Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

X-Ray Topography  

Science Conference Proceedings (OSTI)

Sep 17, 2009 ... Stress Mapping Analysis by Ray Tracing (SMART): A New Technique ... technique of synchrotron X-ray topography, where a grid made out of ...

2

Ray tracing visualization toolkit  

Science Conference Proceedings (OSTI)

The Ray Tracing Visualization Toolkit (rtVTK) is a collection of programming and visualization tools supporting visual analysis of ray-based rendering algorithms. rtVTK leverages layered visualization within the spatial domain of computation, enabling ... Keywords: ray tracing, ray-based rendering, visualization

Christiaan Gribble; Jeremy Fisher; Daniel Eby; Ed Quigley; Gideon Ludwig

2012-03-01T23:59:59.000Z

3

Gamma-ray Astronomy  

E-Print Network (OSTI)

The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

Hinton, Jim

2007-01-01T23:59:59.000Z

4

Gamma-ray Astronomy  

E-Print Network (OSTI)

The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

Jim Hinton

2007-12-20T23:59:59.000Z

5

Gamma-Ray Bursts  

E-Print Network (OSTI)

Ultra-high-energy, >10^19 eV, cosmic-ray and high energy, ~10^14 eV, neutrino production in GRBs is discussed in the light of recent GRB and cosmic-ray observations. Emphasis is put on model predictions that can be tested with operating and planned cosmic-ray and neutrino detectors, and on the prospects of testing for neutrino properties.

E. Waxman

2000-04-11T23:59:59.000Z

6

GPU ray tracing  

Science Conference Proceedings (OSTI)

The NVIDIA® OptiX™ ray tracing engine is a programmable system designed for NVIDIA GPUs and other highly parallel architectures. The OptiX engine builds on the key observation that most ray tracing algorithms can be implemented using a small ...

Steven G. Parker; Heiko Friedrich; David Luebke; Keith Morley; James Bigler; Jared Hoberock; David McAllister; Austin Robison; Andreas Dietrich; Greg Humphreys; Morgan McGuire; Martin Stich

2013-05-01T23:59:59.000Z

7

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

8

Gamma ray detector shield  

DOE Patents (OSTI)

A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

Ohlinger, R.D.; Humphrey, H.W.

1985-08-26T23:59:59.000Z

9

Gamma Ray Bursts  

E-Print Network (OSTI)

Gamma-ray bursts have been detected at photon energies up to tens of GeV. We review some recent developments in the X-ray to GeV photon phenomenology in the light of Swift and Fermi observations, and some of the theoretical models developed to explain them, with a view towards implications for C.T.A.

Peter Mészáros

2012-04-09T23:59:59.000Z

10

X-ray generator  

DOE Patents (OSTI)

Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

Dawson, John M. (Los Angeles, CA)

1976-01-01T23:59:59.000Z

11

X-Ray Observations of Gamma-Ray Burst Afterglows  

E-Print Network (OSTI)

The discovery by the BeppoSAX satellite of X-ray afterglow emission from the gamma-ray burst which occurred on 28 February 1997 produced a revolution in our knowledge of the gamma-ray burst phenomenon. Along with the discovery of X-ray afterglows, the optical afterglows of gamma-ray bursts were discovered and the distance issue was settled, at least for long $\\gamma$-ray bursts. The 30 year mystery of the gamma-ray burst phenomenon is now on the way to solution. Here I rewiew the observational status of the X-ray afterglow emission, its mean properties (detection rate, continuum spectra, line features, and light curves), and the X-ray constraints on theoretical models of gamma-ray bursters and their progenitors. I also discuss the early onset afterglow emission, the remaining questions, and the role of future X-ray afterglow observations.

Filippo Frontera

2004-06-25T23:59:59.000Z

12

Gamma Radiation & X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

13

Gamma Ray Pulsars: Observations  

E-Print Network (OSTI)

High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The six or more pulsars seen by CGRO/EGRET show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. Unless a new pulsed component appears at higher energies, progress in gamma-ray pulsar studies will be greatest in the 1-20 GeV range. Ground-based telescopes whose energy ranges extend downward toward 10 GeV should make important measurements of the spectral cutoffs. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2005, will provide a major advance in sensitivity, energy range, and sky coverage.

David J. Thompson

2001-01-03T23:59:59.000Z

14

Frontiers in Cosmic Rays  

E-Print Network (OSTI)

This rapporteur review covers selected results presented in the Parallel Session HEA2 (High Energy Astrophysics 2) of the 10th Marcel Grossmann Meeting on General Relativity, held in Rio de Janeiro, Brazil, July 2003. The subtopics are: ultra high energy cosmic ray anisotropies, the possible connection of these energetic particles with powerful gamma ray bursts, and new exciting scenarios with a strong neutrino-nucleon interaction in the atmosphere.

Luis A. Anchordoqui; Charles D. Dermer; Andreas Ringwald

2004-02-27T23:59:59.000Z

15

Gamma-Ray Bursts  

E-Print Network (OSTI)

Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma ray burst and its afterglow is reviewed.

P. Meszaros

2006-05-09T23:59:59.000Z

16

Cosmic Rays and Gamma Ray Bursts From Microblazars  

E-Print Network (OSTI)

Highly relativistic jets from merger and accretion induced collapse of compact stellar objects, which may produce the cosmological gamma ray bursts (GRBs), are also very efficient and powerful cosmic ray accelerators. The expected luminosity, energy spectrum and chemical composition of cosmic rays from Galactic GRBs, most of which do not point in our direction, can explain the observed properties of Galactic cosmic rays.

Arnon Dar

1998-09-13T23:59:59.000Z

17

Gamma-ray events thunderclouds  

E-Print Network (OSTI)

Andromeda: A mission to determine the gamma-ray burst distance scale F.A. Harrison, W.R. Cook, T was submitted to the STEDI program, and will also be proposed as a NASA Small Explorer. Keywords: bursts, gamma-rays, small missions 1 SCIENTIFIC OBJECTIVES 1.1 Gamma-ray Bursts Gamma-ray bursts GRBs were discovered

California at Berkeley, University of

18

X-ray microtomography  

SciTech Connect

In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

Landis, Eric N., E-mail: landis@maine.edu [Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469 (United States); Keane, Denis T., E-mail: dtkeane@northwestern.edu [Department of Materials Science and Engineering, Northwestern University (United States); DND-CAT, Advanced Photon Source, Argonne National Laboratory, Bldg. 432/A002, 9700 S. Cass Ave, Argonne, Illinois 60439 (United States)

2010-12-15T23:59:59.000Z

19

RPU: a programmable ray processing unit for realtime ray tracing  

Science Conference Proceedings (OSTI)

Recursive ray tracing is a simple yet powerful and general approach for accurately computing global light transport and rendering high quality images. While recent algorithmic improvements and optimized parallel software implementations have increased ... Keywords: hardware architecture, programmable shading, ray processing unit, ray tracing

Sven Woop; Jörg Schmittler; Philipp Slusallek

2005-07-01T23:59:59.000Z

20

Fluctuation X-Ray Scattering  

SciTech Connect

The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

2013-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ultrahigh Energy Cosmic Rays Detection  

Science Conference Proceedings (OSTI)

The paper describes methods used for the detection of cosmic rays with energies above 1018 eV (UHECR

Carla Aramo

2005-01-01T23:59:59.000Z

22

X-ray Security Screening  

Science Conference Proceedings (OSTI)

National and International Standards for X-ray Security Screening Applications. Summary: The primary objective of this ...

2013-03-13T23:59:59.000Z

23

Cosmic Ray Telescopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Cosmic Ray Muon Detectors Cosmic Ray Muon Detectors Particle Physics Using Nature's Accelerator Somewhere out there is a list of "10 Things a Physics Teacher is Least Likely to Say." If one were to find this list, it would have on it such gems as #7. Let's challenge the PE Dept to a game of rugby and #4. I don't care if you understand the concept, just give me the correct answer to 12 sig figs. Finally, you'd get down to the biggie, the thing physics teachers never say: #1. Let's do a particle physics lab right here at Podunk Corners High! The traditional reasons for this are that everyone knows that particle physics is only done with Vastly Expensive and Complicated Equipment run by casts of thousands of Highly Qualified Scientists and that particle physics is Difficult and Arcane.

24

X-ray afterglows from gamma-ray bursts  

E-Print Network (OSTI)

We consider possible interpretations of the recently detected X- ray afterglow from the gamma-ray burst source GRB 970228. Cosmological and Galactic models of gamma-ray bursts predict different flux and spectral evolution of X-ray afterglows. We show that models based on adiabatic expansion of relativistic forward shocks require very efficient particle energization or post-burst re-acceleration during the expansion. Cooling neutron star models predict a very distinctive spectral and flux evolution that can be tested in current X-ray data.

M. Tavani

1997-03-24T23:59:59.000Z

25

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

26

Cost prediction for ray shooting  

Science Conference Proceedings (OSTI)

The ray shooting problem arises in many different contexts. For example, solving it efficiently would remove a bottleneck when images are ray-traced in computer graphics. Unfortunately, theoretical solutions to the problem are not very practical, ... Keywords: average performance, cost model, cost prediction, octree, ray shooting, space decomposition

Boris Aronov; Hervé Brönnimann; Allen Y. Chang; Yi-Jen Chiang

2002-06-01T23:59:59.000Z

27

Scanning x-ray microscope  

Science Conference Proceedings (OSTI)

A scanning x-ray microscope is described including: an x-ray source capable of emitting a beam of x-rays; a collimator positioned to receive the beam of x-rays and to collimate this beam, a focusing cone means to focus the beam of x-rays, directed by the collimator, onto a focal plane, a specimen mount for supporting a specimen in the focal plane to receive the focused beam of x-rays, and x-ray beam scanning means to relatively move the specimen and the focusing cone means and collimator to scan the focused x-ray beam across the specimen. A detector is disposed adjacent the specimen to detect flourescent photons emitted by the specimen upon exposure to the focused beam of x-rays to provide an electrical output representative of this detection. Means are included for displaying and/or recording the information provided by the output from the detector, as are means for providing information to the recording and/or display means representative of the scan rate and position of the focused x-ray beam relative to the specimen whereby the recording and/or display means can correlate the information received to record and/or display quantitive and distributive information as to the quantity and distribution of elements detected in the specimen. Preferably there is provided an x-ray beam modulation means upstream, relative to the direction of emission of the xray beam, of the focusing cone means.

Wang, C.

1982-02-23T23:59:59.000Z

28

X-ray lithography source  

SciTech Connect

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

29

X-ray lithography source  

DOE Patents (OSTI)

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

30

LIGHT CURVES OF SWIFT GAMMA RAY BURSTS  

E-Print Network (OSTI)

Recent observations from the Swift gamma-ray burst mission indicate that a fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both (short- long) gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars. Subject headings: gamma-rays: bursts 1.

Paolo Cea

2006-01-01T23:59:59.000Z

31

Gamma Ray Bursts Sudden, intense flashes of gamma rays  

E-Print Network (OSTI)

. Sakamoto1,12 , C. L. Sarazin13 , P. Schady6,10 , M. Stamatikos1,12 & S. E. Woosley14 Gamma-ray bursts (GRBs. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101­L104 (1993). 2. Fruchter, A. et al). 3. Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

32

dosimetry of x-rays, gamma rays and electrons  

Science Conference Proceedings (OSTI)

... NIST and BIPM Standards for Air Kerma in Medium-Energy X-rays ... of the codes are available from the Government Printing Office, Washington, DC ...

2013-06-28T23:59:59.000Z

33

X-ray Flares in Gamma-Ray Bursts.  

E-Print Network (OSTI)

??Data from the Swift mission have now shown that flares are a common component of Gamma-Ray Burst afterglows, appearing in roughly 50% of GRBs to… (more)

Morris, David

2008-01-01T23:59:59.000Z

34

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01T23:59:59.000Z

35

Gamma-ray burst populations.  

E-Print Network (OSTI)

??Over the last fifty years the field of gamma-ray bursts has shown incredible growth, but the amassing of data has also left observers and theorists… (more)

Virgili, Francisco J.

2011-01-01T23:59:59.000Z

36

Synchrotron X-ray Measurements  

Science Conference Proceedings (OSTI)

... fine structure (EXAFS) spectroscopy; (3) variable kinetic energy X-ray ... advanced materials is critical to the development and optimization of products ...

2012-10-04T23:59:59.000Z

37

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

38

Light Curves of Swift Gamma Ray Bursts  

E-Print Network (OSTI)

Recent observations from the Swift gamma-ray burst mission indicate that a fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both (short - long) gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars.

Paolo Cea

2006-06-05T23:59:59.000Z

39

Ultrahigh Energy Cosmic Rays and Prompt TeV Gamma Rays from Gamma Ray Bursts  

E-Print Network (OSTI)

Gamma Ray Bursts (GRBs) have been proposed as one {\\it possible} class of sources of the Ultrahigh Energy Cosmic Ray (UHECR) events observed up to energies $\\gsim10^{20}\\ev$. The synchrotron radiation of the highest energy protons accelerated within the GRB source should produce gamma rays up to TeV energies. Here we briefly discuss the implications on the energetics of the GRB from the point of view of the detectability of the prompt TeV gamma rays of proton-synchrotron origin in GRBs in the up-coming ICECUBE muon detector in the south pole.

Pijushpani Bhattacharjee; Nayantara Gupta

2003-05-12T23:59:59.000Z

40

A hypercube Ray-tracer  

Science Conference Proceedings (OSTI)

We describe a hypercube ray-tracing program for rendering computer graphics. For small models, which fit in the memory of a single processor, the ray-tracer uses a scattered decomposition of pixels to balance the load, and achieves a very high efficiency. ...

J. Salmon; J. Goldsmith

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gamma Ray Pulsars: Multiwavelength Observations  

E-Print Network (OSTI)

High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2007, will provide a major advance in sensitivity, energy range, and sky coverage.

David J. Thompson

2003-12-10T23:59:59.000Z

42

X-Ray Data Booklet X-RAY DATA BOOKLET  

E-Print Network (OSTI)

.10.Re 1. Introduction Mendelevium (Z=101) and Lawrencium (Z=103) isotopes have been dis- covered nearly isotopes have been studied so far using prompt gamma- ray spectroscopy: the neutron-odd 253No [9

Meagher, Mary

43

Fiber fed x-ray/gamma ray imaging apparatus  

SciTech Connect

X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

Hailey, Charles J. (San Francisco, CA); Ziock, Klaus-Peter (Livermore, CA)

1992-01-01T23:59:59.000Z

44

Detectors of Cosmic Rays, Gamma Rays, and Neutrinos  

SciTech Connect

We summarize the main features, properties and performances of the typical detectors in use in Cosmic Ray Physics. A brief historical and general introduction will focus on the main classes and requirements of such detectors.

Altamirano, A. [Departamento de Fisica, Informatica y Matematicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia (Peru); Centro de Tecnologias de Informacion y Comunicaciones (CTIC), Universidad Nacional de Ingenieria, Lima (Peru); Navarra, G. [Dipartimento di Fisica Generale dell'Universita' and INFN, Torino (Italy)

2009-04-30T23:59:59.000Z

45

Current Topics in Gamma-Ray Astrophysics  

Science Conference Proceedings (OSTI)

... into e+–e– pairs ends up as rays. Figure 1 shows a calculation of -ray burst luminosity as ... The integrated energy in gamma-rays from the calculated ...

2000-03-14T23:59:59.000Z

46

Studying Gamma Ray Bursts from a  

E-Print Network (OSTI)

Studying Gamma Ray Bursts from a new perspective! {... Unraveling some mysteries and adding new Radio Op0cal X-ray Short ( energy -ray photons... ... accompained by a considerable long las0ng emission

Â?umer, Slobodan

47

Lecture 7Lecture 7 The GammaThe Gamma--RayRay  

E-Print Network (OSTI)

Milagro­A TeV Observatory for Gamma Ray Bursts B.L. Dingus and the Milagro Collaboration Los energy gamma-rays from gamma-ray bursts. The highest energy gamma rays supply very strong constraints on the nature of gamma-ray burst sources as well as fundamental physics. Because the highest energy gamma-rays

48

X-ray Spectral Properties of Gamma-Ray Bursts  

E-Print Network (OSTI)

We summarize the spectral characteristics of a sample of 22 bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 - 400 keV range, providing a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low energy slope, a bend energy, and a high energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. The observed ratio of energy emitted in the X-rays relative to the gamma-rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our sample is 24%.

T. E. Strohmayer; E. E. Fenimore; T. Murakami; A. Yoshida

1997-12-18T23:59:59.000Z

49

X-ray Transition Energies Search Form  

Science Conference Proceedings (OSTI)

[skip navigation] X-ray Transition Energies Database Main Page Search for X-ray transition energies by element(s), transition ...

50

NREL: Energy Sciences - B. Ray Stults  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical & Materials Science Computational Science News Events Printable Version B. Ray Stults Ph.D. - Associate Laboratory Director, Energy Sciences Ray Stults is the Associate...

51

X-ray flashes and X-ray rich gamma ray bursts. Memorie della Societa’ Astronomica Italiana  

E-Print Network (OSTI)

Abstract. X-ray flashes are detected in the Wide Field Cameras on BeppoSAX in the energy range 2-25 keV as bright X-ray sources lasting of the order of minutes, but remaining undetected in the Gamma Ray Bursts Monitor on BeppoSAX. They have properties very similar to the x-ray counterparts of GRBs and account for some of the Fast X-ray Transient events seen in almost every x-ray satellite. We review their X-ray properties and show that x-ray flashes are in fact very soft, x-ray rich, untriggered gamma ray bursts, in which the peak energy in 2-10 keV x-rays could be up to a factor of 100 larger than the peak energy in the 50-300 keV gamma ray range. The frequency is ? 100 yr ?1. 1 Fast X-ray Transients/High-latitude X-ray Transients Fast X-ray Transients have been observed with many x-ray satellites. In particular they are seen with x-ray instruments that scan the entire sky on a regular basis. Such events are detected in one sky scan and disappeared in the next, typically limiting the duration to be longer than a minute and shorter than a few hours. For this reason they are called Fast Transients. The first transients

John Heise; Jean In ’t Z; Peter M. Woods

2001-01-01T23:59:59.000Z

52

Gamma-Ray Burst Lines  

E-Print Network (OSTI)

The evidence for spectral features in gamma-ray bursts is summarized. As a guide for evaluating the evidence, the properties of gamma-ray detectors and the methods of analyzing gamma-ray spectra are reviewed. In the 1980's, observations indicated that absorption features below 100 keV were present in a large fraction of bright gamma-ray bursts. There were also reports of emission features around 400 keV. During the 1990's the situation has become much less clear. A small fraction of bursts observed with BATSE have statistically significant low-energy features, but the reality of the features is suspect because in several cases the data of the BATSE detectors appear to be inconsistent. Furthermore, most of the possible features appear in emission rather than the expected absorption. Analysis of data from other instruments has either not been finalized or has not detected lines.

Michael S. Briggs

1999-10-20T23:59:59.000Z

53

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

54

Modeling gamma-ray bursts.  

E-Print Network (OSTI)

??Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground… (more)

Maxham, Amanda

2011-01-01T23:59:59.000Z

55

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

56

Gamma Ray Bursts and CETI  

E-Print Network (OSTI)

Gamma ray burst sources are isotropically distributed. They could be located at distances $\\sim 1000$ AU. (Katz \\cite{JK92}) GRB signals have many narrow peaks that are unresolved at the millisecond time resolution of existing observations. \\cite{JK87} CETI could use stars as gravitational lenses for interstellar gamma ray laser beam communication. Much better time resolution of GRB signals could rule out (or confirm?) the speculative hypothesis that GRB = CETI.

Frank D. Smith Jr

1993-02-10T23:59:59.000Z

57

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

58

Neutrinos from Gamma Ray Bursts  

E-Print Network (OSTI)

The observed fluxes of cosmic rays and gamma rays are used to infer the maximum allowed high-energy neutrino flux allowed for Gamma Ray Bursts (GRBs), following Mannheim, Protheroe, and Rachen (2000). It is shown that if GRBs produce the ultrahigh-energy cosmic rays, they should contribute (a) at least 10% of the extragalactic gamma ray background between 3 MeV and 30 GeV, contrary to their observed energy flux which is only a minute fraction of this flux, and (b) a cumulative neutrino flux a factor of 20 below the AMANDA (Neutrino 2000) limit on isotropic neutrinos. This could have two implications, either GRBs do not produce the ultrahigh energy cosmic rays or that the GRBs are strongly beamed and emit most of their power at energies well above 100 GeV implausibly increasing the energy requirements, but consistent with the marginal detections of a few low-redshift GRBs by MILAGRITO, HEGRA-AIROBICC, and the Tibet-Array. All crucial measurements to test the models will be available in the next few years. These are measurements of (i) high-energy neutrinos with AMANDA-ICECUBE or an enlarged ANTARES/NESTOR ocean detector, (ii) GRB redshifts from HETE-2 follow-up studies, and (iii) GRB spectra above 10 GeV with low-threshold imaging air Cherenkov telescopes such as MAGIC and the space telescopes AGILE and GLAST.

Karl Mannheim

2000-10-18T23:59:59.000Z

59

Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background  

E-Print Network (OSTI)

We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

Tomonori Totani

1998-10-14T23:59:59.000Z

60

Gamma ray bursts ROBERT S MACKAY  

E-Print Network (OSTI)

Gamma ray bursts ROBERT S MACKAY COLIN ROURKE We propose that a gamma ray burst is a kinematic Gamma ray bursts are intense flashes of electromagnetic radiation of cosmic origin lasting from ten accepted mechanism. We propose that a gamma ray burst is simply a kinematic effect, namely the effect

Rourke, Colin

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift  

E-Print Network (OSTI)

Gamma-RayGamma-Ray Bursts: from SwiftBursts: from Swift to GLASTto GLAST Bing ZhangBing ZhangGehrels, et al), et al) #12;Gamma-ray bursts: the mostGamma-ray bursts: the most violent explosions Bursts Apparently high gamma-ray efficiency. Highly magnetized flow? Roming et al., 2005 #12;Surprises

California at Santa Cruz, University of

62

Compact x-ray source and panel  

SciTech Connect

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

63

Neutrinos from Gamma Ray Bursts  

E-Print Network (OSTI)

We show that the detection of neutrinos from a typical gamma ray burst requires a kilometer-scale detector. We argue that large bursts should be visible with the neutrino telescopes under construction. We emphasize the 3 techniques by which neutrino telescopes can perform this search: by triggering on i) bursts of muons from muon neutrinos, ii) muons from air cascades initiated by high energy gamma rays and iii) showers made by relatively low energy ($\\simeq 100\\,\\mev$) electron neutrinos. Timing of neutrino-photon coincidences may yield a measurement of the neutrino mass to order $10^{-5}$~eV, an interesting range in light of the solar neutrino anomaly.

F. Halzen; G. Jaczko

1996-02-07T23:59:59.000Z

64

Cosmic-ray sum rules  

SciTech Connect

We introduce new sum rules allowing to determine universal properties of the unknown component of the cosmic rays; we show how they can be used to predict the positron fraction at energies not yet explored by current experiments, and to constrain specific models.

Frandsen, Mads T. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Masina, Isabella [Dip. di Fisica dell'Universita di Ferrara and INFN Sez. di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Sannino, Francesco [CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

2011-06-15T23:59:59.000Z

65

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

66

Gamma ray astrophysics: the EGRET results  

E-Print Network (OSTI)

Cosmic gamma rays provide insight into some of the most dynamic processes in the Universe. At the dawn of a new generation of gamma-ray telescopes, this review summarizes results from the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the principal predecessor mission studying high-energy photons in the 100 MeV energy range. EGRET viewed a gamma-ray sky dominated by prominent emission from the Milky Way, but featuring an array of other sources, including quasars, pulsars, gamma-ray bursts, and many sources that remain unidentified. A central feature of the EGRET results was the high degree of variability seen in many gamma-ray sources, indicative of the powerful forces at work in objects visible to gamma-ray telescopes.

D J Thompson

2008-11-05T23:59:59.000Z

67

Spectral analysis of X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

68

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

69

Stellar Sources of Gamma-ray Bursts  

E-Print Network (OSTI)

Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

Luchkov, B I

2011-01-01T23:59:59.000Z

70

Fermi Observations of Gamma?ray Bursts  

Science Conference Proceedings (OSTI)

The gamma?ray emission mechanism of Gamma?ray bursts (GRBs) are still unknown. Fermi Gamma?ray Space Telescope successfully detected high?energy (> 100 MeV) emission from 17 GRBs since its launch. Fermi revealed the distinct temporal behaviors and extra spectral component from high?energy emission. These new observational results are driving many theoretical implications

Masanori Ohno; The Fermi?LAT collaborations; The GBM collaborations

2010-01-01T23:59:59.000Z

71

Cryotomography x-ray microscopy state  

Science Conference Proceedings (OSTI)

An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

2010-10-26T23:59:59.000Z

72

Multifrequency Observations of Gamma-Ray Burst  

E-Print Network (OSTI)

Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

J. Greiner

1995-10-04T23:59:59.000Z

73

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

74

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

75

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

76

The Diverse Environments of Gamma-Ray Bursts  

E-Print Network (OSTI)

of a Very Bright Gamma- Ray Burst in a Galactic Halo 3.1Galaxies of Dark Gamma-Ray Bursts: Observational Constraints1.3 Gamma-Ray Burst Classi?cation . . . . . . 1.4 Gamma-Ray

Perley, Daniel Alan

2011-01-01T23:59:59.000Z

77

The Ulysses Catalog of Solar Hard X-Ray Flares  

E-Print Network (OSTI)

its Solar X-ray/Cosmic Gamma-Ray Burst Experiment (GRB) hasInstrument The Ulysses Gamma-Ray Burst (GRB) instrument, hasrate due to a cosmic gamma-ray burst or a solar ?are, but we

Tranquille, C.; Hurley, K.; Hudson, H. S.

2009-01-01T23:59:59.000Z

78

Gamma Ray Burst Central Engines  

E-Print Network (OSTI)

I review aspects of the theory of long-duration gamma-ray burst (GRB) central engines. I focus on the requirements of any model; these include the angular momentum of the progenitor, the power, Lorentz factor, asymmetry, and duration of the flow, and both the association and the non-association with bright supernovae. I compare and contrast the collapsar and millisecond proto-magnetar models in light of these requirements. The ability of the latter model to produce a flow with Lorentz factor ~100 while simultaneously maintaining a kinetic luminosity of ~10^50 ergs/s for a timescale of ~10-100 s is emphasized.

Todd A. Thompson

2008-07-04T23:59:59.000Z

79

High-energy Cosmic Rays  

E-Print Network (OSTI)

After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the `knee' above $10^{15}$ eV and the `ankle' above $10^{18}$ eV. An important question is whether the highest energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

Thomas K. Gaisser; Todor Stanev

2005-10-11T23:59:59.000Z

80

Energetics of Gamma Ray Bursts  

E-Print Network (OSTI)

We determine the distribution of total energy emitted by gamma-ray bursts for bursts with fluences and distance information. Our core sample consists of eight bursts with BATSE spectra and spectroscopic redshifts. We extend this sample by adding four bursts with BATSE spectra and host galaxy R magnitudes. From these R magnitudes we calculate a redshift probability distribution; this method requires a model of the host galaxy population. From a sample of ten bursts with both spectroscopic redshifts and host galaxy R magnitudes (some do not have BATSE spectra) we find that the burst rate is proportional to the galaxy luminosity at the epoch of the burst. Assuming that the total energy emitted has a log-normal distribution, we find that the average emitted energy (assumed to be radiated isotropically) is $gamma iso} > = 1.3^{+1.2}_{-1.0} \\times 10^{53}$ ergs (for H$_0$ = 65 km s$^{-1}$ Mpc$^{-1}$, $\\Omega_m=0.3$ and $\\Omega_\\Lambda=0.7$); the distribution has a logarithmic width of $\\sigma_\\gamma=1.7^{+0.7}_{-0.3}$. The corresponding distribution of X-ray afterglow energy (for seven bursts) has $ = 4.0^{+1.6}_{-1.8} \\times 10^{51}$ergs and $\\sigma_X = 1.3^{+0.4}_{-0.3}$. For completeness, we also provide spectral fits for all bursts with BATSE spectra for which there were afterglow searches.

Raul Jimenez; David Band; Tsvi Piran

2001-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PHYSICAL PROCESSES SHAPING GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES: THEORETICAL IMPLICATIONS FROM THE SWIFT X-RAY TELESCOPE OBSERVATIONS  

E-Print Network (OSTI)

PHYSICAL PROCESSES SHAPING GAMMA-RAY BURST X-RAY AFTERGLOW LIGHT CURVES: THEORETICAL IMPLICATIONS August 15; accepted 2005 December 19 ABSTRACT With the successful launch of the Swift Gamma-Ray Burst component is consistent with the tail emission of the prompt gamma-ray bursts and/or the X-ray flares

Zhang, Bing

82

X-ray data booklet. Revision  

SciTech Connect

A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

Vaughan, D. (ed.)

1986-04-01T23:59:59.000Z

83

X-ray transmissive debris shield  

DOE Patents (OSTI)

A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

Spielman, Rick B. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

84

Black Stars and Gamma Ray Bursts  

E-Print Network (OSTI)

Stars that are collapsing toward forming a black hole but are frozen near the Schwarzschild horizon are termed ``black stars''. Collisions of black stars, in contrast to black hole collisions, may be sources of gamma ray bursts, whose basic parameters are estimated quite simply and are found to be consistent with observed gamma ray bursts. Black star gamma ray bursts should be preceded by gravitational wave emission similar to that from the coalescence of black holes.

Tanmay Vachaspati

2007-06-08T23:59:59.000Z

85

NIST X-Ray Transition Energies  

Science Conference Proceedings (OSTI)

... with the International System of measurement ... titled "X-ray transition energies: new approach ... and by NIST's Systems Integration for Manufacturing ...

2011-12-09T23:59:59.000Z

86

X-ray Line Profile Analysis  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials · X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source ...

87

NIST: X-Ray Mass Attenuation Coefficients  

Science Conference Proceedings (OSTI)

... NIST reserves the right to charge for these data in the ... ?/? and the mass energy-absorption coefficient ... The tables cover energies of the photon (x-ray ...

2011-12-09T23:59:59.000Z

88

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray...

89

Gamma ray burst outflows and afterglows.  

E-Print Network (OSTI)

?? We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing… (more)

Morsony, Brian J.

2009-01-01T23:59:59.000Z

90

High-energy cosmic ray interactions  

SciTech Connect

Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

Engel, Ralph [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Orellana, Mariana [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata (Argentina); Reynoso, Matias M. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata, (UNMdP-CONICET) (Argentina); Vila, Gabriela S. [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina)

2009-04-30T23:59:59.000Z

91

VHE Gamma-ray Supernova Remnants  

SciTech Connect

Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

Funk, Stefan; /KIPAC, Menlo Park

2007-01-22T23:59:59.000Z

92

Search for gamma ray burst counterparts  

Science Conference Proceedings (OSTI)

The confident detection of a Gamma Ray Burst counterpart would likely provide the much needed breakthrough in our understanding of the cause and site of bursts. As such

Bradley E. Schaefer

1994-01-01T23:59:59.000Z

93

Hard X-Ray Quad Collimator  

Technology Development and Commercialization Division One of the best ways to obtain small?size x?ray beams for structural biology research is to ...

94

Gamma-Ray Bursts and Particle Astrophysics  

E-Print Network (OSTI)

Gamma-ray bursts are violent events occurring randomly in the sky. In this review, I will present the fireball model, proposed to explain the phenomenon of gamma-ray bursts. This model has important consequences for the production and observation at Earth of gravitational waves, high energy neutrinos, cosmic rays and high energy photons, and the second part of this review will be focused on these aspects. A last section will briefly discuss the topic of the use of gamma-ray bursts as standard candles and possible cosmological studies.

B. Gendre

2008-07-24T23:59:59.000Z

95

Gamma-Ray Pulsar Visibility  

E-Print Network (OSTI)

PSR J0437-4715 is a millisecond pulsar (MSP) thought to be ``pair formation starved'' (having limited pair cascades due to magnetic photon absorption). Fortunately the general relativistic (GR) electrodynamical model under consideration applicable to this pulsar have few free parameters. We model PSR J0437-4715's visibility, using a 3D model which incorporates the variation of the GR E-field over the polar cap (PC), taking different observer and inclination angles into account. Using this pulsar as a case study, one may generalize to conducting a pulsar population visibility study. We lastly comment on the role of the proposed South African SKA (Square Kilometre Array) prototype, KAT (Karoo Array Telescope), for GLAST gamma-ray pulsar identification.

Venter, C

2005-01-01T23:59:59.000Z

96

Gamma-Ray Pulsar Visibility  

E-Print Network (OSTI)

PSR J0437-4715 is a millisecond pulsar (MSP) thought to be ``pair formation starved'' (having limited pair cascades due to magnetic photon absorption). Fortunately the general relativistic (GR) electrodynamical model under consideration applicable to this pulsar have few free parameters. We model PSR J0437-4715's visibility, using a 3D model which incorporates the variation of the GR E-field over the polar cap (PC), taking different observer and inclination angles into account. Using this pulsar as a case study, one may generalize to conducting a pulsar population visibility study. We lastly comment on the role of the proposed South African SKA (Square Kilometre Array) prototype, KAT (Karoo Array Telescope), for GLAST gamma-ray pulsar identification.

C. Venter; O. C. de Jager; A. Tiplady

2005-10-14T23:59:59.000Z

97

Gamma-Ray Pulsar Visibility  

E-Print Network (OSTI)

Abstract. PSR J0437-4715 is a millisecond pulsar (MSP) thought to be “pair formation starved” (having limited pair cascades due to magnetic photon absorption). Fortunately the general relativistic (GR) electrodynamical model under consideration applicable to this pulsar have few free parameters. We model PSR J0437-4715’s visibility [1], using a 3D model which incorporates the variation of the GR E-field over the polar cap (PC), taking different observer and inclination angles into account. Using this pulsar as a case study, one may generalize to conducting a pulsar population visibility study. We lastly comment on the role of the proposed South African SKA (Square Kilometre Array) prototype, KAT (Karoo Array Telescope), for GLAST ?-ray pulsar identification.

Christo Venter; Ocker C. De Jager; Adrian Tiplady

2005-01-01T23:59:59.000Z

98

X?ray Fluorescence (XRF) Assay Using Laser Compton Scattered (LCS) X?rays  

Science Conference Proceedings (OSTI)

Laser Compton Scattered (LCS) X?rays are produced as a result of the interaction between accelerated electrons and a laser beam. The yield of LCS X?rays is dependent on the laser power

Syed F. Naeem; Khalid Chouffani; Douglas P. Wells

2009-01-01T23:59:59.000Z

99

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

100

X-Ray Multilayer Database from the LBL Center for X-Ray Optics (CXRO)  

DOE Data Explorer (OSTI)

An important activity of the Center for X-ray Optics (CXRO) is research on x-ray mirrors and their use in optical devices to focus and deflect x-ray beams. The two kinds of mirrors most widely used are glancing incidence reflectors and multilayer coatings. The X-Ray Multilayer Database is based on the results of surveys taken at the biennial Physics of X-Ray Multilayer Structures conferences. It contains measured x-ray reflectances reported for various multilayers. The database is provided as a service to the x-ray and multilayer research communities and is intended to reflect the state-of-the-art in multilayer x-ray mirrors. (Specialized Interface)

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gamma Ray Bursts Cannot Produce the Observed Cosmic Rays Above 10 19 eV  

E-Print Network (OSTI)

Received; accepted – 2 – Using recent results indicating that the redshift distribution of ?-ray bursts most likely follows the redshift evolution of the star formation rate, I show that the energy input from these bursts at low redshifts is insufficient to account for the observed flux of ultrahigh energy cosmic rays with energies above 1019 eV. Subject Headings: gamma-rays: bursts — cosmic rays: theory – 3 – 1.

F. W. Stecker

1999-01-01T23:59:59.000Z

102

Materials Analysis by Soft x-ray Scanning Transmission X-ray ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Optical and X-ray Imaging Techniques for Material Characterization.

103

Ultrahigh Energy Cosmic Rays from Gamma Ray Bursts: Implications of the Recent Observational Results by Milagro  

E-Print Network (OSTI)

It has been speculated earlier that Gamma Ray Bursts are sources of ultrahigh energy cosmic rays. Recently, the search for high energy photons from Gamma Ray Bursts by Milagro group has put limits on the isotropic luminosity of these transient sources in very high energy photons. The implications of the results obtained by Milagro to our understanding of the ultrahigh energy cosmic ray spectrum from these sources have been discussed in the present work.

Nayantara Gupta

2004-06-03T23:59:59.000Z

104

ON THE RECENTLY DISCOVERED CORRELATIONS BETWEEN GAMMA-RAY AND X-RAY PROPERTIES OF GAMMA-RAY BURSTS  

SciTech Connect

Recently, many correlations between the prompt {gamma}-ray emission properties and the X-ray afterglow properties of gamma-ray bursts (GRBs) have been inferred from a comprehensive analysis of the X-ray light curves of more than 650 GRBs measured with the Swift X-Ray Telescope (Swift/XRT) during the years 2004-2010. We show that these correlations are predicted by the cannonball (CB) model of GRBs. They result from the dependence of GRB observables on the bulk motion Lorentz factor and viewing angle of the jet of highly relativistic plasmoids (CBs) that produces the observed radiations by interaction with the medium through which it propagates. Moreover, despite their different physical origins, long GRBs (LGRBs) and short-hard bursts (SHBs) in the CB model share similar kinematic correlations, which can be combined into triple correlations satisfied by both LGRBs and SHBs.

Dado, Shlomo; Dar, Arnon [Physics Department, Technion, Haifa 32000 (Israel)

2013-09-20T23:59:59.000Z

105

Gravitational Waves versus X and Gamma Ray Emission in a Short Gamma-Ray Burst  

E-Print Network (OSTI)

The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely short gamma-ray burst, GRB 090227B, allows to give an estimate of the gravitational waves versus the X and Gamma ray emission in a short gamma-ray burst.

F. G. Oliveira; Jorge A. Rueda; Remo Ruffini

2012-05-31T23:59:59.000Z

106

Gamma-Rays from Grazing Incidence Cosmic Rays in the Earth’s Atmosphere  

E-Print Network (OSTI)

Interactions of grazing incidence, ultra high energy cosmic rays with the earth’s atmosphere may provide a new method of studying energetic cosmic rays with gamma-ray satellites. It is found that these cosmic ray interactions may produce gamma-rays on millisecond time scales which may be detectable by satellites. An extremely low gamma-ray background for transient gamma-ray events and a large area of interaction, the earth’s surface, make the scheme plausible. The effective cross section of detection of interactions for cosmic rays above 1020 eV is found to be more than two orders of magnitude higher than earth based detection techniques. This method may eventually offer an efficient way of probing this region of the cosmic ray energy spectrum where events are scarce. In this paper, a conceptual model is presented for the production of short bursts of gamma-rays based on these grazing incidence encounters with the earth’s atmosphere. Subject headings: atmospheric effects- cosmic rays- Earth- gamma-rays: bursts

Andrew Ulmer

1994-01-01T23:59:59.000Z

107

The Universe Viewed in Gamma-Rays 1 Properties of Gamma-ray Bursts Localized by  

E-Print Network (OSTI)

The short gamma-ray burst ­ SGR giant flare connection Kevin Hurley University of California cosmic gamma-ray bursts. There are at least two general ways to approach this problem. One is statistical short gamma-ray bursts (GRBs) could actually be extragalactic giant magnetar flares is not new by any

Enomoto, Ryoji

108

Are extragalactic gamma ray bursts the source of the highest energy cosmic rays?  

E-Print Network (OSTI)

Recent observations with the large air shower arrays of ultra high energy cosmic rays (UHECR) and recent measurements/estimates of the redshifts of gamma ray bursts (GRBs) seem to rule out extragalactic GRBs as the source of the cosmic rays that are observed near Earth, including those with the highest energies.

Arnon Dar

1999-01-03T23:59:59.000Z

109

Lithium-6 and Gamma Rays: Complementary Constraints on Cosmic-Ray History  

E-Print Network (OSTI)

The rare isotope 6Li is made only by cosmic rays, dominantly in alpha+alpha fusion reactions with ISM helium. Consequently, this nuclide provides a unique diagnostic of the history of cosmic rays in our Galaxy. The same hadronic cosmic-ray interactions also produce high-energy gamma rays (mostly via neutral pion production). Thus, hadronic gamma-rays and 6Li are intimately linked. Specifically, 6Li directly encodes the local cosmic-ray fluence over cosmic time, while extragalactic hadronic gamma rays encode an average cosmic-ray fluence over lines of sight out to the horizon. We examine this link and show how 6Li and gamma-rays can be used together to place important model-independent limits on the cosmic-ray history of our Galaxy and the universe. We first constrain gamma-ray production from ordinary Galactic cosmic rays, using the local 6Li abundance. We find that the solar 6Li abundance demands an accompanying extragalactic pionic gamma-ray intensity which exceeds that of the entire observed EGRB by a factor of 2-6. Possible explanations for this discrepancy are discussed. We then constrain Li production using recent determinations of extragalactic gamma-ray background (EGRB). We note that cosmic rays created during cosmic structure formation would lead to pre-Galactic Li production, which would act as a "contaminant" to the primordial 7Li content of metal-poor halo stars. We find the uncertainties in the observed EGRB are so large that we cannot exclude a pre-Galactic Li which is comparable to primordial 7Li. Our limits and their more model-dependent extensions will improve significantly with additional observations of 6Li in halo stars, and with improved measurements of the EGRB spectrum by GLAST. (Abriged abstract)

Brian D. Fields; Tijana Prodanovic

2004-07-15T23:59:59.000Z

110

Gamma-Ray Pulsar Studies with GLAST  

E-Print Network (OSTI)

Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

D. J. Thompson

2007-11-27T23:59:59.000Z

111

Gamma-Ray Pulsar Studies With GLAST  

SciTech Connect

Some pulsars have their maximum observable energy output in the gamma-ray band, offering the possibility of using these high-energy photons as probes of the particle acceleration and interaction processes in pulsar magnetospheres. After an extended hiatus between satellite missions, the recently-launched AGILE mission and the upcoming Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) will allow gamma-ray tests of the theoretical models developed based on past discoveries. With its greatly improved sensitivity, better angular resolution, and larger energy reach than older instruments, GLAST LAT should detect dozens to hundreds of new gamma-ray pulsars and measure luminosities, light curves, and phase-resolved spectra with unprecedented resolution. It will also have the potential to find radio-quiet pulsars like Geminga, using blind search techniques. Cooperation with radio and X-ray pulsar astronomers is an important aspect of the LAT team's planning for pulsar studies.

Thompson, D.J.; /NASA, Goddard

2011-11-23T23:59:59.000Z

112

Results from the Milagro Gamma-Ray Observatory  

E-Print Network (OSTI)

V energies, and a search for transient emission above 100 GeV from gamma-ray bursts. 1 Introduction remnants and gamma-ray bursts (GRB). Gamma rays are also produced when high-energy cosmic rays interactResults from the Milagro Gamma-Ray Observatory E. Blaufuss for the Milagro Collaboration a,1 , a

California at Santa Cruz, University of

113

ON THE X-RAY OUTBURSTS OF TRANSIENT ANOMALOUS X-RAY PULSARS AND SOFT GAMMA-RAY REPEATERS  

SciTech Connect

We show that the X-ray outburst light curves of four transient anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), namely, XTE J1810-197, SGR 0501+4516, SGR 1627-41, and CXOU J164710.2-455216, can be produced by the fallback disk model that was also applied to the outburst light curves of persistent AXPs and SGRs in our earlier work. The model solves the diffusion equation for the relaxation of a disk that has been pushed back by a soft gamma-ray burst. The sets of main disk parameters used for these transient sources are very similar to each other and to those employed in our earlier models of persistent AXPs and SGRs. There is a characteristic difference between the X-ray outburst light curves of transient and persistent sources. This can be explained by the differences in the disk surface density profiles of the transient and persistent sources in quiescence indicated by their quiescent X-ray luminosities. Our results imply that a viscous disk instability operating at a critical temperature in the range of {approx}1300-2800 K is a common property of all fallback disks around AXPs and SGRs. The effect of the instability is more pronounced and starts earlier for the sources with lower quiescent luminosities, which leads to the observable differences in the X-ray enhancement light curves of transient and persistent sources. A single active disk model with the same basic disk parameters can account for the enhancement phases of both transient and persistent AXPs and SGRs. We also present a detailed parameter study to show the effects of disk parameters on the evolution of the X-ray luminosity of AXPs and SGRs in the X-ray enhancement phases.

Cal Latin-Small-Letter-Dotless-I skan, Sirin; Ertan, Uenal [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul, 34956 (Turkey)

2012-10-20T23:59:59.000Z

114

GRB 050117: SIMULTANEOUS GAMMA-RAY AND X-RAY OBSERVATIONS WITH THE SWIFT SATELLITE Joanne E. Hill,1, 2  

E-Print Network (OSTI)

The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB from the XRT position. Subject headingg: gamma rays: bursts 1. INTRODUCTION The Swift Gamma-ray Burst Explorer (Gehrels et al. 2004) was launched on 2004 November 20 to study gamma-ray bursts (GRBs) over

Zhang, Bing

115

CONSTRAINTS ON VERY HIGH ENERGY GAMMA-RAY EMISSION FROM GAMMA-RAY BURSTS R. Atkins,1,2  

E-Print Network (OSTI)

CONSTRAINTS ON VERY HIGH ENERGY GAMMA-RAY EMISSION FROM GAMMA-RAY BURSTS R. Atkins,1,2 W. Benbow,3 emission from gamma-ray bursts (GRBs) during the prompt emission phase. Detection of >100 GeV counterparts on potential GRB models. Subject headinggs: gamma rays: bursts -- gamma rays: observations 1. INTRODUCTION

California at Santa Cruz, University of

116

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

117

Gamma-Ray Burst Physics with GLAST  

SciTech Connect

The Gamma-ray Large Area Space Telescope (GLAST) is an international space mission that will study the cosmos in the energy range 10 keV-300 GeV, the upper end of which is one of the last poorly observed region of the celestial electromagnetic spectrum. The ancestor of the GLAST/LAT was the Energetic Gamma Ray Experiment Telescope (EGRET) detector, which flew onboard the Compton Gamma Ray Observatory (CGRO). The amount of information and the step forward that the high energy astrophysics made thanks to its 9 years of observations are impressive. Nevertheless, EGRET uncovered the tip of the iceberg, raising many questions, and it is in the light of EGRET's results that the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope, the Large Area Telescope (LAT) vastly more capable than instruments own previously, as well as a secondary instrument, the GLAST Bursts Monitor, or GBM, to augment the study of gamma-ray bursts. Gamma-Ray Bursts (GRBs) science is one of the most exciting challenges for the GLAST mission, exploring the high energy emission of one of the most intense phenomena in the sky, shading light on various problems: from the acceleration of particles to the emission processes, to more exotic physics like Quantum Gravity effect. In this paper we report the work done so far in the simulation development as well as the study of the LAT sensitivity to GRB.

Omodei, N.; /INFN, Pisa

2006-10-06T23:59:59.000Z

118

Gamma-ray albedo of the moon  

E-Print Network (OSTI)

We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 4 GeV (600 MeV for the inner part of the Moon disc). Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

Igor V. Moskalenko; Troy A. Porter

2007-05-25T23:59:59.000Z

119

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Brookhaven National Laboratory, Upton, NY Beamline X1A2 - Soft x-ray diffraction and nano-imaging Beamline X17 - X-ray powder diffraction Beamline X22C - Resonant x-ray...

120

Observations of Gamma-Ray Bursts at Extreme Energies  

E-Print Network (OSTI)

of Gamma-Ray Bursts . . . . . . . . . . . . . Redshift-CRUZ OBSERVATIONS OF GAMMA-RAY BURSTS AT EXTREME ENERGIES ADedication xix Acknowledgments xx 1 Gamma-Ray Bursts 1.1

Aune, Taylor

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fireball/Blastwave Model and Soft Gamma-ray Repeaters  

E-Print Network (OSTI)

Soft gamma-ray repeaters are at determined distances and their positions are known accurately. If observed, afterglows from their soft gamma-ray bursts will provide important clues to the study of the so called "classical gamma-ray bursts". On applying the popular fireball/blastwave model of classical gamma-ray bursts to soft gamma-ray repeaters, it is found that their X-ray and optical afterglows are detectable. Monitoring of the three repeaters is solicited.

Y. F. Huang; Z. G. Dai; T. Lu

1998-10-28T23:59:59.000Z

122

DOE - Office of Legacy Management -- Exxon Ray Point Site - 032  

Office of Legacy Management (LM)

Exxon Ray Point Site - 032 FUSRAP Considered Sites Site: Exxon Ray Point Site (032) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

123

Studies of meutron star X-ray binaries  

E-Print Network (OSTI)

by type I bursts or gamma-ray bursts (GRBs), produce aspread function (PSF). Gamma-ray bursts produce a similar

Thompson, Thomas W. J.

2008-01-01T23:59:59.000Z

124

Copper Ridges Nearly Double X-ray Sensor Performance  

Science Conference Proceedings (OSTI)

... Physics Letters,* can measure X-ray energies with an ... X-rays and measure the energy based on ... by NASA and the NIST Office of Microelectronics ...

2011-10-03T23:59:59.000Z

125

SLAC National Accelerator Laboratory - Fermi's Latest Gamma-ray...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermi's Latest Gamma-ray Census Highlights Cosmic Mysteries By Francis Reddy, NASAGoddard Space Flight Center September 9, 2011 Every three hours, NASA's Fermi Gamma-ray Space...

126

Sandia National Laboratories X-ray Tube with Magnetic Electron ...  

... for the U.S. Department of Energy’s National ... high average power large area X-ray tube provides increased X-ray generation efficiency through ...

127

Inelastic X-ray and Nuclear Resonant Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Divisions Argonne Home > Advanced Photon Source > Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group...

128

POLARIX: a pathfinder mission of X-ray polarimetry  

Science Conference Proceedings (OSTI)

Compton gamma-ray polarimetry resulted in the very debated measurement of some bright gamma-ray bursts [6, 7], and in the measurement of the polarization

129

Mining Gamma-Ray Burst Data  

E-Print Network (OSTI)

Gamma-ray bursts provide what is probably one of the messiest of all astrophysical data sets. Burst class properties are indistinct, as overlapping characteristics of individual bursts are convolved with effects of instrumental and sampling biases. Despite these complexities, data mining techniques have allowed new insights to be made about gamma-ray burst data. We demonstrate how data mining techniques have simultaneously allowed us to learn about gamma-ray burst detectors and data collection, cosmological effects in burst data, and properties of burst subclasses. We discuss the exciting future of this field, and the web-based tool we are developing (with support from the NASA AISR Program). We invite others to join us in AI-guided gamma-ray burst classification (http://grb.mnsu.edu/grb/).

Jon Hakkila; Richard J. Roiger; David J. Haglin; Robert S. Mallozzi; Geoffrey N. Pendleton; Charles A. Meegan

2000-11-30T23:59:59.000Z

130

Gravitational waves and gamma-ray bursts  

E-Print Network (OSTI)

Gamma-Ray Bursts are likely associated with a catastrophic energy release in stellar mass objects. Electromagnetic observations provide important, but indirect information on the progenitor. On the other hand, gravitational waves emitted from the central source, carry direct information on its nature. In this context, I give an overview of the multi-messenger study of gamma-ray bursts that can be carried out by using electromagnetic and gravitational wave observations. I also underline the importance of joint electromagnetic and gravitational wave searches, in the absence of a gamma-ray trigger. Finally, I discuss how multi-messenger observations may probe alternative gamma-ray burst progenitor models, such as the magnetar scenario.

Alessandra Corsi; for the LIGO Scientific Collaboration; for the Virgo Collaboration

2012-04-18T23:59:59.000Z

131

Are High Energy Cosmic Rays Magnetic Monopoles?  

E-Print Network (OSTI)

We argue that magnetic monopoles can not be associated to the highest energy cosmic rays as recently suggested. Both the observed spectrum and the arrival direction disagree with observation.

C. O. Escobar; R. A. Vázquez

1997-09-15T23:59:59.000Z

132

High-Resolution X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

... In support of these efforts, we also maintain laboratory x-ray sources from 1 keV to 300 keV, energy and intensity calibration facilities, and a vacuum ...

2013-02-26T23:59:59.000Z

133

Accelerating ray tracing using constrained tetrahedralizations  

Science Conference Proceedings (OSTI)

In this paper we introduce the constrained tetrahedralization as a new acceleration structure for ray tracing. A constrained tetrahedralization of a scene is a tetrahedralization that respects the faces of the scene geometry. The closest intersection ...

Ares Lagae; Philip Dutré

2008-06-01T23:59:59.000Z

134

X-ray image intensifier phosphor  

DOE Patents (OSTI)

Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

D' Silva, A.P.; Fassel, V.A.

1975-12-01T23:59:59.000Z

135

Kaonic Atom X?ray Spectra  

Science Conference Proceedings (OSTI)

In kaonic atoms energy displacement and broadening of states result from the strong interaction. The most simple kaonic atoms like kaonic hydrogen and deuterium open the possibility to measure this strong interaction induced shift and width by x?ray spectroscopy. In the SIDDHARTA experiment al LNF (Frascati) the DA?NE electron?positron collider delivers nearly mono?energetic negatively charged kaons from ? meson decay. This unique kaon source is used to form kaonic atoms. New high performance x?ray detectors (silicon drift detectors) arranged in an array allow x?ray spectroscopy with high energy resolution combined with timing capability. High precision x?ray measurements like SIDDHARTA at LNF will open the way to study the low energy regime of the strong force in the antikaon?nucleon interaction. The experiment and its current status is presented in this talk.

J. Marton; on behalf of the SIDDHARTA Collaboration

2009-01-01T23:59:59.000Z

136

Ray-tracing Procedural Displacement Shaders  

E-Print Network (OSTI)

Displacement maps and procedural displacement shaders are a widely used approach of specifying geometric detail and increasing the visual complexity of a scene. While it is relatively straightforward to handle displacement shaders in pipeline based rendering systems such as the Reyes-architecture, it is much harder to efficiently integrate displacement-mapped surfaces in ray-tracers. Many commercial ray-tracers tessellate the surface into a multitude of small triangles. This introduces a series of problems such as excessive memory consumption and possibly undetected surface detail. In this paper we describe a novel way of ray-tracing procedural displacement shaders directly, that is, without introducing intermediate geometry. Affine arithmetic is used to compute bounding boxes for the shader over any range in the parameter domain. The method is comparable to the direct ray-tracing of B'ezier surfaces and implicit surfaces using B'ezier clipping and interval methods, respectively. Keyw...

Wolfgang Heidrich; Hans-peter Seidel

1998-01-01T23:59:59.000Z

137

Gravitational waves and short gamma ray bursts.  

E-Print Network (OSTI)

??Short hard gamma-ray bursts (GRB) are believed to be produced by compact binary coalescences (CBC) { either double neutron stars or neutron star{black hole binaries.… (more)

Predoi, Valeriu

2012-01-01T23:59:59.000Z

138

Cosmic ray propagation in galactic turbulence  

E-Print Network (OSTI)

We revisit propagation of galactic cosmic rays in light of recent advances in cosmic ray diffusion theory in realistic interstellar turbulence. We use tested model of turbulence in which it has been shown that fast modes dominate scattering of cosmic rays. As a result, propagation becomes inhomogeneous and environment dependent. By adopting the formalism of the nonlinear theory (NLT) developed by Yan & Lazarian (2008), we calculate diffusion of cosmic rays self-consistently from first principles. We assume a two-phase model for the Galaxy to account for different damping mechanisms of the fast modes, and we find that the energy dependence of the diffusion coefficient is mainly affected by medium properties. We show that it gives a correct framework to interpret some of the recent CR puzzles.

Evoli, Carmelo

2013-01-01T23:59:59.000Z

139

World's First Hard X-ray Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS is the world's most powerful X-ray laser. Its highly focused beam, which arrives in staccato bursts a few quadrillionths of a second long, allows researchers to probe complex,...

140

Diffuse gamma-rays from galactic halos  

E-Print Network (OSTI)

Here we review our current knowledge on diffuse gamma-rays from galactic halos. Estimates of the relative contribution of the various emission processes at low and high latitudes are compared to the data over 6 decades in energy. The observed spectral shape differs from what was expected, especially at ver low and very high energies. In the latter case, above 1 GeV, the sky emission related to gas exceeds the expected pi^0 decay spectrum. At energies below 1 MeV the relatively high gamma-ray intensity indicates at high density of nearly relativistic electrons which would have a strong influence on the energy and ionisation balance of the interstellar medium. Given the EGRET results for the Magellanic Clouds the gamma-ray emissivity in the outer halo is probably small, so that a substantial amount of baryonic dark matter may be hidden at 20-50 kpc radius without inducing observable gamma-ray emission.

M. Pohl

1996-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

X-ray grid-detector apparatus  

DOE Patents (OSTI)

A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

1998-01-27T23:59:59.000Z

142

Observations of Gamma Ray Bursts with AGILE  

E-Print Network (OSTI)

The AGILE satellite, in orbit since 2007, localized up to October 2009 about 1 Gamma Ray Burst (GRB) per month with the hard X-ray imager SuperAGILE (18 - 60 keV) (with a rate reduced by a factor 2-3 in spinning mode) and is detecting around 1 GRB per week with the non-imaging Mini-Calorimeter (MCAL, 0.35 - 100 MeV). Up to October 2011 the AGILE Gamma Ray Imaging Detector firmly detected four GRBs in the energy band between 20 MeV and few GeV. In this paper we review the status of the GRBs observation with AGILE and discuss the upper limits in the gamma-ray band of the non-detected events.

Longo, F; Del Monte, E; Marisaldi, M; Fuschino, F; Giuliani, A

2011-01-01T23:59:59.000Z

143

X-Ray Nanoimaging: Instruments and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

144

Can gamma-ray bursts constrain quintessence?  

E-Print Network (OSTI)

Using the narrow clustering of the geometrically corrected gamma-ray energies released by gamma-ray bursts, we investigate the possibility of using these sources as standard candles to probe cosmological parameters such as the matter density Omega_m and the cosmological constant energy density Omega_Lambda. By simulating different samples of gamma-ray bursts, we find that Omega_m can be determined with accuracy ~7% with data from 300 sources. We also show that, if Omega = 1 is due to a quintessence field, some of the models proposed in the literature may be discriminated from a Universe with cosmological constant, by a similar-sized sample of gamma-ray bursts.

T. Di Girolamo; R. Catena; M. Vietri; G. Di Sciascio

2005-04-27T23:59:59.000Z

145

Gamma Ray Bursts from Ordinary Cosmic Strings  

E-Print Network (OSTI)

We give an upper estimate for the number of gamma ray bursts from ordinary (non-superconducting) cosmic strings expected to be observed at terrestrial detectors. Assuming that cusp annihilation is the mechanism responsible for the bursts we consider strings arising at a GUT phase transition and compare our estimate with the recent BATSE results. Further we give a lower limit for the effective area of future detectors designed to detect the cosmic string induced flux of gamma ray bursts.

R. H. Brandenberger; A. T. Sornborger; M. Trodden

1993-02-12T23:59:59.000Z

146

X-Ray Emission from Compact Sources  

SciTech Connect

This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

Cominsky, L

2004-03-23T23:59:59.000Z

147

Unidentified Gamma-Ray Sources and Microquasars  

E-Print Network (OSTI)

Some phenomenological properties of the unidentified EGRET detections suggest that there are two distinct groups of galactic gamma-ray sources that might be associated with compact objects endowed with relativistic jets. We discuss different models for gamma-ray production in both microquasars with low- and high-mass stellar companions. We conclude that the parent population of low-latitude and halo variable sources might be formed by yet undetected microquasars and microblazars.

G. E. Romero; I. A Grenier; M. M. Kaufman Bernado; I. F. Mirabel; D. F. Torres

2004-02-12T23:59:59.000Z

148

Theoretical Models of Gamma-Ray Bursts  

E-Print Network (OSTI)

Models of gamma ray bursts are reviewed in the light of recent observations of afterglows which point towards a cosmological origin. The physics of fireball shock models is discussed, with attention to the type of light histories and spectra during the gamma-ray phase. The evolution of the remnants and their afterglows is considered, as well as their implications for our current understanding of the mechanisms giving rise to the bursts.

P. Meszaros

1997-11-28T23:59:59.000Z

149

Radiodetection of Cosmic Ray Extensive Air Showers  

E-Print Network (OSTI)

We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high- energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4 $\\sigma$ threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas.

D. Ardouin; A. Belletoile; D. Charrier; R. Dallier; L. Denis; P. Eschstruth; T. Gousset; F. Haddad; J. Lamblin; P. Lautridou; A. Lecacheux; D. Monnier-Ragaiggne; A. Rahmani; O. Ravel; the Codalema Collaboration

2004-12-09T23:59:59.000Z

150

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

151

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

152

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

153

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

154

Delayed Nickel Decay in Gamma Ray Bursts  

E-Print Network (OSTI)

Recently observed emission lines in the X-ray afterglow of gamma ray bursts suggest that iron group elements are either produced in the gamma ray burst, or are present nearby. If this material is the product of a thermonuclear burn, then such material would be expected to be rich in Nickel-56. If the nickel remains partially ionized, this prevents the electron capture reaction normally associated with the decay of Nickel-56, dramatically increasing the decay timescale. Here we examine the consequences of rapid ejection of a fraction of a solar mass of iron group material from the center of a collapsar/hypernova. The exact rate of decay then depends on the details of the ionization and therefore the ejection process. Future observations of iron, nickel and cobalt lines can be used to diagnose the origin of these elements and to better understand the astrophysical site of gamma ray bursts. In this model, the X-ray lines of these iron-group elements could be detected in suspected hypernovae that did not produce an observable gamma ray burst due to beaming.

G. C. McLaughlin; R. A. M. J. Wijers

2002-05-19T23:59:59.000Z

155

Compton backscattered collimated x-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

156

Compton backscattered collmated X-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

157

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

158

Edge-ray principle of nonimaging optics  

SciTech Connect

The edge-ray principle of nonimaging optics states that nonimaging devices can be designed by the mapping of edge rays from the source to the edge of the target. However, in most nonimaging reflectors, including the compound parabolic concentrator (CPC), at least part of the radiation undergoes multiple reflections, some rays even appear to be reflected infinitely many times, and closer examination reveals that some edge rays of the source are not mapped onto the edge of the target even though the CPC is indeed in two dimensions. Using a topological approach, the authors refine the formulation of the edge-ray principle to ensure its validity for all configurations. They present two different versions of the general principle. The first involves the boundaries of the different zones corresponding to a different number of reflections. The second version is stated in terms of only a single reflection, but it involves the addition of an auxiliary region of phase space. The authors discuss the use of the edge-ray principle as a design procedure for nonimaging devices. The CPC is used to illustrate all steps of the argument.

Ries, H. [Univ. of Munich (Germany); Rabl, A. [Univ. of Colorado, Boulder, CO (United States)

1994-10-01T23:59:59.000Z

159

Hard x-ray or gamma ray laser by a dense electron beam  

SciTech Connect

A dense electron beam propagating through a laser undulator can radiate a coherent x-ray or gamma ray. This lasing scheme is studied with the Landau damping theory. The analysis suggests that, with currently available physical parameters, coherent gamma rays of up to 50 keV can be generated. The electron quantum diffraction suppresses the free electron laser action, which limits the maximum radiation.

Son, S. [18 Caleb Lane, Princeton, New Jersey 08540 (United States); Joon Moon, Sung [8 Benjamin Rush Ln., Princeton, New Jersey 08540 (United States)

2012-06-15T23:59:59.000Z

160

Transient x-ray diffraction and its application to materials science and x-ray optics  

SciTech Connect

Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lag-luminosity relation in gamma-ray burst X-ray flares  

Science Conference Proceedings (OSTI)

In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L{sub p,iso}{sup 0.3-10} k{sup eV} {infinity}t{sub lag}{sup -0.95{+-}0.23}. The lag-luminosity is proven to be a fundamental law extending {approx}5 decades in time and {approx}5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

Margutti, R.

2010-10-15T23:59:59.000Z

162

Are gamma-ray bursts the sources of ultra-high energy cosmic rays?  

E-Print Network (OSTI)

We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space -- unless the baryonic loading is much larger than previously anticipated.

Philipp Baerwald; Mauricio Bustamante; Walter Winter

2014-01-08T23:59:59.000Z

163

X-Ray Data from the X-Ray Data Booklet Online  

DOE Data Explorer (OSTI)

The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

164

High spatial resolution X-ray and gamma ray imaging system using diffraction crystals  

DOE Patents (OSTI)

A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

Smither, Robert K. (Hinsdale, IL)

2011-05-17T23:59:59.000Z

165

COSMIC-RAY AND X-RAY HEATING OF INTERSTELLAR CLOUDS AND PROTOPLANETARY DISKS  

SciTech Connect

Cosmic-ray and X-ray heating are derived from the electron energy-loss calculations of Dalgarno, Yan, and Liu for hydrogen-helium gas mixtures. These authors treated the heating from elastic scattering and collisional de-excitation of rotationally excited hydrogen molecules. Here we consider the heating that can arise from all ionization and excitation processes, with particular emphasis on the reactions of cosmic-ray and X-ray generated ions with the heavy neutral species, which we refer to as chemical heating. In molecular regions, chemical heating dominates and can account for 50% of the energy expended in the creation of an ion pair. The heating per ion pair ranges in the limit of negligible electron fraction from {approx}4.3 eV for diffuse atomic gas to {approx}13 eV for the moderately dense regions of molecular clouds and to {approx}18 eV for the very dense regions of protoplanetary disks. An important general conclusion of this study is that cosmic-ray and X-ray heating depends on the physical properties of the medium, i.e., on the molecular and electron fractions, the total density of hydrogen nuclei, and, to a lesser extent, on the temperature. It is also noted that chemical heating, the dominant process for cosmic-ray and X-ray heating, plays a role in UV irradiated molecular gas.

Glassgold, Alfred E. [Astronomy Department, University of California, Berkeley, CA 94720-3411 (United States); Galli, Daniele [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 (Italy); Padovani, Marco, E-mail: aglassgold@berkeley.edu, E-mail: galli@arcetri.astro.it, E-mail: marco.padovani@lra.ens.fr [Laboratoire de Radioastronomie Millimetrique, UMR 8112 du CNRS, Ecole Normale Superieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France)

2012-09-10T23:59:59.000Z

166

Radiographic X-Ray Pulse Jitter  

Science Conference Proceedings (OSTI)

The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

2011-01-15T23:59:59.000Z

167

Cosmic Ray Interactions in Shielding Materials  

SciTech Connect

This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

2011-09-08T23:59:59.000Z

168

30TH INTERNATIONAL COSMIC RAY CONFERENCE Search for Gamma Ray Bursts using the single particle technique at the Pierre Auger  

E-Print Network (OSTI)

30TH INTERNATIONAL COSMIC RAY CONFERENCE Search for Gamma Ray Bursts using the single particle by satellites. Introduction Since their discovery at the end of the 60s[1], Gamma Ray Bursts (GRB) have been of high in- terest to astrophysics. A GRB is characterised by a sudden emission of gamma rays during

Hörandel, Jörg R.

169

GreenRay Inc | Open Energy Information  

Open Energy Info (EERE)

GreenRay Inc GreenRay Inc Jump to: navigation, search Name GreenRay Inc Place Westford, Massachusetts Zip 1886 Product US-based manufacturer of residential AC PV module system that integrates an inverter; still in development stage. Coordinates 44.614908°, -73.015053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.614908,"lon":-73.015053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

RayTracker Inc | Open Energy Information  

Open Energy Info (EERE)

RayTracker Inc RayTracker Inc Jump to: navigation, search Name RayTracker Inc. Place Pasadena, California Zip 91103 Sector Solar Product California-based maker of single-axis solar tracker systems. Coordinates 29.690847°, -95.196308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.690847,"lon":-95.196308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Muon Acceleration in Cosmic-ray Sources  

E-Print Network (OSTI)

Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in Gamma-Ray Bursts magnetars, or other sources. These source models require very high accelerating gradients, $10^{13}$ keV/cm, with the minimum gradient set by the length of the source. At gradients above 1.6 keV/cm, muons produced by hadronic interactions undergo significant acceleration before they decay. This acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. We rule out many models of linear acceleration, setting strong constraints on plasma wakefield accelerators and on models for sources like Gamma Ray Bursts and magnetars.

Spencer R. Klein; Rune Mikkelsen; Julia K. Becker Tjus

2012-08-09T23:59:59.000Z

172

CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS  

SciTech Connect

The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10{sup 18} eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10{sup -3} of the average. Difficulties with these avoidance scenarios are noted.

Eichler, David [Physics Department, Ben-Gurion University, Be'er-Sheva 84105 (Israel); Pohl, Martin [Institut fuer Physik und Astronomie, Universitaet Potsdam, 14476 Potsdam-Golm (Germany)

2011-09-10T23:59:59.000Z

173

Fermi Observations of Gamma-ray Bursts  

SciTech Connect

The gamma-ray emission mechanism of Gamma-ray bursts (GRBs) are still unknown. Fermi Gamma-ray Space Telescope successfully detected high-energy (> 100 MeV) emission from 17 GRBs since its launch. Fermi revealed the distinct temporal behaviors and extra spectral component from high-energy emission. These new observational results are driving many theoretical implications, such as leptonic, hadronic and afterglow origin. The highest energy photon detected by Fermi gives a constraint on the bulk Lorentz factor of the ultra-relativistic jets of GRBs. The impact of the Fermi GRB observations extends not only to the GRB-related issues but also to the outside GRB physics, such as quantum gravity and model of the extra galactic background light.

Ohno, Masanori [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

2010-10-15T23:59:59.000Z

174

Frontiers in X-Ray Science  

Science Conference Proceedings (OSTI)

The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

Linda Young

2011-02-23T23:59:59.000Z

175

COMPTEL Observations of Gamma-ray Bursts  

E-Print Network (OSTI)

INTRODUCTION The origin of cosmic g-ray bursts is as mysterious today as it was when they were discovered more than 25 years ago. Despite a wealth of new observational data obtained with the BATSE instrument on board the Compton Gamma Ray Observatory, many of the fundamental questions remain unanswered. For instance, although BATSE has provided a tremendous statistical advantage (allowing the most accurate measurement of the spatial isotropy and inhomogeneity of burst sources ), its limited angular resolution and spectral range have given us an incomplete picture of the small-scale angular source distribution and high energy emission properties. 2,3 Furthermore, the limited angular resolution has also made it difficult to search for burst counterparts at other wavelengths. The COMPTEL instrument on board Compton measures the locations and spectra (0.75-30 MeV) of several strong g-ray bursts per year which occur within the ~1 sr fieldof -view of the main ("telescope") instrument.

Kippen Ryan Connors; R. M. Kippen; B J. Ryan; B A. Connors; B M. Mcconnell; V. Schönfelder; C J. Greiner; C M. Varendorff; W. Collmar; C W. Hermsen; D L. Kuiper; D C. Winkler; L. O. Hanlon E; K. S. O’flaherty E

1995-01-01T23:59:59.000Z

176

HETEROGENEITY IN SHORT GAMMA-RAY BURSTS  

SciTech Connect

We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

Norris, Jay P. [Physics and Astronomy Department, University of Denver, Denver, CO 80208 (United States); Gehrels, Neil [Astroparticle Physics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Scargle, Jeffrey D. [Space Science and Astrobiology Division, NASA/Ames Research Center, Moffett Field, CA 94035-1000 (United States)

2011-07-01T23:59:59.000Z

177

Radiobiological studies using gamma and x rays.  

Science Conference Proceedings (OSTI)

There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

2013-02-01T23:59:59.000Z

178

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

179

Gamma-Ray Bursts: Jets and Energetics  

E-Print Network (OSTI)

The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

D. A. Frail

2003-11-12T23:59:59.000Z

180

A Shotgun Model for Gamma Ray Bursts  

E-Print Network (OSTI)

We propose that gamma ray bursts (GRBs) are produced by a shower of heavy blobs running into circumstellar material at highly relativistic speeds. The gamma ray emission is produced in the shocks these bullets drive into the surrounding medium. The short term variability seen in GRBs is set by the slowing-down time of the bullets while the overall duration of the burst is set by the lifetime of the central engine. A requirement of this model is that the ambient medium be dense, consistent with a strong stellar wind. The efficiency of the burst can be relatively high.

S. Heinz; M. C. Begelman

1999-08-03T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Redshift indicators for gamma-ray bursts  

E-Print Network (OSTI)

The measure of the distances and luminosities of gamma-ray bursts (GRBs) led to the discovery that many GRB properties are strongly correlated with their intrinsic luminosity, leading to the construction of reliable luminosity indicators. These GRB luminosity indicators have quickly found applications, like the construction of 'pseudo-redshifts', or the measure of luminosity distances, which can be computed independently of the measure of the redshift. In this contribution I discuss various issues connected with the construction of luminosity-redshift indicators for gamma-ray bursts.

J-L. Atteia

2005-05-04T23:59:59.000Z

182

A supersymmetric model of gamma ray bursts  

E-Print Network (OSTI)

We propose a model for gamma ray bursts in which a star subject to a high level of fermion degeneracy undergoes a phase transition to a supersymmetric state. The burst is initiated by the transition of fermion pairs to sfermion pairs which, uninhibited by the Pauli exclusion principle, can drop to the ground state of minimum momentum through photon emission. The jet structure is attributed to the Bose statistics of sfermions whereby subsequent sfermion pairs are preferentially emitted into the same state (sfermion amplification by stimulated emission). Bremsstrahlung gamma rays tend to preserve the directional information of the sfermion momenta and are themselves enhanced by stimulated emission.

L. Clavelli; G. Karatheodoris

2004-03-22T23:59:59.000Z

183

Status of the Milagro $\\gamma$ Ray Observatory  

E-Print Network (OSTI)

The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

2001-01-01T23:59:59.000Z

184

Ultra-high energy cosmic rays, cascade gamma-rays, and high-energy neutrinos from gamma-ray bursts  

E-Print Network (OSTI)

Gamma-ray bursts (GRBs) are sources of energetic, highly variable fluxes of gamma rays, which demonstrates that they are powerful particle accelerators. Besides relativistic electrons, GRBs should also accelerate high-energy hadrons, some of which could escape cooling to produce ultra-high energy cosmic rays (UHECRs). Acceleration of high-energy hadrons in GRB blast waves will be established if high-energy neutrinos produced through photopion interactions in the blast wave are detected from GRBs. Limitations on the energy in nonthermal hadrons and the number of expected neutrinos are imposed by the fluxes from pair-photon cascades initiated in the same processes that produce neutrinos. Only the most powerful bursts at fluence levels >~ 3e-4 erg/cm^2 offer a realistic prospect for detection of >> TeV neutrinos. Detection of high-energy neutrinos is likely if GRB blast waves have large baryon loads and Doppler factors <~ 200. Cascade gamma rays will accompany neutrino production and might already have been detected as anomalous emission components in the spectra of some GRBs. Prospects for detection of GRBs in the Milky Way are also considered.

Charles D. Dermer; Armen Atoyan

2006-06-26T23:59:59.000Z

185

The Soft-X-Ray Spectral Shape of X-Ray-Weak Seyferts  

E-Print Network (OSTI)

(I) We observed eight Seyfert~2s and two X--ray--weak Seyfert~1/QSOs with the ROSAT PSPC, and one Seyfert~2 with the ROSAT HRI. These targets were selected from the Extended 12\\um\\ Galaxy Sample. (II) Both Seyfert~1/QSOs vary by factors of 1.5---2. The photon indices steepen in the more luminous state, consistent with the variability being mainly due to the softest X--rays, which are confined to a size of less than a parsec. (III) Both the Seyfert~2s and Seyfert~1/QSOs are best fit with a photon index of $\\Gamma\\sim3$, which is steeper than the canonical value of $\\Gamma\\sim1.7$ measured for X--ray--strong Seyferts by ROSAT and at higher energies. Several physical explanations are suggested for the steeper slopes of X--ray--weak objects. (IV) We observed one Seyfert~2, NGC~5005, with the ROSAT HRI, finding about 13\\% of the soft X--rays to come from an extended component. This and other observations suggest that different components to the soft X--ray spectrum of some, if not all, X--ray--weak Seyferts may come from spatially distinct regions.

Brian Rush; Matthew A. Malkan

1995-07-27T23:59:59.000Z

186

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Mereghetti, Sandro

2008-01-01T23:59:59.000Z

187

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Sandro Mereghetti

2008-04-01T23:59:59.000Z

188

Gamma-ray bursts: a Centauro's cry?  

E-Print Network (OSTI)

A new candidate for the gamma-ray bursts central engine is proposed: if in some energetic cosmic event a macroscopic amount of bubbles of the disoriented chiral condensate can be formed, then their subsequent decays will produce a relativistic fireball without the baryon loading problem. The neutron star to strange star transition is considered as a candidate example of such cosmic event.

Z. K. Silagadze

2003-03-04T23:59:59.000Z

189

Sharper Focusing of Hard X-rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharper Focusing of Hard X-rays FROM: Physics News Update Number 773 #1, April 12, 2006, by Phil Schewe and Ben Stein Note: This text has been slightly modified from the original. Sharper focusing of hard x-rays has been achieved with a device developed at Argonne National Lab. Because of their high energy, x-rays are hard to focus: they can be reflected from a surface but only at a glancing angle (less than a tenth of a degree); they can be refracted but the index of refraction is very close to 1, so that making efficient lenses becomes a problem; and they can be diffracted, but the relatively thick, variable pitch grating required for focusing is tricky to achieve. The Argonne device is of the diffraction type, and it consists of a stack of alternating layers of metal and silicon, made by depositing progressively thicker layers. When the x-rays fall on such a structure, nearly edge-on, what they see is a grating (called a linear zone plate) consisting of a sort of bar-code pattern.

190

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-01-01T23:59:59.000Z

191

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-12-31T23:59:59.000Z

192

Bremsstrahlung gamma rays from light Dark Matter  

E-Print Network (OSTI)

We discuss the often-neglected role of bremsstrahlung processes on the interstellar gas in computing indirect signatures of Dark Matter (DM) annihilation in the Galaxy, particularly for light DM candidates in the phenomenologically interesting O(10) GeV mass range. Especially from directions close to the Galactic Plane, the expected gamma-ray spectrum is altered via two effects: directly, by the photons emitted in the bremsstrahlung process on the interstellar gas by energetic electrons which are among the DM annihilation byproducts; indirectly, by the modification of the same electron spectrum, due to the additional energy loss process in the diffusion-loss equation (e.g. the resulting inverse Compton emission is altered). We quantify the importance of the bremsstrahlung emission in the GeV energy range, showing that it is the dominant component of the gamma-ray spectrum for some cases. We also find that, in regions in which bremsstrahlung dominates energy losses, the related gamma-ray emission is only moderately sensitive to possible large variations in the gas density. Still, we stress that, for computing precise spectra in the (sub-)GeV range, it is important to obtain a reliable description of the inner Galaxy gas distribution as well as to compute self-consistently the gamma emission and the solution to the diffusion-loss equation. For example, these are crucial issues to quantify and interpret meaningfully gamma-ray map `residuals' in terms of (light) DM annihilations.

Marco Cirelli; Pasquale D. Serpico; Gabrijela Zaharijas

2013-07-26T23:59:59.000Z

193

Massively parallel X-ray scattering simulations  

Science Conference Proceedings (OSTI)

Although present X-ray scattering techniques can provide tremendous information on the nano-structural properties of materials that are valuable in the design and fabrication of energy-relevant nano-devices, a primary challenge remains in the analyses ...

Abhinav Sarje; Xiaoye S. Li; Slim Chourou; Elaine R. Chan; Alexander Hexemer

2012-11-01T23:59:59.000Z

194

Galactic Models of Gamma-Ray Bursts  

E-Print Network (OSTI)

We describe observational evidence and theoretical calculations which support the high velocity neutron star model of gamma-ray bursts. We estimate the energetic requirements in this model, and discuss possible energy sources. we also consider radiative processes involved in the bursts.

Donald Q. Lamb; Tomasz Bulik; Paolo S. Coppi

1995-08-20T23:59:59.000Z

195

The gamma-ray burst GB 920622  

E-Print Network (OSTI)

We have analyzed the Ulysses, BATSE, and COMPTEL spectral data from the \\gamma-ray burst of June 22, 1992 (GB 920622). COMPTEL data reveal a hard to soft evolution within the first pulse of the burst, while the mean hardness ratios of the three pulses are the same. Unlike the single instrument spectra, the composite spectrum of GB 920622 averaged over the total burst duration ranging from 20 keV up to 10 MeV cannot be fit by a single power law. Instead, the spectrum shows continuous curvature across the full energy range. COMPTEL imaging and BATSE/Ulysses triangulation constrain the source location of GB 920622 to a ring sector 1.1 arcmin wide and 2 degrees long. This area has been searched for quiescent X-ray sources using \\ros survey data collected about two years before the burst. After the optical identification of the X-ray sources in and near the GRB location we conclude that no quiescent X-ray counterpart candidate for GB 920622 has been found.

Greiner, J; Bade, N; Fishman, G J; Hanlon, L O; Hurley, K; Kippen, R M; Kouveliotou, C; Preece, R D; Ryan, J; Schönfelder, V; Williams, O R; Winkler, C M; Boër, M; Niel, M

1995-01-01T23:59:59.000Z

196

X-Ray and Neutron Diffraction  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Advanced X-Ray Scattering Techniques for Multi-Length Scale ... ?-Ti using the 3DXRD station 34-ID-E at the Advanced Photon Source, Argonne National Laboratory. ... Research at APS 34-ID-E, partly funded by BES/DOE.

197

Neutrino Balls and Gamma-Ray Bursts  

E-Print Network (OSTI)

We propose a mechanism by which the neutrino emission from a supernova-type explosion can be converted into a gamma-ray burst of total energy $\\sim 10^{50}$ ergs. This occurs naturally if the explosion is situated inside a ball of trapped neutrinos, which in turn may lie at a galactic core. There are possible unique signatures of this scenario.

B. Holdom; R. A. Malaney

1993-06-17T23:59:59.000Z

198

Soft x-ray laser microscope  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

199

A supersymmetric origin of gamma ray bursts  

E-Print Network (OSTI)

Bright bursts of gamma rays from outer space have been puzzling Astronomers for more than thirty years and there is still no conceptually complete model for the phenomenon within the standard model of particle physics. Is it time to consider a supersymmetric (SUSY) origin for these bursts to add to the astronomical indications of supersymmetry from dark matter?

L. Clavelli

2004-10-01T23:59:59.000Z

200

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rise time measurement for ultrafast X-ray pulses  

Science Conference Proceedings (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

2005-04-05T23:59:59.000Z

202

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

203

The Swift Gamma-Ray Burst Mission  

E-Print Network (OSTI)

The Swift mission, scheduled for launch in early 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to determine the origin of GRBs; classify GRBs and search for new types; study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and use GRBs to study the early universe out to z>10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector; a narrow-field X-ray telescope; and a narrow-field UV/optical telescope. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of ~1 mCrab (~2x10^{-11} erg cm^{-2} s^{-1} in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients, with rapid data downlink and uplink available through the NASA TDRSS system. The mission is currently funded for 2 years of operations and the spacecraft will have a lifetime to orbital decay of ~8 years. [ABRIDGED

N. Gehrels; G Chincarini; P. Giommi; K. O. Mason; J. A. Nousek; A. A. Wells; N. E. White; S. D. Barthelmy; D. N. Burrows; L. R. Cominsky; K. C. Hurley; F. E. Marshall; P. Meszaros; P. W. A. Roming; Swift Science Team

2004-05-12T23:59:59.000Z

204

The Ptolemaic Gamma-Ray Burst Universe  

E-Print Network (OSTI)

The BATSE experiment on GRO has demonstrated the isotropic arrival directions and flat log N vs. log S of cosmic gamma-ray bursts. These data are best explained if the burst sources are distributed throughout an extended spherical Galactic halo, as previously suggested by Jennings. The halo’s radius is at least 40 Kpc, and probably is more than 100 Kpc. I consider possible origins of this halo, including primordial formation and neutron stars recoiling from their birthplaces in the Galactic disc. A simple geometrical model leads to a predicted relation between the dipole and quadrupole anisotropy. I suggest that neutron stars born with low recoil become millisecond pulsars, while those born with high recoil become the sources of gamma-ray bursts; these populations are nearly disjoint. Quiescent counterparts of gamma-ray bursts are predicted to be undetectably faint. 2 The first results from the BATSE on GRO (BATSE Science Team 1991) have revived the question of the distribution of gamma-ray burst sources in space. Their chief results, isotropy of gamma-ray burst directions and a log N vs. log S slope significantly flatter than-1.5, confirm earlier reports (see, for example, Meegan, Fishman and Wilson 1985 and the review by Cline 1984). Questions of relative calibration of different instruments and the paucity of good directional data permitted skepticism in the past. Such skepticism is no longer tenable, and the theoretical questions raised earlier must be faced. An isotropic distribution of sources implies that, out to the maximum distance of observation permitted by instrumental sensitivity, all directions contain equivalent source populations. The source population for an observed flux or fluence S is expressed as the integral N ( ˆ ? ?, S) =

J. I. Katz

1992-01-01T23:59:59.000Z

205

X-Ray Interactions with Matter  

DOE Data Explorer (OSTI)

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented. (Taken from the abstract in OSTI Record 6131765) (Specialized Interface)

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

206

X-ray imaging, spacecraft nuclear fission and cosmic ray contraband  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D 100 Awards winners R&D 100 Awards winners X-ray imaging, spacecraft nuclear fission and cosmic ray contraband detection score R&D 100 awards R&D Magazine announced the winners and three technologies from Los Alamos National Laboratory and its partners are among the honorees. July 8, 2013 MiniMAX is a battery powered, digital x-ray imaging system that is completely self-contained, lightweight, compact and portable. MiniMAX is a battery powered, digital x-ray imaging system that is completely self-contained, lightweight, compact and portable. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The innovation and creativity shown in this year's awards is truly inspiring. It gives me great confidence in the Laboratory's intellectual vitality and ongoing role in national security science. Congratulations to

207

Collapsar accretion and the gamma-ray burst X-ray light curve.  

E-Print Network (OSTI)

??We present axisymmetric hydrodynamical simulations of the long-term accretion of a rotating gamma-ray burst progenitor star, a "collapsar," onto the central compact object, which we… (more)

Lindner, Christopher Carl

2010-01-01T23:59:59.000Z

208

X-ray afterglows and spectroscopy of Gamma-Ray Bursts  

E-Print Network (OSTI)

I will review the constraints set by X-ray measurements of afterglows on several issues of GRB, with particular regard to the fireball model, the environment, the progenitor and dark GRB.

Luigi Piro

2004-02-26T23:59:59.000Z

209

**TITLE** ASP Conference Series, Vol. **VOLUME**, **PUBLICATION YEAR** **EDITORS** X-ray Transients from X-ray Binaries to Gamma Ray Bursts  

E-Print Network (OSTI)

Abstract. We discuss three classes of x-ray transients to highlight three new types of transients found with the Wide Field Cameras onboard BeppoSAX. First there are the transients related to Low Mass X-ray Binaries in outburst, typically lasting weeks to months and reaching luminosities of the Eddington limit for a few solar masses. Recently another subclass of outbursts in such binaries has been discovered, which are an order of magnitude fainter and last shorter than typical hours to days. We discuss whether they constitute a separate subset of x-ray binaries. A second class of x-ray transients are the x-ray bursts. Thermonuclear explosions on a neutron star (type I x-ray bursts) usually last of order minutes or less. We discovered a second type (called super x-ray bursts) with a duration of several hours. They relate to thermonuclear detonations much deeper in the neutron star atmosphere, possibly burning on the nuclear ashes of normal x-ray bursts. The third class are the enigmatic Fast X-ray Transients occurring at all galactic latitudes. We found that the bright ones are of two types only: either nearby coronal sources (lasting hours) or the socalled x-ray flashes (lasting minutes). The new class, the X-ray flashes, may be a new type of cosmic explosion, intermediate between supernovae and gamma ray bursts, or they may be highly redshifted gamma ray bursts. It thus appears that the three classes of x-ray transients each come in two flavors: long and short. 1.

John Heise; Jean In ’t Z

2001-01-01T23:59:59.000Z

210

High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST  

Science Conference Proceedings (OSTI)

Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

Fan, Yi-Zhong; Piran, Tsvi

2011-11-29T23:59:59.000Z

211

The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope  

SciTech Connect

The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

Grenier, Isabelle (University Paris Diderot and CEA Saclay, France)

2009-04-01T23:59:59.000Z

212

Energy Determination of X-Ray Transition Energies Using the ...  

Science Conference Proceedings (OSTI)

... We chose to measure x-ray transition energies from NIST ... This resulted in the production of x-ray emission ... would yield not only an energy scale for ...

2012-10-02T23:59:59.000Z

213

Radiological Safety Training for Radiation-Producing (X-Ray)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for General Radiation Safety Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MEV, ANSI Standard N43.3, American National Standards...

214

SLAC National Accelerator Laboratory - SLAC's X-ray Laser Explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Laser Explores Big Data Frontier By Glenn Roberts Jr. June 12, 2013 It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn...

215

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

216

SLAC National Accelerator Laboratory - SLAC X-rays Help Discover...  

NLE Websites -- All DOE Office Websites (Extended Search)

which pulses 120 times a second. In the instant before the intense X-rays destroy a nanocrystal, detectors record a flash of X-ray diffraction information. Finally, scientists use...

217

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light...

218

Microstructural Mapping Using High-Energy X-Ray Scattering  

Science Conference Proceedings (OSTI)

Abstract Scope, Advanced characterization methods at the APS permit unique in- situ ... The combination of an undulator source, brilliance preserving optics and focusing .... Ultra-Small-Angle X-Ray Scattering—X-Ray Photon Correlation ...

219

Automatic Creation of Object Hierarchies for Ray Tracing  

Science Conference Proceedings (OSTI)

Intersection calculations dominate the run time of canonical ray tracers. A common algorithm to reduce the number of intersection tests required is the intersection of rays with a tree of extents, rather than the whole database of objects. A shortcoming ...

Jeffrey Goldsmith; John Salmon

1987-05-01T23:59:59.000Z

220

The Multiwavelength Approach to Unidentified Gamma-Ray Sources  

E-Print Network (OSTI)

As the highest-energy photons, gamma rays have an inherent interest to astrophysicists and particle physicists studying high-energy, nonthermal processes. Gamma-ray telescopes complement those at other wavelengths, especially radio, optical, and X-ray, providing the broad, mutiwavelength coverage that has become such a powerful aspect of modern astrophysics. Multiwavelength techniques of various types have been developed to help identify and explore unidentified gamma-ray sources. This overview summarizes the ideas behind several of these methods.

David J. Thompson

2004-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Strengthened lithium for x-ray blast windows  

Science Conference Proceedings (OSTI)

Lithium's high x-ray transparency makes it an attractive material for windows intended to protect soft x-ray diagnostics in high energy density experiments. Pure lithium is soft and weak, but lithium mixed with lithium hydride powder becomes harder and stronger, in principle without any additional x-ray absorption. A comparison with the standard material for x-ray windows, beryllium, suggests that lithium or lithium strengthened by lithium hydride may well be an excellent option for such windows.

Pereira, N. R. [Ecopulse Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Imam, M. A. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2008-05-15T23:59:59.000Z

222

Electron and X-Ray Microscopy: Structural Characterization of ...  

Science Conference Proceedings (OSTI)

Oct 28, 2009 ... Recent Advances in Structural Characterization of Materials: Electron and X-Ray Microscopy: Structural Characterization of Nanoscale ...

223

X-rays Illuminate Ancient Archimedes Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links: Related Links: May 2005 Headlines TIP Article Press Release Walters Art Museum SSRL Home Page SLAC Home Page Stanford Home Page Tuesday, 31 May 2005 X-rays Illuminate Ancient Archimedes Text (contact: Uwe Bergmann, bergmann@slac.stanford.edu) Archimedes Figure Image provided by Will Noel, The Walters Art Museum An early transcription of Archimedes' mathematical theories has been brought to light through the probing of high-intensity x-rays at SSRL's BL6-2. The text contains part of the Method of Mechanical Theorems, one of Archimedes' most important works, which was probably copied out by a scribe in the tenth century. The parchment on which it was written was later scraped down and reused as pages in a twelfth century prayer book, producing a document known as a palimpsest (which comes from the Greek,

224

HIGH BRILLIANCE X-RAY SCATTERING FOR  

NLE Websites -- All DOE Office Websites (Extended Search)

BRILLIANCE X-RAY SCATTERING FOR BRILLIANCE X-RAY SCATTERING FOR LIFE SCIENCES (LIX) Group Leader: Lin Yang Proposal Team: O. Bilsel 1 , B. Hsiao 2 , H. Huang 3 , T. Irving 4 , A. Menzel 5 , L. Pollack 6 , C. Riekel 7 , J. Rubert 8 , H. Tsuruta 9 , L. Yang 10 1 University of Massachusetts, 2 Stony Brook University, 3 Rice University, 4 IIT, 5SLS, 6 Cornell University, 7 European Synchrotron Radiation Facility, 8 NEU, 9 Stanford Synchrotron Radiation Lightsource, 10 Brookhaven National Laboratory TECHNIQUES AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Energy range 2-20keV using undulator source. Simultaneous SAXS/WAXS to cover 0.003-3Å -1 at 12keV with 1 micron spot size * Time-resolved solution scattering with resolution of (1) microseconds to milliseconds using continuous-flow mixing (5µm x 10µm spot size) and (2) milliseconds using stopped-

225

Neutron-driven gamma-ray laser  

DOE Patents (OSTI)

A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 {angstrom} when subjected to an intense neutron flux of about 400 eV neutrons. A 250 {angstrom} thick layer of Be is provided between two layers of 100 {angstrom} thick layer of {sup 57}Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux {sup 57}Co becomes {sup 58}Co by neutron absorption. The {sup 58}Co then decays to {sup 57}Fe by 1.6 MeV proton emission. {sup 57}Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the {sup 57}Fe from the {sup 57}Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

Bowman, C.D.

1989-03-28T23:59:59.000Z

226

Real time gamma-ray signature identifier  

DOE Patents (OSTI)

A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

Rowland, Mark (Alamo, CA); Gosnell, Tom B. (Moraga, CA); Ham, Cheryl (Livermore, CA); Perkins, Dwight (Livermore, CA); Wong, James (Dublin, CA)

2012-05-15T23:59:59.000Z

227

High resolution x-ray microscope  

Science Conference Proceedings (OSTI)

The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I. [Adelphi Technology, Inc. 981-B Industrial Road, San Carlos, California 94070 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Institute of Applied Physics Problems, Kurchatova 7, Minsk 220064 (Belarus)

2007-04-30T23:59:59.000Z

228

Neutron-driven gamma-ray laser  

DOE Patents (OSTI)

A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

Bowman, Charles D. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

229

Observation of the Crab Nebula in Soft Gamma Rays with the Nuclear Compton Telescope  

E-Print Network (OSTI)

Gamma-ray bursts . . . . . . . . . . . . . . . . . . . 1.268] G. J. Fishman. The gamma-ray burst capabilities of BATSEOlson. Observations of Gamma- Ray Bursts of Cosmic Origin.

Bandstra, Mark ShenYu

2010-01-01T23:59:59.000Z

230

Sample holder for x-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with x-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, V.L.

1991-12-31T23:59:59.000Z

231

THE GAMMA-RAY BURST MYSTERY  

E-Print Network (OSTI)

Gamma-ray bursts are transient events from beyond the solar system. Besides the allure of their mysterious origin, bursts are physically fascinating because they undoubtedly require exotic physics. Optical transients coincident with burst positions show that some, and probably all, bursts originate at cosmological distances, and not from a large Galactic halo. Observations of these events ’ spectral and temporal behavior will guide and constrain the study of the physical processes producing this extragalactic phenomenon. 1

David L. Band

1997-01-01T23:59:59.000Z

232

BL Lacertae Objects and the Extragalactic Gamma-Ray Background  

E-Print Network (OSTI)

A tight correlation between gamma-ray and radio emission is found for a sample of BL Lacertae (BL Lac) objects detected by Fermi Gamma-ray Space Telescope (Fermi) and the Energetic Gamma-Ray Experiment Telescope (EGRET). The gamma-ray emission of BL Lac objects exhibits strong variability, and the detection rate of gamma-ray BL Lac objects is low, which may be related to the gamma-ray duty cycle of BL Lac objects. We estimate the gamma-ray duty cycle ~ 0.11, for BL Lac objects detected by EGRET and Fermi. Using the empirical relation of gamma-ray emission with radio emission and the estimated gamma-ray duty cycle, we derive the gamma-ray luminosity function (LF) of BL Lac objects from their radio LF. Our derived gamma-ray LF of BL Lac objects can almost reproduce that calculated with the recently released Fermi bright active galactic nuclei (AGN) sample. We find that about 45% of the extragalactic diffuse gamma-ray background (EGRB) is contributed by BL Lac objects. Combining the estimate of the quasar contri...

Li, Fan

2011-01-01T23:59:59.000Z

233

X-ray Microscopy and Imaging: 2-BM  

NLE Websites -- All DOE Office Websites (Extended Search)

BM BM Introduction The 2-BM beamline offers measurement capabilities for x-ray microtomography, x-ray topography and x-ray microdiffraction. X-ray microtomography and x-ray diffraction instruments are installed on separate optical tables for independent operation with fast switch over time. Optically-coupled high-resolution CCD system is used for microtomography and topography with up to 1 micron spatial resolution. X-ray microdiffraction setup consists of KB microfocussing mirrors (~3 micron minimum spot), four-circle Huber diffractometer, high-precision translation sample stage, two orthogonally-mounted video cameras for viewing sample, fluorescence detector (Si-drift diode) and diffraction detector (a scintillation detector or a CCD). Three different levels of monochromaticity are available. Conventional monochromatic x-rays from a double-bounced Si (111) crystal monochromator (DCM, D E/E=1E-4), wide band-pass monochromatic x-rays from a double multilayer monochromator (DMM, D E/E=1~4E-2) and pink beam. The available x-ray range is from 5 keV to 30 keV. The lower limit is due to the x-ray windows and the upper limit is due to the critical angle of the x-ray mirror. Two different coatings (Cr and Pt) for the x-ray mirror allow either 20 keV or 30 keV energy cutoff.

234

Phase Contrast Microscopy with Soft and Hard X-rays  

E-Print Network (OSTI)

Calibration ­ Uses up part of dynamic range · Solution: ­ Soft x-rays: Back side Illumination ­ Hard xPhase Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector Benjamin Hornberger ­ Phase Contrast 101 · A Segmented Detector for Hard X-ray Microprobes ­ Segmented Silicon Chip ­ Charge

Homes, Christopher C.

235

The Biggest Bangs The Mystery of Gamma-Ray Bursts,  

E-Print Network (OSTI)

wide field of view and high duty cycle Milagro is uniquely capable of searching for gamma-ray bursts of gamma-ray bursts have come from observa- tions of afterglows over a wide spectral range. This has allowed detailed modeling of gamma-ray burst afterglow properties both as a function of time

Katz, Jonathan I.

236

The Biggest Bangs The Mystery of Gamma-Ray Bursts,  

E-Print Network (OSTI)

Physique www.sciencedirect.com Gamma-ray burst studies in the SVOM era / �tude des sursauts gamma à l s t r a c t Article history: Available online 13 April 2011 Keywords: Gamma-rays, bursts Stars Black by Elsevier Masson SAS. All rights reserved. 1. Introduction The field of gamma-ray bursts (GRBs) has rapidly

Katz, Jonathan I.

237

Gamma-Ray Bursts Nuclear Test Ban Treaty, 1963  

E-Print Network (OSTI)

Lecture 18 Gamma-Ray Bursts #12;Nuclear Test Ban Treaty, 1963 First Vela satellite pair launched and their predecessors, Vela 4, discovered the first gamma-ray bursts. The discovery was announced by Klebesadel, Strong, and Olson (ApJ, 182, 85) in 1973. #12;First Gamma-Ray Burst The Vela 5 satellites functioned from July, 1969

Harrison, Thomas

238

Quantitative Analysis of Mt. St. Helens Ash by X-Ray Diffraction and X-Ray Fluorescence Spectrometry  

Science Conference Proceedings (OSTI)

A quantitative study by x-ray diffraction, optical polarizing microscopy, and x-ray fluorescence spectrometry of fallout and ambient ash from three Mt. St. Helens eruptions has revealed a consistent picture of the mineralogical and elemental ...

Briant L. Davis; L. Ronald Johnson; Dana T. Griffen; William Revell Phillips; Robert K. Stevens; David Maughan

1981-08-01T23:59:59.000Z

239

TENDER ENERGY X-RAY ABSORPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

TENDER ENERGY X-RAY ABSORPTION TENDER ENERGY X-RAY ABSORPTION SPECTROSCOPY (TES) Project Team: S. Bare 1,2 , J. Brandes 3 , T. Buonassisi 4 , J. Chen 5,2 , M. Croft 6 , E. DiMasi 7 , A. Frenkel 8,2 , D. Hesterberg 9 , S. Hulbert 7,2 , S. Khalid 7 , S. Myneni 10 , P. Northrup 7,11 , E.T. Rasbury 11 , B. Ravel 12 , R. Reeder 11 , J. Rodriguez 7,2 , D. Sparks 5,13 , V. Stojanoff 7 , G. Waychunas 14 1 UOP LLC, 2 Synchrotron Catalysis Consortium, 3 Skidaway Inst. of Oceanography, 4 MIT Laboratory for Photovoltaics Research, 5 Univ. of Delaware, 6 Rutgers Univ., 7 Brookhaven National Lab, 8 Yeshiva Univ., 9 North Carolina State Univ., 10 Princeton Univ., 11 Stony Brook Univ., 12 NIST, 13 Delaware Environmental Inst., 14 Lawrence Berkeley National Lab TECHNIQUES: High performance and in-situ X-ray absorption spectroscopy and spatially-resolved XAS of

240

Hard X-ray Variability of AGN  

E-Print Network (OSTI)

Aims: Active Galactic Nuclei are known to be variable throughout the electromagnetic spectrum. An energy domain poorly studied in this respect is the hard X-ray range above 20 keV. Methods: The first 9 months of the Swift/BAT all-sky survey are used to study the 14 - 195 keV variability of the 44 brightest AGN. The sources have been selected due to their detection significance of >10 sigma. We tested the variability using a maximum likelihood estimator and by analysing the structure function. Results: Probing different time scales, it appears that the absorbed AGN are more variable than the unabsorbed ones. The same applies for the comparison of Seyfert 2 and Seyfert 1 objects. As expected the blazars show stronger variability. 15% of the non-blazar AGN show variability of >20% compared to the average flux on time scales of 20 days, and 30% show at least 10% flux variation. All the non-blazar AGN which show strong variability are low-luminosity objects with L(14-195 keV) < 1E44 erg/sec. Conclusions: Concerning the variability pattern, there is a tendency of unabsorbed or type 1 galaxies being less variable than the absorbed or type 2 objects at hardest X-rays. A more solid anti-correlation is found between variability and luminosity, which has been previously observed in soft X-rays, in the UV, and in the optical domain.

V. Beckmann; S. D. Barthelmy; T. J. -L. Courvoisier; N. Gehrels; S. Soldi; J. Tueller; G. Wendt

2007-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Theory of Gamma-Ray Bursts  

E-Print Network (OSTI)

We present a specific scenario for the link between GRB and hypernovae, based on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism requires a high angular momentum in the progenitor object. The observed association of gamma-ray bursts with type Ibc supernovae leads us to consider massive helium stars that form black holes at the end of their lives as progenitors. We combine the numerical work of MacFadyen & Woosley with analytic calculations, to show that about 1E53 erg each are available to drive the fast GRB ejecta and the supernova. The GRB ejecta are driven by the power output through the open field lines, whereas the supernova is powered by closed filed lines and jet shocks. We also present a much simplified approximate derivation of these energetics. Helium stars that leave massive black-hole remnants in special ways, namely via soft X-ray transients or very massive WNL stars. Since binaries naturally have high angular momentum, we propose a link between black-hole transients and gamma-ray bursts. Recent observations of one such transient, GRO J1655-40/Nova Scorpii 1994, explicitly support this connection: its high space velocity indicates that substantial mass was ejected in the formation of the black hole, and the overabundance of alpha-nuclei, especially sulphur, indicates that the explosion energy was extreme, as in SN 1998bw/GRB 980425. (abstract shortened)

G. E. Brown; C. -H. Lee; R. A. M. J. Wijers; H. K. Lee; G. Israelian; H. A. Bethe

2000-03-23T23:59:59.000Z

242

Ultra High-Energy Cosmic Ray Observations  

E-Print Network (OSTI)

The year 2007 has furnished us with outstanding results about the origin of the most energetic cosmic rays: a flux suppression as expected from the GZK-effect has been observed in the data of the HiRes and Auger experiments and correlations between the positions of nearby AGN and the arrival directions of trans-GZK events have been observed by the Pierre Auger Observatory. The latter finding marks the beginning of ultra high-energy cosmic ray astronomy and is considered a major breakthrough starting to shed first light onto the sources of the most extreme particles in nature. This report summarizes those observations and includes other major advances of the field, mostly presented at the 30th International Cosmic Ray Conference held in Merida, Mexico, in July 2007. With increasing statistics becoming available from current and even terminated experiments, systematic differences amongst different experiments and techniques can be studied in detail which is hoped to improve our understanding of experimental tec...

Kampert, Karl-Heinz

2008-01-01T23:59:59.000Z

243

X-ray chemistry in envelopes around young stellar objects  

E-Print Network (OSTI)

We present chemical models of the envelope of a young stellar object (YSO) exposed to a central X-ray source. The models are applied to the massive star-forming region AFGL 2591 for different X-ray fluxes. The total X-ray ionization rate is dominated by the `secondary' ionization rate of H2 resulting from fast electrons. The carbon, sulphur and nitrogen chemistries are discussed. It is found that He+ and H3+ are enhanced and trigger a peculiar chemistry. Several molecular X-ray tracers are found and compared to tracers of the far ultraviolet (FUV) field. Like ultraviolet radiation fields, X-rays enhance simple hydrides, ions and radicals. In contrast to ultraviolet photons, X-rays can penetrate deep into the envelope and affect the chemistry even at large distances from the source. Whereas the FUV enhanced species cover a region of 200-300 AU, the region enhanced by X-rays is >1000 AU. Best-fit models for AFGL 2591 predict an X-ray luminosity LX > 1e+31 ergs/s with a hard X-ray spectrum TX > 3e+07 K. Furthermore, we find LX/Lbol ~ 1e-6. The chemistry of the bulk of the envelope mass is dominated by cosmic-ray induced reactions rather than by X-ray induced ionization for X-ray luminosities LX < 1e+33 ergs/s. The calculated line intensities of HCO+ and HCS+ show that high-J lines are more affected than lower J lines by the presence of X-rays due to their higher critical densities, and that such differences are detectable even with large aperture single-dish telescopes. Future instruments such as Herschel-HIFI or SOFIA will be able to observe X-ray enhanced hydrides whereas the sensitivity and spatial resolution of ALMA is well-suited to measure the size and geometry of the region affected by X-rays.

P. Staeuber; S. D. Doty; E. F. van Dishoeck; A. O. Benz

2005-06-14T23:59:59.000Z

244

The Universe Viewed in Gamma-Rays 1 Toward Ultra Short Gamma Ray Burst Ground Based De-  

E-Print Network (OSTI)

-TIME FERMI LARGE AREA TELESCOPE GAMMA-RAY BURST AFTERGLOWS C. A. Swenson1 , A. Maxham2 , P. W. A. Roming1 2010 June 11; published 2010 June 28 ABSTRACT GRB 090926A was detected by both the Gamma-ray Burst the predicted gamma-ray fluence, as would have been seen by the Burst Alert Telescope (BAT) on board Swift

Enomoto, Ryoji

245

SUPERORBITAL MODULATION OF X-RAY EMISSION FROM GAMMA-RAY BINARY LSI +61 303  

SciTech Connect

We report the discovery of a systematic constant time lag between the X-ray and radio flares of the gamma-ray binary LSI +61 303, persistent over a long, multi-year timescale. Using the data from the monitoring of the system by RXTE we show that the orbital phase of X-ray flares from the source varies from {phi}{sub X} {approx_equal} 0.35 to {phi}{sub X} {approx_equal} 0.75 on the superorbital 4.6 yr timescale. Simultaneous radio observations show that periodic radio flares always lag the X-ray flare by {Delta}{phi}{sub X-R} {approx_equal} 0.2. We propose that the constant phase lag corresponds to the time of flight of the high-energy particle-filled plasma blobs from inside the binary to the radio emission region at the distance of {approx}10 times the binary separation distance. We put forward a hypothesis that the X-ray bursts correspond to the moments of formation of plasma blobs inside the binary system.

Chernyakova, M. [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Neronov, A. [ISDC Data Center for Astrophysics, Chemin d'Ecogia 16, 1290 Versoix (Switzerland); Molkov, S.; Lutovinov, A. [Space Research Institute (IKI), 84/32 Profsoyuznaya Str., Moscow 117997 (Russian Federation); Malyshev, D. [Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna Street, Kiev 03680 (Ukraine); Pooley, G. [Astrophysics, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

2012-03-10T23:59:59.000Z

246

A Link between Prompt Optical and Prompt Gamma-Ray Emission in Gamma-Ray Bursts  

E-Print Network (OSTI)

The prompt optical emission that arrives with gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with the surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

W. T. Vestrand; P. R. Wozniak; J. A. Wren; E. E. Fenimore; T. Sakamoto; R. R. White; D. Casperson; H. Davis; S. Evans; M. Galassi; K. E. McGowan; J. A. Schier; J. W. Asa; S. D. Barthelmy; J. R. Cummings; N. Gehrels; D. Hullinger; H. A. Krimm; C. B. Markwardt; K. McLean; D. Palmer; A. Parsons; J. Tueller

2005-03-23T23:59:59.000Z

247

TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays  

E-Print Network (OSTI)

Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \\sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \\sim 10^{56} (\\Delta \\Omega / 4 \\pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as $\\gamma \\gtilde 500$. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.

Tomonori Totani

1998-10-14T23:59:59.000Z

248

Calibrating X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

Haugh, M. J.

2011-07-28T23:59:59.000Z

249

SGARFACE: A Novel Detector For Microsecond Gamma Ray Bursts  

E-Print Network (OSTI)

The Short GAmma Ray Front Air Cherenkov Experiment (SGARFACE) is operated at the Whipple Observatory utilizing the Whipple 10m gamma-ray telescope. SGARFACE is sensitive to gamma-ray bursts of more than 100MeV with durations from 100ns to 35us and provides a fluence sensitivity as low as 0.8 gamma-rays per m^2 above 200MeV (0.05 gamma-rays per m^2 above 2GeV) and allows to record the burst time structure.

S. LeBohec; F. Krennrich; G. Sleege

2005-01-11T23:59:59.000Z

250

Background X-ray Spectrum of Radioactive Samples  

Science Conference Proceedings (OSTI)

An energy-dispersive X-ray spectrometer (EDS) is commonly used with a scanning electron microscope (SEM) to analyze the elemental compositions and microstructures of a variety of samples. For example, the microstructures of nuclear fuels are commonly investigated with this technique. However, the radioactivity of some materials introduces additional X-rays that contribute to the EDS background spectrum. These X-rays are generally not accounted for in spectral analysis software, and can cause misleading results. X-rays from internal conversion [1], Bremsstrahlung [2] radiation associated with alpha ionizations and beta particle interactions [3], and gamma rays from radioactive decay can all elevate the background of radioactive materials.

Shannon Yee; Dawn E. Janney

2008-02-01T23:59:59.000Z

251

Apparatus for monitoring x-ray beam alignment  

DOE Patents (OSTI)

A self-contained, hand-held apparatus is provided for monitoring alignment of an x-ray beam in an instrument employing an x-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of x-ray beam intensities from the x-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low x-ray beam intensity. Another portion of the audible range corresponds to high x-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of x-ray fluorescent material, and a filter layer transparent to x-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the x-ray beam is aligned to a complete alignment by adjusting the x-ray beam to produce an audible sound of the maximum frequency.

Steinmeyer, P.A.

1989-09-12T23:59:59.000Z

252

GAMQUEST, a Computer Program to Identify Gamma Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

GAMQUEST GAMQUEST A Computer Program to Identify Gamma Rays Edgardo Browne, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 EBROWNE@LBL.Gov Table of Contents Introduction. Program Access and Output Files. How to Run GAMQUEST. From Individual Accounts. From Guest Account. Gamma-Ray Data. GAMQUEST, a Tool for Applied Research. Searching Strategies. Examples. Neutron Activation Analysis. Gamma-Ray Spectrum Between 100 and 800 keV. Gamma-Ray Spectrum Between 800 and 1600 keV. A List of X Rays and Gamma Rays from the Decay of 192Ir (74 hr). Run GAMQUEST from Guest Account Acknowledgments. References. 1. Introduction. The characteristic energies and intensities of gamma rays emitted by radioactive isotopes are commonly used as fingerprints for isotope

253

Direct detection of x-rays for protein crystallography  

DOE Patents (OSTI)

An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction o f the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce an image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

Atac, Muzaffer; McKay, Timothy

1997-12-01T23:59:59.000Z

254

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

255

Introduction to Neutron and X-Ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Studies of Thin Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad Röntgen 1845-1923 1895: Discovery of X-Rays 1901 W. C. Röntgen in Physics for the discovery of x-rays. 1914 M. von Laue in Physics for x-ray diffraction from crystals. 1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination. 1917 C. G. Barkla in Physics for characteristic radiation of elements. 1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy. 1927 A. H. Compton in Physics for scattering of x-rays by electrons. 1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.

256

Gamma-ray burst interaction with dense interstellar medium  

E-Print Network (OSTI)

Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneous density, distribution gamma ray burst total energy, and different viewing angles. Spectra of gamma ray burst afterglow are modeled taking into account conversion of hard photons (soft X-ray, hard UV) to soft UV and optics photons.

Maxim Barkov; Gennady Bisnovatyi-Kogan

2004-10-07T23:59:59.000Z

257

X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources  

DOE Patents (OSTI)

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

1999-05-01T23:59:59.000Z

258

Cryogenic detector development at LLNL: ultraviolet x-ray, gamma-ray and biomolecule spectroscopy  

SciTech Connect

We are developing low-temperature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present development work on these detectors and materials analysis and biomolecular mass spectrometry. We have measured thin-film Nb/Al/Al2O3/AlNb superconducting tunnel junction (STJ) X-ray detectors in the 0.2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution of 13 eV FWHM at 227 eV with an output count rate of 20,600 cts/s.

Labov, S.E.; Frank, M.; le Grand, J.B. [and others

1997-08-12T23:59:59.000Z

259

X-ray Lines in Gamma-ray Bursts and Cerenkov Line Mechanism  

E-Print Network (OSTI)

X-ray emission and absorption features are of great importance in our understanding the nature and environment of gamma-ray bursts (GRBs). So far, iron emission lines have been detected in at least four GRB afterglows. In this paper, the observational properties and physical constraints on materials surrounding GRB sources are reviewed, and several classes of theoretical models are also discussed. We will specially concentrate on the Cerenkov line mechanism, in which the broad iron lines are expected, and a small mass of Fe is required to produce the large line luminosity. In addition, our interpretation can favor the recent jet unified model for different classes of gamma-ray bursts with a standard energy reservoir.

Wei Wang

2004-07-30T23:59:59.000Z

260

EARLY THERMAL X-RAY EMISSION FROM LONG GAMMA-RAY BURSTS AND THEIR CIRCUMSTELLAR ENVIRONMENTS  

SciTech Connect

We performed a series of hydrodynamical calculations of an ultrarelativistic jet propagating through a massive star and the circumstellar matter (CSM) to investigate the interaction between the ejecta and the CSM. We succeed in distinguishing two qualitatively different cases in which the ejecta are shocked and adiabatically cool. To examine whether the cocoon expanding at subrelativistic speeds emits any observable signal, we calculate the expected photospheric emission from the cocoon. It is found that the emission can explain early thermal X-ray emission recently found in some long gamma-ray bursts (GRBs). The result implies that the difference of the circumstellar environment of long GRBs can be probed by observing their early thermal X-ray emission.

Suzuki, Akihiro [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2013-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SWIFT X-RAY TELESCOPE MONITORING OF FERMI-LAT GAMMA-RAY SOURCES OF INTEREST  

Science Conference Proceedings (OSTI)

We describe a long-term Swift monitoring program of Fermi gamma-ray sources, particularly the 23 gamma-ray ''sources of interest''.We present a systematic analysis of the Swift X-Ray Telescope light curves and hardness ratios of these sources, and we calculate excess variability. We present data for the time interval of 2004 December 22 through 2012 August 31. We describe the analysis methods used to produce these data products, and we discuss the availability of these data in an online repository, which continues to grow from more data on these sources and from a growing list of additional sources. This database should be of use to the broad astronomical community for long-term studies of the variability of these objects and for inclusion in multiwavelength studies.

Stroh, Michael C.; Falcone, Abe D. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

2013-08-15T23:59:59.000Z

262

Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos  

E-Print Network (OSTI)

Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the $10^{18}-10^{20}$ eV range. Here we review the recent developments in the photon phenomenology in the light of \\swift and \\fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.

Péter Mészáros; Katsuaki Asano; Péter Veres

2012-09-11T23:59:59.000Z

263

Compton Recoil Electron Tracking With the TIGRE Gamma-Ray Balloon Experiment  

E-Print Network (OSTI)

AGNs), pulsars, gamma-ray bursts, cosmic ray interactionssensitive to cosmic gamma-ray bursts in the energy range ofGalactic center, a single gamma-ray burst which occurred 10

Kamiya, Kaoru

2011-01-01T23:59:59.000Z

264

GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES  

SciTech Connect

Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano [Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

2012-08-20T23:59:59.000Z

265

Prompt TeV Emission from Cosmic Rays Accelerated by Gamma Ray Bursts Interacting with Surrounding Stellar Wind  

E-Print Network (OSTI)

Protons accelerated in the internal shocks of a long duration gamma ray burst can escape the fireball as cosmic rays by converting to neutrons. Hadronic interactions of these neutrons inside a stellar wind bubble created by the progenitor star will produce TeV gamma rays via neutral meson decay and synchrotron radiation by charged pion-decay electrons in the wind magnetic field. Such gamma rays should be observable from nearby gamma ray bursts by currently running and upcoming ground-based detectors.

Soebur Razzaque; Olga Mena; Charles D. Dermer

2008-10-07T23:59:59.000Z

266

High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals  

DOE Patents (OSTI)

A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

Smither, Robert K. (Hinsdale, IL)

2008-12-23T23:59:59.000Z

267

(DOI: will be inserted by hand later) Light Curves of Swift Gamma Ray Bursts  

E-Print Network (OSTI)

Abstract. Recent observations from the Swift gamma ray burst explorer indicate that a large fraction of gamma ray bursts are characterized by a canonical behaviour of the X-ray afterglows. We present an effective theory which allows us to account for X-ray light curves of both gamma ray bursts and X-ray rich flashes. We propose that gamma ray bursts originate from massive magnetic powered pulsars. Key words. gamma-rays: bursts 1.

Paolo Cea

2006-01-01T23:59:59.000Z

268

GRB 070724B: the first Gamma Ray Burst localized by SuperAGILE and its Swift X-ray Afterglow  

E-Print Network (OSTI)

GRB 070724B is the first Gamma Ray Burst localized by SuperAGILE, the hard X-ray monitor aboard the AGILE satellite. The coordinates of the event were published $\\sim 19$ hours after the trigger. The Swift X-Ray Telescope pointed at the SuperAGILE location and detected the X-ray afterglow inside the SuperAGILE error circle. The AGILE gamma-ray Tracker and Minicalorimeter did not detect any significant gamma ray emission associated with GRB 070724B in the MeV and GeV range, neither prompt nor delayed. Searches of the optical afterglow were performed by the Swift UVOT and the Palomar automated 60-inch telescopes without any significant detection. Similarly the Very Large Array did not detect a radio afterglow. This is the first GRB event with a firm upper limit in the 100 MeV -- 30 GeV energy range, associated with an X-ray afterglow.

E. Del Monte; M. Feroci; L. Pacciani; Y. Evangelista; I. Donnarumma; P. Soffitta; E. Costa; I. Lapshov; F. Lazzarotto; M. Rapisarda; A. Argan; G. Barbiellini; M. Basset; A. Bulgarelli; P. Caraveo; A. Chen; G. Di Cocco; L. Foggetta; F. Fuschino; M. Galli; F. Gianotti; A. Giuliani; C. Labanti; P. Lipari; F. Longo; M. Marisaldi; F. Mauri; S. Mereghetti; A. Morselli; A. Pellizzoni; F. Perotti; P. Picozza; M. Prest; G. Pucella; M. Tavani; M. Trifoglio; A. Trois; E. Vallazza; S. Vercellone; V. Vittorini; A. Zambra; P. Romano; D. N. Burrows; G. Chincarini; N. Gehrels; V. La Parola; P. T. O'Brien; J. P. Osborne; B. Preger; C. Pittori; L. A. Antonelli; F. Verrecchia; P. Giommi; L. Salotti

2007-12-04T23:59:59.000Z

269

A Gamma-Ray Burst Trigger Toolkit  

E-Print Network (OSTI)

The detection rate of a gamma-ray burst detector can be increased by using a count rate trigger with many accumulation times ?t and energy bands ?E. Because a burst’s peak flux varies when averaged over different ?t and ?E, the nominal sensitivity (the numerical value of the peak flux) of a trigger system is less important than how much fainter a burst could be at the detection threshold as ?t and ?E are changed. The relative sensitivity of different triggers can be quantified by referencing the detection threshold back to the peak flux for a fiducial value of ?t and ?E. This mapping between peak flux values for different sets of ?t and ?E varies from burst to burst. Quantitative estimates of the burst detection rate for a given detector and trigger system can be based on the observed rate at a measured peak flux value in this fiducial trigger. Predictions of a proposed trigger’s burst detection rate depend on the assumed burst population, and these predictions can be wildly in error for triggers that differ significantly from previous missions. I base the fiducial rate on the BATSE observations: 550 bursts per sky above a peak flux of 0.3 ph cm ?2 s ?1 averaged over ?t=1.024 s and ?E=50–300 keV. Using a sample of 100 burst lightcurves I find that triggering on all possible values of ?t that are multiples of 0.064 s decreases the average threshold peak flux on the 1.024 s timescale by a factor of 0.6. Extending ?E to lower energies includes the large flux of the X-ray background, increasing the background count rate. Consequently a low energy ?E is advantageous only for very soft bursts. Whether a large fraction of the population of bright bursts is soft is disputed; the new population of X-ray Flashes is soft but relatively faint. Subject headings: gamma-rays: bursts

unknown authors

2002-01-01T23:59:59.000Z

270

Supersymmetry and the Cosmic Ray Positron Excess  

SciTech Connect

We explore several supersymmetric alternatives to explain predictions for the cosmic ray positron excess. Light sneutrino or neutralino LSP's, and a fine-tuned model designed to provide a delta-function input, can give adequate statistical descriptions of the reported HEAT data if non-thermal production of the relic cold dark matter density dominates and/or if"boost factors" (that could originate in uncertainties from propagation or local density fluctuations) to increase the size of the signal are included. All the descriptions can be tested at the Tevatron or LHC, and some in other WIMP detecting experiments.

Kane, Gordon L.; Wang, Lian-Tao; Wang, Ting T.

2002-02-15T23:59:59.000Z

271

Neutrino Event Rates from Gamma Ray Bursts  

E-Print Network (OSTI)

We recalculate the diffuse flux of high energy neutrinos produced by Gamma Ray Bursts (GRB) in the relativistic fireball model. Although we confirm that the average single burst produces only ~10^{-2} high energy neutrino events in a detector with 1 km^2 effective area, i.e. about 10 events per year, we show that the observed rate is dominated by burst-to-burst fluctuations which are very large. We find event rates that are expected to be larger by one order of magnitude, likely more, which are dominated by a few very bright bursts. This greatly simplifies their detection.

F. Halzen; D. W. Hooper

1999-08-12T23:59:59.000Z

272

Gamma-Ray Bursts observed by INTEGRAL  

E-Print Network (OSTI)

During the first six months of operations, six Gamma Ray Bursts (GRBs) have been detected in the field of view of the INTEGRAL instruments and localized by the INTEGRAL Burst Alert System (IBAS): a software for the automatic search of GRBs and the rapid distribution of their coordinates. I describe the current performances of IBAS and review the main results obtained so far. The coordinates of the latest burst localized by IBAS, GRB 031203, have been distributed within 20 s from the burst onset and with an uncertainty radius of only 2.7 arcmin.

S. Mereghetti

2003-12-12T23:59:59.000Z

273

Can Naked Singularities Yield Gamma Ray Bursts?  

E-Print Network (OSTI)

Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\\approx2\\times 10^{16} ergs, where M_p is the Planck mass.

H. M. Antia

1998-07-09T23:59:59.000Z

274

Gamma Ray Burst Neutrinos Probing Quantum Gravity  

E-Print Network (OSTI)

Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

M. C. Gonzalez-Garcia; F. Halzen

2006-11-28T23:59:59.000Z

275

THE NEW CANGAROO TELESCOPE AND THE PROSPECT OF VHE GAMMA RAY OBSERVATION AT  

E-Print Network (OSTI)

GammaWhat about Gamma--Ray Bursts?Ray Bursts? Extremely powerful explosions happen in galaxies The Quest for Gamma Rays:The Quest for Gamma Rays: Exploring the Most Violent PlacesExploring the Most is gammaWhat is gamma--ray background light like?ray background light like? How diffuse is the gamma

Enomoto, Ryoji

276

Proton induced quasi-monochromatic x-ray beams for soft x-ray spectroscopy studies and selective x-ray fluorescence analysis  

Science Conference Proceedings (OSTI)

We present the analytical features and performance of an x-ray spectroscopy end station of moderate energy resolution operating with proton-induced quasi-monochromatic x-ray beams. The apparatus was designed, installed and operated at the 5.5 MV Tandem VdG Accelerator Laboratory of the Institute of Nuclear Physics, N.C.S.R. 'Demokritos,' Athens. The setup includes a two-level ultrahigh vacuum chamber that hosts in the lower level up to six primary targets in a rotatable holder; there, the irradiation of pure element materials-used as primary targets-with few-MeV high current ({approx}{mu}A) proton beams produces intense quasi-monochromatic x-ray beams of selectable energy. In the chamber's upper level, a six-position rotatable sample holder hosts the targets considered for x-ray spectroscopy studies. The proton-induced x-ray beam, after proper collimation, is guided to the sample position whereas various filters can be also inserted along the beam's path to eliminate the backscattered protons or/and to absorb selectively components of the x-ray beam. The apparatus incorporates an ultrathin window Si(Li) spectrometer (FWHM 136 eV at 5.89 keV) coupled with low-noise electronics capable of efficiently detecting photons down to carbon K{alpha}. Exemplary soft x-ray spectroscopy studies and results of selective x-ray fluorescence analysis are presented.

Sokaras, D. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Zarkadas, Ch. [PANalytical B.V., 7600 AA Almelo (Netherlands); Fliegauf, R.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Karydas, A. G. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Nuclear Spectrometry and Applications Laboratory, IAEA Laboratories, A-2444 Seibersdorf (Austria)

2012-12-15T23:59:59.000Z

277

X-Ray Diffraction on NIF  

SciTech Connect

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

278

Supermassive Objects as Gamma-Ray Bursters  

E-Print Network (OSTI)

We propose that the gravitational collapse of supermassive objects ($ M\\ga 10^4 M_\\odot$), either as relativistic star clusters or as single supermassive stars (which may result from stellar mergers in dense star clusters), could be a cosmological source of $\\gamma$-ray bursts. These events could provide the seeds of the supermassive black holes observed at the center of many galaxies. Collapsing supermassive objects will release a fraction of their huge gravitational binding energy as thermal neutrino pairs. We show that the accompanying neutrino/antineutrino annihilation-induced heating could drive electron/positron ``fireball'' formation, relativistic expansion, and associated $\\gamma$-ray emission. The major advantage of this model is its energetics: supermassive object collapses are far more energetic than solar mass-scale compact object mergers; therefore, the conversion of gravitational energy to fireball kinetic energy in the supermassive object scenario need not be highly efficient, nor is it necessary to invoke directional beaming. The major weakness of this model is difficulty in avoiding a baryon loading problem for one dimensional collapse scenarios.

George M. Fuller; Xiangdong Shi

1997-11-04T23:59:59.000Z

279

Two Classes of Gamma-Ray Bursts  

E-Print Network (OSTI)

If gamma-ray bursts are at cosmological distances, as suggested by their isotropy on the sky and the comparative deficiency of weak bursts, then they represent radiated energies of ? 1051 erg, and imply the release of an even greater energy. Only neutron stars and black holes have binding energies sufficient to power such extraordinarily violent and energetic events. General considerations of neutrino opacity imply1 that the escape of a neutron star’s (or black hole’s) binding energy requires a time of about 10 sec, as shown by the observed duration of neutrino emission from SN1987A. The distribution of durations of gamma-ray bursts is known2 to be bimodal, with one peak between 10 and 100 sec and the other between 0.1 and 1 sec. We hypothesize that the durations of the longer bursts may be explained as the result of the diffusion of energy, by means of neutrinos, from a forming neutron star or black hole, but that the brevity of the shorter bursts requires different physics. An alternative hypothesis supposes that all bursts (excepting soft gamma repeaters, which we do not discuss) represent a single class of events, whose differing durations reflect differences in one or more parameters. These two hypotheses may be tested using data from the recently released 3B Catalogue3.

J. I. Katz; L. M. Canel

1995-01-01T23:59:59.000Z

280

A Theory of Gamma-Ray Bursts  

E-Print Network (OSTI)

We present a specific scenario for the link between GRB and hypernovae, based on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism requires a high angular momentum in the progenitor object. The observed association of gamma-ray bursts with type Ibc supernovae leads us to consider massive helium stars that form black holes at the end of their lives as progenitors. We combine the numerical work of MacFadyen & Woosley with analytic calculations, to show that about 1E53 erg each are available to drive the fast GRB ejecta and the supernova. The GRB ejecta are driven by the power output through the open field lines, whereas the supernova is powered by closed filed lines and jet shocks. We also present a much simplified approximate derivation of these energetics. Helium stars that leave massive black-hole remnants in special ways, namely via soft X-ray transients or very massive WNL stars. Since binaries naturally have high angular momentum, we propose a link between black-hole transients a...

Brown, G E; Wijers, R A M J; Lee, H K; Israelian, G; Bethe, Hans Albrecht

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ray River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Ray River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Ray River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.96202521,"lon":-150.9200119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Tailored edge-ray reflectors for illumination  

SciTech Connect

The edge-ray principle can be used to tailor a reflector. However, one set of edge rays already fully determines the reflector profile. We present a design method for tailoring compact compound elliptical concentrator (CEC)-type reflectors to a given source and a desired angular power distribution. Two reflected images of the source, one on each side of the source, contribute together with the direct radiation from the source to produce the desired power distribution. We determine the reflector profile by numerically solving a differential equation. No optimization is required. Beyond the angular region in which the power distribution can be strictly controlled, the power drops to zero in a finite decay range. This decay range becomes narrower as the reflector increases in size. We show a reflector for producing a strictly constant irradiance from [minus] 43 to 43 deg from a cylindrical source of constant brightness. The reflector extends to a maximum distance of 8 source diameters. No power is radiated beyond [plus minus] 50 deg.

Ries, H.R.; Winston, R. (Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States))

1994-04-01T23:59:59.000Z

283

X-ray follow-up observations of unidentified VHE gamma-ray sources  

E-Print Network (OSTI)

A large fraction of the recently discovered Galactic Very High Energy (VHE) source population remains unidentified to date. VHE gamma-ray emission traces high energy particles in these sources, but for example in case of hadronic processes also the gas density at the emission site. Moreover, the particles have sufficiently long lifetimes to be able to escape from their acceleration sites. Therefore, the gamma-ray sources or at least the areas of maximum surface brightness are in many cases spatially offset from the actual accelerators. A promising way to identify the objects in which the particles are accelerated seems to be to search for emission signatures of the acceleration process (like emission from shock-heated plasma). Also the particles themselves (through primary or secondary synchrotron emission) can be traced in lower wavebands. Those signatures are best visible in the X-ray band, and current X-ray observatories are well suited to conduct such follow-up observations. Some aspects of the current status of these investigations are reviewed.

Gerd Pühlhofer

2008-11-23T23:59:59.000Z

284

High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory  

DOE Data Explorer (OSTI)

The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The ôPublic Event Explorerö is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of July, 2009, makes 14,055 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

None

285

Study of Thick CZT Detectors for X-ray and Gamma-ray Astronomy  

Science Conference Proceedings (OSTI)

CdZnTe (CZT) is a wide bandgap II-VI semiconductor developed for the spectroscopic detection of X-rays and {gamma}-rays at room temperature. The Swift Burst Alert Telescope is using an 5240 cm{sup 2} array of 2 mm thick CZT detectors for the detection of 15-150 keV X-rays from Gamma-ray Bursts. We report on the systematic tests of thicker (0.5 cm) CZT detectors with volumes between 2 cm{sup 3} and 4 cm{sup 3} which are potential detector choices for a number of future X-ray telescopes that operate in the 10 keV to a few MeV energy range. The detectors contacted in our laboratory achieve Full Width Half Maximum energy resolutions of 2.7 keV (4.5%) at 59 keV, 3 keV (2.5%) at 122 keV and 4 keV (0.6%) at 662 keV. The 59 keV and 122 keV energy resolutions are among the world-best results for 0.5 cm thick CZT detectors. We use the data set to study trends of how the energy resolution depends on the detector thickness and on the pixel pitch. Unfortunately, we do not find clear trends, indicating that even for the extremely good energy resolutions reported here, the achievable energy resolutions are largely determined by the properties of individual crystals. Somewhat surprisingly, we achieve the reported results without applying a correction of the anode signals for the depth of the interaction. Measuring the interaction depths thus does not seem to be a pre-requisite for achieving sub-1% energy resolutions at 662 keV.

Li Q.; De Geronimo G.; Beilicke, M.; Lee, K.; Garson III, A.; Guo, Q.; Martin, J.; Yin, Y.; Dowkontt, P.; Jung, I.; Krawczynski, H.

2011-02-12T23:59:59.000Z

286

Possible association of ultra-high-energy cosmic-ray events with strong gamma-ray bursts  

E-Print Network (OSTI)

We point out that each of the error boxes of the two highest-energy cosmic-ray shower events known, overlaps with that of a strong gamma-ray burst (GRB). The GRBs precede the cosmic rays by 5.5, and 11 months respectively. In one case the strongest known cosmic ray is paired with the strongest gamma-ray burst in the BATSE catalogue. The probability of this to have occurred by chance seems rather small. Without building on post-factum statistics, we think the above is remarkable enough to suggest that the cosmic ray and gamma-ray burst were produced by the same outburst. A time delay (and a small positional disparity) is expected, since the trajectory of a charged cosmic-ray particle is wriggled by intervening magnetic fields. We estimate that the Galaxy's field alone may produce a delay of the order observed. We discuss some of the implications that follow if such an association is confirmed. For example, the upper limit on the distance to the cosmic-ray source, combined with a much-better-determined position of the gamma-ray burst source, narrows greatly the volume in which to look for an optical counterpart. There is also useful information in the time delay regarding, e.g., intergalactic magnetic fields.

Mordehai Milgrom; Vladimir Usov

1995-05-03T23:59:59.000Z

287

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

288

Definition: X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to obtain specific information about the crystalline material under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances (typically in less than 20 minutes). A pure, finely ground, and homogenized sample is required for determination of the bulk composition. Additional uses include detailed

289

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

290

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

291

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

292

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

293

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

294

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

295

APS 7-BM Beamline: X-Ray Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites Useful Websites X-Ray Interactions with Matter from CRXO at LBNL. Intuitive interface for x-ray transmission and reflectivity for a wide range of materials. X-Ray Data Booklet from LBNL. Slightly outdated in places, but many useful tables of edge energies, fluorescence lines, and crystal lattice spacings. NIST XCOM Database. Powerful database of photoelectric absorption, elastic scattering, and Compton scattering cross-sections for a wide range of materials. X-Ray Server. Maintained by Sergey Stepanov at GMCA at the APS, this website has several powerful calculators for simulating x-ray reflection and diffraction. Software X-Ray Oriented Programs (XOP). This program, written by scientists at the ESRF and APS, is widely used in the synchrotron research community.

296

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

297

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

298

Density gradient free electron collisionally excited x-ray laser  

DOE Patents (OSTI)

An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

Campbell, E.M.; Rosen, M.D.

1984-11-29T23:59:59.000Z

299

AGN models for the X and gamma-ray backgrounds  

E-Print Network (OSTI)

The origin of the X-ray background spectral intensity has been a long standing problem in high energy astrophysics research. Deep X-ray surveys carried out with ROSAT and ASCA combined with the broad band spectral results of Ginga and BeppoSAX satellites strongly support the hypothesis that the bulk of the X-ray background is due to the integrated contribution of discrete sources (mainly AGNs). At higher energies the unexpected findings of the Compton Gamma Ray Observatory indicate that also the gamma-ray background is likely to be due to AGNs. I will discuss AGN--based models for the high energy backgrounds and how future observations will improve our understanding of the X and gamma-ray backgrounds and of the physics and evolution of AGNs.

Andrea Comastri

1998-12-16T23:59:59.000Z

300

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

1995-01-17T23:59:59.000Z

302

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

303

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

304

Multilayers for next generation x-ray sources  

Science Conference Proceedings (OSTI)

Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

2007-05-04T23:59:59.000Z

305

Gamma Ray Bursts, Neutron Star Quakes, and the Casimir Effect  

E-Print Network (OSTI)

We propose that the dynamic Casimir effect is a mechanism that converts the energy of neutron starquakes into $\\gamma$--rays. This mechanism efficiently produces photons from electromagnetic Casimir energy released by the rapid motion of a dielectric medium into a vacuum. Estimates based on the cutoff energy of the gamma ray bursts and the volume involved in a starquake indicate that the total gamma ray energy emission is consonant with observational requirements.

C. Carlson; T. Goldman; J. Perez-Mercader

1994-11-25T23:59:59.000Z

306

CdZnTe technology for gamma ray detectors  

Science Conference Proceedings (OSTI)

CdZnTe detector technology has been developed at NASA Goddard for imaging and spectroscopy applications in hard x-ray and gamma ray astronomy. A CdZnTe strip detector array with capabilities for arc second imaging and spectroscopy has been built as a prototype for a space flight gamma ray burst instrument. CdZnTe detectors also have applications for medical imaging

Carl Stahle; Jack Shi; Peter Shu; Scott Barthelmy; Ann Parsons; Steve Snodgrass

1998-01-01T23:59:59.000Z

307

Nuclear Criticality as a Contributor to Gamma Ray Burst Events  

E-Print Network (OSTI)

Most gamma ray bursts are able to be explained using supernovae related phenomenon. Some measured results still lack compelling explanations and a contributory cause from nuclear criticality is proposed. This is shown to have general properties consistent with various known gamma ray burst properties. The galactic origin of fast rise exponential decay gamma ray bursts is considered a strong candidate for these types of events.

Robert Bruce Hayes

2013-01-15T23:59:59.000Z

308

Ultra-short wavelength x-ray system  

DOE Patents (OSTI)

A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

2008-01-22T23:59:59.000Z

309

Inelastic cross sections from gamma-ray measurements  

Science Conference Proceedings (OSTI)

Measurements of gamma rays following neutron induced reactions have been studied with the Germanium Array for Neutron-induced Excitations (GEANIE) at the Los Alamos Neutron Science Center (LANSCE) for many years. Gamma-ray excitation functions and coincidence studies provide insight into nuclear reaction mechanisms as well as expanding our knowledge of energy levels and gamma-rays. Samples studied with Ge detectors at LANSCE range from Be to Pu. Fe, Cr and Ti have been considered for use as reference cross sections. An overview of the measurements and efforts to create a reliable neutron-induced gamma-ray reference cross section will be presented.

Nelson, Ronald Owen [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

310

NIST X-Ray Mass Attenuation Coefficients - Version History  

Science Conference Proceedings (OSTI)

... year, month day with database access date.) Hubbell, JH and Seltzer, SM (2004), Tables of X-Ray Mass Attenuation Coefficients and Mass Energy- ...

2010-10-05T23:59:59.000Z

311

4D Functional Materials Science with X-ray Microscopy  

Science Conference Proceedings (OSTI)

Ultrafast Electron Diffraction Studies of Lattice Dynamics in Thin Bismuth Films · Understanding Fatigue and Corrosion-Fatigue Behavior by In Situ 3D X-ray ...

312

Optical and X-ray Imaging Techniques for Material Characterization ...  

Science Conference Proceedings (OSTI)

Ultrafast X-ray and 2-dimensional UV Spectroscopy of TiO2 Nanoparticles: Majed Chergui1; 1Ecole Polytechnique Fédérale de Lausanne Mesoporous titanium ...

313

X-Ray and Neutron Diffraction - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Strain Determination in Nanoscale Microelectronic Materials Using X-Ray Diffraction: Conal Murray1; 1IBM T.J. Watson Research Center

314

Future Facilities for Gamma-Ray Pulsar Studies  

E-Print Network (OSTI)

Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

D. J. Thompson

2003-10-17T23:59:59.000Z

315

High Temperature X-ray Diffraction Characterization of Thermal ...  

Science Conference Proceedings (OSTI)

Application of Conical Beam X-Ray Tomography to Multi-Phase Materials ... Digital Construction and Characterization of Reticulated Porous Microstructures ...

316

Neutron and X-ray Scattering Investigations of Microscopic Energy ...  

Science Conference Proceedings (OSTI)

A Case Study in Future Energy Challenges: Towards In Situ Hard X-ray Microscopy of ... of Crystal Structure and Domain Character in Lead Free Piezoceramics.

317

APS X-ray Optics Fabrication and Characterization Facility  

SciTech Connect

The APS is in the process of assembling an X-ray Optics Fabrication and characterization Facility. This report will describe its current (as of February 1993) design.

Davey, S.

1993-02-01T23:59:59.000Z

318

The Diverse Environments of Gamma-Ray Bursts.  

E-Print Network (OSTI)

??I present results from several years of concerted observations of the afterglows and host galaxies of gamma-ray bursts (GRBs), the most energetic explosions in the… (more)

Perley, Daniel Alan

2011-01-01T23:59:59.000Z

319

X-ray compass for determining device orientation  

DOE Patents (OSTI)

An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

1999-06-15T23:59:59.000Z

320

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Phase Sensitive X-ray Imager for More Accurate Digital ...  

Livermore Lab Report. News Archive. News ... use of higher energy X-rays which would result in a lower amount of absorbed radiation to the ... testing ...

322

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings of the 12th International Clay Conference, Bahia Blanca, Argentina, July 22-28, 2001. Gibbs, D. X-ray magnetic scattering. Synchrotron Radiation News...

323

Neutron and X-Ray Studies of Advanced Materials IV  

Science Conference Proceedings (OSTI)

We propose to organize a seven-session Symposium on Neutron and X-Ray ... the advent of new powerful neutron sources such as the Spallation Neutron ...

324

Available Technologies: High Temperature Strain Cell for X-ray ...  

High Temperature Strain Cell for X-ray ... Six hexapole infrared lamps focus inside the sample chamber onto a ceramic material sample with a spherical ...

325

X-ray compass for determining device orientation  

DOE Patents (OSTI)

An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

1999-01-01T23:59:59.000Z

326

Inelastic X-ray Scattering Reveals Microscopic Transport Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inelastic X-ray Scattering Reveals Microscopic Transport Properties of Molten Aluminum Oxide The transport properties of high-temperature oxide melts are of considerable interest...

327

SLAC National Accelerator Laboratory - X-ray Laser Pulses in...  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals...

328

NIST X-Ray Transition Energies Version History  

Science Conference Proceedings (OSTI)

... Jr., P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, "X-ray transition energies: new approach to a ... [Type of medium] Available: URL [Access date]. ...

2010-10-05T23:59:59.000Z

329

Optical and X-ray Imaging Techniques for Material Characterization  

Science Conference Proceedings (OSTI)

Hyperspectral CARS Microscopy in the Fingerprint Region · In Situ X-ray ... Opportunities for Multimodal CARS Microscopy in Materials Science · Photoemission ...

330

Particle Accelerator & X-Ray Optics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hard X-Ray Quad Collimator Facilitates Microcrystallography Experiments Isotopic Abundance in Atom Trap Trace Analysis Nanomaterials Analysis using a Scanning Electron Microscope...

331

X RAY TU E WITH MAGNETI ELE TRON STEERING  

Sandia National Laboratories has created an improved efficiency compact X-ray source to address a wide range ... escape the anode and cause electron h ...

332

Temporal multiplexing radiography for dynamic x-ray imaging  

Science Conference Proceedings (OSTI)

All current x-ray imaging devices acquire images sequentially, one at a time. Using a spatially distributed multibeam x-ray source we recently demonstrated the feasibility for multiplexing x-ray imaging, which can significantly increase the data collection speed. Here we present a general methodology for dynamic x-ray imaging of an object in cyclic motion with temporal multiplexing. Compared to the conventional sequential imaging technique, where 2N-1 phase images are required and N exposures are needed for a single phase image, a temporal multiplexing of dimension 2N-1 can reduce the imaging time by a factor of N while maintaining the temporal resolution.

Cao Guohua [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Zhang Jian [Department of Radiation Oncology and Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Zhou, Otto; Lu Jianping [Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, 27599 (United States)

2009-09-15T23:59:59.000Z

333

Refractive Optics for Hard X-ray Transmission Microscopy  

Science Conference Proceedings (OSTI)

For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E. [Institute for Microstructure Technology, Karlsruhe Institute of Technology Kaiserstrasse 12, 76131 Karlsruhe (Germany); Ahrens, G.; Voigt, A. [Microresist Technology, Koepenikerstrasse 325, 12555 Berlin (Germany)

2011-09-09T23:59:59.000Z

334

Astrophysical and Astrobiological effects of Gamma-Ray Bursts.  

E-Print Network (OSTI)

??O presente trabalho tem o objetivo principal de compreender os possíveis efeitos da radiação energética de um evento de Gamma-Ray Burst (GRB) sobre o meio… (more)

Douglas Galante

2009-01-01T23:59:59.000Z

335

SLAC National Accelerator Laboratory - X-ray Science  

NLE Websites -- All DOE Office Websites (Extended Search)

energy technologies. SLAC's unique X-ray facilities - the Linac Coherent Light Source (LCLS) and the Stanford Synchrotron Radiation Lightsource (SSRL) - attract thousands of...

336

New Directions in X-ray Scattering - SSRL  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with chemically and radioactively contaminated ground-water. Ability to probe weak scattering from single crystals as function of energy (resonance) and x-ray...

337

Bibliography of NRL Works on X-Ray Fluorescence Authored ...  

Science Conference Proceedings (OSTI)

... LS Birks, and EJ Brooks, "Grain-Boundary Diffusion of Zinc in Copper ... 111 J. Gilfrich, "X-Ray Diffraction Studies on the Titanium-Nickel System," in ...

2012-10-05T23:59:59.000Z

338

In situ X-ray Characterization of Energy Storage Materials |...  

NLE Websites -- All DOE Office Websites (Extended Search)

to accurately characterize the dynamic electrochemical processes at the nanometer and atomic level, we have employed a set of complementary, in situ X-ray characterization...

339

For Prospective Users: Learn about x-ray research  

NLE Websites -- All DOE Office Websites (Extended Search)

research in the fields of materials science; biological science; physics; chemistry; environmental, geophysical, and planetary science; and innovative x-ray instrumentation....

340

Staff at sector 30, inelastic x-ray scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Status and Schedule Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science Division XSD Groups...

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Improved Treatment of X-ray Resistant & Inoperable Cancers ...  

If the electron beam can be transported to the internal cancer without exposure to tissue, ... This figure shows a comparison of X-ray radiation ...

342

Spatially-Resolved X-Ray Microdiffraction Studies Inside Individual ...  

Science Conference Proceedings (OSTI)

This talk will describe recent advances including increased scanning speed, and will describe the use of this x-ray microscope to study mesoscale structural ...

343

Development of Coherent X-Ray Diffraction Microscopy and Its ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Neutron and X-Ray Studies of Advanced Materials III. Presentation Title, 2010 ...

344

Grain Boundary Deformation Analyzed Via X-Ray Diffraction ...  

Science Conference Proceedings (OSTI)

Modeling the Influence of the Second Phase Particle Spatial Distribution on Recrystallization of AA 7050 · Near-Field High Energy X-ray Diffraction Microscopy ...

345

Applications of High Resolution X-ray Computed Tomography in ...  

Science Conference Proceedings (OSTI)

... data, including concentration profiles from x-ray absorption measurements during ... Dynamic Evolution of Liquid-liquid Phase Separation While Cooling in a

346

Determining the Uncertainty of X-Ray Absorption ...  

Science Conference Proceedings (OSTI)

... The apparatus uses a tungsten filament and a tungsten target to generate x rays and the detector contains a CZT crystal. ...

2005-01-28T23:59:59.000Z

347

X-ray Detection with Large Area Avalanche Photodiodes for ...  

Science Conference Proceedings (OSTI)

... The primary photon detector was a 12-element ... The overall energy range for the experiment was ... to directly detect X-rays with energies between 0.3 ...

2013-07-23T23:59:59.000Z

348

Spectrometry of X-Ray Beams Used for Calibrations  

Science Conference Proceedings (OSTI)

... and used to calibrate a wavelength-dispersive crystal x-ray spectrograph used by Lawrence Livermore National Laboratory (LLNL) to diagnose ...

2012-06-26T23:59:59.000Z

349

X-ray Tube with Magnetic Electron Steering - Energy ...  

The high average power large area X-ray tube provides ... Solar Photovoltaic; Solar ... Description This invention consists of a cathode and anode ...

350

Upgrade To The Pierre Auger Cosmic Ray Observatory's Lidar System.  

E-Print Network (OSTI)

??The Pierre Auger Cosmic Ray Observatory currently operates four elastic lidar systems in order to characterize the atmospheric aerosol content above the observatory. The atmospheric… (more)

Petermann, Emily B

2010-01-01T23:59:59.000Z

351

Variability of EGRET Gamma-Ray Sources  

E-Print Network (OSTI)

The variability of the high-energy gamma ray sources in the Third EGRET catalog is analyzed by a new method. We re-analyze the EGRET data to calculate a likelihood function for the flux of each source in each observation, both for detections and upper limits. These functions can be combined in a uniform manner with a simple model of the flux distribution to characterize the flux variation by a confidence interval for the relative standard deviation of the flux. The main result is a table of these values for almost all the cataloged sources. As expected, the identified pulsars are steady emitters and the blazars are mostly highly variable. The unidentified sources are heterogeneous, with greater variation at higher Galactic latitude. There is an indication that pulsar wind nebulae are associated with variable sources. There is a population of variable sources along the Galactic plane, concentrated in the inner spiral arms.

P. L. Nolan; W. F. Tompkins; I. A. Grenier; P. F. Michelson

2003-07-10T23:59:59.000Z

352

Short Gamma-Ray Bursts Are Different  

E-Print Network (OSTI)

We analyze BATSE time-tagged event (TTE) data for short gamma-ray bursts (T90 duration burst. Performing the cross-correlation between two energy bands, we measure an average lag ~ 20-40 x shorter than for long bursts, and a lag distribution close to symmetric about zero - unlike long bursts. Using a "Bayesian Block" method to identify significantly distinct pulse peaks, we find an order of magnitude fewer pulses than found in studies of long bursts. The disparity in lag magnitude is discontinuous across the ~ 2-s valley between long and short bursts. Thus, short bursts do not appear to be representable as a continuation of long bursts' temporal characteristics.

J. P. Norris; J. D. Scargle; J. T. Bonnell

2001-05-07T23:59:59.000Z

353

Millisecond Proto-Magnetars & Gamma Ray Bursts  

E-Print Network (OSTI)

In the seconds after core collapse and explosion, a thermal neutrino-driven wind emerges from the cooling, deleptonizing newly-born neutron star. If the neutron star has a large-scale magnetar-strength surface magnetic field and millisecond rotation period, then the wind is driven primarily by magneto-centrifugal slinging, and only secondarily by neutrino interactions. The strong magnetic field forces the wind to corotate with the stellar surface and the neutron star's rotational energy is efficiently extracted. As the neutron star cools, and the wind becomes increasingly magnetically-dominated, the outflow becomes relativistic. Here I review the millisecond magnetar model for long-duration gamma ray bursts and explore some of the basic physics of neutrino-magnetocentrifugal winds. I further speculate on some issues of collimation and geometry in the millisecond magnetar model.

Todd A. Thompson

2005-04-27T23:59:59.000Z

354

Perspectives on Gamma-Ray Pulsar Emission  

SciTech Connect

Pulsars are powerful sources of radiation across the electromagnetic spectrum. This paper highlights some theoretical insights into non-thermal, magnetospheric pulsar gamma-ray radiation. These advances have been driven by NASA's Fermi mission, launched in mid-2008. The Large Area Telescope (LAT) instrument on Fermi has afforded the discrimination between polar cap and slot gap/outer gap acceleration zones in young and middle-aged pulsars. Altitude discernment using the highest energy pulsar photons will be addressed, as will spectroscopic interpretation of the primary radiation mechanism in the LAT band, connecting to both polar cap/slot gap and outer gap scenarios. Focuses will mostly be on curvature radiation and magnetic pair creation, including population trends that may afford probes of the magnetospheric accelerating potential.

Baring, Matthew G. [Department of Physics and Astronomy, MS-108, Rice University, P. O. Box 1892, Houston, TX 77251-1892 (United States)

2011-09-21T23:59:59.000Z

355

Gray scale x-ray mask  

DOE Patents (OSTI)

The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

Morales, Alfredo M. (Livermore, CA); Gonzales, Marcela (Seattle, WA)

2006-03-07T23:59:59.000Z

356

Constraining Lorentz violations with Gamma Ray Bursts  

E-Print Network (OSTI)

Gamma ray bursts are excellent candidates to constrain physical models which break Lorentz symmetry. We consider deformed dispersion relations which break the boost invariance and lead to an energy-dependent speed of light. In these models, simultaneously emitted photons from cosmological sources reach Earth with a spectral time delay that depends on the symmetry breaking scale. We estimate the possible bounds which can be obtained by comparing the spectral time delays with the time resolution of available telescopes. We discuss the best strategy to reach the strongest bounds. We compute the probability of detecting bursts that improve the current bounds. The results are encouraging. Depending on the model, it is possible to build a detector that within several years will improve the present limits of 0.015 m_pl.

Maria Rodriguez Martinez; Tsvi Piran

2006-01-10T23:59:59.000Z

357

The Revival of Galactic Cosmic Ray Nucleosynthesis?  

E-Print Network (OSTI)

Because of the roughly linear correlation between Be/H and Fe/H in low metallicity halo stars, it has been argued that a ``primary'' component in the nucleosynthesis of Be must be present in addition to the ``secondary'' component from standard Galactic cosmic ray nucleosynthesis. In this paper we critically re-evaluate the evidence for the primary versus secondary character of Li, Be, and B evolution, analyzing both in the observations and in Galactic chemical evolution models. While it appears that [Be/H] versus [Fe/H] has a logarithmic slope near 1, it is rather the Be-O trend that directly arises from the physics of spallation production. Using new abundances for oxygen in halo stars based on UV OH lines, we find that the Be-O slope has a large uncertainty due to systematic effects, rendering it difficult to distinguish from the data between the secondary slope of 2 and the primary slope of 1. The possible difference between the Be-Fe and Be-O slopes is a consequence of the variation in O/Fe versus Fe: recent data suggests a negative slope rather than zero (i.e., Fe $\\propto$ O) as is often assumed. In addition to a phenomenological analysis of Be and B evolution, we have also examined the predicted LiBeB, O, and Fe trends in Galactic chemical evolution models which include outflow. Based on our results, it is possible that a good fit to the LiBeB evolution requires only traditional the Galactic cosmic ray spallation, and the (primary) neutrino-process contribution to B11. We thus suggest that these two processes might be sufficient to explain Li6, Be, and B evolution in the Galaxy, without the need for an additional primary source of Be and B.

Brian D. Fields; Keith A. Olive

1998-09-22T23:59:59.000Z

358

LONG GAMMA-RAY TRANSIENTS FROM COLLAPSARS  

Science Conference Proceedings (OSTI)

In the collapsar model for common gamma-ray bursts (GRBs), the formation of a centrifugally supported disk occurs during the first {approx}10 s following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur-blue supergiants with low mass-loss rates, tidally interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common GRB. A broad range of powers is possible, 10{sup 47}-10{sup 50} erg s{sup -1}, and this brightness could be enhanced by beaming. Such events were probably more frequent in the early universe where mass-loss rates were lower. Indeed, this could be one of the most common forms of gamma-ray transients in the universe and could be used to study first generation stars. Several events could be active in the sky at any one time. Recent examples of this sort of event may have been the Swift transients Sw-1644+57, Sw-2058+0516, and GRB 101225A.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Heger, Alexander, E-mail: woosley@ucolick.org, E-mail: alex@physics.umn.edu [Minnesota Institute of Astrophysics, School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, MN 55455 (United States)

2012-06-10T23:59:59.000Z

359

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence  

SciTech Connect

We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

Curry, John J.; Lapatovich, Walter P.; Henins, Albert (NIST)

2011-12-09T23:59:59.000Z

360

No Evidence for Gamma-Ray Burst/Abell Cluster or Gamma- Ray Burst/Radio-Quiet Quasar Correlations  

E-Print Network (OSTI)

We examine the recent claims that cosmic gamma-ray bursts are associated with either radio-quiet quasars or Abell clusters. These associations were based on positional coincidences between cataloged quasars or Abell clusters, and selected events from the BATSE 3B catalog of gamma-ray bursts. We use a larger sample of gamma-ray bursts with more accurate positions, obtained by the 3rd Interplanetary Network, to re-evaluate these possible associations. We find no evidence for either.

K. Hurley; D. H. Hartmann; C. Kouveliotou; R. M. Kippen; J. Laros; T. Cline; M. Boer

1998-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Collimation Signatures of Gamma-Ray Bursts: Jet Properties and Energetic Inferred from X-ray Afterglow Observations.  

E-Print Network (OSTI)

??Our understanding of gamma-ray bursts (GRBs) and their afterglows has progressed dramatically over the last few years thanks to the Swift mission and progress in… (more)

Racusin, Judith

2009-01-01T23:59:59.000Z

362

Magnetic Structures in Gamma-Ray Burst Jets Probed by Gamma-Ray Polarization  

E-Print Network (OSTI)

We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the Gamma-ray burst polarimeter (GAP) aboard IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of $\\Pi = 70 \\pm 22$% with statistical significance of $3.7 \\sigma$ for GRB 110301A, and $\\Pi = 84^{+16}_{-28}$% with $3.3 \\sigma$ confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. (2011). Synchrotron emission model can be consistent with all the data of the three GRBs, while photospheric quasi-thermal emission model is not favorable. We suggest that magnetic field structures in the emission region are globally-ordered fields advected from the central engine.

Daisuke Yonetoku; Toshio Murakami; Shuichi Gunji; Tatehiro Mihara; Kenji Toma; Yoshiyuki Morihara; Takuya Takahashi; Yudai Wakashima; Hajime Yonemochi; Tomonori Sakashita; Noriyuki Toukairin; Hirofumi Fujimoto; Yoshiki Kodama

2012-08-27T23:59:59.000Z

363

MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION  

SciTech Connect

We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

2012-10-10T23:59:59.000Z

364

X-ray Spectral Characteristics of GINGA Gamma-Ray Bursts  

E-Print Network (OSTI)

We have investigated the spectral characteristics of a sample of bright ?-ray bursts detected with the ?-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2- 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of ?-ray bursts. The photon spectra of the Ginga bursts are well described by a low energy slope, a bend energy, and a high energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40 % of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson’s r =-0.62) between the low energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of GRBs that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as BATSE’s, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 to 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy so BATSE tends to find breaks near the center of its

T. E. Strohmayer; E. E. Fenimore; T. Murakami; A. Yoshida

1997-01-01T23:59:59.000Z

365

X-ray spectroscopy of gamma-ray bursts: the path to the progenitor  

E-Print Network (OSTI)

Despite great observational and theoretical effort, the burst progenitor is still a mysterious object. It is generally accepted that one of the best ways to unveil its nature is the study of the properties of the close environment in which the explosion takes place. We discuss the potentiality and feasibility of time resolved X-ray spectroscopy, focusing on the prompt gamma-ray phase. We show that the study of absorption features (or continuum absorption) can reveal the radial structure of the close environment, unaccessible with different techniques. We discuss the detection of absorption in the prompt and afterglow spectra of several bursts, showing how these are consistent with gamma-ray bursts taking place in dense regions. In particular, we show that the radius and density of the surrounding cloud can be measured through the evolution of the column density in the prompt burst phase. The derived cloud properties are similar to those of the star forming cocoons and globules within molecular clouds. We conclude that the burst are likely associated with the final evolutionary stages of massive stars.

Davide Lazzati; Rosalba Perna; Gabriele Ghisellini

2002-01-17T23:59:59.000Z

366

Galactic gamma-ray bursters - an alternative source of cosmic rays at all energies  

E-Print Network (OSTI)

We propose a new hypothesis for the origin of the major part of non-solar hadronic cosmic rays (CRs) at all energies: highly relativistic, narrowly collimated jets from the birth or collapse of neutron stars (NSs) in our Galaxy accelerate ambient disk and halo matter to CR energies and disperse it in hot spots which they form when they stop in the Galactic halo. Such events are seen as cosmological gamma-ray bursts (GRBs) in other galaxies when their beamed radiation happens to point towards Earth. This source of CRs is located in the Galactic halo. It therefore explains the absence of the Greisen-Zatsepin-Kuz'min cutoff in the spectrum of the ultra-high energy CRs. The position in energy of the ``ankle'' in the CR energy spectrum is shown to arise in a natural way. Moreover, an origin of lower energy CRs in the Galactic halo naturally accounts for the high degree of isotropy of CRs around 100 TeV from airshower observations, and the small galactocentric gradient of low-energy CRs derived from gamma-ray observations.

A. Dar; R. Plaga

1999-02-09T23:59:59.000Z

367

Angular Correlations of the X-Ray Background and Clustering of Extragalactic X-Ray Sources  

E-Print Network (OSTI)

The information content of the autocorrelation function (ACF) of intensity fluctuations of the X-ray background (XRB) is analyzed. The tight upper limits set by ROSAT deep survey data on the ACF at arcmin scales imply strong constraints on clustering properties of X-ray sources at cosmological distances and on their contribution to the soft XRB. If quasars have a clustering radius r_0=12-20 Mpc (H_0=50), and their two point correlation function, is constant in comoving coordinates as indicated by optical data, they cannot make up more 40-50% of the soft XRB (the maximum contribution may reach 80% in the case of stable clustering, epsilon=0). Active Star-forming (ASF) galaxies clustered like normal galaxies, with r_0=10-12 Mpc can yield up to 20% or up to 40% of the soft XRB for epsilon=-1.2 or epsilon=0, respectively. The ACF on degree scales essentially reflects the clustering properties of local sources and is proportional to their volume emissivity. The upper limits on scales of a few degrees imply that hard X-ray selected AGNs have r_06 deg, if real, may be due to AGNs with r_0=20 Mpc; the contribution from clusters of galaxies with r_0~50 Mpc is a factor 2 lower.

L. Danese; L. Toffolatti; A. Franceschini; J. M. Martin-Mirones; G. De Zotti

1993-02-24T23:59:59.000Z

368

X-ray attenuation properties of stainless steel (u)  

SciTech Connect

Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

Wang, Lily L [Los Alamos National Laboratory; Berry, Phillip C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

369

Gravitational Waves versus Electromagnetic Emission in Gamma-Ray Bursts  

E-Print Network (OSTI)

The recent progress in the understanding the physical nature of neutron star equilibrium configurations and the first observational evidence of a genuinely Short Gamma-Ray Burst, GRB 090227B, allows to give an estimate of the gravitational waves versus electromagnetic emission in a Gamma-Ray Burst.

Jorge A. Rueda; Remo Ruffini

2012-05-31T23:59:59.000Z

370

Compact, fast and robust grids for ray tracing  

Science Conference Proceedings (OSTI)

The focus of research in acceleration structures for ray tracing recently shifted from render time to time to image, the sum of build time and render time, and also the memory footprint of acceleration structures now receives more attention. In this ... Keywords: acceleration structure, grid, perfect hashing, ray tracing, row displacement compression

Ares Lagae; Philip Dutré

2008-06-01T23:59:59.000Z

371

Hard X-ray Phase Contrast -Techniques and Applications -  

E-Print Network (OSTI)

Hard X-ray Phase Contrast Microscopy - Techniques and Applications - A Dissertation Presented of the Graduate School ii #12;Abstract of the Dissertation Hard X-ray Phase Contrast Microscopy - Techniques . . . . . . . . . . . . . . . . . . 58 3.2.4 Reconstruction Example for Integration Method . . . . 59 3.2.5 The Imaginary Part

372

A simple empirical redshift indicator for gamma-ray bursts  

E-Print Network (OSTI)

We propose a new empirical redshift indicator for gamma-ray bursts. This indicator is easily computed from the gamma-ray burst spectral parameters, and its duration, and it provides ``pseudo-redshifts'' accurate to a factor two. Possible applications of this redshift indicator are briefly discussed.

J-L Atteia

2003-04-17T23:59:59.000Z

373

Semantic image interpretation of gamma ray profiles in petroleum exploration  

Science Conference Proceedings (OSTI)

This paper presents the S-Chart framework, an approach for semantic image interpretation of line charts; and the InteliStrata system, an application for semantic interpretation of gamma ray profiles. The S-Chart framework is structured as a set of knowledge ... Keywords: Gamma ray well log, Ontology, Semantic image interpretation, Stratigraphy, Symbol grounding problem, Visual knowledge

Sandro Rama Fiorini; Mara Abel; Claiton M. S. Scherer

2011-04-01T23:59:59.000Z

374

Diffuse gamma-ray emission: Galactic and extragalactic  

E-Print Network (OSTI)

Here is reviewed our current understanding of Galactic and extragalactic diffuse gamma-ray emission. The spectrum of the extragalactic gamma-ray background above 30 MeV can be well described by a power law with photon index s=2.1. In the 2-10 MeV range a preliminary analysis of COMPTEL data indicates a lower intensity than previously found, with no evidence for an MeV bump. Most of the models of a truly diffuse background seem to be in conflict with the observed spectrum. Though AGN are the most likely input from discrete sources, two independent attempts to model the high energy background as the superposition of unresolved AGN indicate that AGN underproduce the observed intensity. Therefore the origin of the extragalactic gamma-ray background is still unknown. The Galactic diffuse gamma-ray continuum is more intense than expected both at very low energies (energies (> 1 GeV). The published models for these excesses all involve cosmic ray electron interactions. While the low energy excess may have something to do with in-situ acceleration of electrons, the excess at high energies may be understood if the sources of cosmic ray electrons are discrete. The measured energy spectrum of the diffuse Galactic gamma-ray continuum radiation thus may provide new insights into the acceleration of cosmic rays.

Martin Pohl

1998-07-27T23:59:59.000Z

375

High-energy x-ray production with pyroelectric crystals  

Science Conference Proceedings (OSTI)

The invention of pyroelectric x-ray generator technology has enabled researchers to develop ultraportable, low-power x-ray sources for use in imaging, materials analysis, and other applications. For many applications, the usefulness of an x-ray source is determined by its yield and endpoint energy. In x-ray fluorescence, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well as the lower-energy L-shell peaks, allowing more positive sample identification. This report shows how a paired-crystal pyroelectric source can be used to approximately double the endpoint x-ray energy, in addition to doubling the x-ray yield, versus a single-crystal source. As an example of the advantage of a paired-crystal system, we present a spectrum showing the fluorescence of the K shell of thorium using a pyroelectric source, as well as a spectrum showing the fluorescence of the K shell of lead. Also shown is an x-ray spectrum with an endpoint energy of 215 keV.

Geuther, Jeffrey A.; Danon, Yaron [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

2005-05-15T23:59:59.000Z

376

Ultrahigh Energy Cosmic Rays: New Physics or Old Physics?  

E-Print Network (OSTI)

We consider the advantages of and the problems associated with hypotheses to explain the origin of ulthrahigh energy cosmic rays (UHECR: E > 10 EeV) and the "trans GZK" cosmic rays (TGZK: E > 100 EeV), both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

F. W. Stecker

2004-07-15T23:59:59.000Z

377

Naive ray-tracing: A divide-and-conquer approach  

Science Conference Proceedings (OSTI)

We present an efficient ray-tracing algorithm which, for the first time, does not store any data structures when performing spatial subdivisions, and directly computes intersections inside the scene. This new algorithm is often faster than comparable ... Keywords: Ray tracing, divide-and-conquer, global illumination, rendering

Benjamin Mora

2011-10-01T23:59:59.000Z

378

Particle Acceleration and Gamma-Ray Production in Shell Remnants  

E-Print Network (OSTI)

A number of nearby Northern Hemisphere shell-type Supernova Remnants (SNRs) has been observed in TeV gamma rays, but none of them could be detected so far. This failure calls for a critical reevaluation of the theoretical arguments for gamma-ray emission of SNRs. The present paper discusses diffusive shock acceleration in shell-type SNRs in full kinetic theory. Emphasis is also given to the possible problems for VHE gamma-ray production due to the environmental conditions a SN progenitor finds itself in. Observational upper limits are compared with theoretical predictions for the gamma-ray flux. Empirical arguments from the observation of X-ray power law continua for electron-induced Inverse Compton gamma-ray emission at TeV energies are discussed in their relation to the nucleonic Pi-zero decay emission from the same objects. Finally, a point is made for the simplest case of SNe Ia, expected to explode in a uniform circumstellar medium. Here in particular the very recently detected Southern Hemisphere remnant of SN 1006 is compared with Tycho's SNR. On the basis of the assumed parameters for the two remnants SN 1006 is tentatively identified with a remnant whose TeV gamma-ray emission is dominated by Inverse Compton radiation. Tycho might be dominantly a Pi-zero decay gamma-ray source.

H. J. Volk

1997-11-18T23:59:59.000Z

379

THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH  

Science Conference Proceedings (OSTI)

We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

Cohen, O.; Drake, J. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kota, J. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States)

2012-11-20T23:59:59.000Z

380

ESRF HIGHLIGHTS 2005 X-RAY ABSORPTION AND MAGNETIC SCATTERING  

E-Print Network (OSTI)

96 ESRF HIGHLIGHTS 2005 X-RAY ABSORPTION AND MAGNETIC SCATTERING References [1] C. Antoniak, J to original phenomena. These effects are observed in charge-density wave (CDW) materials. Upon cooling of the screw like dislocation shown in Figure 121b. #12;97 HIGHLIGHTS 2005 ESRF X-RAY ABSORPTION AND MAGNETIC

Paris-Sud 11, Université de

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Gamma-ray Albedo of the Moon  

E-Print Network (OSTI)

We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation; this makes it a useful "standard candle" for gamma-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo gamma rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

Igor V. Moskalenko; Troy A. Porter

2007-08-21T23:59:59.000Z

382

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to determine structures due to their incapability to crystallize or change of configuration during crystallization. In this talk, I will present the application of X-ray reflectivity and a newly developed fluctuation X-ray scattering technique to study the structures of lipid membranes and randomly oriented nanoparticles. Three different types of domain registrations occurring with

383

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray absorption spectroscopy has become an important tool in understanding the electronic structure of materials. Resonant absorption edges in the soft x-ray regime are especially interesting as they allow the study of the lighter elements, such as in organic or organo-metallic substances, as well as important L-edges of the 3d transition metals important in magnetic and oxide systems. Measurements of soft x-ray absorption spectra are inherently surface sensitive, and are plagued by issues such as extinction (in electron yield measurements) or self absorption (in fluorescence yield

384

X-RAY FLUORESCENCE MICROPROBE (XFM) TECHNIQUES AND CAPABILITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

RAY FLUORESCENCE MICROPROBE (XFM) RAY FLUORESCENCE MICROPROBE (XFM) TECHNIQUES AND CAPABILITIES APPLICATIONS WORLD-LEADING MICROFOCUSED EXAFS SPECTROSCOPY * XFM is an optimized three-pole wiggler beamline for the characterization of materials in an "as-is" state that are chemically heterogeneous at the micrometer scale via synchrotron induced X-ray fluorescence. * XFM includes instrumentation for microbeam X-ray fluorescence (µXRF), diffraction (µXRD) and fluorescence computed microtomography (FCMT) . However, it is optimized to provide users state-of-the-art microfocused Extended X-ray Absorption Fine Structure (µEXAFS) spectroscopy between 4 to 20 keV. * XFM will trade-off beam size and flux for sample configuration flexibility. This includes more readily achievable stability

385

Ray Irwin | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ray Irwin Ray Irwin Deputy Director for Science Programs Deputy Director Home Mission & Functions Deputy Director Biography Organization Staff Presentations & Testimony Federal Advisory Committees Committees of Visitors Contact Information Deputy Director for Science Programs U.S. Department of Energy SC-2/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 F: (202) 586-4120 E: sc.science@science.doe.gov U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5316 F: (301) 903-7780 E: sc.science@science.doe.gov Staff Ray Irwin Print Text Size: A A A RSS Feeds FeedbackShare Page Ray Irwin Ray Irwin Administrative Support Specialist Office of the Deputy Director for Science Programs SC-2/Forrestal, Room 7B-078

386

Gamma-ray Pulsars in a Modified Polar Cap Scenario  

E-Print Network (OSTI)

We present a polar-cap model which incorporates a likely acceleration of Sturrock pairs with their subsequent contribution to gamma-ray luminosity L_gamma. This model reproduces L_gamma for seven pulsars detected with Compton Gamma Ray Observatory experiments, avoiding at the same time the problem of the empirical gamma-ray death line of Arons (1996). Also, we estimate the efficiency of reversing newly created positrons by residual longitudinal electric field. Over the wide range of spin-down luminosity values the predicted polar-cap X-ray luminosity L_X(pc) goes as L_sd^{0.6}. Model calculations for B0823+26, B0950+08, B1929+10, and J0437-4715 are compared with existing observational constraints on thermal X-ray components.

B. Rudak; J. Dyks

1997-10-22T23:59:59.000Z

387

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

1998-01-01T23:59:59.000Z

388

Polarization mesurements of gamma ray bursts and axion like particles  

E-Print Network (OSTI)

A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of axion like particles (ALPs). Based on evidences of polarized gamma ray emission detected in several gamma ray bursts we estimated the level of ALPs induced dichroism, which could take place in the magnetized fireball environment of a GRB. This allows to estimate the sensitivity of polarization measurements of GRBs to the ALP-photon coupling. This sensitivity $\\gag\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the ALP mass $m_a=10^{-3}~{\\rm eV}$ and MeV energy spread of gamma ray emission is competitive with the sensitivity of CAST and becomes even stronger for lower ALPs masses.

Andre Rubbia; Alexander Sakharov

2008-09-03T23:59:59.000Z

389

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

1998-07-07T23:59:59.000Z

390

Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism  

NLE Websites -- All DOE Office Websites (Extended Search)

Unexpected Angular Dependence of Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Wednesday, 29 August 2007 00:00 Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and x-ray polarization, but their orientation relative to the crystallographic axes must be taken into account for accurate interpretation of XMLD data. Magnetism and X Rays

391

Prompt Optical Observations of Gamma-Ray Bursts  

E-Print Network (OSTI)

The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 square degree or better produced no detections. The earliest limiting sensitivity is mROTSE> 13.1 at 10.85 seconds (5 second exposure) after the gamma-ray rise, and the best limit is mROTSE> 16.0 at 62 minutes (897 second exposure). These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission. Subject headings: gamma rays: bursts, observations 1.

Carl Akerlof; Richard Balsano; Scott Barthelmy; Jeff Bloch; Paul Butterworth; Tom Cline; Ra Fletcher; Galen Gisler; John Heise; Jack Hills; Kevin Hurley; Robert Kehoe; Brian Lee; Stuart Marshall; Tim Mckay; Andrew Pawl; Luigi Piro; John Szymanski; Jim Wren

2000-01-01T23:59:59.000Z

392

Diffuse Gamma-Rays from Local Group Galaxies  

E-Print Network (OSTI)

Diffuse gamma-ray radiation in galaxies is produced by cosmic ray interactions with the interstellar medium. With the completion of EGRET observations, the only extragalactic object from which there has been a positive detection of diffuse gamma-ray emission is the Large Magellanic Cloud. We systematically estimate the expected diffuse gamma-ray flux from Local Group galaxies, and determine their detectability by new generation gamma-ray observatories such as GLAST. For each galaxy, the expected gamma-ray flux depends only on its total gas content and its cosmic ray flux. We present a method for calculating cosmic ray flux in these galaxies in terms of the observed rate of supernova explosions, where cosmic ray acceleration is believed to take place. The difficulty in deriving accurate supernova rates from observational data is a dominant uncertainty in our calculations. We estimate the gamma-ray flux for Local Group galaxies and find that our predictions are consistent with the observations for the LMC and with the observational upper limits for the Small Magellanic Cloud and M31. Both the Andromeda galaxy, with a flux of $\\sim 1.0 \\times 10^{-8}$ photons sec$^{-1}$ cm$^{-2}$ above 100 MeV, and the SMC, with a flux of $\\sim 1.7 \\times 10^{-8}$ photons sec$^{-1}$ cm$^{-2}$ above 100 MeV, are expected to be observable by GLAST. M33 is at the limit of detectability with a flux of $\\sim 0.11 \\times 10^{-8}$ sec$^{-1}$ cm$^{-2}$. Other Local Group galaxies are at least two orders of magnitude below GLAST sensitivity.

Vasiliki Pavlidou; Brian D. Fields

2001-05-11T23:59:59.000Z

393

THE NEW CANGAROO TELESCOPE AND THE PROSPECT OF VHE GAMMA RAY OBSERVATION AT  

E-Print Network (OSTI)

), the doppler boosting of secondary gamma-rays is sufficient to produce TeV gamma-rays. Gamma-ray bursts: Fireballs expanding with relativistic speed explain gamma-ray bursts at cosmological distancesStudy of Celestial Objects with Very High Energy Gamma Rays CANGAROO III Project Description

Enomoto, Ryoji

394

Compton scattering effects on the duration of terrestrial gamma-ray flashes  

E-Print Network (OSTI)

; published 18 January 2012. [1] Terrestrial gamma-ray flashes (TGFs) are gamma-ray bursts detected from space) recently discovered by the gamma-ray burst monitor (GBM) aboard the Fermi Gamma-Ray Space Telescope. Introduction [2] Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from

Pasko, Victor

395

Study of Celestial Objects with Very High Energy Gamma Rays CANGAROO III  

E-Print Network (OSTI)

), the doppler boosting of secondary gamma-rays is sufficient to produce TeV gamma-rays. Gamma-ray bursts: Fireballs expanding with relativistic speed explain gamma-ray bursts at cosmological distancesStudy of Celestial Objects with Very High Energy Gamma Rays CANGAROO III Project Description

Enomoto, Ryoji

396

33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013 THE ASTROPARTICLE PHYSICS CONFERENCE  

E-Print Network (OSTI)

ilpark@skku.edu, mahuang@nuu.edu.tw Abstract: Gamma-Ray Bursts (GRBs) are the most energetic explosions. We will present the latest progress in this conference. Keywords: Gamma Ray Burst, Satellite Instruments, Coded mask, X rays 1 Gamma-Ray Burst Prompt Signal First discovered in in 1967, Gamma-Ray Bursts

397

OBSERVATIONS OF THE PROMPT GAMMA-RAY EMISSION OF GRB 070125 Eric C. Bellm,1  

E-Print Network (OSTI)

2007 November 13; accepted 2008 July 25 ABSTRACT The long, bright gamma-ray burst GRB 070125: gamma rays: bursts 1. INTRODUCTION The prompt gamma-ray emission of gamma-ray bursts (GRBs) is the mostOBSERVATIONS OF THE PROMPT GAMMA-RAY EMISSION OF GRB 070125 Eric C. Bellm,1 Kevin Hurley,1 Valentin

California at Berkeley, University of

398

Ivan De Mitri VHE Gamma Ray Astronomy 1 Very High Energy  

E-Print Network (OSTI)

~ 1/day Gamma Ray Bursts The X-ray counterpart detection with better pointing accuracy instrumentsIvan De Mitri VHE Gamma Ray Astronomy 1 Very High Energy Gamma Ray Astronomy Ivan De Mitri'Aquila, 11- Jun -2002 Photo F. Arneodo #12;Ivan De Mitri VHE Gamma Ray Astronomy 2 Seminar Outline Background

Harrison, Thomas

399

PoGO : The Polarised Gamma-ray Observer S. Larssona  

E-Print Network (OSTI)

. Recently, the detection of high linear polarisation, (80±20)%, in a gamma ray burst ob- served, this observation will have far reaching implications for models of gamma- ray bursts. Many of the X-ray and gamma-ray1 PoGO : The Polarised Gamma-ray Observer S. Larssona and M. Pearceb (for the PoGO Collaboration

Haviland, David

400

X-RAYRICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Meszaros,1,2  

E-Print Network (OSTI)

X-RAY­RICH GAMMA-RAY BURSTS, PHOTOSPHERES, AND VARIABILITY P. Me´sza´ros,1,2 E. Ramirez-Ruiz,3 M. J of the observational gamma-ray variability-luminosity relation. Subject headings: gamma rays: bursts -- radiation mechanisms: nonthermal 1. INTRODUCTION Gamma-ray burst (GRB) light curves at gamma-ray ener- gies are often

Zhang, Bing

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems  

Science Conference Proceedings (OSTI)

The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction. (LEW)

Howells, M.R.

1986-04-01T23:59:59.000Z

402

Cosmic Ray Spectrum in Supernova Remnant Shocks  

E-Print Network (OSTI)

We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion assumed, and simple models for Alfvenic drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM, if the injection fraction is larger than 10^{-4}, the DSA is efficient enough to convert more than 20 % of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to E^{-1.6}. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM, with an injection fraction smaller than 10^{-4}, are inefficient accelerators with...

Kang, Hyesung

2010-01-01T23:59:59.000Z

403

of Bright, Long Gamma-Ray Bursts  

E-Print Network (OSTI)

The time profiles of many gamma-ray bursts observed by BATSE consist of distinct pulses, which offer the possibility of characterizing the temporal structure of these bursts using a relatively small set of pulse-shape parameters. This pulse analysis has previously been performed on some bright, long bursts using binned data, and on some short bursts using BATSE Time-Tagged Event (TTE) data. The BATSE Time-to-Spill (TTS) burst data records the times required to accumulate a fixed number of photons, giving variable time resolution. The spill times recorded in the TTS data behave as a gamma distribution. We have developed an interactive pulse-fitting program using the pulse model of Norris et al. and a maximum-likelihood fitting algorithm to the gamma distribution of the spill times. We then used this program to analyze a number of bright, long bursts for which TTS data is available. We present statistical information on the attributes of pulses comprising these bursts.

Andrew Lee; Elliott Bloom; Jeffrey Scargle

1996-01-01T23:59:59.000Z

404

X-ray spectral states of microquasars  

E-Print Network (OSTI)

We discuss the origin of the dramatically different X-ray spectral shapes observed in the Low Hard State (LHS: dominated by thermal comptonisation) and the High Soft State (HSS: dominated by the accretion disc thermal emission and non-thermal comptonisation in the corona). We present numerical simulations using a new code accounting for the so-called synchrotron boiler effect. These numerical simulations when compared to the data allow us to constrain the magnetic field and temperature of the hot protons in the corona. For the hard state of Cygnus X-1 we find a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). On the other hand, our results also point toward proton temperatures that are substantially lower than typical temperatures of the ADAF models. Finally, we show that in both spectral states Comptonising plasma could be powered essentially through power-law acceleration of non-thermal electrons, which are then partly thermalised by the synchrotron and Coulomb boiler. This suggests that, contrary to current beliefs, the corona of the HSS and that of the LHS could be of very similar nature. The differences between the LHS and HSS coronal spectra would then be predominantly caused by the strong disc soft cooling emission which is present in the HSS and absent in the LHS.

Julien Malzac; Renaud Belmont

2008-10-25T23:59:59.000Z

405

A Cosmic Ray Telescope For Educational Purposes  

SciTech Connect

Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a 'telescope' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6x1.9x3.7 cm{sup 3}. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

Voulgaris, G.; Kazanas, S.; Chamilothoris, I. [Department of Physics, National and Kapodistrian University of Athens (Greece)

2010-01-21T23:59:59.000Z

406

Cosmic Rays and the Monogem Supernova Remnant  

E-Print Network (OSTI)

Recent findings indicate that the Monogem Ring supernova remnant (SNR) and the associated pulsar B0656+14 may be the 'Single Source' responsible for the knee in the cosmic ray (CR) energy spectrum at ~3 PeV. We estimate the contribution of this pulsar to CR in the PeV region. We conclude that although the pulsar can contribute to the formation of the knee, it cannot be the domimant source and a SNR is still needed. We also examine the possibility of the pulsar giving the peak of the extensive air shower (EAS) intensity observed from the region inside the Monogem Ring. If the experimental EAS results concerning a narrow source are confirmed, they can be important, since they give evidence: (i) for the acceleration of protons and heavier nuclei by the pulsar; (ii) for the existence of the confinement mechanism in SNR; (iii) that CR produced by the Monogem Ring SNR and associated pulsar B0656+14 were released recently giving rise to the formation of the knee and the observed narrow peak in the EAS intensity; (iv) for the Monogem Ring and the associated pulsar B0656+14 being identified as the Single Source proposed in our Single Source Model of the knee. A number of predictions of the examined scenario are made.

A. D. Erlykin; A. W. Wolfendale

2004-04-27T23:59:59.000Z

407

Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra  

SciTech Connect

Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing early science results.

Carraminana, Alberto [Instituto Nacional de Astrofisica, Optica y Electronica Luis Enrique Erro 1, Tonantzintla, Puebla 72840 (Mexico); Collaboration: HAWC Collaboration

2013-06-12T23:59:59.000Z

408

NEUTRINO-COOLED ACCRETION MODEL WITH MAGNETIC COUPLING FOR X-RAY FLARES IN GAMMA-RAY BURSTS  

Science Conference Proceedings (OSTI)

The neutrino-cooled accretion disk, which was proposed to work as the central engine of gamma-ray bursts, encounters difficulty in interpreting the X-ray flares after the prompt gamma-ray emission. In this paper, the magnetic coupling (MC) between the inner disk and the central black hole (BH) is taken into consideration. For mass accretion rates around 0.001 {approx} 0.1 M{sub Sun} s{sup -1}, our results show that the luminosity of neutrino annihilation can be significantly enhanced due to the coupling effects. As a consequence, after the gamma-ray emission, a remnant disk with mass M{sub disk} {approx}ray flares with the rest frame duration less than 100 s. In addition, a comparison between the MC process and the Blandford-Znajek mechanism is shown on the extraction of BH rotational energy.

Luo Yang; Gu Weimin; Liu Tong; Lu Jufu, E-mail: guwm@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

2013-08-20T23:59:59.000Z

409

The Quest for Gamma Rays:The Quest for Gamma Rays: Exploring the Most Violent PlacesExploring the Most Violent Places  

E-Print Network (OSTI)

beyond our Galaxy. Keywords: very high energy gamma rays, pulsar, active galactic nuclei, gamma ray burst as well as about `after glow' of southern gamma ray bursts which BeppoSAX satellite detected with aboutTHE NEW CANGAROO TELESCOPE AND THE PROSPECT OF VHE GAMMA RAY OBSERVATION AT WOOMERA TADASHI KIFUNE

410

THE BRIGHT GAMMA-RAY BURST OF 2000 FEBRUARY 10: A CASE STUDY OF AN OPTICALLY DARK GAMMA-RAY BURST  

E-Print Network (OSTI)

THE BRIGHT GAMMA-RAY BURST OF 2000 FEBRUARY 10: A CASE STUDY OF AN OPTICALLY DARK GAMMA-RAY BURST L Received 2002 January 16; accepted 2002 June 8 ABSTRACT The gamma-ray burst GRB 000210 had the highest: observations -- gamma-rays: bursts 1. INTRODUCTION It is observationally well established that about half

Fynbo, Johan

411

SWIFT AND XMM-NEWTON OBSERVATIONS OF THE EXTRAORDINARY GAMMA-RAY BURST 060729: MORE THAN 125 DAYS OF X-RAY AFTERGLOW  

E-Print Network (OSTI)

SWIFT AND XMM-NEWTON OBSERVATIONS OF THE EXTRAORDINARY GAMMA-RAY BURST 060729: MORE THAN 125 DAYS:1 and absorption column density of 1 ; 1021 cmÃ?2 . Subject headinggs: gamma rays: bursts -- X-rays: bursts Online material: color figure 1. INTRODUCTION Gamma-ray bursts (GRBs) are the most powerful explosions

Zhang, Bing

412

A Search for Gamma-Ray Bursts and Pulsars, and the Application of Kalman Filters to Gamma-Ray Reconstruction  

E-Print Network (OSTI)

Part I describes the analysis of periodic and transient signals in EGRET data. A method to search for the transient flux from gamma-ray bursts independent of triggers from other gamma-ray instruments is developed. Several known gamma-ray bursts were independently detected, and there is evidence for a previously unknown gamma-ray burst candidate. Statistical methods using maximum likelihood and Bayesian inference are developed and implemented to extract periodic signals from gamma-ray sources in the presence of significant astrophysical background radiation. The analysis was performed on six pulsars and three pulsar candidates. The three brightest pulsars, Crab, Vela, and Geminga, were readily identified, and would have been detected independently in the EGRET data without knowledge of the pulse period. No significant pulsation was detected in the three pulsar candidates. Eighteen X-ray binaries were examined. None showed any evidence of periodicity. In addition, methods for calculating the detection threshold of periodic flux modulation were developed. The future hopes of gamma-ray astronomy lie in the development of the Gamma-ray Large Area Space Telescope, or GLAST. Part II describes the development and results of the particle track reconstruction software for a GLAST science prototype instrument beam test. The Kalman filtering method of track reconstruction is introduced and implemented. Monte Carlo simulations, very similar to those used for the full GLAST instrument, were performed to predict the instrumental response of the prototype. The prototype was tested in a gamma-ray beam at SLAC. The reconstruction software was used to determine the incident gamma-ray direction. It was found that the simulations did an excellent job of representing the actual instrument response.

B. B. Jones

2002-02-04T23:59:59.000Z

413

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

414

Femtosecond Time-Delay X-ray Holography  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Delay X-ray Holography Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow penetration into materials and the ability to probe structure at and below the nanometer scale. Their ultra-short duration gives information about this structure at the fundamental time-scales of atoms and molecules. The extreme intensity of the pulses will allow this information to be acquired in a single shot, so that these studies can be carried out on non-repeatable processes or on weakly-scattering objects that will be modified by the pulse. A fourth property of XFEL pulses is their high transverse coherence, which brings the promise of decades of innovation in visible optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. Making an effective use of XFEL pulses, however, will benefit from innovations that are new to both X-ray science and coherent optics. One such innovation is the new method of time-delay X-ray holography [i], recently demonstrated at the FLASH FEL at DESY in Hamburg, to measure the evolution of objects irradiated by intense pulses.

415

Feedback Heating by Cosmic Rays in Clusters of Galaxies  

E-Print Network (OSTI)

Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed AGN-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point toward a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic-ray pressure support, but none have built successful models in which cosmic-ray heating is significant. Here we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic-rays, which are injected into the ICM through diffusion or the shredding of the bubbles by Rayleigh-Taylor or Kelvin-Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P_c/P_g alternative to mechanical heating, and may become particularly compelling if GLAST detects the gamma-ray signature of cosmic-rays in clusters.

Fulai Guo; S. Peng OH

2007-06-09T23:59:59.000Z

416

Resonant Auger Effect at High X-Ray Intensity  

SciTech Connect

The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.

Rohringer, N; Santra, R

2008-03-27T23:59:59.000Z

417

X-ray emission from laser-produced plasmas  

SciTech Connect

The intensity and spectral characteristics of x-ray emitted from laser-produced plasmas have been investigated computatinoally and experimentally. a two-dimensional implosi code was used successfully to calculate laser-plasma radiation characteristics and to aid in the design of laser targets for high-yield x-ray production. Other computer codes, in use or under development predict lime strengths and energies for laser-plasma x-ray emission. An experimental effort is aimed at reliable measurements of x-ray yields and spectra. a wide variety of x-ray detection methods have been evaluated, and x-ray yields have been measured from plasmas produced with two dissimilar laser systems. The high energy x-ray spectrum, from about 10 to 140 keV, has been studied using high-gain scintillatino detectors and thick K-edge filters. Various supplementary measurements have provided information concerning characteristics of the target-reflected laser light, the ion energies, and the laser intensity patterns.

Violet, C.E. [ed.

1974-07-01T23:59:59.000Z

418

The Electron Injection Spectrum Determined by Anomalous Excesses in Cosmic Ray, Gamma Ray, and Microwave Signals  

E-Print Network (OSTI)

Recent cosmic ray, gamma ray, and microwave signals observed by Fermi, PAMELA, and WMAP indicate an unexpected primary source of e+e- at 10-1000 GeV. We fit these data to "standard backgrounds" plus a new source, assumed to be a separable function of position and energy. For the spatial part, we consider three cases: annihilating dark matter, decaying dark matter, and pulsars. In each case, we use GALPROP to inject energy in log-spaced energy bins and compute the expected cosmic-ray and photon signals for each bin. We then fit a linear combination of energy bins, plus backgrounds, to the data. We use a non-parametric fit, with no prior constraints on the spectrum except smoothness and non-negativity. In addition, we consider arbitrary modifications to the energy spectrum of the "ordinary" primary source function, fixing its spatial part, finding this alone to be inadequate to explain the PAMELA or WMAP signals. We explore variations in the fits due to choice of magnetic field, primary electron injection index, spatial profiles, propagation parameters, and fit regularization method. Dark matter annihilation fits well, where our fit finds a mass of ~1 TeV and a boost factor times energy fraction of ~70. While it is possible for dark matter decay and pulsars to fit the data, unconventionally high magnetic fields and radiation densities are required near the Galactic Center to counter the relative shallowness of the assumed spatial profiles. We also fit to linear combinations of these three scenarios, though the fit is much less constrained.

Tongyan Lin; Douglas P. Finkbeiner; Gregory Dobler

2010-04-07T23:59:59.000Z

419

High-energy neutrinos and hard $?$-rays in coincidence with Gamma Ray Bursts  

E-Print Network (OSTI)

The observations suggest that $\\gamma$-ray bursts (GRBs) are produced by jets of relativistic cannonballs (CBs), emitted in supernova (SN) explosions. The CBs, reheated by their collision with the SN shell, emit radiation and Doppler-boost it to the few-hundred keV energy of the GRB's photons. Chaperoning the GRB, there should be an intense flux of neutrinos of a few hundreds of GeV energy, made in $\\pi^\\pm$ decays: the SN shell acts as a dump of the beam of CBs. The $\

A. De Rujula

2001-05-20T23:59:59.000Z

420

Direct three-dimensional coherently scattered x-ray microtomography  

Science Conference Proceedings (OSTI)

Purpose: It has been shown that coherently scattered x rays can be used to discriminate and identify specific components in a mixture of low atomic weight materials. The authors demonstrated a new method of doing coherently scattered x-ray tomography with a thin sheet of x ray. Methods: A collimated x-ray fan-beam, a parallel polycapillary collimator, and a phantom consisting of several biocompatible materials of low attenuation-based contrast were used to investigate the feasibility of the method. Because of the particular experimental setup, only the phantom translation perpendicular to the x-ray beam is needed and, thus, there is no need of Radon-type tomographic reconstruction, except for the correction of the attenuation to the primary and scattered x rays, which was performed by using a conventional attenuation-based tomographic image data set. The coherent scatter image contrast changes with momentum transfer among component materials in the specimen were investigated with multiple x-ray sources with narrow bandwidth spectra generated with anode and filter combinations of Cu/Ni (8 keV), Mo/Zr (18 keV), and Ag/Pd (22 keV) and at multiple scatter angles by orienting the detector and polycapillary collimator at different angles to the illuminating x ray. Results: The contrast among different materials changes with the x-ray source energy and the angle at which the image was measured. The coherent scatter profiles obtained from the coherent scatter images are consistent with the published results. Conclusions: This method can be used to directly generate the three-dimensional coherent scatter images of small animal, biopsies, or other small objects with low atomic weight biological or similar synthetic materials with low attenuation contrast. With equipment optimized, submillimeter spatial resolution may be achieved.

Cui Congwu; Jorgensen, Steven M.; Eaker, Diane R.; Ritman, Erik L. [Department of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street Southwest, Alfred Building 2-409, Rochester, Minnesota 55905 (United States)

2010-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cyclotron line and wind studies of galactic high mass X- ray binaries  

E-Print Network (OSTI)

missions detected Gamma Ray Burst afterglows and discoveredUS launched the Swift Gamma-Ray Burst Mission (Gehrels etal. , 2004) to study gamma-ray bursts and their afterglows.

Suchy, Slawomir

2011-01-01T23:59:59.000Z

422

Observations of Gamma-Ray Burst Afterglows with the AEOS Burst Camera.  

E-Print Network (OSTI)

??Gamma-ray bursts (GRBs), are variable bursts of gamma-ray radiation, that lasts from milliseconds to hundreds of seconds. These bursts of gamma rays are detected in… (more)

Flewelling, Heather Anne

2009-01-01T23:59:59.000Z

423

Feasibility of GRB with TeV gamma ray all sky monitor  

E-Print Network (OSTI)

We discuss feasibility of Gamma ray burst (GRB) with TeV gamma ray all sky monitor and discuss necessity of TeV gamma ray cherenkov all sky monitor.

S. Osone

2003-05-14T23:59:59.000Z

424

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

E-Print Network (OSTI)

G. R. et al. Scanning transmission X-ray microscopy: A newwith the scanning transmission X-ray microscope at BESSY II.T. et al. Scanning transmission X-ray microscopy imaging of

Moffet, Ryan C.

2011-01-01T23:59:59.000Z

425

The Role of Atmospheric Conditions in Determining Intensity of Crepuscular and Anticrepuscular Rays  

Science Conference Proceedings (OSTI)

During the summer of 2006, daily observations of crepuscular and anticrepuscular rays were made around sunset from central Oklahoma. A relative scale of ray intensity was developed and used to relate the rays to concurrent meteorological ...

Matthew S. Van Den Broeke; William H. Beasley; Michael B. Richman

2010-07-01T23:59:59.000Z

426

The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA  

E-Print Network (OSTI)

see also the Swift Gamma-Ray Burst Mission Page: http://from Northern Hemisphere Gamma-Ray Bursts with AMANDA A.Northern Hemisphere Gamma-Ray Bursts with AMANDA The IceCube

Achterberg, A.; IceCube Collaboration

2008-01-01T23:59:59.000Z

427

GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light  

E-Print Network (OSTI)

Training Network “Gamma-Ray Bursts: An Enigma and a Tool”,Journal GRB 020410: A Gamma-Ray Burst Afterglow DiscoveredSubject headings: gamma rays: bursts – supernova: general

2004-01-01T23:59:59.000Z

428

Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope  

E-Print Network (OSTI)

2009, GCN: The Gamma ray bursts Coordinates Network, http://for muon neutrinos from Gamma-Ray Bursts with the IceCubeMereghetti, S. 2004, in Gamma-ray Bursts: 30 Years of

Abbasi, R.

2010-01-01T23:59:59.000Z

429

Long gamma-ray bursts and core-collapse supernovae have different environments  

E-Print Network (OSTI)

of two classes of gamma-ray bursts. Astrophys. J. 413, 6.V. et al. Host galaxies of gamma-ray bursts: Spectral energyal. Are the hosts of gamma-ray bursts sub-luminous and blue

2006-01-01T23:59:59.000Z

430

Argonne CNM Highlight: World?s Most Precise ?Hard X-Ray?  

NLE Websites -- All DOE Office Websites (Extended Search)

World's Most Precise "Hard X-Ray" Nanoprobe Activated X-rays from an APS undulator exiting the front end window of the nanoprobe beamline. X-rays from an APS undulator exiting the...

431

X-ray Science Division: Mission and Goals | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division: Mission and Goals The mission of the X-ray Science Division (XSD) is to enable and perform world class research using x-rays. This mission is accomplished...

432

TRACING THE SOURCES OF COSMIC RAYS WITH MOLECULAR IONS  

Science Conference Proceedings (OSTI)

The rate of ionization by cosmic rays (CRs) in interstellar gas directly associated with {gamma}-ray-emitting supernova remnants (SNRs) is for the first time calculated to be several orders of magnitude larger than the Galactic average. Analysis of ionization-induced chemistry yields the first quantitative prediction of the astrophysical H{sup +} {sub 2} emission line spectrum, which should be detectable together with H{sup +} {sub 3} lines. The predicted coincident observation of those emission lines and {gamma}-rays will help prove that SNRs are sources of CRs.

Becker, Julia K.; Schuppan, Florian [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Theoretische Physik IV, D-44780 Bochum (Germany); Black, John H.; Mohammadtaher Safarzadeh, E-mail: julia@tp4.rub.de [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden)

2011-10-01T23:59:59.000Z

433

Ten years of Vela x-ray observations  

SciTech Connect

The Vela spacecraft, particularly Vela 5B, produced all-sky X-ray data of unprecedented length and completeness. The data led to the discovery of X-ray bursts and numerous transient outbursts. Recent re-analysis has put the data in the form of 10-day skymaps covering a 7-year period, which have led to the discovery or confirmation of a number of long-term periodicities, and have made possible a time-lapse movie of the X-ray sky.

Terrell, J.; Priedhorsky, W.C.

1983-01-01T23:59:59.000Z

434

Sixth International Conference on X-ray Microscopy  

SciTech Connect

More than 180 participants from around the world crowded the Clark Kerr Campus of the University of California, Berkeley, from August 1-6, 1999 for the Sixth International Conference on X-Ray Microscopy (XRM99). Held every three years since 1983, the XRM conferences have become the primary international forum for the presentation and discussion of advances in high-spatial-resolution x-ray imaging and applications (including the use of x-ray spectroscopic and analytical techniques) in biological and medical sciences, environmental and soil sciences, and materials and surface sciences.

Robinson, Arthur L.

1999-08-23T23:59:59.000Z

435

Present and future gamma-ray burst experiments  

E-Print Network (OSTI)

Gamma-ray burst counterpart studies require small, prompt error boxes. Today, there are several missions which can provide them: BeppoSAX, the Rossi X-Ray Timing Explorer, and the 3rd Interplanetary Network. In the near future, HETE-II, a possible extended Interplanetary Network, and INTEGRAL will operate in this capacity. In the longer term future, a dedicated gamma-ray burst MIDEX mission may fly. The capabilities of these missions are reviewed, comparing the number of bursts, the rapidity of the localizations, and the error box sizes.

K. Hurley

1998-12-21T23:59:59.000Z

436

X-ray Time Lags in TeV Blazars  

E-Print Network (OSTI)

We use Monte Carlo/Fokker-Planck simulations to study the X-ray time lags. Our results show that soft lags will be observed as long as the decay of the flare is dominated by radiative cooling, even when acceleration and cooling timescales are similar. Hard lags can be produced in presence of a competitive achromatic particle energy loss mechanism if the acceleration process operates on a timescale such that particles are slowly moved towards higher energy while the flare evolves. In this type of scenario, the {\\gamma} -ray/X-ray quadratic relation is also reproduced.

Chen, Xuhui; Liang, Edison; Böttcher, Markus

2011-01-01T23:59:59.000Z

437

1 UNIDENTIFIED GAMMA-RAY SOURCES AND MICROQUASARS  

E-Print Network (OSTI)

Some phenomenological properties of the unidentified EGRET detections suggest that there are two distinct groups of galactic gamma-ray sources that might be associated with compact objects endowed with relativistic jets. We discuss different models for gamma-ray production in both microquasars with low- and high-mass stellar companions. We conclude that the parent population of low-latitude and halo variable sources might be formed by yet undetected microquasars and microblazars. Key words: Gamma ray sources: unidentified; microquasars; black holes. 1.

G. E. Romero; I. A Grenier; M. M. Kaufman Bernadó; I. F. Mirabel; D. F. Torres

2004-01-01T23:59:59.000Z

438

The intergalactic propagation of ultrahigh energy cosmic ray nuclei  

SciTech Connect

We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

2006-08-01T23:59:59.000Z

439

Gamma Ray Burst Constraints on Ultraviolet Lorentz Invariance Violation  

E-Print Network (OSTI)

We present a unified general formalism for ultraviolet Lorentz invariance violation (LV) testing through electromagnetic wave propagation, based on both dispersion and rotation measure data. This allows for a direct comparison of the efficacy of different data to constrain LV. As an example we study the signature of LV on the rotation of the polarization plane of $\\gamma$-rays from gamma ray bursts in a LV model. Here $\\gamma$-ray polarization data can provide a strong constraint on LV, 13 orders of magnitude more restrictive than a potential constraint from the rotation of the cosmic microwave background polarization proposed by Gamboa, L\\'{o}pez-Sarri\\'{o}n, and Polychronakos (2006).

Tina Kahniashvili; Grigol Gogoberidze; Bharat Ratra

2006-07-04T23:59:59.000Z

440

Chandra X-ray Observatory Detection of Extended X-ray Emission from the Planetary Nebula BD+303639  

E-Print Network (OSTI)

We report the detection of well resolved, extended X-ray emission from the young planetary nebula BD+303639 using the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The X-ray emission from BD+303639 appears to lie within, but is concentrated to one side of, the interior of the shell of ionized gas seen in high-resolution optical and IR images. The relatively low X-ray temperature (Tx ~ 3x10^6 K) and asymmetric morphology of the X-ray emission suggests that conduction fronts are present and/or mixing of shock-heated and photoionized gas has occurred and, furthermore, hints at the presence of magnetic fields. The ACIS spectrum suggests that the X-ray emitting region is enriched in the products of helium burning. Our detection of extended X-ray emission from BD+303639 demonstrates the power and utility of Chandra imaging as applied to the study of planetary nebulae.

Kästner, J H; Vrtilek, S D; Dgani, R; Kastner, Joel H.; Soker, Noam; Vrtilek, Saeqa; Dgani, Ruth

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chandra X-ray Observatory Detection of Extended X-ray Emission from the Planetary Nebula BD+303639  

E-Print Network (OSTI)

We report the detection of well resolved, extended X-ray emission from the young planetary nebula BD+303639 using the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The X-ray emission from BD+303639 appears to lie within, but is concentrated to one side of, the interior of the shell of ionized gas seen in high-resolution optical and IR images. The relatively low X-ray temperature (Tx ~ 3x10^6 K) and asymmetric morphology of the X-ray emission suggests that conduction fronts are present and/or mixing of shock-heated and photoionized gas has occurred and, furthermore, hints at the presence of magnetic fields. The ACIS spectrum suggests that the X-ray emitting region is enriched in the products of helium burning. Our detection of extended X-ray emission from BD+303639 demonstrates the power and utility of Chandra imaging as applied to the study of planetary nebulae.

Joel H. Kastner; Noam Soker; Saeqa Vrtilek; Ruth Dgani

2000-10-09T23:59:59.000Z

442

NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS  

SciTech Connect

Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Cohen-Tanugi, J. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, F-34095 Montpellier (France); Drlica-Wagner, A.; Omodei, N.; Rochester, L. S.; Usher, T. L. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra'anana 43537 (Israel); Longo, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Razzaque, S. [Department of Physics, University of Johannesburg, Auckland Park 2006 (South Africa); Zimmer, S., E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: granot@openu.ac.il [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

2013-09-01T23:59:59.000Z

443

Relationship between pulse width and energy in GRB 060124: from X-ray to gamma-ray bands  

E-Print Network (OSTI)

GRB 060124 is the first event that both prompt and afterglow emission were observed simultaneously by the three \\emph{Swift} instruments. Its main peak also triggered Konus-Wind and HETE-II. Therefore, investigation on both the temporal and spectral properties of the prompt emission can be extended to X-ray bands. We perform a detailed analysis on the two well identified pulses of this burst, and find that the pulses are narrower at higher energies, and both X-rays and gamma-rays follow the same $w - E$ relation for an individual pulse. However, there is no a universal power-law index of the $w - E$ relation among pulses. We find also that the rise-to-decay ratio $r/d$ seems not to evolve with $E$ and the $r/d$ values are well consistent with that observed in typical GRBs. The broadband spectral energy distribution also suggest that the X-rays are consistent with the spectral behavior of the gamma-rays. These results indicates that the X-ray emission tracks the gamma-ray emission and the emissions in the two energy bands are likely to be originated from the same physical mechanism.

Fu-Wen Zhang; Yi-Ping Qin

2008-06-07T23:59:59.000Z

444

Understanding Water Uptake and Transport in Nafion Using X-ray...  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Water Uptake and Transport in Nafion Using X-ray Microtomography Title Understanding Water Uptake and Transport in Nafion Using X-ray Microtomography Publication Type...

445

Ray Osborn - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

NXRS > Ray Osborn NXRS > Ray Osborn Ray Osborn Raymond Osborn Bldg. 223, D-209 Phone: 630-252-9011 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Ph.D., Solid State Physics, University of Southampton, UK B.Sc (1st class honours), Physics, Imperial College of Science and Technology, London, UK. Honors Fellow of the American Physical Society University of Chicago Distinguished Performance Award (2006) Professional Service Scientific Director, National School of Neutron and X-ray Scattering (2001-2007). Chair, Publication Committee, International Conference on Strongly Correlated Electron Systems, Ann Arbor, MI (2001). Member, International Advisory Board, International Conference on Strongly Correlated Electron Systems, Vienna (2005).

446

A Gamma-Ray Burst Bibliography, 1973-1999  

E-Print Network (OSTI)

On the average, one new publication on cosmic gamma-ray bursts enters the literature every day. The total number now exceeds 4100. I present here a complete bibliography which can be made available electronically to interested parties.

K. Hurley

1999-12-02T23:59:59.000Z

447

Active pixel sensors for X-ray astronomy  

E-Print Network (OSTI)

An active pixel sensor array, APS-1, has been fabricated for the purpose of scientific x-ray detection. This thesis presents the results of testing the device. Alternate design architectures are explored. Recommendations ...

Cohen, Matthew (Matthew L.)

2005-01-01T23:59:59.000Z

448

Definition: Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Portable X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction, which has traditionally been used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances. Portable XRD analysis allows for simpler sample preparation, faster analytical times than traditional methods (less than 2 minutes), and can be performed at the sampling site in the field. A pure, finely ground

449

Pennsylvania Pool Chemical Business Soaks Up Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays Pennsylvania Pool Chemical Business Soaks Up Rays September 7, 2010 - 3:00pm Addthis MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services Stephen Graff Former Writer & editor for Energy Empowers, EERE Most people catching rays poolside don't realize this, but it takes a lot

450

Cosmic-ray Propagation and Interactions in the Galaxy  

Science Conference Proceedings (OSTI)

We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10{sup 15} eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes are explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data including direct and indirect--especially gamma-ray--observations, and indicate what we can learn about cosmic-ray propagation. Some particular important topics including electrons and antiparticles are chosen for discussion.

Strong, Andrew W.; /Garching, Max Planck Inst., MPE; Moskalenko, Igor V.; /Stanford U., HEPL /KIPAC, Menlo Park; Ptuskin, Vladimir S.; /Troitsk, IZMIRAN

2007-01-22T23:59:59.000Z

451

SLAC National Accelerator Laboratory - Fifth X-ray Instrument...  

NLE Websites -- All DOE Office Websites (Extended Search)

and more.) The technique has been used for years to probe materials with visible-light lasers, and more recently with X-ray light from synchrotrons. But the LCLS is the first...

452

SLAC National Accelerator Laboratory - X-ray Vision Exposes Aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

up exciting possibilities in the study of aerosol dynamics using highly focused X-ray lasers, such as SLAC's Linac Coherent Light Source (LCLS). "Our study shows that LCLS can...

453

Magnetism studies using resonant, coherent, x-ray scattering...  

NLE Websites -- All DOE Office Websites (Extended Search)

10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron lasers there has been interest in using coherent x-rays to probe condensed matter systems....

454

Lensless Imaging of Magnetic Nanostructures by X-ray Spectro...  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Schlotter and J. Sthr (SSRL) The unprecedented properties of X-ray free electron lasers (X-FELs) under development world wide will open the door for entirely new classes of...

455

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocko, B.M., Wen, K., Maoz, R., Cohen, H., and Sagiv, J. Non-destructive chemical modification of a preassembled silane multilayer: structural study by combined FTIR, x-ray...

456

The Ulysses Catalog of Solar Hard X-Ray Flares  

E-Print Network (OSTI)

rupted full-Sun coverage of major solar X-ray ?are activity.of Ulysses from the Sun in AU, and its solar longitude andof the solar disk shows the view of the Sun from Earth,

Tranquille, C.; Hurley, K.; Hudson, H. S.

2009-01-01T23:59:59.000Z

457

Linda Young Named to Head X-ray Science Division  

NLE Websites -- All DOE Office Websites (Extended Search)

to the APS Hard X-ray Nanoprobe Earns an R&D 100 Award Winans of XSD Elected to ACS Fellowship Gluskin of Photon Sciences named Argonne Distinguished Fellow UChicago...

458

Cosmic ray lithium isotope measurement with AMS-01  

E-Print Network (OSTI)

The AMS-01 detector measured charged cosmic rays during 10 days on the Space Shuttle Discovery in 1998 and collected 108 events. By identifying 8349 Lithium and 22709 Carbon nuclei from the raw data, this thesis presents ...

Zhou, Feng, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

459

Low Dose Radiation Research Program: Comparison of Soft X Rays...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Soft X-Rays and Ions Irradiation in a Model of V79 Mammalian Cell Authors: B. Ginovska, J.H. Miller, D. J. Lynch and W. E. Wilson Institutions: School of Electrical...

460

SLAC National Accelerator Laboratory - X-rays Reveal How Soil...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Menlo Park, Calif. - Researchers working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have used powerful X-rays to help decipher how certain...

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Argonne TDC: Large Area CCD X-Ray Detector  

Large-Area CCD X-Ray Detector Opening Up New Horizons in the Study of Cellular and Metabolic Processes, Genetics, and Drug Development 2000 R&D 100 Award Winner!

462

Vitreous carbon mask substrate for X-ray lithography  

DOE Patents (OSTI)

The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

2009-10-27T23:59:59.000Z

463

Mike Butler, UETC Daren Gilbert, State of Nevada Ray English...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 22, 1998 10:30-11:30 a.m., EDT Rail Topic Group conference call Participants on the call included: Mike Butler, UETC Daren Gilbert, State of Nevada Ray English, DOE-NR William...

464

SLAC National Accelerator Laboratory - X-ray Laser Takes Aim...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Takes Aim at Cosmic Mystery December 12, 2012 Menlo Park, Calif. - Scientists have used powerful X-rays from the Linac Coherent Light Source (LCLS) at the U.S. Department of...

465

SLAC National Accelerator Laboratory - X-ray Laser Sees Photosynthesis...  

NLE Websites -- All DOE Office Websites (Extended Search)

new window on the way plants generate the oxygen we breathe, researchers used an X-ray laser at the Department of Energy's (DOE) SLAC National Accelerator Laboratory to...

466

SLAC National Accelerator Laboratory - X-ray Laser Brings Cellular...  

NLE Websites -- All DOE Office Websites (Extended Search)

a March experiment indicates it has, for the first time, used an X-ray free-electron laser - SLAC's Linac Coherent Light Source - to reconstitute the structure of a G...

467

Diffuse gamm-ray Emission: Lessons and Perspectives  

SciTech Connect

The Galactic diffuse emission is potentially able to reveal much about the sources and propagation of cosmic rays (CR), their spectra and intensities in distant locations. It can possibly unveil WIMP dark matter (DM) through its annihilation signatures. The extragalactic background may provide vital information about the early stages of the universe, neutralino annihilation, and unresolved sources (blazars) and their cosmological evolution. The g-ray instrument EGRET on the CGRO contributed much to the exploration of the Galactic diffuse emission. The new NASA Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in 2007; study of the diffuse g-ray emission is one of the priority goals. We describe current understanding of the diffuse emission and its potential for future discoveries.

Moskalenko, Igor V.; /NASA, Goddard; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

2007-04-25T23:59:59.000Z

468

Material Characterization with X-ray and Optical Techniques I  

Science Conference Proceedings (OSTI)

In Situ X-ray Nanocharacterization of Defects in Solar Cells: Mariana Bertoni1; ... a strong modeling tool for predicting and optimizing solar cell efficiency. ... levels (11 steps up to 55%) in order to understand the sequential damage process.

469

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

D.F. Inelastic x-ray scattering investigations of lattice dynamics in SmFeAsO1-xFy superconductors. Proceedings of The 9th International Conference on Spectroscopies in Novel...

470

Pennsylvania Pool Chemical Business Soaks Up Rays | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soaks Up Rays September 7, 2010 - 3:00pm Addthis MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected...

471

SLAC National Accelerator Laboratory - X-rays Capture Electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-rays Capture Electron 'Dance' By Glenn Roberts Jr. January 30, 2013 The way electrons move within and between molecules, transferring energy as they go, plays an important role...

472

Improvement of Tomographic Maps by Using Surface-Reflected Rays  

Science Conference Proceedings (OSTI)

The results of the experiment conducted in the northwest Atlantic in 1981 have demonstrated the possibilities of acoustic tomography. The first maps, based only on purely refracted rays, showed the evolution of a cold eddy, confirmed by direct ...

Fabienne Gaillard; Bruce Cornuelle

1987-09-01T23:59:59.000Z

473

Observations of Gamma-Ray Bursts at Extreme Energies.  

E-Print Network (OSTI)

??Gamma-ray bursts (GRBs), thought to be produced by the core-collapse of massive stars or merging compact objects, are the most luminous events observed since the… (more)

Aune, Taylor

2012-01-01T23:59:59.000Z

474

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the...

475

Heat conduction in X-ray clusters: Spitzer over 3  

E-Print Network (OSTI)

Effective heat conduction in a random variable magnetic field should be equal to one third of the Spitzer's value. Recent observations indicate that this heat conduction is sufficient to account for the bremsstrahlung in cooling X-ray clusters.

Andrei Gruzinov

2002-03-04T23:59:59.000Z

476

High performance x-ray anti-scatter grid  

DOE Patents (OSTI)

Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

Logan, C.M.

1995-05-23T23:59:59.000Z

477

Ray tracing a three dimensional scene using a grid  

DOE Patents (OSTI)

Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.

Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron

2013-02-26T23:59:59.000Z

478

High performance x-ray anti-scatter grid  

DOE Patents (OSTI)

An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

Logan, Clinton M. (Pleasanton, CA)

1995-01-01T23:59:59.000Z

479

High quality rendering using ray tracing and photon mapping  

Science Conference Proceedings (OSTI)

Ray tracing and photon mapping provide a practical way of efficiently simulating global illumination including interreflections, caustics, color bleeding, participating media and subsurface scattering in scenes with complicated geometry and advanced ...

Henrik Wann Jensen; Per Christensen

2007-08-01T23:59:59.000Z

480

High Energy Gamma Rays from Protons Hitting Compact Objects  

E-Print Network (OSTI)

In a previous paper the spectrum of positrons produced by matter initially at rest falling onto a massive compact object was calculated. In this paper this calculation is generalized to obtain both the spectrum of in-flight positron annihilation and pi0 decay gamma rays produced when protons with a cosmic ray-like spectrum hit the surface. The resulting pi0 decay gamma ray spectrum reflects the high energy proton energy spectrum, and is largely independent of the mass of the compact object. One notable prediction for all compact objects is a dip in the spectrum below 70 MeV. As applied to the 10^6 solar mass massive compact object near to the center of our galaxy, our theory shows promise for explaining the gamma rays coming from the galactic center as observed by both the Compton satellite and HESS ground based array.

J. Barbieri; G. Chapline

2008-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "ray 202-586-5077 tosha" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Towards hard x-ray imaging at GHz frame rate  

SciTech Connect

Gigahertz (GHz) imaging using hard x-rays ( Greater-Than-Or-Equivalent-To 10 keV) can be useful to high-temperature plasma experiments, as well as research and applications using coherent photons from synchrotron radiation and x-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one x-ray photon is detected per pixel, are given. Two possible paths towards x-ray imaging at GHz frame rates using a single camera are: (a) avalanche photodiode arrays of high-Z materials and (b) microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang Zhehui; Morris, C. L.; Kapustinsky, J. S.; Kwiatkowski, K.; Luo, S.-N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

482

Towards hard X-ray imaging at GHz frame rate  

Science Conference Proceedings (OSTI)

Gigahertz (GHz) imaging using hard X-rays ({approx}> 10 keV) can be useful to high-temperature plasma experiments, as well as research using coherent photons from synchrotron radiation and X-ray free electron lasers. GHz framing rate can be achieved by using multiple cameras through multiplexing. The advantages and trade-offs of single-photon detection mode, when no more than one X-ray photon is detected per pixel, are given. Two possible paths towards X-ray imaging at GHz frame rates using a single camera are (a) Avalanche photodiode arrays of high-Z materials and (b) Microchannel plate photomultipliers in conjunction with materials with large indices of refraction.

Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Kwiatkowski, Kris K. [Los Alamos National Laboratory; Kapustinsky, Jon S. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

483

Science Challenges & Opportunities for an Advanced X-ray Free...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Challenges & Opportunities for an Advanced X-ray Free-electron Laser Wednesday, October 2, 2013 - 3:00pm SLAC, Kavli 3rd Floor Conference Room Robert Schoenlein, Lawrence...

484

SLAC National Accelerator Laboratory - X-ray Laser Research Ranks...  

NLE Websites -- All DOE Office Websites (Extended Search)

selected science "Breakthrough of the Year": the discovery of what appears to be the Higgs boson. Scientists aimed the Linac Coherent Light Source X-ray laser at thousands of tiny...

485

Calibration of High-Resolution X-Ray Tomography With ...  

Science Conference Proceedings (OSTI)

... The x-ray attenuation of the sample at this energy was close to the ... J. Coal Geol. ... G. Xu, DE Eastman, I. McNulty, SP Frigo, Y. Wang, CC Retsch, IC ...

2001-04-11T23:59:59.000Z

486

In-beam gamma-ray spectroscopy of target fragmentation  

E-Print Network (OSTI)

E ? - E ? correlation matrix which contained the energy anddata into a 2D matrix of gamma-ray energy of clean Ge hitsenergy (belonging to a specific nucleus), we projected the matrix

2004-01-01T23:59:59.000Z

487

Redshifts of the Long Gamma-Ray Bursts  

E-Print Network (OSTI)

The low energy spectra of some gamma-ray bursts' show excess components beside the power-law dependence. The consequences of such a feature allows to estimate the gamma photometric redshift of the long gamma-ray bursts in the BATSE Catalog. There is good correlation between the measured optical and the estimated gamma photometric redshifts. The estimated redshift values for the long bright gamma-ray bursts are up to z=4, while for the the faint long bursts - which should be up to z=20 - the redshifts cannot be determined unambiguously with this method. The redshift distribution of all the gamma-ray bursts with known optical redshift agrees quite well with the BATSE based gamma photometric redshift distribution.

Z. Bagoly; I. Csabai; A. Meszaros; P. Meszaros; I. Horvath; L. G. Balazs; R. Vavrek

2007-04-06T23:59:59.000Z

488

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

489

High energy particles from gamma-ray bursts  

E-Print Network (OSTI)

A review is presented of the fireball model of gamma-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed.

Eli Waxman

2001-03-13T23:59:59.000Z

490

The geometry of sound rays in a wind  

E-Print Network (OSTI)

We survey the close relationship between sound and light rays and geometry. In the case where the medium is at rest, the geometry is the classical geometry of Riemann. In the case where the medium is moving, the more general geometry known as Finsler geometry is needed. We develop these geometries ab initio, with examples, and in particular show how sound rays in a stratified atmosphere with a wind can be mapped to a problem of circles and straight lines.

G. W. Gibbons; C. M. Warnick

2011-02-11T23:59:59.000Z

491

Relativity at Action or Gamma-Ray Bursts  

E-Print Network (OSTI)

Gamma ray Bursts (GRBs) - short bursts of few hundred keV $\\gamma$-rays - have fascinated astronomers since their accidental discovery in the sixties. GRBs were ignored by most relativists who did not expect that they are associated with any relativistic phenomenon. The recent observations of the BATSE detector on the Compton GRO satellite have revolutionized our ideas on these bursts and the picture that emerges shows that GRBs are the most relativistic objects discovered so far.

Tsvi Piran

1996-07-08T23:59:59.000Z

492

X-ray streak and framing camera techniques  

SciTech Connect

This paper reviews recent developments and applications of ultrafast diagnostic techniques for x-ray measurements. These techniques, based on applications of image converter devices, are already capable of significantly important resolution capabilities. Techniques capable of time resolution in the sub-nanosecond regime are being considered. Mechanical cameras are excluded from considerations as are devices using phosphors or fluors as x-ray converters.

Coleman, L.W.; Attwood, D.T.

1975-12-23T23:59:59.000Z

493

The complex soft X-ray spectrum of NGC 4151  

E-Print Network (OSTI)

We present a detailed analysis of the complex soft X-ray spectrum of NGC 4151 measured by the RGS instruments aboard XMM-Newton. The XMM-Newton RGS spectra demonstrate that the soft X-ray emission is extremely rich in X-ray emission lines and radiative recombination continua (RRC), with no clear evidence for any underlying continuum emission. Line emission, and the associated RRC, are clearly detected from hydrogen-like and helium-like ionization states of neon, oxygen, nitrogen and carbon. The measured lines are blueshifted with a velocity of between ~100-1000 km/s, with respect to the systemic velocity of NGC 4151, approximately consistent with the outflow velocities of the absorption lines observed in the UV, suggestive of an origin for the UV and soft X-ray emission in the same material. Plasma diagnostics imply a range of electron temperatures of ~1-5x10^4 K and electron densities of between 10^8-10^10 cm^-3. The soft X-ray spectrum of NGC 4151 is extremely similar to that of NGC 1068, suggesting that the soft X-ray excesses observed in many Seyfert galaxies may be composed of similar emission features. Modelling the RGS spectra in terms of emission from photoionized and photoexcited gas in an ionization cone reproduces all of the hydrogen-like and helium-like emission features observed in the soft X-ray spectrum of NGC 4151 in detail and confirms the correspondence between the soft X-ray emission in NGC 4151 and NGC 1068.

N. J. Schurch; R. S. Warwick; R. E. Griffiths; S. M. Kahn

2004-01-26T23:59:59.000Z

494

Influence of solar and cosmic-ray variability on climate  

E-Print Network (OSTI)

We analyze solar, geomagnetic and cosmic ray flux data along with rainfall and temperature data for almost five solar cycles. We provide evidence of significant influence of solar variability on climate. Specifically, we demonstrate association between lower (higher) rainfall and higher (lower) temperatures with increasing (decreasing) solar activity and decreasing (increasing) cosmic ray intensities. We propose a plausible scenario that accounts the results of our analysis.

Badruddin,; Singh, M

2013-01-01T23:59:59.000Z

495

The Optical Afterglows of Gamma-Ray Bursts  

E-Print Network (OSTI)

The optical afterglows of gamma-ray bursts can be used to probe the physics, geometry, and environments of gamma-ray bursts. In this article I discuss the how spectra and photometry can be used to constrain fireball parameters, describe several types of breaks that might be observed in the optical decay, and briefly review the late-time bumps and rapid variations in optical light curves.

S. T. Holland

2002-11-18T23:59:59.000Z

496

Apparatus for obtaining an X-ray image  

DOE Patents (OSTI)

A computed tomography apparatus in which a fan-shaped X-ray beam is caused to pass through a section of an object, enabling absorption detection on the opposite side of the object by a detector comprising a plurality of discrete detector elements. An electron beam generating the X-ray beam by impacting upon a target is caused to rotate over the target.

Watanabe, Eiji (Tokyo, JP)

1979-01-01T23:59:59.000Z

497

Hyperstars - Main Origin of Short Gamma Ray Bursts?  

E-Print Network (OSTI)

The first well-localized short-duration gamma ray bursts (GRBs), GRB 050509b, GRB 050709 and GRB 050724, could have been the narrowly beamed initial spike of a burst/hyper flare of soft gamma ray repeaters (SGRs) in host galaxies at cosmological distances. Such bursts are expected if SGRs are young hyperstars, i.e. neutron stars where a considerable fraction of their neutrons have converted to hyperons and/or strange quark matter.

Arnon Dar

2005-09-09T23:59:59.000Z

498

Gamma Ray Bursts as Probes of Quantum Gravity  

E-Print Network (OSTI)

Gamma ray bursts (GRBs) are short and intense pulses of $\\gamma$-rays arriving from random directions in the sky. Several years ago Amelino-Camelia et al. pointed out that a comparison of time of arrival of photons at different energies from a GRB could be used to measure (or obtain a limit on) possible deviations from a constant speed of light at high photons energies. I review here our current understanding of GRBs and reconsider the possibility of performing these observations.

Tsvi Piran

2004-07-21T23:59:59.000Z

499

Kinoform optics applied to X-ray photon correlation specroscopy  

Science Conference Proceedings (OSTI)

Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

Sandy, A.R.; Evans-Lutterodt, K.; Narayanan, S.; Sprung, M.; Su, J.D; Isakovic, A.F.; Stein, A.

2010-03-01T23:59:59.000Z

500

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Print Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow light. However, it has been unclear whether similar optical control schemes could be used to modify how x rays interact with matter. In a dramatic breakthrough demonstration at the ALS, a Berkeley Lab-Argonne National Laboratory group has now used powerful visible-light lasers to render a nominally opaque material transparent to x rays. While x-ray transparency will have immediate applications at x-ray light sources, the important result is that the findings lay a foundation for a broader spectrum of applications.