDMS and LUX experiments have set upper constraints on the DM scattering cross section. In this paper, we investigate the viability of light right-handed sneutrino DM in the Next-to-Minimal Supersymmetric Model (NMSSM) in the light of these constraints. To this aim, we have carried out a scan in the NMSSM parameter space, imposing experimental bounds on the Higgs sector and low-energy observables, such as the muon anomalous magnetic moment and branching ratios of rare decays. We demonstrate that the enlarged Higgs sector of the NMSSM, together with the flexibility provided by the RH sneutrino parameters, make it possible to obtain viable RH sneutrino DM with a mass as light as 2 GeV. We have also considered the upper bounds on the annihilation cross section from Fermi LAT data on dwarf spheroidal galaxies, and extracted specific examples with mass in the range 850 GeV that could account for the apparent low-energy excess in the gamma-ray emission at the Galactic Centre. Then, we have computed the theoretical predictions for the elastic scattering cross-section of RH sneutrinos. Finally, after imposing the recent bounds from SuperCDMS and LUX, we have found a wide area of the parameter space that could be probed by future low-threshold direct detection experiments.

  20. LINE-ABOVE-GROUND ATTENUATOR

    DOE Patents [OSTI]

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  1. A 2.15 hr ORBITAL PERIOD FOR THE LOW-MASS X-RAY BINARY XB 1832-330 IN THE GLOBULAR CLUSTER NGC 6652

    SciTech Connect (OSTI)

    Engel, M. C.; Heinke, C. O.; Sivakoff, G. R.; Elshamouty, K. G.; Edmonds, P. D. E-mail: heinke@ualberta.ca

    2012-03-10

    We present a candidate orbital period for the low-mass X-ray binary (LMXB) XB 1832-330 in the globular cluster NGC 6652 using a 6.5 hr Gemini South observation of the optical counterpart of the system. Light curves in g' and r' for two LMXBs in the cluster, sources A and B in previous literature, were extracted and analyzed for periodicity using the ISIS image subtraction package. A clear sinusoidal modulation is evident in both of A's curves, of amplitude {approx}0.11 mag in g' and {approx}0.065 mag in r', while B's curves exhibit rapid flickering, of amplitude {approx}1 mag in g' and {approx}0.5 mag in r'. A Lomb-Scargle test revealed a 2.15 hr periodic variation in the magnitude of A with a false alarm probability less than 10{sup -11}, and no significant periodicity in the light curve for B. Though it is possible that saturated stars in the vicinity of our sources partially contaminated our signal, the identification of A's binary period is nonetheless robust.

  2. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    SciTech Connect (OSTI)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.

  3. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore » the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  4. Attenuation compensation in TC-99M SPECT brain imaging: Use of attenuation maps derived from tranmission versus emission data

    SciTech Connect (OSTI)

    Pan, T.S.; Licho, R.; Penney, B.C. [Univ. of Massachusetts Mecical Center, Worcester, MA (United States)] [and others

    1994-05-01

    This study compares reconstructions of Tc-99m brain SPECT studies made using two methods of estimating the attenuation map: (1) transmission scanning, and (2) segmenting reconstructions of emission data and assigning attenuation coefficient values. A three-head SPECT system with fan beam collimators was used. Transmission scanning was performed using a line source at the focal line of a fan beam collimator right after the regular emission scan. The higher attenuation of the skull and the lower attenuation in the sinus cavities were identifiable despite the noise in the reconstructed transmission data due to: (1) the contamination of the transmission data by emission photons, (2) the maximum acquisition count rate imposed by the SPECT system, and (3) the clinical scanning time. Emission data were recorded using both photopeak and Compton scatter energy windows. Outlines of the head and the maxillary sinus could be obtained using only the Compton scatter reconstructions, whereas identifying the skull regions and the frontal sinus required the photopeak data as well. We placed appropriate linear attenuation coefficients in the soft tissue, bone, sinus and air regions (0.15,. 0.22, 0, and 0 cm{sup -1}) and blurred this attenuation map with a Gaussian kernel of about 0.2 cm standard deviation to obtain the attenuation map based on the emission data. Reconstructions were computed using the maximum likelihood expectation maximization algorithm with Siddon`s ray-tracing algorithm. Reconstructions based on the two attenuation maps were compared quantitatively on the patient data. The differences noted were quite small. These results imply that attenuation correction based on emission data alone may be adequate for Tc-99m SPECT brain imaging.

  5. 55-Gallon Drum Attenuation Corrections for Waste Assay Measurements

    SciTech Connect (OSTI)

    Casella, V.R.

    2002-04-03

    The present study shows how the percent attenuation for low-level waste (LLW), carbon-steel 55-gallon drums (44 and 46 mil) and for transuranic (TRU) DOT Type 7A 55-gallon drums (approximately 61 mil) changes with gamma energy from 60 keV to 1400 keV. Attenuation for these drums is in the range of 5 to 15 percent at energies from 400 to 1400 keV and from 15 to 35 percent at energies from 120 to 400 keV. At 60 keV, these drums attenuate 70-80 percent of the gamma rays. Correction factors were determined in order to correct for gamma attenuation of a TRU drum if a calibration is performed with a LLW drum. These correction factors increase the activities of the TRU drum by from 10 percent to 2 percent in the energy range of 165 to 1400 keV, with an increase of about 50 percent at 60 keV. Correction factors for TRU drums and for analyses without a drum were used to adjust the percent yield for frequently measured gamma rays, so that the assay libraries could be modified to provide the drum attenuation corrections.

  6. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  7. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  8. Summary Of Identification Of Rrgulatory Acceptability Of Enhanced Attenuation Categories

    SciTech Connect (OSTI)

    Vangelas, K

    2006-01-04

    Chlorinated solvents once introduced to the subsurface are a persistent contaminant. Though many types of active treatments have been developed and deployed to treat contaminated sites, most sites will ultimately incorporate the use of passive treatments into the remediation process. A process favored by many is the use of Monitored Natural Attenuation that relies on the natural attenuation processes occurring within the system to remediate the contaminants. However, it is likely there will be instances where the natural attenuation processes will be insufficient to reduce the level of contamination to acceptable levels in an acceptable span of time. Rather than redeploying source treatments, the Department of Energy along with the Interstate Technology and Regulatory Council (ITRC) are developing the concept of Enhanced Attenuation (EA). An enhancement is any type of intervention that might be implemented in a source-plume system that increases the magnitude of attenuation by natural processes beyond that which occurs without intervention. Enhanced Attenuation is the result of applying an enhancement or intervention technique that will sustainably manipulate a natural attenuation process leading to an increased reduction in mass flux of contaminants. Efforts are moving forward along several fronts in developing this concept. This effort is a follow-on to initial discussions with site owners, regulators and stakeholder organizations in the development of the concepts of Enhanced Attenuation, the use of mass balance to evaluate the stability of a waste site/groundwater plume, and identification of tools that will support characterization and monitoring efforts for MNA and EA treatments. Those discussions are documented in the report titled ''Summary Document of Workshops for Hanford, Oak Ridge and Savannah River Site as part of the Monitored Natural Attenuation and Enhanced Passive Remediation for Chlorinated Solvents-DOE Alternative Project for Technology

  9. Electron attenuation in free, neutral ethane clusters

    SciTech Connect (OSTI)

    Winkler, M.; Harnes, J.; Brve, K. J.; Myrseth, V.

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (?), allowing N and ? to be determined by optimizing the goodness-of-fit ?{sup 2}(N, ?) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4??1.9 , in good agreement with an independent estimate of 10 formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  10. Attenuation Based Remedies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attenuation Based Remedies Attenuation Based Remedies The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE's groundwater contamination problems that consider not only the technical aspects of a waste site, but regulator, stakeholder, and end-user concerns as well. Attenuation Based Remedies (3.23 MB) More Documents & Publications CX-014694: Categorical Exclusion Determination Chairs Meeting - June 2011

  11. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  12. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    SciTech Connect (OSTI)

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  13. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  14. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect (OSTI)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  15. Investigation of the {sup 208}Pb({sup 18}O, f) fission reaction: Mass-energy distributions of fission fragments and their correlation with the gamma-ray multiplicity

    SciTech Connect (OSTI)

    Rusanov, A. Ya.; Itkis, M. G.; Kondratiev, N. A.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Chubarian, G. G.

    2008-06-15

    The mass-energy distributions of fragments originating from the fission of the compound nucleus {sup 226}Th and their correlations with the multiplicity of gamma rays emitted from these fragments are measured and analyzed in {sup 18}O + {sup 208}Pb interaction induced by projectile oxygen ions of energy in the range E{sub lab} = 78-198.5 MeV. Manifestations of an asymmetric fission mode, which is damped exponentially with increasing E{sub lab}, are demonstrated. Theoretical calculations of fission valleys reveal that only two independent valleys, symmetric and asymmetric, exist in the vicinity of the scission point. The dependence of the multiplicity of gamma rays emitted from both fission fragments on their mass, M{sub {gamma}}(M), has a complicated structure and is highly sensitive to shell effects in both primary and final fragments. A two-component analysis of the dependence M{sub {gamma}}(M) shows that the asymmetric mode survives in fission only at low partial-wave orbital angular momenta of compound nuclei. It is found that, for all E{sub lab}, the gamma-ray multiplicity M{sub {gamma}}as a function of the total kinetic energy (TKE) of fragments, M{sub {gamma}}(TKE), decreases linearly with increasing TKE. An analysis of the energy balance in the fission process at the laboratory energy of E{sub lab} = 78 MeV revealed the region of cold fission of fragments whose total kinetic energy is TKE {approx}Q{sub max}.

  16. Monitored Natural Attenuation of Chlorinated Solvents - Moving Beyond Reuctive Dechlorination

    SciTech Connect (OSTI)

    Vangelas, K

    2006-04-10

    Monitored natural attenuation (MNA), while a remedy of choice for many sites, can be challenging when the contaminants are chlorinated solvents. Even with many high quality technical guidance references available there continue to be challenges implementing MNA at some chlorinated solvent sites. The U.S. Department of Energy, as one organization facing such challenges, is leading a project that will incorporate developing concepts and tools into the existing toolbox for selecting and implementing MNA as a remediation option at sites with chlorinated solvents contamination. The structure and goals of this project were introduced in an article in the Winter 2004 issue of Remediation (Sink et al.). This article is a summary of the three technical areas being developed through the project: mass balance, enhanced attenuation, and characterization and monitoring supporting the first two areas. These topics will be documented in separate reports available from the US Department of Energy Office of Scientific and Technical Information at www.osti.gov.

  17. Enhancements to Natural Attenuation: Selected Case Studies |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selected Case Studies More Documents & Publications Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Natural and Enhanced Attenuation of Soil ...

  18. ADVANCING THE SCIENCE OF NATURAL AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    SciTech Connect (OSTI)

    Looney, B; TOM O. EARLY, T; TYLER GILMORE, T; FRANCIS H. CHAPELLE, F; NORMAN H. CUTSHALL, N; JEFF ROSS, J; MARK ANKENY, M; Michael Heitkamp, M; DAVID MAJOR, D; CHARLES J. NEWELL, C; W. JODY WAUGH, W; GARY WEIN, G; Karen Vangelas, K; Karen-M Adams, K; CLAIRE H. SINK, C

    2006-12-27

    This report summarizes the results of a three-year program that addressed key scientific and technical aspects related to natural and enhanced attenuation of chlorinated organics. The results from this coordinated three-year program support a variety of technical and regulatory advancements. Scientists, regulators, engineers, end-users and stakeholders participated in the program, which was supported by the U.S. Department of Energy (DOE) and the Interstate Technology and Regulatory Council (ITRC). The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). A key result of the recent effort was the general affirmation of the approaches and guidance in the original U.S. Environmental Protection Agency (EPA) chlorinated solvent MNA protocols and directives from 1998 and 1999, respectively. The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Natural attenuation processes occur in all soil and groundwater systems and act, to varying degrees, on all contaminants. Thus, a decision to rely on natural attenuation processes as part of a site-remediation strategy does not depend on the occurrence of natural attenuation, but on its effectiveness in meeting site-specific remediation goals. Meeting these goals typically requires low risk

  19. Electrically tunable hot-silicon terahertz attenuator

    SciTech Connect (OSTI)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ?550?K, with the corresponding free-carrier density adjusted between ?10{sup 11?}cm{sup ?3} and ?10{sup 17?}cm{sup ?3}. This hot-silicon-based terahertz attenuator works most effectively at 450550?K (corresponding to a DC voltage variation of only ?7?V) and completely shields terahertz radiation above 550?K in a frequency range of 0.12.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  20. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538522

    SciTech Connect (OSTI)

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex; Frst, Felix; Pottschmidt, Katja; Wilms, Jrn

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 0.4 keV and the iron K? line at 6.426 0.008 keV, as well as placing limits on the strengths of the iron K? line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron K? line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  1. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect (OSTI)

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  2. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  3. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore » by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  4. Thermal stability in the blended lithium manganese oxide Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25C-580C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250C. Formation of MnO with rocksalt structure started at 520C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  5. X-Ray Diffraction > Analytical Resources > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Analytical Resources In This Section Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction X-Ray Diffraction

  6. MASS SPECTROMETER

    DOE Patents [OSTI]

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  7. Attenuation-Based Remedies in the Subsurface Applied Field Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative (ABRS AFRI) | Department of Energy Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to

  8. Radiation attenuation gauge with magnetically coupled source

    DOE Patents [OSTI]

    Wallace, Steven A.

    1978-01-01

    A radiaton attenuation gauge for measuring thickness and density of a material comprises, in combination, a source of gamma radiation contained within a housing comprising magnetic or ferromagnetic material, and a means for measuring the intensity of gamma radiation. The measuring means has an aperture and magnetic means disposed adjacent to the aperture for attracting and holding the housed source in position before the aperture. The material to be measured is disposed between the source and the measuring means.

  9. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect (OSTI)

    Preston, Leiph

    2014-09-01

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  10. MASS SPECTROMETRY

    DOE Patents [OSTI]

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  11. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  12. High power radio frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  13. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  14. Solids mass flow indication with radiation

    DOE Patents [OSTI]

    Macko, Joseph E.; Estriplet, Isnard

    1985-06-04

    Method and apparatus for indicating mass flow of a solid particulate material through a rotary feeder. A radiation source and detector are positioned in a manner whereby radiation flux is directed through, and attenuated by, particulate material contained in rotating pockets. A Cesium-137 gamma source can be mounted within the shaft of the feeder, and one or more detectors can be mounted outside of the feeder housing. The detected signal is indicative of the mass of particulate material contained within a given pocket rotating within the feeder.

  15. X-ray focal spot locating apparatus and method

    DOE Patents [OSTI]

    Gilbert, Hubert W.

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  16. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  17. A Shallow Attenuating Anomaly Inside The Ring Fracture Of The...

    Open Energy Info (EERE)

    Roberts,Keiiti Aki,Michael C. Fehler. 1995. A Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New Mexico. Journal of Volcanology and Geothermal...

  18. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE's groundwater contamination problems that ...

  19. Anomalous shear wave attenuation in the shallow crust beneath...

    Open Energy Info (EERE)

    volcanic region, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Anomalous shear wave attenuation in the shallow crust beneath the...

  20. Gas sensor with attenuated drift characteristic

    DOE Patents [OSTI]

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W. [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  1. MASS SPECTROMETRY

    DOE Patents [OSTI]

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  2. Enhanced Attenuation: A Reference Guide On Approaches To Increase The Natural Treatment Capacity Of A System

    SciTech Connect (OSTI)

    Vangelas, K

    2006-01-30

    The objective of this document is to explore the realm of enhancements to natural attenuation processes for cVOCs and review examples that have been proposed, modeled, and implemented. We will identify lessons learned from these case studies to confirm that enhancements are technically feasible and have the potential to achieve a favorable, cost-effective contaminant mass balance. Furthermore, we hope to determine if opportunities for further improvement of the enhancements exist and suggest areas where new and innovative types of enhancements might be possible.

  3. ENHANCED ATTENUATION: A REFERENCE GUIDE ON APPROACHES TO INCREASE THE NATURAL TREATMENT CAPACITY OF A SYSTEM

    SciTech Connect (OSTI)

    Looney, B; Michael Heitkamp, M; Gary Wein , G; Karen Vangelas, K; Karen-M Adams, K; Tom Early; Bob Borden; David Major; W. Jody Waugh; Todd Wiedemeier; Claire H. Sink

    2006-08-10

    The objective of this document is to explore the realm of enhancements to natural attenuation processes for cVOCs and review examples that have been proposed, modeled, and implemented. We will identify lessons learned from these case studies to confirm that enhancements are technically feasible and have the potential to achieve a favorable, cost-effective contaminant mass balance. Furthermore, we hope to determine if opportunities for further improvement of the enhancements exist and suggest areas where new and innovative types of enhancements might be possible.

  4. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    SciTech Connect (OSTI)

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.; Ptak, Andrew F.; Goncalves, Thiago S.; Fragos, Tassos; Heckman, Timothy M.; Overzier, Roderik A.; Schiminovich, David

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} compared to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities, related to

  5. Automatic detection of bone fragments in poultry using multi-energy x-rays

    DOE Patents [OSTI]

    Gleason, Shaun S.; Paulus, Michael J.; Mullens, James A.

    2002-04-09

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  6. Gamma rays from clusters and groups of galaxies: Cosmic rays versus dark matter

    SciTech Connect (OSTI)

    Jeltema, Tesla E.; Profumo, Stefano

    2009-07-15

    Clusters of galaxies have not yet been detected at gamma-ray frequencies; however, the recently launched Fermi Gamma-ray Space Telescope, formerly known as GLAST, could provide the first detections in the near future. Clusters are expected to emit gamma rays as a result of (1) a population of high-energy cosmic rays fueled by accretion, merger shocks, active galactic nuclei, and supernovae, and (2) particle dark-matter annihilation. In this paper, we ask the question of whether the Fermi telescope will be able to discriminate between the two emission processes. We present data-driven predictions for the gamma-ray emission from cosmic rays and dark matter for a large x-ray-flux-limited sample of galaxy clusters and groups. We point out that the gamma-ray signals from cosmic rays and dark matter can be comparable. In particular, we find that poor clusters and groups are the systems predicted to have the highest dark-matter to cosmic-ray emission ratio at gamma-ray energies. Based on detailed Fermi simulations, we study observational handles that might enable us to distinguish the two emission mechanisms, including the gamma-ray spectra, the spatial distribution of the signal, and the associated multiwavelength emissions. We also propose optimal hardness ratios, which will help us to understand the nature of the gamma-ray emission. Our study indicates that gamma rays from dark-matter annihilation with a high particle mass can be distinguished from a cosmic-ray spectrum even for fairly faint sources. Discriminating a cosmic-ray spectrum from a light dark-matter particle will be, instead, much more difficult, and will require long observations and/or a bright source. While the gamma-ray emission from our simulated clusters is extended, determining the spatial distribution with Fermi will be a challenging task requiring an optimal control of the backgrounds.

  7. Simulation of E-Cloud Driven Instability And Its Attenuation...

    Office of Scientific and Technical Information (OSTI)

    System in the CERN SPS Citation Details In-Document Search Title: Simulation of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS Electron ...

  8. Simulation of E-Cloud Driven Instability And Its Attenuation...

    Office of Scientific and Technical Information (OSTI)

    Simulation of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS Citation Details In-Document Search Title: Simulation of E-Cloud Driven ...

  9. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  10. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  11. THE ATTENUATED RADON TRANSFORM: APPLICATION TO SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY IN THE PRESENCE OF A VARIABLE ATTENUATING MEDIUM

    SciTech Connect (OSTI)

    Gullberg, Grant T.

    1980-03-01

    The properties of the attenuated Radon transform and its application to single-photon emission computed tomography (ECT) are analyzed in detail. In nuclear medicine and biological research, the objective of ECT is to describe quantitatively the position and strengths of internal sources of injected radiopharmaceuticals and radionuclides where the attenuation between the sources and detector is unknown. The problem is mathematically and practically quite different from well-known methods in transmission computed tomography (TCT) where only the attenuation is unknown. A mathematical structure using function theory and the theory of linear operators on Hilbert spaces is developed to better understand the spectral properties of the attenuated Radon transform. The continuous attenuated Radon transform is reduced to a matrix operator for discrete angular and lateral sampling, and the reconstruction problem reduces to a system of linear equations. For variable attenuation coefficients frequently found in imaging internal organs, the numerical methods developed in this paper involve iterative techniques of performing the generalized inverse. Its application to nuclear medicine is demonstrated by reconstructions of transverse sections of the brain, heart, and liver.

  12. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect (OSTI)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

  13. SU-E-T-411: Characterization of Novel Water-Equivalent PRESAGE for Megavoltage and Kilovoltage X-Ray Beam Dosimetry

    SciTech Connect (OSTI)

    Alqathami, M; Ibbott, G; Blencowe, A

    2014-06-01

    Purpose: To introduce and characterize novel water-equivalent PRESAGE dosimeters for megavoltage and kilovoltage X-ray beam dosimetry. Methods: Three novel metal-optimized PRESAGE dosimeters referred to as MO-PRESAGE 1, 2 and 3 were formulated. The radiological properties were key factors that were considered when formulating the new dosimeters. All formulations were prepared in spectrophotometric cuvettes, irradiated with a 6 MV X-ray beam, and the change in optical density was measured using a spectrophotometer. Their sensitivity, post-response stability, and water equivalency were investigated. Results: The results showed that all three formulations exhibited radiological properties closer to water than any of the commercially available PRESAGE formulations. For example, the novel MO-PRESAGE 1, 2 and 3 have mass densities only 3.9-4.4% higher than that of water, whereas the mass density for the commercial formulation is 5.3% higher. The novel formulations have almost identical Zeff values to that of water (7.42), while the Zeff for the commercial formulation was 3.7% higher than that of water. In addition, the MO-PRESAGE 3 formulation showed mass and energy attenuation coefficients that deviated from those of water by less than 50% relative to the commercial formulation. Furthermore, the reduced Zeff of the three different MOPRESAGE formulations resulted in a maximum variation in the probability of photoelectric absorption of 1.3 times than of water, compared to 1.8 times that of water for the commercial formulation. MO-PRESAGE 3 was also more sensitive to radiation than the other two new formulations introduced in this work due to the presence of alkylbromide radical initiators in the MO-PRESAGE 3 formulation. Conclusion: All three novel MOPRESAGE dosimeter formulations displayed excellent radiological properties, superior to any of the commercially available PRESAGE formulations and thus can be used for the dosimetry of clinical megavoltage and kilovoltage X-ray

  14. Gamma-ray shielding properties of some travertines in Turkey

    SciTech Connect (OSTI)

    Akkurt, Iskender; Guenoglu, Kadir

    2012-09-06

    The radiation is an essential phenomenon in daily life. There are various amounts of radioactivite substances in the underground and the earth was irradiated by this substances. Humans are exposed to various kind of radiation from these sources. The travertines are usually used as a coating material in buildings. In this study, the photon attenuation coefficients of some travertines have been measured using a gamma spectroscopy with NaI(Tl) detector. The measurements have been performed using {sup 60}Co source which gives 1173 and 1332 keV energies gamma rays and {sup 137}Cs source which gives 662 keV energy gamma rays and the results will be discussed.

  15. Dynamic ray tracing and traveltime corrections for global seismic tomography

    SciTech Connect (OSTI)

    Tian Yue Hung, S.-H.; Nolet, Guust; Montelli, Raffaella; Dahlen, F.A.

    2007-09-10

    We present a dynamic ray tracing program for a spherically symmetric Earth that may be used to compute Frechet kernels for traveltime and amplitude anomalies at finite frequency. The program works for arbitrarily defined phases and background models. The numerical precisions of kinematic and dynamic ray tracing are optimized to produce traveltime errors under 0.1 s, which is well below the data uncertainty in global seismology. This tolerance level is obtained for an integration step size of about 20 km for the most common seismic phases. We also give software to compute ellipticity, crustal and topographic corrections and attenuation.

  16. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  17. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  18. MOVING BEYOND PUMP AND TREAT TOWARD ENHANCED ATTENUATION AND COMBINED REMEDIES T-AREA, SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Looney, B; Brian Riha, B; Warren Hyde, W; Jay Noonkester, J; Gerald Blount, G

    2008-04-03

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site, is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site has received approval to discontinue the active treatments and implement a full scale test of enhanced attenuation--an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council. Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For T-Area, the enhanced attenuation development

  19. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  20. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  1. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOE Patents [OSTI]

    Studebaker, Irving G.; Hefelfinger, Richard

    1980-01-01

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  2. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  3. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  4. Mass spectrometric immunoassay

    DOE Patents [OSTI]

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  5. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect (OSTI)

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  6. Dual energy CT for attenuation correction with PET/CT

    SciTech Connect (OSTI)

    Xia, Ting; Alessio, Adam M.; Kinahan, Paul E.

    2014-01-15

    Purpose: The authors evaluate the energy dependent noise and bias properties of monoenergetic images synthesized from dual-energy CT (DECT) acquisitions. These monoenergetic images can be used to estimate attenuation coefficients at energies suitable for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. This is becoming more relevant with the increased use of quantitative imaging by PET/CT and SPECT/CT scanners. There are, however, potential variations in the noise and bias of synthesized monoenergetic images as a function of energy. Methods: The authors used analytic approximations and simulations to estimate the noise and bias of synthesized monoenergetic images of water-filled cylinders with different shapes and the NURBS-based cardiac-torso (NCAT) phantom from 40 to 520 keV, the range of SPECT and PET energies. The dual-kVp spectra were based on the GE Lightspeed VCT scanner at 80 and 140 kVp with added filtration of 0.5 mm Cu. The authors evaluated strategies of noise suppression with sinogram smoothing and dose minimization with reduction of tube currents at the two kVp settings. The authors compared the impact of DECT-based attenuation correction with single-kVp CT-based attenuation correction on PET quantitation for the NCAT phantom for soft tissue and high-Z materials of bone and iodine contrast enhancement. Results: Both analytic calculations and simulations displayed the expected minimum noise value for a synthesized monoenergetic image at an energy between the mean energies of the two spectra. In addition the authors found that the normalized coefficient of variation in the synthesized attenuation map increased with energy but reached a plateau near 160 keV, and then remained constant with increasing energy up to 511 keV and beyond. The bias was minimal, as the linear attenuation coefficients of the synthesized monoenergetic images were within 2.4% of the known true values across the entire energy range

  7. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  8. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  9. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including film developing and scanning, and image plate scanning. Related images X-ray framing camera being loaded into the TIM in the Trident North Target Area. X-ray framing...

  10. P- and S-wave seismic attenuation for deep natural gas exploration...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: P- and S-wave seismic attenuation for deep natural gas exploration and development Citation Details In-Document Search Title: P- and S-wave seismic attenuation ...

  11. Ray J. Corey- Biography

    Broader source: Energy.gov [DOE]

    Ray Corey currently serves as the Assistance Manager for Safety and Environment at the DOE Richland Operations office (RL).

  12. THIRTY NEW LOW-MASS SPECTROSCOPIC BINARIES

    SciTech Connect (OSTI)

    Shkolnik, Evgenya L.; Hebb, Leslie; Cameron, Andrew C.; Liu, Michael C.; Neill Reid, I. E-mail: Andrew.Cameron@st-and.ac.u E-mail: mliu@ifa.hawaii.ed

    2010-06-20

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P{sub rot} to determine the true orbital parameters. For those with no P{sub rot}, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems.

  13. Measurment and Interpretation of Seismic Attenuation for Hydrocarbon Exploration

    SciTech Connect (OSTI)

    Michael Batzle; Luca Duranti; James Rector; Steve Pride

    2007-12-31

    This research project is the combined effort of several leading research groups. Advanced theoretical work is being conducted at the Lawrence Berkeley National Laboratory. Here, the fundamental controls on loss mechanisms are being examined, primarily by use of numerical models of heterogeneous porous media. At the University of California, Berkeley, forward modeling is combined with direct measurement of attenuation. This forward modeling provides an estimate of the influence of 1/Q on the observed seismic signature. Direct measures of losses in Vertical Seismic Profiles (VSPs) indicate mechanisms to separate scattering versus intrinsic losses. At the Colorado School of Mines, low frequency attenuation measurements are combined with geologic models of deep water sands. ChevronTexaco is our corporate cosponsor and research partner. This corporation is providing field data over the Genesis Field, Gulf of Mexico. In addition, ChevronTexaco has rebuilt and improved their low frequency measurement system. Soft samples representative of the Genesis Field can now be measured for velocities and attenuations under reservoir conditions. Throughout this project we have: Assessed the contribution of mechanical compaction on time-lapse monitoring; Developed and tested finite difference code to model dispersion and attenuation; Heterogeneous porous materials were modeled and 1/Q calculated vs. frequency; 'Self-affine' heterogeneous materials with differing Hurst exponent modeled; Laboratory confirmation was made of meso-scale fluid motion influence on 1/Q; Confirmed theory and magnitude of layer-based scattering attenuation at Genesis and at a shallow site in California; Scattering Q's of between 40 and 80 were obtained; Measured very low intrinsic Q's (2-20) in a partially saturated vadose zone VSP; First field study to separate scattering and intrinsic attenuation in real data set; Revitalized low frequency device at ChevronTexaco's Richmond lab completed; First complete

  14. Coated x-ray filters

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-24

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.

  15. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect (OSTI)

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  16. Dark-field X-ray imaging of unsaturated water transport in porous materials

    SciTech Connect (OSTI)

    Yang, F. E-mail: michele.griffa@empa.ch; Di Bella, C.; Lura, P.; Prade, F.; Herzen, J.; Sarapata, A.; Pfeiffer, F.; Griffa, M. E-mail: michele.griffa@empa.ch; Jerjen, I.

    2014-10-13

    We introduce in this Letter an approach to X-ray imaging of unsaturated water transport in porous materials based upon the intrinsic X-ray scattering produced by the material microstructural heterogeneity at a length scale below the imaging system spatial resolution. The basic principle for image contrast creation consists in a reduction of such scattering by permeation of the porosity by water. The implementation of the approach is based upon X-ray dark-field imaging via Talbot-Lau interferometry. The proof-of-concept is provided by performing laboratory-scale dark-field X-ray radiography of mortar samples during a water capillary uptake experiment. The results suggest that the proposed approach to visualizing unsaturated water transport in porous materials is complementary to neutron and magnetic resonance imaging and alternative to standard X-ray imaging, the latter requiring the use of contrast agents because based upon X-ray attenuation only.

  17. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect (OSTI)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  18. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmorestereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.less

  19. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diagnostics X-Ray Diagnostics Maintenance of existing devices and development of advanced concepts Contact John Oertel (505) 665-3246 Email Hot, dense matter produced by intense laser interaction with a solid target often produces x-rays with energies from 100 eV to those exceeding 100 keV. A suite of diagnostics and methods have been deployed at Trident to diagnose the x-ray emission from laser-matter interaction experiments, or to use the x-rays as a probe of dense matter. These

  20. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  1. Material identification based upon energy-dependent attenuation of neutrons

    DOE Patents [OSTI]

    Marleau, Peter

    2015-10-06

    Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.

  2. Manufacturing techniques studies of ceramics by neutron and ?-ray radiography

    SciTech Connect (OSTI)

    Latini, R. M.; Bellido, A. V. B.; Souza, M. I. S.; Almeida, G. L.

    2014-11-11

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 10{sup 5}n.cm{sup ?2}.s{sup ?1} for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using ?-rays from {sup 165}Dy (95 keV) and {sup 198}Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy ?-rays from {sup 165}Dy rather than neutrongraphy or ?-rays from {sup 198}Au. Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  3. Cosmic ray radiography of the damaged cores of the Fukushima reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borozdin, Konstantin; Greene, Steven; Lukić, Zarija; Milner, Edward; Miyadera, Haruo; Morris, Christopher; Perry, John

    2012-10-11

    The passage of muons through matter is dominated by the Coulomb interaction with electrons and nuclei. The interaction with the electrons leads to continuous energy loss and stopping of the muons. The interaction with nuclei leads to angle “diffusion.” Two muon-imaging methods that use flux attenuation and multiple Coulomb scattering of cosmic-ray muons are being studied as tools for diagnosing the damaged cores of the Fukushima reactors. Here, we compare these two methods. We conclude that the scattering method can provide detailed information about the core. Lastly, attenuation has low contrast and little sensitivity to the core.

  4. NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Luo Yang; Gu Weimin; Liu Tong; Lu Jufu, E-mail: guwm@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-08-20

    The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}< 0.5 M{sub Sun} may power most of the observed X-ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

  5. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  6. Spherical grating based x-ray Talbot interferometry

    SciTech Connect (OSTI)

    Cong, Wenxiang E-mail: xiy2@rpi.edu Xi, Yan E-mail: xiy2@rpi.edu Wang, Ge E-mail: xiy2@rpi.edu

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  7. High-power radio-frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  8. Proposed New Accelerator Design for Homeland Security X-Ray Applications

    SciTech Connect (OSTI)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-08-07

    In the security and inspection market, there is a push towards highly mobile, reduced-dose active interrogation scanning and imaging systems to allow operation in urban environments. To achieve these goals, the accelerator system design needs to be smaller than existing systems. A smaller radiation exclusion zone may be accomplished through better beam collimation and an integrated, x-ray-source/detector-array assembly to allow feedback and control of an intensity-modulated x-ray source. A shaped low-Z target in the x-ray source can be used to generate a more forward peaked x-ray beam. Electron-beam steering can then be applied to direct the forward-peaked x rays toward areas in the cargo with high attenuation. This paper presents an exploratory study to identify components and upgrades that would be required to meet the desired specifications, as well as the best technical approach to design and build a prototype.

  9. Gamma ray detector shield

    DOE Patents [OSTI]

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  10. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  11. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  12. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  13. The Origins of Mass

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  14. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  15. The Origins of Mass

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-07-30

    The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

  16. TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

    2012-05-15

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via

  17. X-ray generator

    DOE Patents [OSTI]

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  18. Seismic attenuation due to wave-induced flow

    SciTech Connect (OSTI)

    Pride, S.R.; Berryman, J.G.; Harris, J.M.

    2003-10-09

    Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.

  19. Tungsten quasispherical wire loads with a profiled mass

    SciTech Connect (OSTI)

    Grabovskii, E. V.; Dzhangobegov, V. V. Oleinik, G. M.; Rodionov, R. N.

    2015-12-15

    Wire arrays made from micrometer tungsten wires with linear mass profiled along their height are developed for experiments on the generation of X-ray radiation upon pinch compression with a current of ∼3 MA at a pulse duration of ∼100 ns. Wires are imaged with a scanning electron microscope, and their diameter is determined. It is shown that the arrays have such a profile of height distribution of linear mass that allows for compact spherical compression upon current implosion.

  20. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect (OSTI)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  1. SINTERED REFRACTORY MASS

    DOE Patents [OSTI]

    Williams, A.E.

    1955-09-01

    A method is given for joining sintered masses of refractory compounds. It consists in maintaining the masses in contact with each other by application of a moderate pressure, while they are at sintering temperature. The sintered masses are subjected to am applied pressure of about 1/2 to 1 ton per square inch of the surface in contact for about 10 minutes, and the temperature employed may be fropn about 1400 deg C to 2000 deg C. Refractory oxides to which the invention may be applied are beryllia, alumina, thoria, and magnesia.

  2. Multiple Lines Of Evidence Supporting Natural Attenuation: Lines Of Inquiry Supporting Monitored Natural Attenuation And Enhanced Attenuatin Of Chlorinated Solvents

    SciTech Connect (OSTI)

    Vangelas, Karen; Widemeirer, T. H.; Barden, M.J.; Dickson, W. Z.; Major, David

    2004-12-31

    The Department of Energy (DOE) is sponsoring an initiative to facilitate efficient, effective and responsible use of Monitored Natural Attenuation (MNA) and Enhanced Attenuation (EA) for chlorinated solvents. This Office of Environmental Management (EM) ''Alternative Project,'' focuses on providing scientific and policy support for MNA/EA. A broadly representative working group of scientists supports the project along with partnerships with regulatory organizations such as the Interstate Technology Regulatory Council (ITRC) and the United States Environmental Protection Agency (USEPA). The initial product of the technical working group was a summary report that articulated the conceptual approach and central scientific tenants of the project, and that identified a prioritized listing of technical targets for field research. This report documented the process in which: (1) scientific ground rules were developed, (2) lines of inquiry were identified and then critically evaluated, (3) promising applied research topics were highlighted in the various lines of inquiry, and (4) these were discussed and prioritized. The summary report will serve as a resource to guide management and decision making throughout the period of the subject MNA/EA Alternative Project. To support and more fully document the information presented in the summary report, the DOE is publishing a series of supplemental documents that present the full texts from the technical analyses within the various lines of inquiry (see listing). The following report--documenting our evaluation of the state of the science for the lines of evidence for supporting decision-making for MNA--is one of those supplemental documents.

  3. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  4. Ray2008.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ray , University of Florida 1 MINIBOONE ν µ ν e ν e ν µ H. Ray , University of Florida 2 The Notorious LSND Result * E ν =20-52.8 MeV * L =25-35 meters * 3.8σ excess * Different from other oscillation signals * Higher Δm 2 * Smaller mixing angle * Much smaller probability (very small signal) ~0.3% ν µ → ν e P osc =sin 2 2θ sin 2 1.27 Δm 2 L E H. Ray , University of Florida 3 Testing LSND * Want same L/E * Different detection method * Different sources of systematic errors * Test

  5. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  6. X-Ray Detection

    Office of Scientific and Technical Information (OSTI)

    ratio, I I on I off , recorded with plus (+, blue) and minus (-, red) x-ray helicities. This measurement was taken at -5 mA, which corresponds to a current...

  7. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray...

  8. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  9. On the Origin of the Mass-Metallicity Relation for GRB Host Galaxies...

    Office of Scientific and Technical Information (OSTI)

    We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst ... The nature of this offset is consistent with suggestions that low metallicity environments ...

  10. Gamma ray camera

    DOE Patents [OSTI]

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  11. Gamma ray camera

    DOE Patents [OSTI]

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  12. A COMPARISON OF GADRAS SIMULATED AND MEASURED GAMMA RAY SPECTRA

    SciTech Connect (OSTI)

    Jeffcoat, R.; Salaymeh, S.

    2010-06-28

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  13. X-ray microtomography

    SciTech Connect (OSTI)

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  14. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  15. Photoionization Mass Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoionization Mass Spectroscopy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  16. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  17. The effect of frequency on Young`s modulus and seismic wave attenuation

    SciTech Connect (OSTI)

    Price, R.H.; Martin, R.J. III; Haupt, R.W.

    1994-07-01

    Laboratory experiments were performed to measure the effect of frequency, water-saturation, and strain amplitude on Young`s modulus and seismic wave attenuation on rock cores recovered on or near the site of a potential nuclear waste repository at Yucca Mountain, Nevada. The purpose of this investigation is to perform the measurements using four techniques: cyclic loading, waveform inversion, resonant bar, and ultrasonic velocity. The measurements ranged in frequency between 10{sup {minus}2} and 10{sup 6} Hz. For the dry specimens Young`s modulus and attenuation were independent of frequency; that is, all four techniques yielded nearly the same values for modulus and attenuation. For saturated specimens, a frequency dependence for both Young`s modulus and attenuation was observed. In general, saturation reduced Young`s modulus and increased seismic wave attenuation. The effect of strain amplitude on Young`s modulus and attenuation was measured using the cyclic loading technique at a frequency of 10{sup {minus}1} Hz. The effect of strain amplitude in all cases was small. For some rocks, such as the potential repository horizon of the Topopah Spring Member tuff (TSw2), the effect of strain amplitude on both attenuation and modulus was minimal.

  18. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  19. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect (OSTI)

    Naz, Yal; Petit, Vronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ?60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  20. Twisted mass finite volume effects

    SciTech Connect (OSTI)

    Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.

    2010-08-01

    We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.

  1. Clock asynchrony and mass variation

    SciTech Connect (OSTI)

    Gruber, R.P.; Brahm, D.E.

    1993-04-01

    Many theories have been proposed in which particle masses vary with time. In a world with varying particle masses, clocks become asynchronous and metersticks inconsistent. By combining two or more clocks with different known dependences on mass, one can construct a nearly invariant clock, and measure the rate of mass variation. If the proton and electron masses vary differently, then certain equations must be applied to predict a clock's dependence on each. 8 refs.

  2. Single event mass spectrometry

    DOE Patents [OSTI]

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  3. Nanoscale mass conveyors

    DOE Patents [OSTI]

    Regan, Brian C.; Aloni, Shaul; Zettl, Alexander K.

    2008-03-11

    A mass transport method and device for individually delivering chargeable atoms or molecules from source particles is disclosed. It comprises a channel; at least one source particle of chargeable material fixed to the surface of the channel at a position along its length; a means of heating the channel; and a means for applying an controllable electric field along the channel, whereby the device transports the atoms or molecules along the channel in response to applied electric field. In a preferred embodiment, the mass transport device will comprise a multiwalled carbon nanotube (MWNT), although other one dimensional structures may also be used. The MWNT or other structure acts as a channel for individual or small collections of atoms due to the atomic smoothness of the material. Also preferred is a source particle of a metal such as indium. The particles move by dissociation into small units, in some cases, individual atoms. The particles are preferably less than 100 nm in size.

  4. Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  5. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  6. THE DIVERSE HOT GAS CONTENT AND DYNAMICS OF OPTICALLY SIMILAR LOW-MASS ELLIPTICAL GALAXIES

    SciTech Connect (OSTI)

    Bogdan, Akos; David, Laurence P.; Jones, Christine; Forman, William R.; Kraft, Ralph P., E-mail: abogdan@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-10-10

    The presence of hot X-ray-emitting gas is ubiquitous in massive early-type galaxies. However, much less is known about the content and physical status of the hot X-ray gas in low-mass ellipticals. In the present paper, we study the X-ray gas content of four low-mass elliptical galaxies using archival Chandra X-ray observations. The sample galaxies, NGC 821, NGC 3379, NGC 4278, and NGC 4697, have approximately identical K-band luminosities, and hence stellar masses, yet their X-ray appearance is strikingly different. We conclude that the unresolved emission in NGC 821 and NGC 3379 is built up from a multitude of faint compact objects, such as coronally active binaries and cataclysmic variables. Despite the non-detection of X-ray gas, these galaxies may host low density, and hence low luminosity, X-ray gas components, which undergo an outflow driven by a Type Ia supernova (SN Ia). We detect hot X-ray gas with a temperature of kT {approx} 0.35 keV in NGC 4278, the component of which has a steeper surface brightness distribution than the stellar light. Within the central 50'' ({approx}3.9 kpc), the estimated gas mass is {approx}3 Multiplication-Sign 10{sup 7} M{sub Sun }, implying a gas mass fraction of {approx}0.06%. We demonstrate that the X-ray gas exhibits a bipolar morphology in the northeast-southwest direction, indicating that it may be outflowing from the galaxy. The mass and energy budget of the outflow can be maintained by evolved stars and SNe Ia, respectively. The X-ray gas in NGC 4697 has an average temperature of kT {approx} 0.3 keV and a significantly broader distribution than the stellar light. The total gas mass within 90'' ({approx}5.1 kpc) is {approx}2.1 Multiplication-Sign 10{sup 8} M{sub Sun }, hence the gas mass fraction is {approx}0.4%. Based on the distribution and physical parameters of the X-ray gas, we conclude that it is most likely in hydrostatic equilibrium, although a subsonic outflow may be present.

  7. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  8. Ray On | Open Energy Information

    Open Energy Info (EERE)

    On Jump to: navigation, search Name: Ray On Place: ehlovice, Czech Republic Zip: 403 13 Product: Czech developer of PV projects. References: Ray On1 This article is a stub. You...

  9. Soft-x-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft-x-ray emission, plasma equilibrium, and fluctuation studies on Madison Symmetric Torus C. Xiao Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin and Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada P. Franz Consorzio RFX-Associazione EURATOM ENEA Sulla Fusione, Italy and Istituto Nazionale di Fisica della Materia, Unita' di Ricerca di Padova, Italy B. E. Chapman and D. Craig Department of Physics, University of

  10. Analysis of site parameters affecting natural attenuation in saturated soil. Master's thesis

    SciTech Connect (OSTI)

    Potts, W.H.

    1993-09-01

    This study investigated the natural attenuation mechanisms and some of the parameters affecting those mechanisms in the saturated zone. A literature search revealed numerous studies of various attenuation and the associated parameters. Much of the literature emphasized biodegradation as the most promising attenuation mechanism. BIOPLUME II(TM), a fate and transport model, was used to simulate the fate and transport of contaminant plume. The effects of the model parameters were investigated by observing the distance a contaminant plume was expected to migrate over a fifty year period. The investigation was limited by the model which excludes chemical reactions and some physical and physiochemical reactions. The model simulations indicated that parameters which exhibited significant influence on natural attenuation include hydraulic conductivity, reaeration, and coefficient of anaerobic biodegradation.

  11. Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural...

    Office of Scientific and Technical Information (OSTI)

    Title: Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural Gas Exploration and ... Publication Date: 2007-09-30 OSTI Identifier: 915819 DOE Contract Number: FC26-04NT42243 ...

  12. Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural...

    Office of Scientific and Technical Information (OSTI)

    Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural Gas Exploration and Development Citation Details In-Document Search Title: Novel Use of P- and S-Wave Seismic ...

  13. Gamma ray tests of Minimal Dark Matter

    SciTech Connect (OSTI)

    Cirelli, Marco; Hambye, Thomas; Panci, Paolo; Sala, Filippo; Taoso, Marco

    2015-10-12

    We reconsider the model of Minimal Dark Matter (a fermionic, hypercharge-less quintuplet of the EW interactions) and compute its gamma ray signatures. We compare them with a number of gamma ray probes: the galactic halo diffuse measurements, the galactic center line searches and recent dwarf galaxies observations. We find that the original minimal model, whose mass is fixed at 9.4 TeV by the relic abundance requirement, is constrained by the line searches from the Galactic Center: it is ruled out if the Milky Way possesses a cuspy profile such as NFW but it is still allowed if it has a cored one. Observations of dwarf spheroidal galaxies are also relevant (in particular searches for lines), and ongoing astrophysical progresses on these systems have the potential to eventually rule out the model. We also explore a wider mass range, which applies to the case in which the relic abundance requirement is relaxed. Most of our results can be safely extended to the larger class of multi-TeV WIMP DM annihilating into massive gauge bosons.

  14. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  15. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    SciTech Connect (OSTI)

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-05-15

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.

  16. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    SciTech Connect (OSTI)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin E-mail: xkong@ustc.edu.cn

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  17. SMB, X-ray Emission Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include X-ray Emission Spectroscopy (XES), Resonant Inelastic X-ray Scattering (RIXS), High Energy Resolution Fluorescence Detection (HERFD) and X-ray Raman Spectroscopy (XRS). ...

  18. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  19. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  20. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect (OSTI)

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  1. Method and apparatus for measuring incombustible content of coal mine dust using gamma-ray backscatter

    DOE Patents [OSTI]

    Armstrong, Frederick E.

    1976-09-28

    Method and apparatus for measuring incombustible content of particulate material, particularly coal mine dust, includes placing a sample of the particulate material in a container to define a pair of angularly oriented surfaces of the sample, directing an incident gamma-ray beam from a radiation source at one surface of the sample and detecting gamma-ray backscatter from the other surface of the sample with a radiation detector having an output operating a display to indicate incombustible content of the sample. The positioning of the source and detector along different surfaces of the sample permits the depth of the scattering volume defined by intersection of the incident beam and a detection cone from the detector to be selected such that variations in scattered radiation produced by variations in density of the sample are compensated by variations in the attenuation of the incident beam and the gamma-ray backscatter.

  2. Real-time Studies of Shocked Polycrystalline Materials with Single-Pulse X-ray Diffraction

    SciTech Connect (OSTI)

    Dane V. Morgan

    2011-05-25

    Characteristic K-α x-rays used for single-pulse XRD are conventionally produced by a 37-stage high-voltage Marx pulse generator coupled to a vacuum needle-and-washer x-ray diode via coaxial transmission line. A large field-of-view x-ray image plate detection system typically enables observation of several Debye-Scherrer rings. Recently, we have developed a fiber-optic reducer, coupled to a CCD camera, to obtain low-noise, large field-of-view images. The direct beam spot is produced by bremsstrahlung radiation attenuated by a twomillimeter tungsten beam stop. Determination of the direct beam position is necessary to perform the ring integration.

  3. Development of a model of an x-ray tube transmission source

    SciTech Connect (OSTI)

    Goda, Joetta M; Ianakiev, Kiril D; Moss, Cal E

    2009-01-01

    In support of the development of an x-ray tube based source for transmission measurements of UF6 gas, we have developed a one-dimensional, spreadsheet-based model of the source. Starting with the spectrum produced by an x-ray tube we apply the linear attenuation coefficients for various notch filters, the aluminum pipe, and UF6 gas. This model allows calculation of the transmitted spectrum based on the type of filter, the thickness of the filter, the x-ray tube high voltage, the Al pipe thickness, and the UF6 gas pressure. The sensitivity of the magnitude of the transmission peak produced by the notch filter to any of these variables can be explored quickly and easily to narrow the choices for experimental measurements. To validate the spreadsheet based model, comparisons have been made to various experimental data.

  4. Laboratory Measurements of Velocity and Attenuation in Sediments

    SciTech Connect (OSTI)

    Zimmer, M A; Berge, P A; Bonner, B P; Prasad, M

    2004-06-08

    Laboratory measurements are required to establish relationships between the physical properties of unconsolidated sediments and P- and S-wave propagation through them. Previous work has either focused on measurements of compressional wave properties at depths greater than 500 m for oil industry applications or on measurements of dynamic shear properties at pressures corresponding to depths of less than 50 m for geotechnical applications. Therefore, the effects of lithology, fluid saturation, and compaction on impedance and P- and S-wave velocities of shallow soils are largely unknown. We describe two state-of-the-art laboratory experiments. One setup allows us to measure ultrasonic P-wave velocities at very low pressures in unconsolidated sediments (up to 0.1 MPa). The other experiment allows P- and S-wave velocity measurements at low to medium pressures (up to 20 MPa). We summarize the main velocity and attenuation results on sands and sand - clay mixtures under partially saturated and fully saturated conditions in two ranges of pressures (0 - 0.1 MPa and 0.1 - 20 MPa) representative of the top few meters and the top 1 km, respectively. Under hydrostatic pressures of 0.1 to 20 MPa, our measurements demonstrate a P- and S-wave velocity-dependence in dry sands around a fourth root (0.23 -0.26) with the pressure dependence for S-waves being slightly lower. The P- velocity-dependence in wet sands lies around 0.4. The Vp-Vs and the Qp-Qs ratios together can be useful tools to distinguish between different lithologies and between pressure and saturation effects. These experimental velocities at the frequency of measurement (200 kHz) are slightly higher that Gassmann's static result. For low pressures under uniaxial stress, Vp and Vs were a few hundred meters per second with velocities showing a strong dependence on packing, clay content, and microstructure. We provide a typical shallow soil scenario in a clean sand environment and reconstruct the velocity profile of

  5. HAWC γ-Ray Observatory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC γ-Ray Observatory HAWC γ-Ray Observatory Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HAWC γ-Ray Observatory On August 1, 2013, the High-Altitude Water Cherenkov (HAWC) Gamma Ray Observatory formally began operations. HAWC is designed to study the origin of very high-energy cosmic rays and observe the

  6. Energy Grasses for the Masses

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1-D: The Pitch Energy Grasses for the Masses Jason Force, Chief Executive Officer, Iron Goat Technology, Inc.

  7. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  8. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  9. The double well mass filter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Rax, Jean -Marcel; Fisch, Nathaniel J.

    2014-02-03

    Various mass filter concepts based on rotating plasmas have been suggested with the specific purpose of nuclear waste remediation. We report on a new rotating mass filter combining radial separation with axial extraction. Lastly, the radial separation of the masses is the result of a “double-well” in effective radial potential in rotating plasma with a sheared rotation profile.

  10. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  11. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  12. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    SciTech Connect (OSTI)

    Massaro, F.; D'Abrusco, R.; Tosti, G.; Ajello, M.; Gasparrini, A.Paggi.D.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.

  13. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  14. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    SciTech Connect (OSTI)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  15. Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer

    SciTech Connect (OSTI)

    Li, Baoqiang; Berti, Romain; Abran, Maxime; Lesage, Frédéric; Montreal Heart Institute, Montreal, Quebec H1T 1C8

    2014-05-15

    Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore, a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.

  16. Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; et al

    2016-02-04

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less

  17. Delayed Gamma-Ray Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect (OSTI)

    Campbell, Luke W.; Hunt, Alan W.; Ludewigt, Bernhard A.; Mozin, Vladimir V.

    2012-04-01

    High-energy, beta-delayed gamma-ray spectroscopy is investigated as a non-destructive assay technique for the determination of plutonium mass in spent nuclear fuel. This approach exploits the unique isotope-specific signatures contained in the delayed gamma-ray emission spectra detected following active interrogation with an external neutron source. A high fidelity modeling approach is described that couples radiation transport, analytical decay/depletion, and a newly developed gamma-ray emission source reconstruction code. Initially simulated and analyzed was a “one-pass” delayed gamma-ray assay that focused on the long-lived signatures. Also presented are the results of an independent study that investigated “pulsed mode” measurements, to capture the more isotope-specific, short-lived signatures. Initial modeling results outlined in this paper suggest that delayed gamma-ray assay of spent nuclear fuel assemblies can be accomplished with a neutron generator of sufficient strength and currently available gamma-ray detectors.

  18. Monitored Natural Attenuation of ino9rganic Contaminants Treatability Study Final Report

    SciTech Connect (OSTI)

    Crapse, K

    2004-05-19

    The identification and quantification of key natural attenuation processes for inorganic contaminants at D-Area is detailed herein. Two overarching goals of this evaluation of monitored natural attenuation (MNA) as a remediation strategy were (1) to better define the availability of inorganic contaminants as potential sources for transport to groundwater and uptake by environmental receptors and (2) to understand the site-specific mechanisms controlling attenuation of these inorganic contaminants through tandem geochemical and biological characterization. Data collected in this study provides input for more appropriate site groundwater transport models. Significant natural attenuation is occurring at D-Area as evidenced by relatively low aqueous concentrations of constituents of concern (COCs) (Be, Ni, U, and As) at all locations characterized and the decrease in groundwater concentrations with increasing distance from the source. The observed magnitude of decrease in groundwater concentrations of COCs with distance from the D-Area Coal Pile Runoff Basin (DCPRB) could not be accounted for by the modeled physical attenuation processes of dilution/dispersion. This additional attenuation, i.e., the observed difference between the groundwater concentrations of COCs and the modeled physical attenuation, is due to biogeochemical processes occurring at the D-Area. In tandem geochemical and microbiological characterization studies designed to evaluate the mechanisms contributing to natural attenuation, pH was the single parameter found to be most predictive of contaminant attenuation. The increasing pH with distance from the source is likely responsible for increased sorption of COCs to soil surfaces within the aquifer at D-Area. Importantly, because the sediments appear to have a high buffering capacity, the acid emanating from the DCPRB has been neutralized by the soil, and these conditions have led to large Kd values at the site. Two major types of soils are present at

  19. Solar X-ray physics

    SciTech Connect (OSTI)

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  20. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  1. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    SciTech Connect (OSTI)

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  2. Karen Ray | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Karen Ray About Us Karen Ray - Budget Director for the Office of Energy Efficiency and Renewable Energy Karen Ray serves as the Budget Director for the Office of Energy Efficiency and Renewable Energy (EERE). In this role, she leads EERE's budget development and oversees how the budget is executed. Her team performs these tasks by applying strategic principles and portfolio analysis. The budget formulation culminates in the Congressional Budget Justification and its defense to Appropriation

  3. SYNTH - Gamma Ray Spectrum Synthesizer

    Energy Science and Technology Software Center (OSTI)

    2009-05-18

    SYNTH was designed to synthesize the results of typical gamma-ray spectroscopy experiments. The code allows a user to specify the physical characteristics of a gamma-ray source, the quantity of radionuclides emitting gamma radiation, the source-to-detector distance and the presence and type of any intervening absorbers, the size and type of the gamma-ray detector, and the electronic set-up used to gather the data.

  4. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect (OSTI)

    Alvarez, Robert E.

    2013-11-15

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 10{sup 3}. With the soft tissue component, it is 2.7 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases

  5. THREE NEW GALACTIC CENTER X-RAY SOURCES IDENTIFIED WITH NEAR-INFRARED SPECTROSCOPY

    SciTech Connect (OSTI)

    DeWitt, Curtis; Bandyopadhyay, Reba M.; Eikenberry, Stephen S.; Sarajedini, Ata; Sellgren, Kris; Blum, Robert; Olsen, Knut; Bauer, Franz E.

    2013-11-01

    We have conducted a near-infrared spectroscopic survey of 47 candidate counterparts to X-ray sources discovered by the Chandra X-Ray Observatory near the Galactic center (GC). Though a significant number of these astrometric matches are likely to be spurious, we sought out spectral characteristics of active stars and interacting binaries, such as hot, massive spectral types or emission lines, in order to corroborate the X-ray activity and certify the authenticity of the match. We present three new spectroscopic identifications, including a Be high-mass X-ray binary (HMXB) or a ? Cassiopeiae (Cas) system, a symbiotic X-ray binary, and an O-type star of unknown luminosity class. The Be HMXB/? Cas system and the symbiotic X-ray binary are the first of their classes to be spectroscopically identified in the GC region.

  6. X-Ray Science Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TV Network external link DNA Interactive external link Reciprocal Net external link X-ray Science Courses and Programs Various educational efforts are closely related to the...

  7. Cosmic Ray Shower Generation Utility

    Energy Science and Technology Software Center (OSTI)

    2007-01-18

    Generates correlated cosmic-ray particle showers at one of three elevations (sea level, 2100m, and 11300m) for use as input transport and detector simulation codes.

  8. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  9. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  10. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  11. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla P.; Sahajpal, Rahul; Zhong, Lirong; Lawter, Amanda R.; Lee, Brady D.

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important in all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.

  12. Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Wagner, M. J.

    2011-08-01

    Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostat and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.

  13. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  14. Attenuation of single-tone ultrasound by an atmospheric glow discharge plasma barrier

    SciTech Connect (OSTI)

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2010-09-15

    Propagation of 143 kHz ultrasound through an atmospheric pressure glow discharge in air was studied experimentally. The plasma was a continuous dc discharge formed by a multipin electrode system. Distributions of the gas temperature were also obtained in and around the plasma using laser-induced Rayleigh scattering technique. Results show significant attenuation of the ultrasound by the glow discharge plasma barrier (up to -24 dB). The results indicate that sound attenuation does not depend on the thickness of the plasma and attenuation is caused primarily by reflection of the sound waves from the plasma due to the sharp gas temperatures gradients that form at the plasma boundary. These gradients can be as high as 80 K/mm.

  15. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    SciTech Connect (OSTI)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as VHE-like sources) are distributed along underdense lines of sight at the 2.4#27; level. There is also a less suggestive correlation for the Fermi hard source population (1.7#27;). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4#27; and 2.6#27;, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity #28;(E, z) #24; 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.

  16. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    SciTech Connect (OSTI)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.

  17. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Furniss, A.; Sutter, P. M.; Primack, J. R.; Dominguez, A.

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less

  18. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect (OSTI)

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  19. Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray Telescopes Citation Details In-Document Search Title: Observing Signatures of Cosmic Rays Using ...

  20. Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Observing Signatures of Cosmic Rays Using High-Energy Gamma-Ray Telescopes Citation Details In-Document Search Title: Observing Signatures of Cosmic Rays Using...

  1. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valley, Arizona, DOE Legacy Waste Site | Department of Energy Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site Paper presented at the Waste Management 2010 Conference. March 7 through March 10, 2010, Phoenix, Arizona. W.J.Waugh, D.E. Miller, S.A. Morris, L.R. Sheader, E.P. Glenn, D. Moore, K.C. Carroll, L. Benally, M.

  2. Simultaneous evaluation of acoustic nonlinearity parameter and attenuation coefficients using the finite amplitude method

    SciTech Connect (OSTI)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo Cho, Sungjong

    2015-07-15

    A novel method to determine acoustic parameters involved in measuring the nonlinearity parameter of fluids or solids is proposed. The approach is based on the measurement of fundamental and second harmonic pressures with a calibrated receiver, and on a nonlinear least squares data-fitting to multi-Gaussian beam (MGB) equations which explicitly define the attenuation and diffraction effects in the quasilinear regime. Results obtained in water validate the proposed method. The choice of suitable source pressure is discussed with regard to the quasilinear approximation involved. The attenuation coefficients are also acquired in nonlinear regime and their relations are discussed.

  3. The Origin of Cosmic Rays

    ScienceCinema (OSTI)

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  4. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  5. Proton-induced x-ray fluorescence CT imaging

    SciTech Connect (OSTI)

    Bazalova-Carter, Magdalena Xing, Lei; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Shirato, Hiroki; Umegaki, Kikuo; Matsuo, Yuto; Fahrig, Rebecca

    2015-02-15

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm{sup 2} CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R{sup 2} > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a

  6. Proposed new accelerator design for homeland security x-ray applications

    SciTech Connect (OSTI)

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; Bharadwaj, Vinod; Nosochkov, Yuri

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts of x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (fan-beam-steering). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 ?s to 10 ?s. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.

  7. Gamma-rays from Heavy Minimal Dark Matter

    SciTech Connect (OSTI)

    Garcia-Cely, Camilo; Ibarra, Alejandro; Lamperstorfer, Anna S.; Tytgat, Michel H.G.

    2015-10-27

    Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2){sub L}, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array, which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.

  8. High resolution x-ray and gamma ray imaging using diffraction...

    Office of Scientific and Technical Information (OSTI)

    High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals Title: High resolution x-ray and gamma ray imaging using diffraction lenses ...

  9. Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation...

    Office of Scientific and Technical Information (OSTI)

    Probing the Cosmic X-ray and MeV Gamma-ray Background Radiation through the Anisotropy Citation Details In-Document Search Title: Probing the Cosmic X-ray and MeV Gamma-ray ...

  10. X-Ray Interactions with Matter from the Center for X-Ray Optics...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) Title: X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) The primary interactions of ...