Sample records for raw steel production

  1. Optimal Control of Raw Timber Production Processes

    E-Print Network [OSTI]

    Standiford, Richard B.

    of development of the society imposes demands on the planning and control of production processes in the formOptimal Control of Raw Timber Production Processes Ivan Kolenka Abstract: This paper demonstrates the possibility of optimal planning and control of timber harvesting activ- ities with mathematical optimization

  2. Continuous steel production and apparatus

    DOE Patents [OSTI]

    Peaslee, Kent D. (Rolla, MO); Peter, Jorg J. (McMinnville, OR); Robertson, David G. C. (Rolla, MO); Thomas, Brian G. (Champaign, IL); Zhang, Lifeng (Trondheim, NO)

    2009-11-17T23:59:59.000Z

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  3. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  4. Production design for plate products in the steel industry

    E-Print Network [OSTI]

    Sanjeeb Dash

    2007-04-05T23:59:59.000Z

    Apr 5, 2007 ... Abstract: We describe an optimization tool for a multistage production process for rectangular steel plates. The problem we solve yields a ...

  5. Residuals in steel products -- Impacts on properties and measures to minimize them

    SciTech Connect (OSTI)

    Emi, Toshihiko [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Wijk, O. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Process Metallurgy

    1996-12-31T23:59:59.000Z

    The effect of major residual elements on the properties of steel products is summarized. Measures to minimize these elements are discussed including the pretreatment of raw materials, innovative refining processes and environmental issues. This paper addresses (1) scrap situation, (2) upper limit of residual concentrations acceptable for processing and product quality, (3) possible means to reduce the residuals, and (4) consideration on the practicable measures to solve the residuals problem in a systematic way. 52 refs.

  6. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01T23:59:59.000Z

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  7. Dimensional variability of production steel castings

    SciTech Connect (OSTI)

    Peters, F.E.; Risteu, J.W.; Vaupel, W.G.; DeMeter, E.C.; Voigt, R.C.

    1994-12-31T23:59:59.000Z

    Work is ongoing to characterize the dimensional variability of steel casting features. Data are being collected from castings produced at representative Steel Founders` Society of America foundries. Initial results based on more than 12,500 production casting feature measurements are presented for carbon and low alloy steel castings produced in green sand, no-bake, and shell molds. A comprehensive database of casting, pattern, and feature variables has been developed so that the influence of the variables on dimensional variability can be determined. Measurement system analysis is conducted to insure that large measurement error is not reported as dimensional variability. Results indicate that the dimensional variability of production casting features is less than indicated in current US (SFSA) and international (ISO) standards. Feature length, casting weight, parting line and molding process all strongly influence dimensional variability. Corresponding pattern measurements indicate that the actual shrinkage amount for casting features varies considerably. This variation in shrinkage will strongly influence the ability of the foundry to satisfy customer dimensional requirements.

  8. High productivity injection practices at Rouge Steel

    SciTech Connect (OSTI)

    Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

    1995-12-01T23:59:59.000Z

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  9. RAW MATERIALS USED FOR THE PHOSPHATE FERTILIZER PRODUCTION IN ROMANIA -NEW RADIOMETRIC DATA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    gamma spectrometry in natural apatites used as raw materials in the phosphate fertilizer industry, thorium and potassium by low background gamma spectrometry with HPGe detector is a simple determination of uranium, thorium and potassium, up to very low limits (under 0.1 ppm). The Gamma spectrometric

  10. Supplying High-Quality, Raw Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

  11. Multi-echelon multi-product inventory strategy in a steel company

    E-Print Network [OSTI]

    Iocco, Juan D. (Juan Domingo)

    2009-01-01T23:59:59.000Z

    This thesis examines a distribution multi-echelon production-inventory system subject to stochastic demand in the steel industry. The sponsor company, Ternium (a South American steel producer), needs to provide short service ...

  12. Production design for plate products in the steel industry

    E-Print Network [OSTI]

    We describe an optimization tool for a multistage production process for ... plates. The problem we solve yields a production design (or plan) for rectangular plate.

  13. Optimal purchasing of raw materials: A data-driven approach

    SciTech Connect (OSTI)

    Muteki, K.; MacGregor, J.F. [McMaster University, Hamilton, ON (Canada). Dept. of Chemical Engineering

    2008-06-15T23:59:59.000Z

    An approach to the optimal purchasing of raw materials that will achieve a desired product quality at a minimum cost is presented. A PLS (Partial Least Squares) approach to formulation modeling is used to combine databases on raw material properties and on past process operations and to relate these to final product quality. These PLS latent variable models are then used in a sequential quadratic programming (SQP) or mixed integer nonlinear programming (MINLP) optimization to select those raw-materials, among all those available on the market, the ratios in which to combine them and the process conditions under which they should be processed. The approach is illustrated for the optimal purchasing of metallurgical coals for coke making in the steel industry.

  14. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15T23:59:59.000Z

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  15. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect (OSTI)

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01T23:59:59.000Z

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  16. Clean steels for fusion

    SciTech Connect (OSTI)

    Gelles, D.S.

    1995-03-01T23:59:59.000Z

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  17. Climate VISION: Private Sector Initiatives: Iron and Steel: GHG...

    Office of Scientific and Technical Information (OSTI)

    GHG Inventory Protocols Principles for a Steel Industry Methodology for Reporting Carbon-Related Energy Sources and Raw Materials (PDF 48 KB) Download Acrobat Reader Steel Industry...

  18. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    SciTech Connect (OSTI)

    Young, J.S.

    1986-07-01T23:59:59.000Z

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  19. Process for making a martensitic steel alloy fuel cladding product

    DOE Patents [OSTI]

    Johnson, Gerald D. (Kennewick, WA); Lobsinger, Ralph J. (Kennewick, WA); Hamilton, Margaret L. (Richland, WA); Gelles, David S. (West Richland, WA)

    1990-01-01T23:59:59.000Z

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  20. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect (OSTI)

    Nabi, G.

    1996-12-31T23:59:59.000Z

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  1. A recycling process for dezincing steel scrap

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A.; Kellner, A.W.; Harrison, J. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

    1992-01-01T23:59:59.000Z

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  2. A recycling process for dezincing steel scrap

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A.; Kellner, A.W.; Harrison, J. [Metal Recovery Industries, Inc., Hamilton, ON (Canada)

    1992-08-01T23:59:59.000Z

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  3. Enrichment of By-Product Materials from Steel Pickling Acid Regeneration Plants (TRP 9942)

    SciTech Connect (OSTI)

    Lu Swan, Delta Ferrites LLC

    2009-09-30T23:59:59.000Z

    A new process for manufacturing an enriched, iron-based product (strontium hexaferrite) in existing steel pickling acid regeneration facilities was evaluated. Process enhancements and equipment additions were made to an existing acid regeneration plant to develop and demonstrate (via pilot scale testing and partial-capacity production trials) the viability of a patented method to produce strontium-based compounds that, when mixed with steel pickling acid and roasted, would result in a strontium hexaferrite powder precursor which could then be subjected to further heat treatment in an atmosphere that promotes rapid, relatively low-temperature formation of discrete strontium hexaferrite magnetic domains yielding an enriched iron-based product, strontium hexaferrite, that can be used in manufacturing hard ferrite magnets.

  4. Scrap recycling and production of high quality steel grades in Europe

    SciTech Connect (OSTI)

    Marique, C. [C.R.M., Liege (Belgium)

    1996-12-31T23:59:59.000Z

    The possible deleterious effects of higher contents in tramp elements on steel properties must be well defined in order to keep them within acceptable limits. No industrial technique is presently available to remove tramp elements from steel melts. Only a strict control on the metallic input and on the scrap composition is feasible. In this matter, scrap preparation which aims at a better separation between iron and other nonferrous components, is getting more attention. A large multinational project has been initiated in Europe under the sponsorship of ECSC and of the Steel Industry to better identify the effects of residuals on steel properties and to examine potential techniques able to control tramp elements during steelmaking operations. The project has been supported and orientated by a preliminary study, reviewing the relevant published data on the tramp element influence for long and flat products. The present report is devoted to overview available information on the effects of tramp elements and to describe the targets and the content of the European megaproject on scrap recycling.

  5. Energy Consumption and Potential for Energy Conservation in the Steel Industry

    E-Print Network [OSTI]

    Hughes, M. L.

    1979-01-01T23:59:59.000Z

    , April 22-25, 1979 IRON ORE REDUCTION STEELMAKING PRIMARY CONVERSION HOT ROLLING FINISHING SIMPLIFIED FLOW SHEET STEEL PRODUCTION PROCESSES Iron Ore & Wastes , Agg lomerating Pellets Ore & Flux Coal ~ " Sinter - Blast ~ Coke Furnaces... - Ovens '( BF Iron Outside ,~., Scrap Open Hearth Furnaces , Ingot Casting Basic Oxygen Furnaces Raw Steel Electric Arc Furnaces Scrap , Primary Rolling Mills Continuous Casting Slabs, Blooms, Billets r Secondary Hot Rolling Bars...

  6. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01T23:59:59.000Z

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  7. Material report in support to RCC-MRX code 2010 stainless steel parts and products

    SciTech Connect (OSTI)

    Ancelet, Olivier; Lebarbe, Thierry [CEA Saclay, DEN-DANS-DM2S, Gif-sur-Yvette, (France); Dubiez-Le Goff, Sophie; Bonne, Dominique; Gelineau, Odile [Areva NP, Lyon, (France)

    2012-07-01T23:59:59.000Z

    This paper presents the Material Report dedicated to stainless steels parts and products issued by AFCEN (Association Francaise pour les regles de Conception et de Construction des Materiels des Chaudieres Electro-Nucleaires) in support to RCC-MRx 2010 Code. The RCC-MRx Code is the result of the merger of the RCC-MX 2008, developed in the context of the research reactor Jules Horowitz Reactor project, in the RCC-MR 2007, which set up rules applicable to the design of components operating at high temperature and to the Vacuum Vessel of ITER (a presentation of RCC-MRx 2010 Code is the subject of another paper proposed in this Congress; it explains in particular the status of this Code). This Material Report is part of a set of Criteria of RCC-MRx (this set of Criteria is under construction). The Criteria aim at explaining the design and construction rules of the Code. They cover analyses rules as well as part procurement, welding, methods of tests and examination and fabrication rules. The Material Report particularly provides justifications and explanations on requirements and features dealing with parts and products proposed in the Code. The Material Report contains the following information: Introduction of the grade(s): codes and standards and Reference Procurement Specifications covering parts and products, applications and experience gained, - Physical properties, - Mechanical properties used for design calculations (base metal and welds): basic mechanical properties, creep mechanical properties, irradiated mechanical properties, - Fabrication: experience gained, metallurgy, - Welding: weldability, experience gained during welding and repair procedure qualifications, - Non-destructive examination, - In-service behaviour. In the article, examples of data supplied in the Material Report dedicated to stainless steels will be exposed. (authors)

  8. Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 1. Northeast Pacific pelagic red clay

    SciTech Connect (OSTI)

    Schmidt, R.L.

    1982-03-01T23:59:59.000Z

    To provide information useful for determining the biogeochemical cycling of corrosion products in the benthic boundary layer of the deep ocean, neutron-activated stainless steel was exposed to seawater and to Northeast Pacific red clay under aerobic and non-oxygenated conditions. This report describes the trace metal geochemistry of the sediment and the chemical speciation of the corrosion products. The sediments generally consisted of reddish-brown clay at the surface grading to a dark-brown transition zone below which mottled olive-gray clay prevailed. Neutron-irradiated 347 stainless steel specimens were exposed to seawater and sediment slurry under aerobic and non-oxygenated conditions for 108 days. The presence of aerated sediment more than doubled the amount of corrosion products released compared to aerated seawater and non-oxygenated sediment treatments. The distribution of /sup 60/Co released from the stainless steel exposed to aerated seawater show that almost 70% of /sup 60/Co activity became associated with suspended particulate matter. No detectable /sup 60/Co activity was present in the soluble, readily dissolved, or inorganic or weakly complexed fractions of aerated sediment which had been used to treat neutron-activated stainless steel. Almost 50% of the /sup 60/Co activity was extracted in the combined soluble, easily dissolved, adsorbed, and organically complexed fractions from the non-oxygenated sediment treatment indicating that this much of the corrosion products may be initially released in ionic form.

  9. Transformation process for production of ultrahigh carbon steels and new alloys

    DOE Patents [OSTI]

    Strum, Michael J. (Pleasanton, CA); Goldberg, Alfred (Livermore, CA); Sherby, Oleg D. (Palo Alto, CA); Landingham, Richard L. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.

  10. Transformation process for production of ultrahigh carbon steels and new alloys

    DOE Patents [OSTI]

    Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.

    1995-08-29T23:59:59.000Z

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.

  11. Is a low-phosphorus content in steel a product requirement?

    E-Print Network [OSTI]

    Bhadeshia, H. K. D. H.; Suh, Dong-Woo

    2015-04-01T23:59:59.000Z

    of phosphorus containing TRIP steel, part 2: analysis of the potential TRIP effect’, Zeitschrift fu¨r Metallkunde, 2001, 92, 1306–1311. 75. A. Kumar, S. S. B, and K. K. Ray: ‘Fatigue crack growth behaviour of ferrite-bainite dual phase steels’, Materials Science... -assisted steels [67–69]. There is no clear theoretical basis for such an effect; it is argued that phosphorus reduces the activity of carbon in cementite [70]. But this in itself is not a complete interpretation since equilibria between phases should be considered...

  12. Energy and materials flows in the iron and steel industry

    SciTech Connect (OSTI)

    Sparrow, F.T.

    1983-06-01T23:59:59.000Z

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  13. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2012-01-01T23:59:59.000Z

    flow models for the US steel industry,” Energy 26, no. 2 (pdf Association for Iron and Steel Technology (AIST). 2010a.American BOF Roundup. Iron & Steel Technology. November.

  14. Limitations for the application of 13Cr steel in oil and gas production environments

    SciTech Connect (OSTI)

    Huizinga, S.; Liek, W.E. [Shell International Oil Products BV, Amsterdam (Netherlands). Shell Research and Technology Centre

    1997-08-01T23:59:59.000Z

    A laboratory investigation of application limits of 13Cr steel was carried out for sweet downhole environments in the CO{sub 2} partial pressure regime up to about 10 bar (1 MPa). Two grades of 13Cr steel were studied, one complying with the API 5CT specification and the other a higher carbon version. Polarization curves, taken at various times after immersion of the specimens in simulated brine, revealed an increasing pitting tendency for the higher chloride levels and indicated better performance for the API 5CT grade. This was in agreement with evidence for chromium depleted zones in the higher carbon grade, obtained from polarization curves in sulfuric acid. Weight loss exposure tests, in which the corrosion rate was also monitored by polarization resistance measurements, were performed at temperatures of 100 and 125 C and supplemented with literature data to extend the temperature range. A mathematical formula was derived to describe the corrosion rate as a function of temperature and chloride content. For instance, if 0.1 mm/y is taken as an acceptable corrosion rate, 13Cr steel could be applied up to 125 C in the presence of 150 g/L Cl{sup {minus}}. In the exposure tests, the API 5CT 13Cr steel did not show pitting at the 0.1 mm/y boundary but the higher carbon grade did suffer from this form of attack.

  15. Bayesian inference algorithm on Raw

    E-Print Network [OSTI]

    Luong, Alda

    2004-01-01T23:59:59.000Z

    This work explores the performance of Raw, a parallel hardware platform developed at MIT, running a Bayesian inference algorithm. Motivation for examining this parallel system is a growing interest in creating a self-learning ...

  16. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    SciTech Connect (OSTI)

    Kuyucak, Selcuk [CanmetMATERIALS; Li, Delin [CanmetMATERIALS

    2013-12-31T23:59:59.000Z

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.

  17. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07T23:59:59.000Z

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  18. Raw fabric hardware implementation and characterization

    E-Print Network [OSTI]

    Sun, Albert (Albert G.)

    2006-01-01T23:59:59.000Z

    The Raw architecture is scalable, improving performance not by pushing the limits of clock frequency, but by spreading computation across numerous simple, replicated tiles. The first Raw processors fabricated have 16 RISC ...

  19. BACKGROUND GLOBAL STEEL OVERCAPACITY and OIL COUNTRY TUBULAR...

    Broader source: Energy.gov (indexed) [DOE]

    surging-steel-imports Strong trade enforcement is especially critical in the market for oil country tubular goods (OCTG), the pipe and steel products used for energy exploration....

  20. CRADA No. NFE-10-02715 Assessment of AFA Stainless Steels for Tube Products in Chemical Processing and Energy Production Applications

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Yamamoto, Yukinori [ORNL; Epler, Mario [Carpenter Technology Corporation; Magee, John H [Carpenter Technology Corporation

    2011-09-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (Carpenter) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to assess material properties of several potential AFA family grades and explore the feasibility of producing alumina-forming austenitic (AFA) stainless steels in tubular form needed for many power generation and chemical process applications. Carpenter's Research Laboratory successfully vacuum melted 30 lb heats of seven candidate AFA alloy compositions representing a wide range of alloy content and intended application temperatures. These compositions were evaluated by ORNL and Carpenter R&D for microstructure, tensile properties, creep properties, and oxidation resistance. In parallel, additional work was directed toward an initial tube manufacture demonstration of a baseline AFA alloy. Carpenter successfully manufactured a 10,000 lb production heat and delivered appropriate billets to a partner for extrusion evaluation. Tube product was successfully manufactured from the baseline AFA alloy, indicating good potential for commercially produced AFA tubular form material.

  1. Reaustenitisation from Bainite in Steels

    E-Print Network [OSTI]

    Takahashi, Manabu

    1993-03-16T23:59:59.000Z

    .7 APPLICATIONS . . . 1.7.1 Ferrite-Martensite dual phase steels 1.7.2 Steels containing some retained austenite 1.7.3 Welding of steels . . . . . . . . . . 1.7.4 Initial austenite grain size . . . . . . . 1.8 TRANSFORMATION FROM AUSTENITE 1.8.1 Widmanstiitten... is important in the production of dual phase steels which have a final microstructure of ferrite and about 20% martensite. These steels have a good combination of strength and uniform ductility, and find applications in the automobile industry. When a fully...

  2. Microbially-Promoted Solubilization of Steel Corrosion Products and Fate of Associated Actinides

    SciTech Connect (OSTI)

    Gill Geesey; Timothy Magnuson; Andrew Neal

    2002-06-15T23:59:59.000Z

    Microorganisms have the capacity to modify iron oxides during anaerobic respiration. When the dissimilatory sulfate-reducing bacterium Desulfovibrio desulfuricans G20 respires soluble sulfate during colonization of the solid-phase iron oxide hematite, the sulfide product reacts with the iron to produce the insoluble iron sulfide, pyrrhotite. When soluble uranium is present as uranyl ion, these microorganisms reduce the U(VI) to U(IV) as insoluble uraninite on the hematite surface. There is also evidence that a stable form of U is produced under these conditions that displays an oxidation state between U(VI) and U(iv). The dissimilatory iron reducing bacterium, Shewanella oneidensis MR1 can utilize insoluble hematite as the sole electron acceptor for anaerobic respiration during growth and biofilm development on the mineral. The growth rate, maximum cell density and detachment rate for this bacterium are significantly greater on hematite than on magnetite (111) and (100). The difference could not be attributed to iron site density in the iron oxide. A gene (ferA) encoding a c-tyoe cytochrome involved in dissimulatory iron reduction in the bacterium Geobacter sulfurreducens was completed sequenced and characterized. The sequence information was used to develop an in-situ reverse transcriptase polymerase chain reaction assay that could detect expression of the gene during growth and biofilm development on ferrihydrite at the single cell and microcolony level. X-ray photoelectron spectroscopic analysis revealed that the ferrihydrite was reduced during expression of this gene. The assay was extended to detect expression of genes involved in sulfate reduction and hydrogen reduction in sulfate-reducing bacteria. This assay will be useful to assess mechanisms of biotransformation of minerals including corrosion products on buried metal containers containing radionuclide waste. In summary, the research has shown that dissimilatory sulfate and iron reducing bacteria can modify the iron oxide surfaces that they colonize and promote the reduction and precipitation of actinides such as uranium at these sites

  3. Supplemental Release Limits for the Directed Reuse of Steel in Road Barriers and Lead in Shielding Products by the Department of Energy

    SciTech Connect (OSTI)

    Coleman, RL

    2006-04-07T23:59:59.000Z

    The DOE National Center of Excellence for Metals Recycle (NMR) proposes to define and implement a complex-wide directed reuse strategy for surplus radiologically impacted lead (Pb) and steel as part of the U.S. Department of Energy's commitment to the safe and cost-effective recycle or reuse of excess materials and equipment across the DOE complex. NMR will, under this proposal, act on behalf of the DOE Office of Environmental Management, Office of Technical Program Integration (specifically EM-22), as the Department's clearinghouse for DOE surplus lead, steel and products created from these materials by developing and maintaining a cost-effective commercially-based contaminated lead and steel recycle program. It is NMR's intention, through this directed reuse strategy, to mitigate the adverse environmental and economic consequences of managing surplus lead and steel as a waste within the complex. This approach promotes the safe and cost-effective reuse of scrap metals in support of the Department's goals of resource utilization, energy conservation, pollution prevention and waste minimization. This report discusses recommendations for supplemental radiological release limits for the directed reuse of contaminated lead and steel by the DOE within the nuclear industry. The limits were originally selected from the American National Standards Institute and Health Physics Society standard N13.12 titled ''Surface and Volume Radioactivity Standards for Clearance'' (Health Physics Society, 1999) but were subsequently modified as a result of application-specific issues. Both the health and measurement implications from the adoption and use of the limits for directed reuse scenarios are discussed within this report.

  4. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01T23:59:59.000Z

    Improved Product Quality,” Ironmaking and Steel making 18(pound Investment,” Ironmaking and Steel making,” Anonymous,Oil Through Sintering," Ironmaking and Steel making Dawson,

  5. Upgrading of raw oil into advanced fuel. Task 5

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

  6. XPS on corrosion products of ZnCr coated steel: on the reliability of Ar+ ion depth profiling for multi component material analysis

    E-Print Network [OSTI]

    Steinberger, Roland; Arndt, Martin; Stifter, David

    2013-01-01T23:59:59.000Z

    X-ray photoelectron spectroscopy combined with Ar+ ion etching is a powerful concept to identify different chemical states of compounds in depth profiles, important for obtaining information underneath surfaces or at layer interfaces. The possibility of occurring sputter damage is known but insufficiently investigated for corrosion products of Zn-based steel coatings like ZnCr. Hence, in this work reference materials are studied according to stability against ion sputtering. Indeed some investigated compounds reveal a very unstable chemical nature. On the basis of these findings the reliability of depth profiles of real samples can be rated to avoid misinterpretations of observed chemical species.

  7. Climate VISION: Private Sector Initiatives: Iron and Steel: GHG...

    Office of Scientific and Technical Information (OSTI)

    chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we...

  8. Strategic raw material inventory optimization

    E-Print Network [OSTI]

    Vacha, Robin L. (Robin Lee)

    2007-01-01T23:59:59.000Z

    The production of aerospace grade titanium alloys is concentrated in a relatively small number of producers. The market for these materials has always been cyclical in nature. During periods of high demand, metal producers ...

  9. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2012-01-01T23:59:59.000Z

    energy use for the pellet production is fuel, so this valueof energy used for the production of pellets, the followingthe energy use for the production of pellet, lime, coke, and

  10. Influence of alloy content and a cerium surface treatment on the oxidation behavior of Fe-Cr ferritic stainless steels

    SciTech Connect (OSTI)

    Alman, D.E.; Jablonski, P.D.

    2006-01-01T23:59:59.000Z

    The cost of solid oxide fuel cells (SOFC) can be significantly reduced by using interconnects made from ferritic stainless steels. In fact, several alloys have been developed specifically for this application (Crofer 22APU and Hitachi ZMG323). However, these steels lack environmental stability in SOFC environments, and as a result, degrade the performance of the SOFC. A steel interconnect can contribute to performance degradation through: (i) Cr poisoning of electrochemically active sites within the cathode; (ii) formation of non-conductive oxides, such as SiO2 or Al2O3 from residual or minor alloying elements, at the base metal-oxide scale interface; and/or (iii) excessive oxide scale growth, which may also retard electrical conductivity. Consequently, there has been considerable attention on developing coatings to protect steel interconnects in SOFC environments and controlling trace elements during alloy production. Recently, we have reported on the development of a Cerium surface treatment that improves the oxidation behavior of a variety alloys, including Crofer 22APU [1-5]. Initial results indicated that the treatment may improve the performance of Crofer 22APU for SOFC application by: (i) retarding scale growth resulting in a thinner oxide scale; and (ii) suppressing the formation of a deleterious continuous SiO2 layer that can form at the metal-oxide scale interface in materials with high residual Si content [5]. Crofer 22 APU contains Fe-22Cr-0.5Mn-0.1Ti (weight percent). Depending on current market prices and the purity of raw materials utilized for ingot production, Cr can contribute upwards of 90 percent of the raw materials cost. The present research was undertaken to determine the influence of Cr content and minor element additions, especially Ti, on the effectiveness of the Ce surface treatment. Particular emphasis is placed on the behavior of low Cr alloys.

  11. 60 Years of duplex stainless steel applications

    SciTech Connect (OSTI)

    Olsson, J.; Liljas, M. [Avesta Sheffield AB, Avesta (Sweden)

    1994-12-31T23:59:59.000Z

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  12. The impact of environmental constraints on productivity improvement and energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    Boyd, G.A. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; McClelland, J. [Maryland Univ., College Park, MD (United States). Dept. of Economics

    1996-12-31T23:59:59.000Z

    This paper presents a methodology and results for assessing the impact of production and energy efficiency, environmental regulation, and abatement capital expenditure constraints (e.g. capital rationing) on the productivity of energy and pollution intensive sectors. Energy is treated like any other production input when examining evidence of inefficiency. We find that capital rationing and environmental regulations do contribute to productivity and energy efficiency losses, but do not explain all of the production and energy inefficiencies observed in the paper industry. A summary of the energy source of production inefficiency found in the paper industry, is presented.. Each source is derived as the incremental contribution., i.e. the first is constraints on capital, the second in environmental regulation not accounted for by the first, and the final component is production inefficiency that is not accounted for my any of the- environmental analysis. While the methods are very data intensive, they reveal much more that analysis of aggregate data, 1835 since the only plant level data can provide the estimates of inefficiency that this methodology employs.

  13. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13T23:59:59.000Z

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.

  14. EMBARGOED 00h00 -6 March 2007 Brussels, 5 March 2007 European Energy Policy puts industries using renewable raw materials at risk

    E-Print Network [OSTI]

    of renewable energy as well as the mobilisation of biomass resources. Conflicts between different uses production should be a priority and should be monitored in order to optimise the use of renewable resources renewable raw materials at risk The European industries using renewable raw materials from agriculture

  15. RawSolar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJump to: navigation, searchRavenRawSolar

  16. Raw material preparation for ultra high production rate sintering

    SciTech Connect (OSTI)

    Kortmann, H.A.; Ritz, V.J. [Studiengesellschaft fuer Eisenerzaufbereitung, Liebenburg-Othfresen (Germany); Cappel, F.; Weisel, H.; Richter, G. [LURGI AG, Frankfurt (Germany)

    1995-12-01T23:59:59.000Z

    An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

  17. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000...

  18. Auto/Steel Partnership: Advanced High-Strength Steel Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced High-Strength Steel Research and Development AutoSteel Partnership: Advanced High-Strength Steel Research and Development 2009 DOE Hydrogen Program and Vehicle...

  19. ITP Steel: Steel Industry Marginal Opportunity Study September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Marginal Opportunity Study September 2005 ITP Steel: Steel Industry Marginal Opportunity Study September 2005 steelmarginalopportunity.pdf More Documents &...

  20. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect (OSTI)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of) [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of)] [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)] [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15T23:59:59.000Z

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  1. UNIVERSITET Horizon 2020 Climate Action, Resource Efficiency and Raw Materials

    E-Print Network [OSTI]

    "Climate" and the European Innovation Partnerships "Water" and "Raw Materials" - talking with reference:50-13:15 Parallel sessions A. JPI Climate B. EIP Water and Raw Materials Anja Skjoldborg, Environmental Science, JPI. Fighting and adapting to climate change 2. Protection of the environment, sustainable management of natural

  2. Exploring Optimal Cost-Performance Designs for Raw Microprocessors

    E-Print Network [OSTI]

    Yeung, Donald

    Exploring Optimal Cost-Performance Designs for Raw Microprocessors Csaba Andras Moritz Donald Yeung. The MIT Raw microprocessor is a proposed architec- ture that strives to exploit these chip-level resources microprocessors fully expose their internal hardware structure to the software, they can be viewed as a gi- gantic

  3. Exploring Optimal CostPerformance Designs for Raw Microprocessors

    E-Print Network [OSTI]

    Yeung, Donald

    Exploring Optimal Cost­Performance Designs for Raw Microprocessors Csaba Andras Moritz Donald Yeung. The MIT Raw microprocessor is a proposed architec­ ture that strives to exploit these chip­level resources microprocessors fully expose their internal hardware structure to the software, they can be viewed as a gi­ gantic

  4. agricultural raw materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agricultural raw materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Strategic raw material...

  5. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect (OSTI)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01T23:59:59.000Z

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  6. Process for mitigating corrosion and increasing the conductivity of steel studs in soderberg anodes of aluminum reduction cells

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); White, Jack C. (Albany, OR); Ramsey, James A. (The Dalles, OR)

    1994-01-01T23:59:59.000Z

    A corrosion resistant electrically conductive coating on steel anode studs used in the production of aluminum by electrolysis.

  7. int. j. prod. res., 2002, vol. 40, no. 1, 5570 Steel-making process scheduling using Lagrangian relaxation

    E-Print Network [OSTI]

    Luh, Peter

    industries (Balakrishnan and Brown 1996). Iron and steel production includes sev- eral process phases (iron-making

  8. Inventory management of steel plates at an oil rig construction company

    E-Print Network [OSTI]

    Tan, Chien Yung

    2006-01-01T23:59:59.000Z

    Keppel Fels produces make-to-order oil exploration rigs for the global market. Each rig requires close to 6000 metric tons of steel in the course of its production. Optimal management of this steel is very critical in this ...

  9. Automated Steel Cleanliness Analysis Tool (ASCAT)

    SciTech Connect (OSTI)

    Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

    2005-12-30T23:59:59.000Z

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet or bloom disposition; and alloy development. Additional benefits of ASCAT include the identification of inclusions that tend to clog nozzles or interact with refractory materials. Several papers outlining the benefits of the ASCAT have been presented and published in the literature. The paper entitled ''Inclusion Analysis to Predict Casting Behavior'' was awarded the American Iron and Steel Institute (AISI) Medal in 2004 for special merit and importance to the steel industry. The ASCAT represents a quantum leap in inclusion analysis and will allow steel producers to evaluate the quality of steel and implement appropriate process improvements. In terms of performance, the ASCAT (1) allows for accurate classification of inclusions by chemistry and morphological parameters, (2) can characterize hundreds of inclusions within minutes, (3) is easy to use (does not require experts), (4) is robust, and (5) has excellent image quality for conventional SEM investigations (e.g., the ASCAT can be utilized as a dual use instrument). In summary, the ASCAT will significantly advance the tools of the industry and addresses an urgent and broadly recognized need of the steel industry. Commercialization of the ASCAT will focus on (1) a sales strategy that leverages our Industry Partners; (2) use of ''technical selling'' through papers and seminars; (3) leveraging RJ Lee Group's consulting services, and packaging of the product with a extensive consulting and training program; (4) partnering with established SEM distributors; (5) establishing relationships with professional organizations associated with the steel industry; and (6) an individualized plant by plant direct sales program.

  10. Supporting steel

    SciTech Connect (OSTI)

    Badra, C. [International Trade Commission, Washington, DC (United States)

    1995-10-01T23:59:59.000Z

    The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

  11. Comminuting irradiated ferritic steel

    DOE Patents [OSTI]

    Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

    1985-01-01T23:59:59.000Z

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  12. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-07-13T23:59:59.000Z

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

  13. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect (OSTI)

    Dr. Arvind C. Thekdi

    2011-01-27T23:59:59.000Z

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  14. Analysis of the raw data of sample plots in NFIMAP Cycle IV ...

    Open Energy Info (EERE)

    Available Website: www.leafasia.orglibraryusaid-leaf-analysis-raw-date-sample-plots-nfi Cost: Free Language: English Logo: Analysis of the raw data of sample plots in NFIMAP...

  15. Methods of forming steel

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID); Burch, Joseph V. (Shelley, ID)

    2001-01-01T23:59:59.000Z

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  16. Energy use in the U.S. steel industry: a historical perspective and future opportunities

    SciTech Connect (OSTI)

    Stubbles, John

    2000-09-01T23:59:59.000Z

    The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric furnace-based production continues, the average consumption will approach the good practice energy per ton. Further savings will accrue through new technology, particularly in the areas of reduced blast furnace fuel rates and reheating efficiency, both of which relate to large tonnages of material.

  17. Improvement of productivity of sintering plant at Nagoya Works of NSC

    SciTech Connect (OSTI)

    Yoshida, Hitoshi; Iida, Hiroyuki; Kabuto, Shigehisa; Suzuki, Haruhisa

    1996-12-31T23:59:59.000Z

    It is well known that in the sintering process generally, the state of charging raw materials into the sintering machine and whether or not its stability is good significantly influence the productivity, quality and cost of this process. At the Nagoya sintering plant, therefore, the peripheral of the slit bar-type segregation charging equipment developed by Nippon Steel were improved in 1994. The main improvements were: the improvement of the raw materials charging control mode, the introduction of fluffer bar to improve permeability and the addition of equipment for removal of lumps from sinter mix. After these measures were taken, the state of segregation of the raw materials and carbon between the upper and lower portions of the sinter bed was improved, the charging stability was also improved and the charging density was decreased, making it possible to achieve productivity improvement and cost reduction as originally intended. This report described the outline and concept of the equipment improvement measures and the operation results of the actual machine.

  18. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

    2010-06-15T23:59:59.000Z

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  19. Reuse of steel and aluminium without melting

    E-Print Network [OSTI]

    Cooper, Daniel

    2014-01-07T23:59:59.000Z

    -of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semi-structured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminium used in current products could... Allwood J.M., Cullen J.M., Cooper D.R., Milford R.L., Patel A.C.H., Carruth M.A., McBrien M., 2010. Conserving our metal energy: avoiding melting steel and aluminium scrap to save energy and carbon. University of Cambridge, ISBN 978-0-903428-30-9 Allwood...

  20. III.C. 3. A Delphi on the Future of the Steel and Ferroalloy Industries*

    E-Print Network [OSTI]

    Bieber, Michael

    204 III.C. 3. A Delphi on the Future of the Steel and Ferroalloy Industries* NANCY H. GOLDSTEIN for policy issues affecting the use of ferroalloys in steel making and certain other alloy production of the Delphi. The Steel and Ferroalloy Delphi included three rounds. The questions and exercises presented

  1. Activation Products from Copper and Steel Samples Exposed to Showers Produced by 8 GeV Protons Lost in the Fermilab Main Injector Collimation System

    E-Print Network [OSTI]

    Brown, Bruce C; Pronskikh, Vitaly S

    2015-01-01T23:59:59.000Z

    In conjunction with efforts to predict residual radiation levels in the Fermilab Main Injector, measurements of residual radiation were correlated with the time history of losses. Detailed examination suggested that the list of radioactive isotopes used for fitting was incomplete. We will report on activation studies of magnet steel and copper samples which we irradiated adjacent to the Fermilab Main Injector collimation system. Our results identified several additional radioactive isotopes of interest. The MARS15 studies using a simplified model are compared with measurements. The long half-life isotopes will grow in importance as operation stretches to a second decade and as loss rates rise. These studies allow us to predict limits on these concerns.

  2. A steel trap | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical and chemical interactions in metallic elements, such as the irradiated ODS steels used in this study. The APT work revealed clear images of the nanoclusters for...

  3. Nickel-free duplex stainless steels

    SciTech Connect (OSTI)

    Wang, J.; Uggowitzer, P.J.; Magdowski, R.; Speidel, M.O. [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy] [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy

    1998-12-04T23:59:59.000Z

    It is well known that nitrogen-alloying in steel produces a variety of exceptional properties such as high strength, high ductility and, eventually, resistance to stress corrosion cracking. High-nitrogen steels (HNS), therefore, have recently been developed to enhance the strength and corrosion resistance of stainless steels. However, due to a low solubility of nitrogen in a liquid steel under atmospheric pressure, the production of such high-nitrogen alloys needs high-pressure facilities that cause an extra cost. A possible route of developing high-nitrogen alloys under atmospheric pressure is to choose a duplex microstructure, where the amount of austenite and ferrite phase is nearly equal. A much lower nitrogen content is needed to maintain a 50% austenite phase compared with the necessary addition of nitrogen to reach a 100% austenitic microstructure. In addition, duplex stainless steels (DSS) with 40--60% ferrite can significantly improve the SCC-resistance. The objective of this work was to develop a new group of nickel-free, high strength and corrosion resistant DSS. Nickel was completely replaced by nitrogen in order to enhance SCC resistance and reduce the alloying element cost. The microstructure, mechanical properties, corrosion resistance and cost analysis of new alloys are investigated in comparison with some commercial stainless steels.

  4. Transformation texture of allotriomorphic ferrite in steel

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation texture of allotriomorphic ferrite in steel D. W. Kim1 , R. S. Qin1 and H. K. D. H into that of the product is mathematically defined. This is not the case when the ferrite forms by a reconstructive mechanism. The allotriomorphic ferrite nucleates heterogeneously at austenite grain boundaries, and although

  5. Laminar inclusions of duplex stainless steels

    SciTech Connect (OSTI)

    Hudson, M.E. [Fluor Daniel Canada Inc., Calgary, Alberta (Canada)

    1993-12-31T23:59:59.000Z

    Duplex Stainless Steel have been utilized in the offshore petrochemical industries for over twenty years. The steels are normally manufactured to produce a 50:50 duplex austenitic and ferritic microstructure. The microstructure yields the benefits of high strength, corrosion resistance and low thermal expansion. While constructing a high pressure header box for an air cooled heat exchanger, linear indications were observed along the weld preparation faces. These laminations were parallel to the plate surfaces, reminiscent to oxide inclusions found in carbon steel plates manufactured 20 years ago. Concern over premature failure at the highly stressed corner joints resulted in the rejection of the plates. A metallurgical investigation followed. From scanning electron microscopy and energy dispersive x-ray, the indications were shown to be rich in Cr, Mn and Si. The inclusions occurred during steel manufacturing and were most likely due to incorrect removal of oxides at the top of the ingot and/or the exclusion of a secondary remelting process. New plates were ordered with tighter production controls on steel processing. The plates were ultrasonically inspected prior to fabrication and no further problems were discovered.

  6. Future designs of raw-gas conversion systems

    SciTech Connect (OSTI)

    Colton, J.W.; Fleming, D.K.

    1981-01-01T23:59:59.000Z

    Many different processes are available to convert raw gas to substitute natural gas (SNG). Several additional processes have been proposed and are now in development. An Institute of Gas Technology (IGT) computer program assesses the efficiency of various raw-gas conversion processes for the recovery of high-temperature enthalpy and the net export of high-pressure steam. The steam balance is a prime measure of economic attractiveness of the alternative processes. Of the currently available processes, the sequence that uses sour-gas shift followed by conventional cold sweetening and nickel-based multistage methanation is preferred. Certain novel process concepts beginning with sour-gas shift and hot-gas carbon dioxide removal should be a significant improvement. The improved processes will require either sulfur-tolerant methanation or hot-gas sulfur removal plus conventional methanation. In either case, the gas would not be cooled to room temperature before being entirely converted to methane.

  7. Environmental assessment of a BOF steel slag used in road construction: The ECLAIR research program

    E-Print Network [OSTI]

    Boyer, Edmond

    Abstract Steel production generates great amounts of by-products as steel slag. Unlike blast furnace slag silicates. No real toxicity effect of seepage waters has been revealed from eco-toxicological tests carried, environmental assessment. Introduction Steelmaking slag includes blast furnace iron slag, and electric arc

  8. Access to Critical Raw Materials: A U.S. Perspective Statement of

    E-Print Network [OSTI]

    Access to Critical Raw Materials: A U.S. Perspective Statement of Roderick G. Eggert Professor for current concerns about critical mineral raw materials. Second, I explain the way I view and analyze reggert@mines.edu Before the Public Hearing on "An Effective Raw Materials Strategy for Europe" Committee

  9. Ris-R-1507(EN) Hemp raw materials: The effect of

    E-Print Network [OSTI]

    Risø-R-1507(EN) Hemp raw materials: The effect of cultivar, growth conditions and pretreatment, Søren Rasmussen, Vibeke Bohn, Kristina Vad Nielsen and Anders Thygesen Title: Hemp raw materials Cover : Pages: 30 Tables: 10 References: 24 Abstract: Hemp raw materials were analyzed chemically

  10. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  11. ON QUANTIFICATION OF HELIUM EMBRITTLEMENT IN FERRITIC/MARTENSITIC STEELS

    SciTech Connect (OSTI)

    Gelles, David S.

    2000-12-01T23:59:59.000Z

    Helium accumulation due to transmutation has long been considered a potential cause for embrittlement in ferritic/martensitic steels. Three Charpy impact databases involving nickel- and boron-doped alloys are quantified with respect to helium accumulation, and it is shown that all predict a very large effect of helium production on embrittlement. If these predictions are valid, use of Ferritic/Martensitic steels for Fusion first wall applications is highly unlikely. It is therefore necessary to reorient efforts regarding development of these steels for fusion applications to concentrate on the issue of helium embrittlement.

  12. The Romelt Process -- Prospects for pig iron production in North America

    SciTech Connect (OSTI)

    Thompson, M.W. [ICF Kaiser International, Inc., Fairfax, VA (United States); Weston, T.R. [ICF Kaiser International, Inc., Pittsburgh, PA (United States)

    1997-12-31T23:59:59.000Z

    The iron and steel industry in North America is undergoing dramatic changes and is being driven by three factors. First, the introduction of new technologies and pace of innovation has placed North America at the forefront of commercializing new technologies. Second, new technologies have changed the market for steelmaking raw materials and stimulated an industry-wide discussion of the ``value in use`` of scrap and scrap substitutes. Finally, an increase in environmental costs has fundamentally changed management`s view toward the environmental impact of iron and steelmaking, particularly in the integrated steel industry. This paper discusses the Romelt Process, an emerging ironmaking technology developed by the Moscow Institute for Steels and Alloys, in the context of these industry trends. ICF Kaiser, a worldwide licensee to the Romelt technology, believes that the current North American climate is probably the most conducive of all steelmaking regions to the commercialization of new technologies. Liquid or cast pig iron, the product of the Romelt Process, is the highest value feed for both the EAF and BOF steelmaking processes. In terms of environmental benefits, Romelt uses non-coking coals for its fuel and reductant, and has a proven large scale pilot plant track record in smelting both low grade fine ores and iron bearing wastes from the integrated works.

  13. Ris-R-1244(EN) Tool Steels

    E-Print Network [OSTI]

    -resistant steels 18 5.5 Hot-work steels 18 5.6 Cold-work steels 19 5.7 High-speed steels (HSSs) 20 Appendix 1 and chromium) furthermore some steel types contains cobalt, which respectively raises the temperature at which.1 Water-hardening steels 17 5.2 Low-alloy special purpose steels 17 5.3 Mould steels 18 5.4 Shock

  14. Iron and steel industry process model

    SciTech Connect (OSTI)

    Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

    1980-01-01T23:59:59.000Z

    The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

  15. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  16. Composite production riser assessment 

    E-Print Network [OSTI]

    Kim, Won Ki

    2007-09-17T23:59:59.000Z

    The performance of a deep water composite production riser from a system perspective is presented, and its advantages are articulated through comparisons with a typical steel riser under identical service conditions. The ...

  17. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01T23:59:59.000Z

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  18. Sulphide stress cracking resistance of supermartensitic stainless steel for OCTG

    SciTech Connect (OSTI)

    Scoppio, L.; Barteri, M. [Centro Sviluppo Materiali S.p.A., Rome (Italy); Cumino, G. [Dalmine Tubi Industriali S.r.l., Bergamo (Italy)

    1997-08-01T23:59:59.000Z

    Supermartensitic stainless steels, recently made available as oil country tubular goods (OCTG), have been developed as a valuable cost effective alternative to duplex stainless steel for high CO{sub 2}, medium/high chlorides, and very low H{sub 2}S environments. Experimental tests were carried out to determine the localized corrosion and the sulfide stress cracking (SSC) resistance of supermartensitic steel UNS S41425 to be used as OCTG in slightly sour oil and gas wells and to compare its performance with standard L80 API grade UNS S42000 13% Cr steel, considered as a reference. Supermartensitic steels with yield range as per L80, C95, P110, API5CT, were developed and corrosion and mechanical properties were determined. The influence of different chloride contents (NaCl 10 {divided_by} 50 g/l), hydrogen sulfide partial pressure (0.1 {divided_by} 100 kPa) and pH (2.7 {divided_by} 4.5) has been investigated in order to simulate production service conditions. Modified NACE constant load test and slow strain rate (SSR) test were performed. SSR gave the most severe evaluation for the SSC resistance. In the SSR test supermartensitic steel is deeply influenced by the chloride concentration. Supermartensitic steel corrosion resistance is by far superior to that of 13% Cr.

  19. Performance history over 10 years of super duplex stainless steel in flue gas desulfurization

    SciTech Connect (OSTI)

    Bendall, K.C. [Langley Alloys Ltd., Maidenhead (United Kingdom)

    1996-08-01T23:59:59.000Z

    25 Cr duplex (austenitic/ferritic) stainless steel containing copper and nitrogen offers a cost effective solution to material selection for pollution control equipment. The properties of duplex stainless steel which make it suitable for this type of application are discussed and long term performance histories presented. It is concluded that high alloy duplex steel has an important role to play in the production of low maintenance reliable equipment for FGD and other pollution control systems.

  20. Candidate anode materials for iron production by molten oxide electrolysis

    E-Print Network [OSTI]

    Paramore, James D

    2010-01-01T23:59:59.000Z

    Molten oxide electrolysis (MOE) has been identified by the American Iron and Steel Institute (AISI) as one of four possible breakthrough technologies to alleviate the environmental impact of iron and steel production. This ...

  1. Yield improvement and defect reduction in steel casting

    SciTech Connect (OSTI)

    Kent Carlson

    2004-03-16T23:59:59.000Z

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  2. TRACKING THE LIFE CYCLE OF CONSTRUCTION STEEL: THE DEVELOPMENT OF A RESOURCE LOOP

    E-Print Network [OSTI]

    Liu, Lanfang

    2009-12-17T23:59:59.000Z

    product have in its life span and how each material flows along with a product’s life cycle. At each stage, there are always materials flowing in or flow out of products’ life cycles. Materials could be chemicals, raw materials, fossil fuels... production Loss in fuel conversion at power plants Transmission and distribution losses Fuel extraction, processing and delivery Energy consumption delivering fuel for use in power plants, transport equipment and industrial plants Process heat Fuel...

  3. Recovery of iron, carbon and zinc from steel plant waste oxides using the AISI-DOE postcombustion smelting technology

    SciTech Connect (OSTI)

    Sarma, B. [Praxair, Inc., Tarrytown, NY (United States); Downing, K.B. [Fluor Daniel, Greenville, SC (United States); Aukrust, E.

    1996-09-01T23:59:59.000Z

    This report describes a process to recover steel plant waste oxides to be used in the production of hot metal. The process flowsheet used at the pilot plant. Coal/coke breeze and iron ore pellets/waste oxides are charged into the smelting reactor. The waste oxides are either agglomerated into briquettes (1 inch) using a binder or micro-agglomerated into pellets (1/4 inch) without the use of a binder. The iron oxides dissolve in the slag and are reduced by carbon to produce molten iron. The gangue oxides present in the raw materials report to the slag. Coal charged to the smelter is both the fuel as well as the reductant. Carbon present in the waste oxides is also used as the fuel/reductant resulting in a decrease in the coal requirement. Oxygen is top blown through a central, water-cooled, dual circuit lance. Nitrogen is injected through tuyeres at the bottom of the reactor for stirring purposes. The hot metal and slag produced in the smelting reactor are tapped at regular intervals through a single taphole using a mudgun and drill system. The energy requirements of the process are provided by (i) the combustion of carbon to carbon monoxide, referred to as primary combustion and (ii) the combustion of CO and H{sub 2} to CO{sub 2} and H{sub 2}O, known as postcombustion.

  4. Process for dezincing galvanized steel

    DOE Patents [OSTI]

    Morgan, William A. (Hamilton, CA); Dudek, Frederick J. (Arlington Heights, IL); Daniels, Edward J. (Oak Lawn, IL)

    1998-01-01T23:59:59.000Z

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  5. Sandia National Laboratories: stainless steel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stainless steel Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology (AIST) in Hydrogen-Materials Research On July 26, 2013, in...

  6. Process for dezincing galvanized steel

    DOE Patents [OSTI]

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14T23:59:59.000Z

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  7. Spider Silk: Sronger than Steel? Nature's Supermaterial

    E-Print Network [OSTI]

    Powers, Alexander

    2013-01-01T23:59:59.000Z

    spider silk were as thick as a steel beam, it would be verysized and much heavier steel. In fact, it would take aboutstrength comparable to that of steel, about 1.5 gigapascals,

  8. Imagining Chivalry: Charles V's Suits of Steel

    E-Print Network [OSTI]

    Machado, Erin Jeannine

    2012-01-01T23:59:59.000Z

    Mail, German, 15 th century. Steel and brass. MetropolitanI. , Innsbruck, ca. 1512-14. Steel, gilded silver, velvet,Elector of Saxony, ca. 1555. Steel, copper alloy (brass),

  9. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect (OSTI)

    Pistorius, P Chris; Li, Wen

    2012-09-19T23:59:59.000Z

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide (visible as a black corrosion product) forms during anodic dissolution. The sulfide is electronically conductive, and gives an increase of several orders of magnitude in the electrode capacitance; the sulfide also causes anodic activation to persist after the pure metals and steels were removed from the thiocyanate-containing electrolyte and transferred to a thiocyanate-free electrolyte. The main practical implications of this work are that low concentrations of reduced sulfur compounds strongly affect anodic dissolution of stainless steels, and that selecting steels with elevated concentrations of chromium, nickel or molybdenum would serve to limit the anodic dissolution rate in the presence of reduced sulfur compounds.

  10. Switch to duplex stainless steels

    SciTech Connect (OSTI)

    Quik, J.M.A.; Geudeke, M.

    1994-11-01T23:59:59.000Z

    Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

  11. Duplex Stainless Steels Margaret Gorog

    E-Print Network [OSTI]

    Das, Suman

    , substituted for 6% mo SS in bleach plant Hyper DSS, Offshore oil applications Super, Hyper ­ Corrosion11/14/2014 1 Duplex Stainless Steels Margaret Gorog Federal Way, WA Pulp and Paper Corrosion for suction rolls Duplex Stainless Steel · Improved corrosion and more importantly, stress corrosion cracking

  12. Recovery Act: Waste Energy Project at AK Steel Corporation Middletown

    SciTech Connect (OSTI)

    Joyce, Jeffrey

    2012-06-30T23:59:59.000Z

    In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

  13. Steel industry of the future: Meeting the material challenges of the 21. century

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    For over a century, the US steel industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, steel industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US steel industry and, at the same time, further important national goals. This industry-led partnership, the Steel Industry of the Future, promotes technologies that optimize the use of energy and materials in operation and reduce wastes and energy-related emissions. Led by the American Iron and Steel Institute (AISI) and the Steel Manufacturers Association (SMA), industry leaders began by developing a unified vision for the next 20 years: to provide high-quality, value-added products to a wide array of customers in an environmentally friendly, cost-effective manner, while leading the world in innovation and technology. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. The steel industry vision provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate collaborative R and D on advanced processes and technologies for the steel industry.

  14. CO2 as a raw material for chemistry : an

    E-Print Network [OSTI]

    Canet, Léonie

    to chemical products capable of being energy vectors (CH3OH, CH3OCH3, EtOH, ... ) · Access to chemical intermediates from biomass · CO2 accelerates production of biomass · Ex microalgae biofuel, chemicals, .. · Ex energy: 803 kJ/mol ( 192 kcal/mol) #12;Paris, 09/07/20139 Chemical valorisations : an industrial

  15. Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

  16. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  17. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    SciTech Connect (OSTI)

    Jaffe, Todd

    2012-01-01T23:59:59.000Z

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  18. Product Design for Energy: An Inverted Pyramid Approach

    E-Print Network [OSTI]

    Gopalakrishnan, B.; Alkadi, N. M.; Plummer, R. W.

    The product design function is important within the spectrum of the product life cycle. Manufacturing processes are likely to consume much energy, as evidenced in aluminum and steel industries. The product design parameters such as the material...

  19. 2169 steel waveform experiments.

    SciTech Connect (OSTI)

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01T23:59:59.000Z

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe - phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mm-thick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  20. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D. [Energy and Environmental Research Corp., Irvine, CA (United States); Li, X. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1999-01-14T23:59:59.000Z

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  1. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect (OSTI)

    Morgan, M.

    2013-01-31T23:59:59.000Z

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  2. ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

  3. Climate VISION: Private Sector Initiatives: Iron and Steel: Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations American Iron and Steel Institute For over a century, North American steel producers have worked as partners and members of the American Iron and Steel...

  4. THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS

    E-Print Network [OSTI]

    Cambridge, University of

    THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS by Naseem Issa Abdallah Haddad;The Development of Microstructure in Duplex Stainless Steel Welds Abstract Duplex stainless steels

  5. Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS...

  6. Nonlinear seismic response analysis of steel-concrete composite frames

    E-Print Network [OSTI]

    Barbato, Michele

    2008-01-01T23:59:59.000Z

    formulation of nonlinear steel- concrete composite beam ele-Behaviour of Composite Steel and Concrete Struc- turalE. (2001). “Analysis of steel-concrete composite frames with

  7. An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material of Environmental Engineering, Beytepe, Ankara, Turkey b Institute for Environmental Science and Policy, University: Life cycle assessment Quantum dots Nanophotovoltaics Quantum dot photovoltaic modules Solar energy

  8. Iron and Steel Energy Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use...

  9. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

    1997-12-31T23:59:59.000Z

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  10. Overlay welding irradiated stainless steel

    SciTech Connect (OSTI)

    Kanne, W.R.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-08-01T23:59:59.000Z

    An overlay technique developed for welding irradiated stainless steel may be important for repair or modification of fusion reactor materials. Helium, present due to n,{alpha} reactions, is known to cause cracking using conventional welding methods. Stainless steel impregnated with 3 to 220 appm helium by decay of tritium was used to develop a welding process that could be used for repair. The result was a gas metal arc weld overlay technique with low-heat input and low-penetration into the helium-containing material. Extensive metallurgical and mechanical testing of this technique demonstrated substantial reduction of helium embrittlement damage. The overlay technique was applied to irradiated 304 stainless steel containing 10 appm helium. Surface cracking, present in conventional welds made on the same steel at lower helium concentrations, was eliminated. Underbead cracking, although greater than for tritium charged and aged material, was minimal compared to conventional welding methods.

  11. The US steel industry: An energy perspective

    SciTech Connect (OSTI)

    Azimi, S. A.; Lowitt, H. E.

    1988-01-01T23:59:59.000Z

    This report investigates the state of the US steel industry in terms of energy consumption and conservation. The specific objectives were: to update and verify energy and materials consumption data at the various process levels in 1983; to determine the potential energy savings attainable with current (1983), state-of-the-art, and future production practices and technologies (2000); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. The results of this study concluded that in year 2000, there is a potential to save between 40% and 46% of the energy used in current production practices, dependent on the projected technology mix. R and D needs and opportunities were identified for the industry. Potential R and D candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  12. Welding tritium aged stainless steel

    SciTech Connect (OSTI)

    Kanne, W.R. Jr.

    1993-04-01T23:59:59.000Z

    Stainless steels exposed to tritium become unweldable by conventional methods due to He buildup within the metal matrix. With longer service lives expected for new weapon systems, and service life extensions of older systems, methods for welding/repair on tritium-exposed material will become important. Results are reported that indicate that both solid-state resistance welding and low-heat gas metal arc overlay welding are promising methods for repair or modification of tritium-aged stainless steel.

  13. Release of Residues from Melting NORM-Contaminated Steel Scrap - A German Approach

    SciTech Connect (OSTI)

    Quade, U.; Thierfeldt, S.; Wvrlen, S.

    2003-02-24T23:59:59.000Z

    As many raw materials like crude oil, natural gas, mineral sands, phosphor ores and others are contaminated by radionuclides from the Uranium and/or Thorium decay chain (NORM), also plants for processing these materials became contaminated during operation. When plants are shut down, large quantities of pipes, valves, pumps and other components have to be scrapped. As scrap yards and steel mills are equipped by large detector systems to avoid an input of radioactivity into the steel cycle, decontamination is required before recycling. Siempelkamp is operating a melting plant for processing NORM and/or chemically/ toxically contaminated steel scrap. Beside the decontaminated steel as output, residues like slag and filter dust have to be managed within the range of licensed values. Based on the European Safety Standard the European member states have to implement radiation exposure from work activities with NORM in their Radiation Protection Ordinances (RPO). The German government revised the RPO in July 2001. Part 3 describes exposure limits for workers and for the public. Exposures from residues management have to meet 1 mSv/year. Brenk Systemplanung has performed calculations for assessing the radiation exposure from residues of the Siempelkamp melting plant. These calculations have been based on the input of metal from different origins and include all relevant exposure pathways in a number of scenarios. The calculations have been based on the dose criterion of 1 mSv/y as required by the German RPO. The methods and results will be presented.

  14. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01T23:59:59.000Z

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  15. Presentation 2.7: Energy and the Forest Products Industry in Malaysia Zulkifli Bin Ahmad

    E-Print Network [OSTI]

    balanced utilization of oil, gas, hydro & coal To prolong lifespan of Malaysia's oil reserves for future in the production of wood products are collected to be used as raw materials to produce fibre boards

  16. CORROSIVITY AND COMPOSITION OF RAW AND TREATED PYROLYSIS OILS

    SciTech Connect (OSTI)

    Keiser, Jim; Howell, Michael; Connatser, Raynella M.; Lewis, Sam; Elliott, Douglas C.

    2012-10-14T23:59:59.000Z

    Fast pyrolysis offers a relatively low cost method of processing biomass to produce a liquid product that has the potential for conversion to several types of liquid fuels. The liquid product of fast pyrolysis, known as pyrolysis oil or bio-oil, contains a high oxygen content primarily in the form of water, carboxylic acids, phenols, ketones and aldehydes. These oils are typically very acidic with a Total Acid Number that is often in the range of 50 to 100, and previous studies have shown this material to be quite corrosive to common structural materials. Removal of at least some of the oxygen and conversion of this oil to a more useful product that is considerably less corrosive can be accomplished through a hydrogenation process. The product of such a treatment is considered to have the potential for blending with crude oil for processing in petroleum refineries. Corrosion studies and chemical analyses have been conducted using as produced bio-oil samples as well as samples that have been subjected to different levels of oxygen removal. Chemical analyses show treatment affected the concentrations of carboxylic acids contained in the oil, and corrosion studies showed a positive benefit of the oxygen removal. Results of these studies will be presented in this paper.

  17. Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa)

    E-Print Network [OSTI]

    Fajans, Joel

    Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa) Department of Physics July 1998 Scientific equipment often uses ``nonmagnetic'' stainless steel, relying on the steel's nonmagnetic behavior to leave external magnetic fields unaltered. However, stainless steel's permeability can

  18. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    SciTech Connect (OSTI)

    Maziasz, P.J.; Shyam, A.; Evans, N.D.; Pattabiraman, K. (Honeywell Turbo Technologies

    2010-06-30T23:59:59.000Z

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  19. AISI/DOE Advanced Process Control Program Vol. 6 of 6: Temperature Measurement of Galvanneal Steel

    SciTech Connect (OSTI)

    S.W. Allison; D.L. Beshears; W.W. Manges

    1999-06-30T23:59:59.000Z

    This report describes the successful completion of the development of an accurate in-process measurement instrument for galvanneal steel surface temperatures. This achievement results from a joint research effort that is a part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S> Department of Energy and fifteen North American Steelmakers. This three-year project entitled ''Temperature Measurement of Galvanneal Steel'' uses phosphor thermography, and outgrowth of Uranium enrichment research at Oak Ridge facilities. Temperature is the controlling factor regarding the distribution of iron and zinc in the galvanneal strip coating, which in turn determines the desired product properties

  20. SQA(TM): Surface Quality Assured Steel Bar Program

    SciTech Connect (OSTI)

    Tzyy-Shuh Chang; Jianjun Shi; Shiyu Zhou

    2009-03-03T23:59:59.000Z

    OG Technologies, Inc. (OGT) has led this SQA (Surface Quality Assured Steel Bar) program to solve the major surface quality problems plaguing the US special quality steel bars and rods industry and their customers, based on crosscutting sensors and controls technologies. Surface defects in steel formed in a hot rolling process are one of the most common quality issues faced by the American steel industry, accounting for roughly 50% of the rejects or 2.5% of the total shipment. Unlike other problems such as the mechanical properties of the steel product, most surface defects are sporadic and cannot be addressed based on sampling techniques. This issue hurts the rolling industry and their customers in their process efficiency and operational costs. The goal of this program is to develop and demonstrate an SQA prototype, with synergy of HotEye® and other innovations, that enables effective rolling process control and efficient quality control. HotEye®, OGT’s invention, delivers high definition images of workpieces at or exceeding 1,450?C while the workpieces travel at 100 m/s. The elimination of surface defect rejects will be achieved through the integration of imaging-based quality assessment, advanced signal processing, predictive process controls and the integration with other quality control tools. The SQA program team, composed of entities capable of and experienced in (1) research, (2) technology manufacturing, (3) technology sales and marketing, and (4) technology end users, is very strong. There were 5 core participants: OGT, Georgia Institute of Technology (GIT), University of Wisconsin (UW), Charter Steel (Charter) and ArcelorMittal Indiana Harbor (Inland). OGT served as the project coordinator. OGT participated in both research and commercialization. GIT and UW provided significant technical inputs to this SQA project. The steel mills provided access to their rolling lines for data collection, design of experiments, host of technology test and verification, and first-hand knowledge of the most advanced rolling line operation in the US. This project lasted 5 years with 5 major tasks. The team successfully worked through the tasks with deliverables in detection, data analysis and process control. Technologies developed in this project were commercialized as soon as they were ready. For instance, the advanced surface defect detection algorithms were integrated into OGT’s HotEye® RSB systems late 2005, resulting in a more matured product serving the steel industry. In addition to the commercialization results, the SQA team delivered 7 papers and 1 patent. OGT was also recognized by two prestigious awards, including the R&D100 Award in 2006. To date, this SQA project has started to make an impact in the special bar quality industry. The resulted product, HotEye® RSB systems have been accepted by quality steel mills worldwide. Over 16 installations were completed, including 1 in Argentina, 2 in Canada, 2 in China, 2 in Germany, 2 in Japan, and 7 in the U.S. Documented savings in reduced internal rejects, improved customer satisfaction and simplified processes were reported from various mills. In one case, the mill reported over 50% reduction in its scrap, reflecting a significant saving in energy and reduction in emission. There exist additional applications in the steel industry where the developed technologies can be used. OGT is working toward bringing the developed technologies to more applications. Examples are: in-line inspection and process control for continuous casting, steel rails, and seamless tube manufacturing.

  1. STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN

    E-Print Network [OSTI]

    Cambridge, University of

    STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN VICE-PRESIDENT OF CHINA STEEL CONSTRUCTION SOCIETY CHIEF ENGINEER OF BAOSTEEL CONSTRUCTION CO., LTD JULY 6, 2012 LONDON #12;1. STEEL AND STEEL STRUCTURES IN CHINA 2. SOME PROJECTS OF STEEL STRUCTURES FOR HIGH- RISE BUILDINGS IN CHINA #12;STEEL

  2. STUDENT STEEL BRIDGE COMPETITION The mission of the Student Steel Bridge Competition (SSBC) is to supplement

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    1 STUDENT STEEL BRIDGE COMPETITION 2012 RULES #12;2 MISSION The mission of the Student Steel Bridge in a steel structure that meets client specifications and optimizes performance and economy. The SSBC are stimulated to innovate, practice professionalism, and use structural steel efficiently. WELCOME ASCE and AISC

  3. Product Innovation and Strategy, case Stora Enso

    E-Print Network [OSTI]

    Construction Structural products for building and construction industries Fibre products to pulp, panel and Strategy, case Stora Enso Timber Mega trends in society Drivers in construction value chain Stora Enso raw materials ­ Circular flow economy · We have a good story to tell! low carbon footprint we help

  4. Wrought Cr--W--V bainitic/ferritic steel compositions

    DOE Patents [OSTI]

    Klueh, Ronald L.; Maziasz, Philip J.; Sikka, Vinod Kumar; Santella, Michael L.; Babu, Sudarsanam Suresh; Jawad, Maan H.

    2006-07-11T23:59:59.000Z

    A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.

  5. Recycling of electric arc furnace dust: Jorgensen steel facility

    SciTech Connect (OSTI)

    Jackson, T.W.; Chapman, J.S.

    1995-01-01T23:59:59.000Z

    This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

  6. STEEL: RECENT PUBLICATIONS HAMPSON, G. J., STEEL, R. J., BURGESS,

    E-Print Network [OSTI]

    Yang, Zong-Liang

    , eds., Atlas of Deepwater Outcrops, American Assoc. Petrol. Geol. Studies in Geology 56 YOSHIDA, S of Deepwater Outcrops, American Assoc. Petrol. Geol. Studies in Geology 56 MCLAURIN, B. & STEEL, R. J. (2006 on an Eocene shelf margin, Central Basin, Spitsbergen. Bull. Am. Assoc. Petrol. Geol. 90, 1451-72. #12;

  7. Product Refrigerator Freezer Fresh, in shell 4 to 5 weeks Don't freeze

    E-Print Network [OSTI]

    Burke, Peter

    with USDA seal, unopened 2 weeks Don't freeze well Raw Hamburger, Ground & Stew Meat Hamburger & stew meats just before using. · If freezing meat and poultry in its original package longer than 2 monthsProduct Refrigerator Freezer Eggs Fresh, in shell 4 to 5 weeks Don't freeze Raw yolks, whites 2

  8. Nitrate contents of well, raw, treated and pipe borne water in Vom, Plateau State, Nigeria

    SciTech Connect (OSTI)

    Gbodi, T.A.; Atawodi, S.E.

    1987-04-01T23:59:59.000Z

    Nitrate content of water available to man and animals in a rural community in Plateau State, Nigeria was determined. Water samples were obtained from artesian wells, raw untreated surface water, treated raw water, and pipe borne water. The examination of the samples was over a period of 3 mo at weekly intervals. Sixty percent of the artesian wells sampled had nitrate concentration above 5-50 ppm in June and August, while samples from other sources had less than 1 ppm. The proximity of pit latrines to some of the wells may have been responsible for high nitrate content of the well water.

  9. Effect of Mo substitution by W on impact property of heat affected zone in duplex stainless steels

    SciTech Connect (OSTI)

    Huh, M.J.; Kim, S.B.; Paik, K.W.; Kim, Y.G. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Materials Science and Engineering] [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Materials Science and Engineering

    1997-04-01T23:59:59.000Z

    The duplex stainless steels are characterized by two phase structures composed of a mixture of austenite and ferrite phases. They offer high toughness, good weldability, satisfactory corrosion protection, excellent stress corrosion cracking resistance and high strength. Because of these characteristics, these steels have been widely used in various applications such as oil, gas, and chemical industries. Duplex stainless steels generally have suffered embrittlement when exposed at elevated temperature, i.e. above 300 C. To avoid this embrittlement, conventional duplex stainless steels are subject to solution treatment followed by water quenching in the final stage of production or fabrication, which limits the size of products. Kim et al. have recently reported that embrittlement can be greatly reduced by the partial or full replacement of Mo by W in 22Cr-base duplex stainless steels. For the processing of duplex stainless steel, fusion welding is a major fabrication method for corrosion resistant applications. Therefore the welding behavior of these materials has to be fully defined. The purpose of this study is to investigate the effect of Mo substitution by W on the impact property of simulated heat affected zones in 22Cr duplex stainless steels. Structural transformation associated with Mo substitution by W in HAZ has been also investigated on W-containing alloys and conventional 3% Mo duplex stainless steel.

  10. Superplastic deformation in two microduplex stainless steels

    SciTech Connect (OSTI)

    Lesuer, D.R.; Nieh, T.G.; Syn, C.K. [Lawrence Livermore National Lab., CA (United States); Taleff, E.M. [Texas Univ., Austin, TX (United States)

    1996-09-01T23:59:59.000Z

    The deformation behavior and mechanisms of superplastic flow in two microduplex stainless steels (SuperDux64 and Nitronic 19D) were studied at {similar_to}0.7T{sub m}. The two steels differed in initial grain size by a factor of 3. Both steels exhibited solute-drag-controlled grain boundary sliding in a high temperature {gamma}+{delta} phase field. In a lower temperature {gamma}+{sigma} phase field, the fine-grained steel ({bar L}=5{mu}m) exhibited climb-controlled grain boundary sliding and the coarser- grained steel ({bar L}=15{mu}m) exhibited solute-drag-controlled slip creep.

  11. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    SciTech Connect (OSTI)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27T23:59:59.000Z

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

  12. The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft-glassy materials

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft confronted with a dramatically increasing flow of sewage sludge. To improve treatment efficiency, process reliable flow properties to simulate the process, this work is an attempt to approach sludge rheological

  13. Discriminative Illumination: Per-Pixel Classification of Raw Materials based on Optimal Projections of Spectral BRDF

    E-Print Network [OSTI]

    Gu, Jinwei

    Discriminative Illumination: Per-Pixel Classification of Raw Materials based on Optimal Projections training samples, after projecting to which, the spectral reflectance of different materials are maximally--is learned from training samples, after projecting to which, the spectral BRDFs of different materials can

  14. Study of the digital camera acquisition process and statistical modeling of the sensor raw data

    E-Print Network [OSTI]

    Study of the digital camera acquisition process and statistical modeling of the sensor raw data C. In the present report we present a detailed analysis of the digital image acquisition process which allows us. Aguerrebere, J. Delon, Y. Gousseau, P. Mus´e 1 Introduction The accurate modeling of the acquisition process

  15. Surface and ultrastructural characterization of raw and pretreated switchgrass Bryon S. Donohoe a

    E-Print Network [OSTI]

    California at Riverside, University of

    and economic data on leading pretreatments applied to both corn stover (Eggeman and Elander, 2005; KimSurface and ultrastructural characterization of raw and pretreated switchgrass Bryon S. Donohoe: Pretreatment Enzymatic hydrolysis Biomass Switchgrass Microscopy a b s t r a c t The US Department of Energy

  16. Benefits of recycling galvanized steel scrap for recovery of high-quality steel and zinc metal

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

    1991-11-04T23:59:59.000Z

    Argonne National Laboratory (ANL) and Metal Recovery Industries, Inc. (MRII), in cost-sharing collaboration, have developed an electrolytic process to separate and recover steel and zinc from galvanized steel scrap. This work has been supported by the US DOE. An assessment of available dezinc technology was begun in 1987 which (1) screened process concepts for separating and recovering zinc and steel from galvanized ferrous scrap, (2) selected electrochemical stripping in hot caustic as the most promising process, (3) evaluated the technical and economic feasibility of the selected process on the basis of fundamental electrochemical studies, (4) experimentally verified the technical and economic feasibility of the process in a phased evaluation from bench-scale controlled experiments through batch tests of actual scrap up to six ton lots, and (5) concluded that the process has technical and economic merit and requires larger- scale evaluation in a continuous mode as the final phase of process development. This work has attracted worldwide interest. Preliminary economic analysis indicates that the cost of the recovered ferrous scrap would be about $150/ton (at a base cost of $110/ton for galvanized scrap), including credit for the co-product zinc. Concentrations of zinc, lead, cadmium and other coating constituents on loose scrap are reduced by a minimum of 98%, with zinc, in particular, reduced to below 0.1%. Removal efficiencies on baled scrap with bulk densities between 60 and 245 pounds per cubic foot range from 80 to 90%. About 1000 tons of galvanized scrap bales have been treated in batch operation at MRII in Hamilton, Ontario. A pilot plant for continuous treatment of 40 ton/day of loose scrap is being built by MRII in East Chicago, Indiana, with operation starting in early 1992. 9 refs.

  17. Ammonia removal process upgrade to the Acme Steel Coke Plant

    SciTech Connect (OSTI)

    Harris, J.L. [Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant

    1995-12-01T23:59:59.000Z

    The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

  18. Steel project fact sheet: Steel reheating for further processing

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

  19. Numerical study of corrosion of ferritic/martensitic steels in the flowing PbLi with and without a magnetic field

    E-Print Network [OSTI]

    Abdou, Mohamed

    Numerical study of corrosion of ferritic/martensitic steels in the flowing PbLi with and without s t r a c t A computational suite called TRANSMAG has been developed to address corrosion of ferritic/martensitic steels and associated transport of corrosion products in the eutectic alloy PbLi as applied to blankets

  20. Duplex stainless steel: From specialty to commodity

    SciTech Connect (OSTI)

    Quick, J.M.A.; Geudeke, M. [Shell Internationale Petroleum Mij. B.V., The Hague (Netherlands)

    1994-12-31T23:59:59.000Z

    Important applications of duplex stainless steel in the oil and chemical industry date from the seventies. Duplex stainless steel is attractive because it combines high mechanical strength, about the same as for carbon steel, and good corrosion resistance particularly against chloride stress corrosion cracking up to about 100 C. This paper highlights a number of examples that are typical for the potential as well as the problems associated with this type of material.

  1. Improving the toughness of ultrahigh strength steel

    E-Print Network [OSTI]

    Soto, Koji

    2002-01-01T23:59:59.000Z

    of the low-alloy steels used in aerospace applications. Thisalloys of each category and their compositions are shown in Table 1.1 with their Aerospace

  2. HYDROGEN EMBRITTLEMENT IN LOW CARBON STEEL

    E-Print Network [OSTI]

    Rafiq A. Siddiqui; Sabah A. Abdul-wahab; Tasneem Pervez; Sayyad Z. Qamar

    Many metals and alloys absorb hydrogen and diffusion of hydrogen under certain conditions can seriously weaken and produces embrittlement in steel. Hydrogen embrittlement is a type of metal deterioration that is related to stress corrosion cracking. Although steels are well known for their susceptibility to hydrogen embrittlement, the mechanism of transportation of hydrogen is not very clear in low carbon steels. Standard tensile steel specimens were hydrogenated from 1 to 5 hours and deformed by cold worked to 50%,60%,70 % 80 % and were investigated for mechanical properties.

  3. MICROSTRUCTURE AND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE PRECIPITATES

    E-Print Network [OSTI]

    Gau, J.S.

    2014-01-01T23:59:59.000Z

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.of Niobium Microalloyed Dual- Phase Steel, MetallurgicalAND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE

  4. FERRITE STRUCTURE AND MECHANICAL PROPERTIES OF LOW ALLOY DUPLEX STEELS

    E-Print Network [OSTI]

    Hoel, R.H.

    2013-01-01T23:59:59.000Z

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,

  5. Mag-Foot: a steel bridge inspection robot

    E-Print Network [OSTI]

    Asada, Harry

    A legged robot that moves across a steel structure is developed for steel bridge inspection. Powerful permanent magnets imbedded in each foot allow the robot to hang from a steel ceiling powerlessly. Although the magnets ...

  6. Blast damage mitigation of steel structures from near- contact charges

    E-Print Network [OSTI]

    Wolfson, Janet Crumrine

    2008-01-01T23:59:59.000Z

    Depth 6.5 in. 6.5 in. 3 in. .625 in. 1.5 in. Material SteelSteelAluminum Steel Polyurethane Weight 472 lb 472 lb 73 lb 45 lb

  7. PROTON INDUCED SWELLING IN TYPE 316 STAINLESS STEEL

    E-Print Network [OSTI]

    Srivastava, A.K.

    2010-01-01T23:59:59.000Z

    an Austenitic Stainless Steel, USAEC Report ORNL-4580, Oakin Austenitic Stainless Steel, Ref. 5, p. 142. D. I. R.Irradiated 304 Stainless Steel, Ref. 5, p. 499. Table 1.

  8. CRAD, Nuclear Facility Construction - Structural Steel, May 29...

    Broader source: Energy.gov (indexed) [DOE]

    Steel, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Steel, May 29, 2009 May 29, 2009 Nuclear Facility Construction - Structural Steel (HSS CRAD 64-16, Rev. 0) This...

  9. An ISO 8178 correlation study between raw and dilute exhaust emission sampling systems

    SciTech Connect (OSTI)

    Stotler, R.; Human, D.

    1995-12-31T23:59:59.000Z

    Beginning in 1996 the exhaust emissions of off-highway heavy-duty diesel engines between 175--750 hp will be regulated by the EPA. Along with the emission regulations comes the difficulty of establishing a set of standard test procedures which allow engine manufacturers and regulatory agencies to compare emissions data based on similar test methods. In order to remedy this problem, the International Organization for Standardization (ISO) has come up with an exhaust measurement procedure, ISO 8178, that can be applied worldwide to off-highway heavy-duty diesel engines. The ISO 8178 test procedure allows the exhaust emissions to be sampled with either a full flow dilute or raw sampling system. However, the preferred sampling systems are the raw gaseous and mini dilution tunnel (MDT) particulate measurement methods. The main concern of these sampling systems is the demonstration of equivalency to the full flow dilution system that is currently used for the certification of on-highway heavy-duty diesel engines. Using an in-house full flow dilution system and a recently built raw gaseous emissions bench along with a pre-existing MDT, this research was conducted to find the correlation between the two sampling systems. For the gaseous emissions of HC, NO{sub x}, and CO the correlation between the raw and full dilution sampling systems was within 7.0%, 3.0%, and 1.0% respectively. The correlation between the MDT and full dilution particulate sampling systems was within 2.5%. Additional investigation was performed in the area of MDT transfer tube length and its effect on particulate measurement. An experiment was performed to quantify the effect of a wide range of water vapor concentrations on the measurement of NO{sub x}.

  10. Overview: STEEL Auto/Steel Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram |Department ofAuto/Steel

  11. ITP Steel: Steel Industry Energy Bandwidth Study October 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020 ITPandSteel Industry

  12. ITP Steel: Steel Industry Marginal Opportunity Study September 2005 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020 ITPandSteel

  13. ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology Vision 2020 ITPandSteelConditions,

  14. annealed stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: of stainless steel container materials is a potential problem for long-term radioactive waste storage-to-failure of relevant stainless steels in the annealed...

  15. advanced bar steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the...

  16. Friction Stir Spot Welding of Advanced High Strength Steels II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steels II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  17. Development of Steel Fastener Nano-Ceramic Coatings for Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium Parts (AMD-704) Development of Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium...

  18. Monitoring of Fracture Cri0cal Steel Bridges

    E-Print Network [OSTI]

    Minnesota, University of

    #12;Monitoring of Fracture Cri0cal Steel Bridges: Acous0c Emission Sensors system on other fracture cri0cal steel bridges #12;Project Impact #12;Thank

  19. alloy tool steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of weldments of a high strength low alloy(HSLA) steel in a simulated seawater environment. This steel, designated HSLA80, was developed by the United ... Needham, William...

  20. Moessbauer measurements of microstructural change in aged duplex stainless steel

    SciTech Connect (OSTI)

    Kirihigashi, A.; Sakamoto, N.; Yamaoka, T. [Mitsubishi Heavy Industries, Ltd., Hyogo (Japan); Nasu, S. [Osaka Univ. (Japan)

    1995-08-01T23:59:59.000Z

    A duplex stainless steel (ASME SA351 CF8M) has usually been manufactured by a continuous casting technique. It consists of a paramagnetic austenite phase and a ferromagnetic ferrite phase. It has been known that the ferrite phase decomposition occurs in this steel after aging between 300 and 450 C. As a result of phase decomposition, a Fe-rich phase and a Cr-rich phase are produced in the ferrite phase. It is difficult to detect the phase decomposition even by not only optical microscopy but also transmission electron microscopy, since the decomposed structure is very fine. However, Moessbauer measurements that can detect the magnetic hyperfine field of magnetic substance may detect the microstructural change. An averaged magnetic hyperfine field increases in the ferrite phase, due to the production of the Fe-rich phase which has high magnetic hyperfine field. Therefore, the authors investigated the phase decomposition of the duplex stainless steel caused by aging, utilization Moessbauer spectroscopy which has capability of detecting this structural change in the atomic level quantitatively. The authors also investigated the potential of backscattering Moessbauer method for NDE technique.

  1. X-mas trees: A new application for duplex stainless steels

    SciTech Connect (OSTI)

    Hochoertler, G.; Zeiler, G.; Haberfellner, K.

    1995-12-31T23:59:59.000Z

    The development of fields in severe areas (subsea installations, deserts) necessitates the use of materials which can operate maintenance free in these conditions. Depending on production route and aggressivity of relevant media, the materials used until now, such as AISI 4130, are being superseded by higher alloyed materials such as F6NM, Duplex and Super Duplex Steels. Extensive investigation of metallurgical, mechanical, technological and stress aspects as well as research into the influence of melting, forging and heat treatment processes on high alloyed materials enables ``High Tech`` forgings to be manufactured. Based on investigations and experience gained by previously produced forgings (WYE-piece, Gate Valve components, Swivel forgings, line pipes made of Super Duplex Stainless Steels and Duplex Stainless Steels), the first X-mas trees made of solid Duplex Stainless Steel has been produced. Due to the excellent mechanical and corrosion properties of Duplex Stainless Steel, the expensive and time consuming cladding can be eliminated for most environments, which results in good economy and significantly reduced production time. To obtain information about the quality of such a large forging, samples were taken from one of these X-mas trees and the mechanical and corrosion properties were investigated.

  2. Method for welding chromium molybdenum steels

    DOE Patents [OSTI]

    Sikka, Vinod K. (Clinton, TN)

    1986-01-01T23:59:59.000Z

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  3. Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators of Electrical Machines

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Stochastic Modeling of Soft Magnetic Properties of Electrical Steels: Application to Stators magnetic materials properties (magnetic behavior law, iron losses) during the manufacturing process pole stator generator. Twenty eight (28) samples of slinky stator (SS) coming from the same production

  4. MediumAlloy ManganeseRich TransformationInduced Plasticity Steels

    E-Print Network [OSTI]

    Cambridge, University of

    for strong and ductile alloys containing some 6 wt% of manganese, but with aluminium additions in orderMedium­Alloy Manganese­Rich Transformation­Induced Plasticity Steels D. W. Suha , J. H. Ryua , M. S to permit heat treatments which are amenable to rapid production. However, large concentrations of aluminium

  5. Interaction between stainless steel and plutonium metal

    SciTech Connect (OSTI)

    Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  6. Use of duplex stainless steel castings in control valves

    SciTech Connect (OSTI)

    Gossett, J.L. [Fisher Controls International, Inc., Marshalltown, IA (United States)

    1996-07-01T23:59:59.000Z

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  7. Measurement of methyl-tert-butyl-ether (MTBE) in raw drinking water

    SciTech Connect (OSTI)

    Davisson, M L; Koester, C J; Moran, J E

    1999-10-14T23:59:59.000Z

    In order to assess the pathways for human exposure to methyl-tert-butyl-ether (MTBE) and to understand the extent of MTBE contamination in watersheds, a purge and trap gas chromatographic mass spectrometric method to measure part-per-trillion (ppt) concentrations of MTBE in environmental waters was developed. A variety of California's raw drinking waters were analyzed. No detectable MTBE was found in deep groundwater (>1000 feet). However shallow groundwater ({approx}250 feet) contained MTBE concentrations of non-detect to 1300 ppt. MTBE concentrations measured in rivers and lakes ranged from non-detect to 3500 ppt. East (San Francisco) Bay area rain water contained approximately 80 ppt MTBE.

  8. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect (OSTI)

    Pankiw, Roman I; Muralidharan, G. (Murali); Sikka, Vinod K.

    2006-06-30T23:59:59.000Z

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  9. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01T23:59:59.000Z

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  10. Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation

    SciTech Connect (OSTI)

    Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

    1990-01-01T23:59:59.000Z

    In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

  11. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, Gareth (Berkeley, CA); Ahn, Jae-Hwan (Albany, CA); Kim, Nack-Joon (Laramie, WY)

    1986-01-01T23:59:59.000Z

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  12. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOE Patents [OSTI]

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28T23:59:59.000Z

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  13. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    SciTech Connect (OSTI)

    T. S. Yoder; M. K. Adler Flitton

    2009-03-01T23:59:59.000Z

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33½ years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport.

  14. Conditions under which cracks occur in modified 13% chromium steel in wet hydrogen sulfide environments

    SciTech Connect (OSTI)

    Hara, T.; Asahi, H.

    2000-05-01T23:59:59.000Z

    Occurrence of cracks in an API 13% Cr steel, modified 13% Cr steel, and duplex stainless steel were compared in various wet, mild hydrogen sulfide (H{sub 2}S) environments. The conditions under which cracks occurred in the modified 13% Cr steel in oil and gas production environments were made clear. No cracks occurred if pH > depassivation pH (pH{sub d}) and redox potential of sulfur (E{sub S(red/ax)}) < pitting potential (V{sub c}). Hydrogen embrittlement-type cracks occurred in pH > Ph{sub d} and E{sub S(red/ax)} > V{sub c}. The pH inside the pit decreased drastically and hydrogen embrittlement occurred. Cracks of the hydrogen embrittlement type occurred if pH < pH{sub d} and threshold hydrogen concentration under which cracks occur (H{sub th}) < hydrogen concentration in steel (H{sub 0}). No cracks occurred if pH < pH{sub d} and H{sub th} > H{sub 0}.

  15. Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum

    E-Print Network [OSTI]

    Neill, Thomas John O'

    2011-01-01T23:59:59.000Z

    AND MICROSTRUCTURES OF DUAL PHASE STEELS CONTAINING SILICON,and Microstructures of Dual Phase Steels Containing Silicon,microstructures of selected dual-phase steels in which the

  16. EFFECTS OF MORPHOLOGY ON THE MECHANICAL BEHAVIOR OF DUAL PHASE Fe/Si/C STEELS

    E-Print Network [OSTI]

    Kim, N.J.

    2012-01-01T23:59:59.000Z

    and ductility in dual phase steels. However, it seems thatmechanical behavior of dual phase steels. ACKNOWLEDGEMENTSL INTRODUCTION Dual phase steels whose structures consist of

  17. THE EROSION BEHAVIOR OF STEEL AS A FUNCTION OF MICROSTRUCTURE ON SOLID PARTICLE EROSION

    E-Print Network [OSTI]

    Levy, Alan V.

    2013-01-01T23:59:59.000Z

    of the spheroidized 1075 steel by rolling prior to erosionAbrasive Wear Resistance of Steels. A Review, ~Jear, FIGUREelectron micrographs of 1075 steel in the coarse pearlite,

  18. Beam Energy Scaling on Ion-Induced Electron Yield from K+ Impact on Stainless Steel

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    K + Impact on Stainless Steel Michel Kireeff Covo Lawrence+ ions hit the stainless steel target with energy up to 400energies hitting stainless steel target obtained from

  19. Testing and analysis of structural steel columns subjected to blast loads

    E-Print Network [OSTI]

    Stewart, Lauren K.

    2010-01-01T23:59:59.000Z

    Blast Simulator Testing of Steel Columns and Components. ”Testing of Structural Steel Columns. ” 8 th Internationaland Analysis of Structural Steel Columns Subjected to Blast

  20. A direct displacement-based design of low-rise seismic resistant steel moment frames

    E-Print Network [OSTI]

    Harris, John L.

    2006-01-01T23:59:59.000Z

    The Bending Resistance of Steel Beams. ” J. Struct. Div. ,in the Design of Steel Structures. ” Engineering715- American Institute of Steel Construction (AISC) (2001).

  1. Cyclic behavior and design of steel columns subjected to large drift

    E-Print Network [OSTI]

    Newell, James David

    2008-01-01T23:59:59.000Z

    The Bending Resistance of Steel Beams,” Journal of the2007). “Bolted Flange Plate Steel Moment Connections forSeismic Upgrade of a 15-Story Steel Moment Frame Building –

  2. Case hardenable nickel-cobalt steel

    DOE Patents [OSTI]

    Qian, Yana (Sunnyvale, CA); Olson, Gregory B. (Evanston, IL)

    2012-04-17T23:59:59.000Z

    An advanced secondary hardening carburized Ni--Co steel achieves an improved case hardness of about 68-69 Rc together with nominal core hardness of about 50 Rc.

  3. Light Steel Framing: Improving the Integral Design 

    E-Print Network [OSTI]

    Amundarain, Aitor; Torero, Jose L; Usmani, Asif; Al-Remal, Ahmad M

    2006-09-11T23:59:59.000Z

    Light Steel Framing has been extensively used in cold climate countries due to its good thermal and structural behaviour. Improved thermal behaviour results in positive environmental impact essential for sustainable ...

  4. Transformation Strain and Crystallographic Texture in Steels

    E-Print Network [OSTI]

    Kundu, Saurabh

    Transformation Strain and Crystallographic Texture in Steels By Saurabh Kundu Darwin College, Cambridge University of Cambridge Department of Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ A dissertation submitted for the degree... , Crystallographic tex- ture of stress-affected bainite, Proceedings of the Royal Society of London A, (submitted). Saurabh Kundu March, 2007 ii Acknowledgments I am grateful to the EPSRC, UK and TATA STEEL, India for funding this project. I would also like to thank...

  5. Microstructural studies of advanced austenitic steels

    SciTech Connect (OSTI)

    Todd, J. A.; Ren, Jyh-Ching [University of Southern California, Los Angeles, CA (USA). Dept. of Materials Science

    1989-11-15T23:59:59.000Z

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  6. Development of Steel Foam Materials and Structures

    SciTech Connect (OSTI)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20T23:59:59.000Z

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  7. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G. [IPTME, Loughborough University, Loughborough, Leics (United Kingdom)

    2008-07-01T23:59:59.000Z

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  8. Largest Producer of Steel Products in the United States Achieves...

    Broader source: Energy.gov (indexed) [DOE]

    process lines with such burner systems. The new burners are yielding annual cost and energy savings of 760,000 and 95,000 MMBtu respectively. Additionally, the plant saves...

  9. Largest Producer of Steel Products in the United States Achieves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristinaLandscape2014)Department

  10. High Mn austenitic stainless steel

    DOE Patents [OSTI]

    Yamamoto, Yukinori (Oak Ridge, TN) [Oak Ridge, TN; Santella, Michael L (Knoxville, TN) [Knoxville, TN; Brady, Michael P (Oak Ridge, TN) [Oak Ridge, TN; Maziasz, Philip J (Oak Ridge, TN) [Oak Ridge, TN; Liu, Chain-tsuan (Knoxville, TN) [Knoxville, TN

    2010-07-13T23:59:59.000Z

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  11. User's guide for ALEX: uncertainty propagation from raw data to final results for ORELA transmission measurements

    SciTech Connect (OSTI)

    Larson, N.M.

    1984-02-01T23:59:59.000Z

    This report describes a computer code (ALEX) developed to assist in AnaLysis of EXperimental data at the Oak Ridge Electron Linear Accelerator (ORELA). Reduction of data from raw numbers (counts per channel) to physically meaningful quantities (such as cross sections) is in itself a complicated procedure; propagation of experimental uncertainties through that reduction procedure has in the past been viewed as even more difficult - if not impossible. The purpose of the code ALEX is to correctly propagate all experimental uncertainties through the entire reduction procedure, yielding the complete covariance matrix for the reduced data, while requiring little additional input from the eperimentalist beyond that which is required for the data reduction itself. This report describes ALEX in detail, with special attention given to the case of transmission measurements (the code itself is applicable, with few changes, to any type of data). Application to the natural iron measurements of D.C. Larson et al. is described in some detail.

  12. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect (OSTI)

    Dr. Arvind C. Thekdi

    2006-09-26T23:59:59.000Z

    Teh report describes methods of reheating of steel billets and slabs for hot rolling or forging without forming steel scale.

  13. Evaluation of antioxidative/antimicrobial potential of Oriental nutraceutical herb extracts in raw and cooked goat meat and beef products

    E-Print Network [OSTI]

    Han, Jaejoon

    2001-01-01T23:59:59.000Z

    aureus, and Pseudomonas fluorescens. Oh and others (1998) reported that ethanol extracts from Coptis chinesis, Crataegus pinnatifila, Thuja orientalis, and Acorus graminens showed strong antimicrobial activities against both gram-positive and gram...

  14. Production of a basic raw material with acceptable texture and taste from minced Atlantic croaker (Micropogon undulatus)

    E-Print Network [OSTI]

    Yeh, Chia-Ping Salome

    1974-01-01T23:59:59.000Z

    protein from the muscle tissue. Of vital importance. to the successful manufac- ture of sausage is the abiLity of sodium chloride to solubilize. muscle proteins (Kramlich, 1970). These solubilized proteins (salt- soluble myofibrillar proteins...

  15. New developments in microwave treatment of steel mill sludges

    SciTech Connect (OSTI)

    Goodwill, J.E.; Schmitt, R.J. [EPRI Center for Materials Production, Pittsburgh, PA (United States); Purta, D.A. [Carnegie Mellon Research Inst., Pittsburgh, PA (United States)

    1996-02-01T23:59:59.000Z

    Steel mills in the US generate approximately 1 million tons of sludge annually. This is mainly a residue of cooling water, lubricating oils, and metallic fines from hot strip rolling mills and other operations. Currently, the separation of sludge from the liquid requires large settling tanks, takes several hours of time and produces a residue that must be disposed of at high cost. The EPRI Center for Materials Production, sponsored by the Electric Power Research Institute (EPRI), has supported development of a microwave-based treatment system. This new process, developed by Carnegie Mellon Research Institute, and patented by EPRI is 30 times faster, requires 90% less space and eliminates land-filling by producing materials of value. Electricity usage is only 0.5 kwhr/gal. A review by the American Iron and Steel Institute Waste Recycle Technology Task Force concluded that further work on the microwave technology was justified. Subsequently, additional work was undertaken toward optimizing the process for treating metallic waste sludges containing lime and polymers. This effort, cofunded by EPRI and AISI, was successfully concluded in late 1994. EPRI/CMP is proceeding to license and commercialize this technology, and to continue research to improve efficiency. A follow-on project is now being organized by CMP to confirm long term recyclability of the oil-release agent and to conduct a large scale (25-ton sample) test of the process.

  16. Hydrogen embrittlement of duplex stainless steels -- Simulating service experience

    SciTech Connect (OSTI)

    Turnbull, A.; Griffiths, A.; Reid, T. [National Physical Lab., Teddington (United Kingdom)

    1999-11-01T23:59:59.000Z

    The challenges in characterizing susceptibility of corrosion resistant alloys (CRAS) to hydrogen embrittlement in service are highlighted using experimental data for duplex stainless steels (DSSS) in two major industrial applications: in oil production environments downhole, where galvanic coupling to carbon steel can cause hydrogen uptake, and in subsea pipelines where cathodic protection provides the source of hydrogen atoms. The influence of environment composition, charging current, pre-exposure, time, temperature, temperature excursions, and mechanical test method is examined. For constant temperature conditions, pre-exposure may have no major impact on embrittlement of DSSS because hydrogen ingress via regions of mechanically ruptured oxide film is dominant, unless there are internal microstructural regions or defects of high susceptibility. Pre-exposure maybe more significant when excursions from high to low temperature occur. The application of interrupted slow strain rate testing to determination of the threshold strain to cracking of a DSS indicates a need for testing at very low strain rates. The time-consuming nature of this testing may inhibit its extended utilization but without such data there is a measure of uncertainty in materials selection with respect to the degree of risk and the tolerance to service excursions.

  17. Dislocation substructure in fatigued duplex stainless steel

    SciTech Connect (OSTI)

    Polak, J. (Ecole Centrale de Lille, Villeneuve d'Ascq (France). Lab. de Mecanique de Lille Inst. of Physical Metallurgy, Brno (Czechoslovakia). Academy of Sciences); Degallaix, S. (Ecole Centrale de Lille, Villeneuve d'Ascq (France). Lab. de Mecanique de Lille); Kruml, T. (Inst. of Physical Metallurgy, Brno (Czechoslovakia). Academy of Sciences)

    1993-12-15T23:59:59.000Z

    Cyclic plastic straining of crystalline materials results in the formation of specific dislocation structures. Considerable progress in mapping and understanding internal dislocation structures has been achieved by studying single crystal behavior: however, most structural materials have a polycrystalline structure and investigations of polycrystals in comparison to single crystal behavior of simple metals prove to be very useful in understanding more complex materials. There are some classes of materials, however, with complicated structure which do not have a direct equivalent in single crystalline form. Moreover, the specific dimensions and shapes of individual crystallites play an important role both in the cyclic stress-strain response of these materials and in the formation of their interior structure in cyclic straining. Austenitic-ferritic duplex stainless steel, which is a kind of a natural composite, is a material of this type. The widespread interest in the application of duplex steels is caused by approximately doubled mechanical properties and equal corrosion properties, when compared with classical austenitic stainless steels. Fatigue resistance of these steels as well as the surface damage evolution in cyclic straining have been studied; however, much less is known about the internal substructure development in cyclic straining. In this study the dislocation arrangement in ferritic and austenitic grains of the austenitic-ferritic duplex steel alloyed with nitrogen and cyclically strained with two strain amplitudes, is reported and compared to the dislocation arrangement found in single and polycrystals of austenitic and ferritic materials of a similar composition and with the surface relief produced in cyclic plastic straining.

  18. Electrodynamics in Iron and Steel

    E-Print Network [OSTI]

    John Paul Wallace

    2009-06-03T23:59:59.000Z

    In order to calculate the reflected EM fields at low amplitudes in iron and steel, more must be understood about the nature of long wavelength excitations in these metals. A bulk piece of iron is a very complex material with microstructure, a split band structure, magnetic domains and crystallographic textures that affect domain orientation. Probing iron and other bulk ferromagnetic materials with weak reflected and transmitted inductive low frequency fields is an easy operation to perform but the responses are difficult to interpret because of the complexity and variety of the structures affected by the fields. First starting with a simple single coil induction measurement and classical EM calculation to show the error is grossly under estimating the measured response. Extending this experiment to measuring the transmission of the induced fields allows the extraction of three dispersion curves which define these internal fields. One dispersion curve yielded an exceedingly small effective mass of 1.8 10^{-39}kg (1.3 10^{-9} m_e) for those spin waves. There is a second distinct dispersion curve more representative of the density function of a zero momentum bound state rather than a propagating wave. The third dispersion curve describes a magneto-elastic coupling to a very long wave length propagating mode. These experiments taken together display the characteristics of a high temperature Bose-Einstein like condensation that can be initiated by pumping two different states. A weak time dependent field drives the formation of coupled J=0 spin wave pairs with the reduced effective mass reflecting the increased size of the coherent state. These field can dominate induction measurements well past the Curie temperature.

  19. austenitic steel tp: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  20. afa stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  1. austenitic steels reaction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  2. a 285 steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 46...

  3. aisi steel vliyanie: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 203 Flexural...

  4. aisi 316l steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 238 Flexural...

  5. activation austenitic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  6. austenitic stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  7. aisi h13 steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 209 Flexural...

  8. austenitic steels approche: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  9. alloy steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 357 Flexural...

  10. alloy steel weldment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 370 Flexural...

  11. austenitic steels wirkung: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  12. aisi-304 stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  13. area stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  14. austenitic steel aisi: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  15. austenitic steels final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  16. algeciras spain steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 311 Flexural...

  17. activation ferritic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  18. activation ferritic steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  19. aged stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  20. austenitic stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  1. austenitic steel irradiated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  2. alloy steel exposed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 434 Flexural...

  3. aisi52100 hardened steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 324 Flexural...

  4. austenitic steel type: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 120 Flexural...

  5. austenite stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  6. austenitic steels amorcage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  7. austenitic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  8. alloy steel primary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude First Page Previous Page...

  9. austenitic steels irradiated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  10. austentic stainless steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  11. Climate VISION: Private Sector Initiatives: Iron and Steel: Results

    Office of Scientific and Technical Information (OSTI)

    and the Energy Information Agency website for updates. Read the U.S. Steel Industry Energy Efficiency Fact Sheet (PDF 83 KB) Download Acrobat Reader Read Steel Is The New...

  12. Transformation induced plasticity assisted steels: stress or strain affected martensitic

    E-Print Network [OSTI]

    Cambridge, University of

    Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation? S. Chatterjee and H. K. D. H. Bhadeshia* Transformation induced plasticity (TRIP) assisted steels contain a small quantity of carbon enriched retained austenite, which transforms into martensite during

  13. First Structural Steel Erected at NSLS-II

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  14. advanced ferritic steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of ferrite and dual phase steels Engineering Websites Summary: and dual phase steels C.F. Kuang a,n , J. Li b , S.G. Zhang a , J. Wang b , H.F. Liu b , A.A....

  15. alloy ferritic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of ferrite and dual phase steels Engineering Websites Summary: and dual phase steels C.F. Kuang a,n , J. Li b , S.G. Zhang a , J. Wang b , H.F. Liu b , A.A....

  16. advanced ferritic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of ferrite and dual phase steels Engineering Websites Summary: and dual phase steels C.F. Kuang a,n , J. Li b , S.G. Zhang a , J. Wang b , H.F. Liu b , A.A....

  17. Friction Stir Spot Welding of Advanced High Strength Steels ...

    Energy Savers [EERE]

    Stir Spot Welding of Advanced High Strength Steels (AHSS) Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) Presentation from the U.S. DOE Office of Vehicle...

  18. Structural Reliability of Bridges Elevated with Steel Pedestals

    E-Print Network [OSTI]

    Bisadi, Vahid 1980-

    2012-09-19T23:59:59.000Z

    seismic regions using statistical tests. Then, to provide a general framework, which can be applied to all bridges that are elevated with steel pedestals, this dissertation develops probabilistic capacity and demand models for steel pedestals considering...

  19. Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel

    E-Print Network [OSTI]

    Steel, Daniel

    Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel Department of Philosophy 503 S Kedzie Hall Michigan State University East Lansing, MI 48824-1032 USA Email: steel@msu.edu #12

  20. G odel's legacy in set theory John R. Steel

    E-Print Network [OSTI]

    Koellner, Peter

    GË? odel's legacy in set theory John R. Steel University of California, Berkeley August 2006 1 #12 generalizes the theory of L, has been developed. (Silver, Kunen, Mitchell, Dodd, Jensen, Martin, Steel, Woodin

  1. Must a Bayesian Accept the Likelihood Principle? Daniel Steel

    E-Print Network [OSTI]

    Fitelson, Branden

    Must a Bayesian Accept the Likelihood Principle? Daniel Steel Department of Philosophy 503 S. Kedzie Hall Michigan State University East Lansing, MI 48824-1032 Email: steel@msu.edu #12;1 1

  2. Inductive Rules, Background Knowledge, and Skepticism Daniel Steel

    E-Print Network [OSTI]

    Steel, Daniel

    Inductive Rules, Background Knowledge, and Skepticism Daniel Steel Department of Philosophy 503 S. Kedzie Hall Michigan State University East Lansing, MI 48823-1032 Email: steel@msu.edu #12;Abstract

  3. Use of differential pulse polarography to study corrosion of galvanized steel in aqueous lithium bromide solution

    SciTech Connect (OSTI)

    Garcia-Anton, J.; Perez-Herranz, V.; Guinon, J.L. (Univ. Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear); Lacoste, G. (ENSIGC, Toulouse (France))

    1994-02-01T23:59:59.000Z

    Static and dynamic corrosion of galvanized steel in 4.6 M lithium bromide (LiBr) solution at 20 C and at 70 C was studied using a new polarographic method for the determination of zinc (Zn) in LiBr solution. Static and dynamic corrosion of galvanize steel at 20 C and 70 C followed a linear tendency with exposure time. However, a change in the slope of dynamic corrosion was observed at 20 C. The corrosion product was studied using energy dispersive x-ray analysis (EDXA) and x-ray diffractometry and was considered to be a mixture of zinc hydroxide Zn(OH)[sub 2] and oxides. The corrosion product morphology was amorphous and gelatinous at 20 C and crystalline at 70 C.

  4. Enhanced Inclusion Removal from Steel in the Tundish

    SciTech Connect (OSTI)

    R. C. Bradt; M.A.R. Sharif

    2009-09-25T23:59:59.000Z

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  5. The anisotropic fatigue behaviour of forged steel ETIENNE PESSARDa

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . This variation has been reported as being 35% for 42CrMo4 steel [7] and 15% for a duplex stainless steel [4] From in the matrix. For instance, Mateo and Lütjering [3-4] showed that for a duplex stainless steel and an aluminium(°)/D(0°) Mateo Duplex Stainless Steel Yield Stress= 610MPa Lütjering Al 7475 Yield Stress= 450MPa

  6. Auto/Steel Partnership: Hydroforming Materials and Lubricant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight Rear Chassis Structures Future Generation Passenger Compartment AutoSteel Partnership: Hydroforming Materials and Lubricant Lightweight Rear Chassis Structures...

  7. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    SciTech Connect (OSTI)

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V. (Univ. Politecnica de Valencia (Spain). Dept. de Ingenieria Quimica y Nuclear); Lacoste, G. (ENSIGC, Toulouse (France))

    1994-03-01T23:59:59.000Z

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  8. AS A MINING ENGINEER Mining provides the raw materials and energy resources needed to sustain modern civilization. Mining Engineers

    E-Print Network [OSTI]

    Simons, Jack

    AS A MINING ENGINEER Mining provides the raw materials and energy resources needed to sustain modern civilization. Mining Engineers are trained to determine the safest most sustainable way to remove for energy and mineral resources. The average American consumes approximately 45,000 pounds of minerals

  9. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site

    E-Print Network [OSTI]

    , shows clearly the influence of cryo-cooling, which is manifested in shrinkage of the mole- cule, one at the active site and the second at a site remote from the active site, curved around Tyr464. fibuligera IFO 0111, a raw starch-degrading enzyme, it is reason- able to expect the presence of the remote

  10. Description & Careers Supply Chain Management is how business gets done. Supply chain management spans all movement and storage of raw

    E-Print Network [OSTI]

    Lin, Xiaodong

    management spans all movement and storage of raw materials, work-in-process inventory, and finished goods of supply chains, resource managers of material or manufacturing resources planning (MRP), and processDescription & Careers The Field Supply Chain Management is how business gets done. Supply chain

  11. Description & Careers Supply Chain Management is how business gets done. Supply chain management spans all movement and storage of raw

    E-Print Network [OSTI]

    Lin, Xiaodong

    management spans all movement and storage of raw materials, work-in-process inventory, and finished goods managers of supply chains, resource managers of material or manufacturing resources planning (MRPDescription & Careers The Field Supply Chain Management is how business gets done. Supply chain

  12. Onsite recycling of electric arc furnace dust: The Jorgensen Steel Facility

    SciTech Connect (OSTI)

    Licis, I.J. [Environmental Protection Agency, Cincinnati, OH (United States); Bermark, R.C. [Washington State Dept. of Ecology, Olympia, WA (United States)

    1995-10-01T23:59:59.000Z

    The steel-making industry produces a large amount of Electric Arc Furnace (EAF) dust as part of normal production. This waste is listed as KO61, defined as {open_quotes}emission control dust/sludge from the primary production of steel in electric arc furnaces{close_quotes} under 40 CFR 261.32. A glass making technology called Ek Glassification{trademark} (hereafter called {open_quotes}the Process{close_quotes}) has been developed by Roger B. Ek and Associates, Inc. (hereafter called {open_quotes}the Developer{close_quotes}) to recycle EAF dust and convert it, along with other byproducts of the steel-making industry, into marketable commodities. This Process was evaluated under the Waste Reduction Innovative Technology Evaluation (WRITE) Program. The project was designed and conducted in cooperation with the Washington State Department of Environmental Quality, the Process Developer and the host test site, the Earle M. Jorgensen (EMJ) Steel Company of Seattle, Washington. Test personnel for EPA were supplied by SAIC Inc., on contract to EPA. The overall objectives of the project were to conduct a pilot scale evaluation of the Process, investigate if toxic metals are leached from the products (such as colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sand-blasting grit; and materials for Portland cement production). Three glass recipes (Glass I, II, and III) were designed by the developer for potential use at EMJ. The EPA portion was focused on determining the toxic metals concentrations of the Glass II recipe, evaluating the P2 impact of using this Process in comparison to traditional methods of waste treatment and disposal, and assessing the economics of both.

  13. CE 4990 -Construction Scheduling Week 1: Steel Frame Project

    E-Print Network [OSTI]

    Mukherjee, Amlan

    CE 4990 - Construction Scheduling Week 1: Steel Frame Project Fall 2011 January 13, 2012 Introduction You are a construction manager for a project to build a steel frame for an office building1 of 964 pre-fabricated structural steel members will be used in the construction. The standard bay size

  14. Model coupling friction and adhesion for steel-concrete interfaces

    E-Print Network [OSTI]

    Boyer, Edmond

    Model coupling friction and adhesion for steel- concrete interfaces Michel Raous Laboratoire de: In this paper the interface behaviour between steel and concrete, during pull out tests, is numerically a variable friction coefficient in order to simulate the behaviour of the steel-concrete interface during

  15. Water Modeling of Steel Flow, Air Entrainment and Filtration

    E-Print Network [OSTI]

    Beckermann, Christoph

    Water Modeling of Steel Flow, Air Entrainment and Filtration Christoph Beckermann Associate Beckermann, C., "Water Modeling of Steel Flow, Air Entrainment and Filtration," in Proceedings of the 46th, 1992. #12;Abstract This paper presents an analysis of water modeling of steel pouring to study (1) air

  16. 1D subsurface electromagnetic fields excited by energized steel casing

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    1D subsurface electromagnetic fields excited by energized steel casing Wei Yang1 , Carlos Torres the possibility of enabling steel-cased wells as galvanic sources to detect and quantify spatial variations of electrical conductivity in the subsurface. The study assumes a vertical steel-cased well that penetrates

  17. Carbon Diffusion Across Dissimilar Steel Welds

    E-Print Network [OSTI]

    Race, Julia Margaret

    1992-12-08T23:59:59.000Z

    CrMo 0.056 0.40 0.77 0.010 0.012 1.11 0.44 0.035 0.015 lCr1MolV 0.13 0.23 0.50 0.033 0.055 0.41 0.58 0.25 0.252 2 4 Table 1.2: Typical compositions of the commonly used high strength low alloy steels. 1.3.2 High Cr ferritie steels Increasing...

  18. The Signifance of Retained Austenite in Steels

    E-Print Network [OSTI]

    Bhadeshia, H K D H

    1980-02-05T23:59:59.000Z

    . Introduction 90 2. Experimental Method and Techniques 91 3. Results and Discussion 92 4. Summary 94 VIII. An Analysis o£ the Mechanical Properties and Microstructure o£ a High-Silicon Dual-Phase Steel 1. Introduction 2. De£ormation Models 3. Experimental... £ects such that the extent o£ twinning was the greatest when adjacent martensite units had twin-related lattices. The thermodynamics o£ dislocated martensites have been briefly examined, The inhomogeneous de£ormation behaviour o£ dual-phase steels has been analysed in terms...

  19. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31T23:59:59.000Z

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  20. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect (OSTI)

    Mukhopadhyay, D.K. [Vista Metals, Inc., McKeesport, PA (United States); Froes, F.H. [Univ. of Idaho, ID (United States); Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01T23:59:59.000Z

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sup 3} was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described.

  1. Underground coal gasification product quality parameters

    SciTech Connect (OSTI)

    Bruggink, P.R.; Davis, B.E.

    1981-01-01T23:59:59.000Z

    A simplified model is described which will indicate the economic value of the raw product gas from an experimental underground coal gasification test on a real-time basis in order to aid in the optimization of the process during the course of the test. The model relates the properties of the product gas and the injection gas to the cost of producing each of five potential commercial products. This model was utilized to evaluate data during the Gulf-DOE underground coal gasification test at Rawlins, Wyoming in the fall of 1981. 6 refs.

  2. Processing electric arc furnace dust into saleable chemical products

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

  3. The corrosion of some stainless steels in a marine mud

    SciTech Connect (OSTI)

    Francis, R.; Byrne, G. [Weir Materials and Foundries Park Works, Manchester (United Kingdom); Campbell, H.S. [Univ. of Surrey (United Kingdom). Dept. of Materials Science and Engineering

    1999-11-01T23:59:59.000Z

    The report presents the results for three alloys: carbon steel, 316L stainless steel and a proprietary super duplex stainless steel (UNS S32760), exposed in a marine mud off the south coast of England for 5 years. Analysis of the mud showed it to be very aggressive using a corrosion index developed at the University of Manchester. Carbon steel showed a typical corrosion rate for microbial attack with pits up to 0.64mm deep. The 316L stainless steel had extensive broad, shallow attack with a few, deeper pits. The Z100 parent pipe and weldments showed no evidence of corrosion attack.

  4. Microstructural Evolution in Power Plant Steels

    E-Print Network [OSTI]

    Cambridge, University of

    energy of the steam is converted to electrical energy by a system of turbines and a generator. Figure 2 temperature as possible. Progress in power-plant alloy design has allowed T1 to be increased from 370 C Steels Pump Cooling water Cooling water Electrical output Condenser Reheat Coal Boiler Superheater Ash HP

  5. Extraordinary Ductility in Albearing TRIP Steel

    E-Print Network [OSTI]

    Cambridge, University of

    .K. Abstract An iron­based alloy system has been developed which exhibits impressive combina- tions of tensile is research in progress on the stronger steels in order to enhance ductility and assess other engineering cooling transformation (DeCooman, 2004; Jacques, 2004; Matsumura et al., 1987a,b; Sakuma et al., 1991

  6. Selection of Processes for Welding Steel Rails

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ...._ _) Selection of Processes for Welding Steel Rails by N.S. Tsai* and T.W. Eagar* ABSTRACT 421 The advantages and limitations ofseveral conventional and prospective rail welding processes are reviewed with emphasis on the heat input rate, on joint preparation, on post weld grinding and on resultant metallurgical

  7. Weldment for austenitic stainless steel and method

    DOE Patents [OSTI]

    Bagnall, Christopher (Hempfield, PA); McBride, Marvin A. (Hempfield, PA)

    1985-01-01T23:59:59.000Z

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  8. The Steel Market Today And Tomorrow

    E-Print Network [OSTI]

    Eagar, Thomas W.

    a liability as a benefit. Mature Industry Many observers suggest that the metals industry is based on old straddled the traditional metals industries, as well as the newer "high technol- ogy'' industries, the claim problems have been solved." For example, the scrap rate for the steel industry is extremely low, esp~ dally

  9. Must we use ferritic steel in TBM?

    SciTech Connect (OSTI)

    Salavy, Jean-Francois; Boccaccini, Lorenzo V.; Chaudhuri, Paritosh; Cho, Seungyon; Enoeda, Mikio; Giancarli, Luciano; Kurtz, Richard J.; Luo, Tian Y.; Rao, K. Bhanu Sankara; Wong, Clement

    2010-12-13T23:59:59.000Z

    Mock-ups of DEMO breeding blankets, called Test Blanket Modules (TBMs), inserted and tested in ITER in dedicated equatorial ports directly facing the plasma, are expected to provide the first experimental answers on the necessary performance of the corresponding DEMO breeding blankets. Several DEMO breeding blanket designs have been studied and assessed in the last 20 years. At present, after considering various coolant and breeder combinations, all the TBM concepts proposed by the seven ITER Parties use Reduced-Activation Ferritic/Martensitic (RAFM) steel as the structural material. In order to perform valuable tests in ITER, the TBMs are expected to use the same structural material as corresponding DEMO blankets. However, due to the fact that this family of steels is ferromagnetic, their presence in the ITER vacuum vessel will create perturbations of the ITER magnetic fields that could reduce the quality of the plasma confinement during H-mode. As a consequence, a legitimate question has been raised on the necessity of using RAFM steel for TBMs structural material in ITER. By giving a short description of the main TBM testing objectives in ITER and assessing the consequences of not using such a material, this paper gives a comprehensive answer to this question. According to the working group author of the study, the use of RAFM steel as structural material for TBM is judged mandatory.

  10. Energy Flow Models for the Steel Industry

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  11. Avoid stainless steel failures in FGD systems

    SciTech Connect (OSTI)

    Mills, J.P.; Schillmoller, C.M.

    1995-11-01T23:59:59.000Z

    Preventing pitting and localized corrosion is the key to success where low maintenance and high reliability are rime considerations in flue-gas desulfurization (FGD) designs. Knowing when to use a stainless steel, and when not to, is crucial. Operating parameters and environmental factors greatly affect alloy performance, especially pH, temperature, and chloride and oxygen levels. Failures of stainless steels can be avoided by understanding their limits in light of these variables. This article will focus on the capabilities of Types 316L, 317L, 317LM, 317LMN, 904L, and 6% Mo stainless steels and their applications, as well as provide details on unique combination of mechanical properties and corrosion resistance of the 22% Cr duplex and 25% Cr super-duplex stainless steels in acid chloride systems. Guidelines will be presented on methods to prevent intergranular corrosion, stress corrosion cracking, and pitting and crevice corrosion, and what process steps can be taken to assure reasonable performance of marginal alloy selections. Emphasis will be on the lime/limestone wet scrubbing process and the quencher/absorber.

  12. Modelling of Simultaneous Transformations in Steels

    E-Print Network [OSTI]

    Cambridge, University of

    submitted for the degree of Doctor of Philosophy Department of Materials Science and Metallurgy Univesity of Professor H. K. D. H. Bhadeshia in the Department of Materi- als Science and Metallurgy, University in the proceedings of the conference on New Development on Metallurgy and Applications of High Strength Steels

  13. Modelling Precipitation of Carbides in Martensitic Steels

    E-Print Network [OSTI]

    Cambridge, University of

    of Materials Science and Metallurgy, University of Cambridge, between October 2000 and November 2003. Except facilities in the Department of Materials Science and Metallurgy at the University of Cambridge. I would like of the physical metallurgy of secondary hardening steels and the phenomena of hydrogen embrittlement and hydrogen

  14. Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    pp. 66–77. 44. G. Krauss: Steels: Processing, Structure, andConf. Super High Strength Steels, AIM, Rome, Italy, 2005,cation for Epoxy-Coated Steel Reinforcing Bars,’’ Annual

  15. Influences of Government Interventions on Increasing Value-Added Wood Product Exports from Ghana

    E-Print Network [OSTI]

    Influences of Government Interventions on Increasing Value-Added Wood Product Exports from Ghana exporting raw materials such lumber to exporting processed or value-added wood products. In the mid-1990s on increasing value-added exports. These actions are: 1) the imposition of a levy on air-dried lumber exports, 2

  16. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  17. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

    1998-01-01T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  18. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01T23:59:59.000Z

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  19. Method of drill bit manufacture and product

    SciTech Connect (OSTI)

    Miller, R.R.; Ault, J.E.; Barber, R.B. Jr.; Hampel, D.A.

    1984-06-12T23:59:59.000Z

    A method is claimed for making a drill bit and product resulting therefrom in which carbide elements are coated with carbide and nitride materials such as those of titanium as by chemical vapor deposition after which the elements are cast in molten steel.

  20. PUBLICATIONS LIST Louisiana Forest Products Development Center

    E-Print Network [OSTI]

    International Trade Center SOUTHPIC. Smith, Granskog, Michael, Muehlenfeld, Nicholas #30 Accident Analysis #5 Sorting Lumber by Grade Prior to Rough Mill Processing. Gazo, Steele #6 RAM (Rough Mill Analysis #17 Increasing Productivity in Cabinet Shops. Gazo #18 An Analysis of State Level Economic Development

  1. Effect of V and Ta on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel

    SciTech Connect (OSTI)

    Xiao, Xiang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Guoquan, E-mail: g.liu@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hu, Benfu; Wang, Jinsan [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ullah, Asad [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Mathematics, Karakoram International University, Gilgit-Baltistan (Pakistan)

    2013-08-15T23:59:59.000Z

    12%Cr reduced activation ferrite/martensite steels are promising candidate materials for good corrosion and irradiation resistance used for supercritical water-cooled reactor cladding and in-core components. V and Ta are considered to have improved the creep strength of high Cr steels by precipitating as MX phase. In this paper, a series of trial products microalloyed with V and V–Ta are produced, and the microstructure is characterized after quenching at 1050 °C and tempering at 780 °C by using TEM method to investigate the effect of these elements on the precipitation behavior of 12%Cr reduced activation ferrite/martensite steel. The results from both the experimental observations and thermodynamic and kinetic calculations reveal that V and V–Ta can promote the stable MX precipitation instead of M{sub 2}X, thus increasing the volume fraction of M{sub 23}C{sub 6}. Two-phase separation behavior of the (Ta, V)(C, N) carbonitride into a Ta(V)C(N) phase and a V(Ta)N(C) phase in 12Cr3WVTa steel is observed and further discussed. - Highlights: • Microalloyed with V and V-Ta can promote the precipitation of MX instead of M{sub 2}X. • The presence of delta-ferrite in microstructure affects the morphology of MX. • Two-phase separation of MX carbonitride was observed in 12Cr3WVTa steel.

  2. Microscale investigation of the corrosion performances of low-carbon and stainless steels in highly alkaline concretes

    E-Print Network [OSTI]

    Itty, Pierre-Adrien

    2012-01-01T23:59:59.000Z

    FILM FORMED ON DUPLEX STAINLESS STEEL IN HIGHLY ALKALINEouter-layer. On duplex stainless steel (UNS S32101), theto corrosion. Finally, duplex stainless steels contain both

  3. Performance of steel-polymer and ceramic-polymer layered composites and concrete under high strain rate loadings

    E-Print Network [OSTI]

    Samiee, Ahsan

    2010-01-01T23:59:59.000Z

    Performance of Steel-Polyurea Bi-layers Subjected to Impul-Performance of Steel-Polymer-Steel Sandwich Structures Sub- jected to Impulsive

  4. Fabrication procedure effects on fatigue resistance of rib -to-deck welded joints of steel orthotropic bridge decks

    E-Print Network [OSTI]

    Sim, Hyoung-Bo

    2010-01-01T23:59:59.000Z

    details of orthotropic steel deck. ” Proc. , Internationalnew approaches to fatigue evaluation of steel bridges. ”International Journal of Steel Structures, KSSC, Vol. 6, No.

  5. Micromechanisms of ductile fracturing of DH-36 steel plates under impulsive loads and influence of polyurea reinforcing

    E-Print Network [OSTI]

    Amini, M. R.; Nemat-Nasser, S.

    2010-01-01T23:59:59.000Z

    of ductile fracturing of DH-36 steel plates under impulsiveductile fracturing of DH-36 steel plates subjected to blast-microstructure of the deformed steel samples also revealed

  6. Development of the use, and approval testing of duplex stainless steel in the chemical industry

    SciTech Connect (OSTI)

    Smith, R.F. [ICI, Cleveland (United Kingdom); Pennington, A. [ICI Teesside Operations, Cleveland (United Kingdom)

    1994-12-31T23:59:59.000Z

    The application of duplex stainless steels within ICI began in the early 1970`s. At that time Langley 40V the precursor of Ferralium was being introduced into phosphoric acid production as a pump material, which gave a superior corrosion/erosion resistance compared to 316L in such hostile environments. At the same time the UNS S31500 duplex alloy was being introduced as a tube material not so much for its corrosion resistance, but to give enhanced performance over carbon steel with better resistance to chloride SCC compared with austenitic 300 series type stainless steels. Since then duplex alloys have gained increasing use as the product forms have increased and the alloys have developed. In addition to their resistance to chlorides their good corrosion resistance in difficult chemical environments has been exploited. This has necessitated ensuring that welded structures have a corrosion resistance matching the parent plate. This paper gives examples of some of the applications and the development of a test procedure based on ASTM G-48 to approve the integrity of the welds in a corrosive environment.

  7. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis

    E-Print Network [OSTI]

    contributed to electromethanogenic gas production. KEYWORDS: Biocathode, Carbon capturing and sequestration generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals

  8. After record sales and production, international met markets plummet

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-03-15T23:59:59.000Z

    After surging in 2007 and most of 2008, both the demand and the pricing for coal collapsed in 2008's final quarter. The article discusses last year's market and gives some predictions on 2009's production and prices. The National Mining Association predicts that production of coking coal will fall 11% due to plunging demand for steel. 4 photos.

  9. Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals

    E-Print Network [OSTI]

    Broadening the Statistical Search for Metal Price Super Cycles to Steel and Related Metals of industrial development and urbanization: steel, pig iron, and molybdenum (a key ingredient in many steel's (2008) econometric search for super cycles in metals prices to our `steel group', defined here as steel

  10. A review of compatibility of IFR fuel and austenitic stainless steel

    SciTech Connect (OSTI)

    Keiser, D.D. Jr.

    1996-11-01T23:59:59.000Z

    Interdiffusion experiments have been conducted to investigate the compatibility of various austenitic stainless steels with U-Pu-Zr alloys, which are alloys to be employed as fuel for the Integral Fast Reactor being developed by Argonne National Laboratory. These tests have also studied the compatibility of austenitic stainless steels with fission products, like the minor actinides (Np and Am) and lanthanides (Ce and Nd), that are generated during the fission process in an IFR. This paper compares the results of these investigations in the context of fuel-cladding compatibility in IFR fuel elements, specifically focusing on the relative Interdiffusion behavior of the components and the types of phases that develop based on binary phase diagrams. Results of Interdiffusion tests are assessed in the light of observations derived from post-test examinations of actual irradiated fuel elements.

  11. Behavior of trace and companion elements of ULC-IF steel grades during RH-treatment

    SciTech Connect (OSTI)

    Jungreithmeier, A.; Viertauer, A.; Presslinger, H. [Voest-Alpine Stahl Linz GmbH (Austria)

    1996-12-31T23:59:59.000Z

    A large number of metallurgical reactions are caused by lowering the partial pressure during vacuum treatment. One of these reactions is the volatilization of elements with high vapor pressure. The concentration of trace and companion elements during RH-treatment mostly changes because of cooling scrap, deoxidation agents and ferro-alloy additions, slag/metal reactions, vaporization and also because of reactions with the RH-vessel lining. These changes in the concentration of trace and companion elements during RH-treatment are exemplified for ULC-IF (ultra low carbon--interstitial free) steel grades. The elements which are considered are chromium, nickel, molybdenum, copper, vanadium, tin, zinc, lead, phosphorus, sulfur and nitrogen. Calculations of the theoretical equilibrium solubility using thermodynamic data--in dependence of pressure and temperature--correspond well with the values obtained during steel production operations. 67 refs.

  12. Application of martensitic, modified martensitic and duplex stainless steel bar stock for completion equipment

    SciTech Connect (OSTI)

    Bhavsar, R.B. [CAMCO Products and Services, Houston, TX (United States); Montani, R. [Foroni, S.p.A., Colombo (Italy)

    1998-12-31T23:59:59.000Z

    Martensitic and duplex stainless steel tubing are commonly used for oil and gas applications containing CO{sub 2}. Completion equipment manufacturing requires use of solid round bar or heavy wall hollows. Material properties for this stock are not identical in all cases. Material properties as well as corrosion characteristics are discussed for 13Cr, 13Cr-5Ni-2Mo and 25Cr alloys. Corrosion testing of modified or Enhanced 13Cr solid bar stock, UNS S41425 and other compositions in H{sub 2}S-Cl{sup {minus}} and pH is reported in coupled and uncoupled condition. Corrosion testing of various super duplex bar stock at various H{sub 2}S-chlorides and temperature in CO{sub 2} environment is reported. Impact value requirements, welding issues and special consideration required for these alloys for completion equipment is discussed. Modified 13Cr and Super Duplex Oil Country Tubular Goods (OCTG) are readily available, however, availability of completion equipment raw material compatible with these OCTG is limited.

  13. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect (OSTI)

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01T23:59:59.000Z

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  14. Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels

    SciTech Connect (OSTI)

    Barnhouse, E.J. [Weirton Steel Corp., WV (United States); Lippold, J.C. [Ohio State Univ., Columbus, OH (United States)

    1998-12-01T23:59:59.000Z

    The metallurgical characteristics, toughness and corrosion resistance of dissimilar welds between duplex stainless steel Alloy 2205 and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209 and Ni-based Alloy 625 filler metals were used to join this combination using a multipass, gas tungsten arc welding (GTAW) process. Defect-free welds were made with each filler metal. The toughness of both the 625 and 2209 deposits were acceptable, regardless of heat input. A narrow martensitic region with high hardness was observed along the A36/2209 fusion boundary. A similar region was not observed in welds made with the 625 filler metal. The corrosion resistance of the welds made with 2209 filler metal improved with increasing heat input, probably due to higher levels of austenite and reduced chromium nitride precipitation. Welds made with 625 exhibited severe attack in the root pass, while the bulk of the weld was resistant. This investigation has shown that both filler metals can be used to joint carbon steel to duplex stainless steels, but that special precautions may be necessary in corrosive environments.

  15. Phase Transformation in Cast Superaustenitic Stainless Steels

    SciTech Connect (OSTI)

    Nathaniel Steven Lee Phillips

    2006-12-12T23:59:59.000Z

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  16. Metallurgical evaluation of recycled stainless steel

    SciTech Connect (OSTI)

    Imrich, K.J.

    1997-01-22T23:59:59.000Z

    Recycled Type 304 stainless steel from both Carolina Metals Inc. (CMI) and Manufacturing Science Corporation (MSC) met all the requirements of ASTM A-240 required by Procurement Specification G-SPP-K-00005 Rev. 4. Mechanical strength and corrosion resistance of the material are adequate for service as burial boxes, overpacks, and drums. Inclusion content of both manufacturer`s material was high, resulting in a corresponding decrease in the corrosion resistance. Therefore, an evaluation of the service conditions should be performed before this material is approved for other applications. These heats of stainless steel are not suitable for fabricating DWPF glass canisters because the inclusion and carbon contents are high. However, MSC has recently installed a vacuum induction furnace capable of producing L grade material with a low inclusion content. Material produced from this furnace should be suitable for canister material if appropriate care is taken during the melting/casting process.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21T23:59:59.000Z

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  18. Modelling Precipitation of Carbides in Martensitic Steels

    E-Print Network [OSTI]

    Yamasaki, Shingo

    is greater than the yield stress of many commercial steels. II Sulfide stress corrosion cracking (SSCC) There were cases in which joints of pipes used in oil wells ruptured only a few days after the commencement of operation [45, 46]. These accidents were... -composition IG Intergranular fracture MVC Microvoid coalescence rupture MTDATA Metallurgical and Thermochemical Databank PC Pre-stressed concrete QC Quasi-cleavage fracture SSCC Sulfide stress corrosion cracking TEM Transmission electron microscope TMCP...

  19. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect (OSTI)

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01T23:59:59.000Z

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  20. Method for the production of synthesis gas

    SciTech Connect (OSTI)

    Escher, G.; Harjung, J.; Wenning, H.P.

    1981-11-24T23:59:59.000Z

    A method is claimed for the continuous production of synthesis gas comprising of carbon monoxide and hydrogen through the autothermal gasification of solid combustibles in a pressure reactor. The method involves the following: introducing into a screw machine containing two parallely ordered shafts, a finely divided solid combustible; moistening and intimately mixing the solid combustible with 2 to 30% by weight of water, degasing and compressing the moist solid combustible to a pressure higher than that of the reactor; adding the gas-tight compressed and moist solid combustible to a reaction chamber-through a burner where the combustible is brought into contact with the gasification medium; evaporating the water in the compressed and moist solid combustible and producing a comminuted dispersion of the solid combustible in the mixture of the gasification medium and water vapor; reacting the combustible dispersion to give a raw synthesis gas; and removing the raw synthesis gas from the reactor.

  1. EAF steel producers and the K061 dilemma

    SciTech Connect (OSTI)

    Prichard, L.C.

    1995-12-31T23:59:59.000Z

    The scrap based steel producers in the United States generate an estimated 650,000 tons of electric arc furnace (EAF) dust annually which is classified as hazardous waste, K061. These scrap based producers commonly referred to as mini-mills represented 39% of the steel produced in 1994. Based upon the EAF plants being installed or planned today, it is a reasonable projection to anticipate 50% of the steel produced in the United States will be by EAF`S. Using a straight line projection of percent of steel produced to tonnage of EAF dust generated, this will result in 833,000 tons of dust being generated upon the completion of these new EAF producing plants, presumably by the year 2000. Because the United States is a capitalistic economy, a steel producer is in business to make a profit therefore dust management becomes a very important variable in the cost of making steel.

  2. The performance of duplex stainless steels in chemical environments

    SciTech Connect (OSTI)

    Francis, R. [Weir Materials Ltd., Manchester (United Kingdom). Park Works

    1994-12-31T23:59:59.000Z

    The process industries have used 300 series stainless steels for many years where the corrosion resistance of carbon steel is inadequate. Where stainless steels have proved inadequate there has been a tendency to utilize high nickel alloys, with a greatly increased cost. The present paper reviews the different grades of duplex stainless steel and shows how their superior corrosion and stress corrosion cracking resistance, plus their high strength, can be utilized to provide cost effective alternatives to the high nickel alloys. The use of alternative design codes to take advantages of the properties of duplex alloys is discussed. Data is presented to show the resistance of duplex stainless steels to a variety of chemical environments. The use of duplex stainless steels and the reason for their selection in a number of applications is reviewed.

  3. INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES

    E-Print Network [OSTI]

    Fox, J.P.

    2011-01-01T23:59:59.000Z

    W. A. Robb, and T. J. Spedding. Minor Elements ~n Oil Shaleand Oil-Shale Products. LERC RI-77/1, 1977. Wildeman, T. R.H. Meglen. The Analysis of Oil-Shale Materials for Element

  4. INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES

    E-Print Network [OSTI]

    Fox, J.P.

    2011-01-01T23:59:59.000Z

    Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inH. Meglen. The Analysis of Oil-Shale Materials for Element

  5. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    SciTech Connect (OSTI)

    Gammelsrud, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway) [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Solhaug, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway)] [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Dendelé, B. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France)] [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Sandberg, W.J. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)] [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Ivanova, L. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway)] [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Kocbach Bølling, A. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)] [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Lagadic-Gossmann, D. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France)] [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Refsnes, M.; Becher, R. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)] [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Eriksen, G. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway)] [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Holme, J.A., E-mail: jorn.holme@fhi.no [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)

    2012-05-15T23:59:59.000Z

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1?) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1? and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ? The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ? The G0/G1-arrest was linked to a reduced ability to internalize receptors. ? EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ? Caspase-1 was partly involved in both apoptosis and release of IL-1?. ? There was a synergistic action between EnnB and bacterial LPS.

  6. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29T23:59:59.000Z

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  7. Characterization of thermal aging of duplex stainless steel by SQUID

    SciTech Connect (OSTI)

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F. [Nuclear Fuel Industries, Ltd., Osaka (Japan)

    1995-08-01T23:59:59.000Z

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging.

  8. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    SciTech Connect (OSTI)

    Dr. Von L. Richards

    2011-09-30T23:59:59.000Z

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspection procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at the end of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.

  9. automotive sheet steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 90, elongated Paris-Sud XI, Universit de 88 Spot weldability of TRIP assisted steels with high carbon and aluminium contents Materials Science Websites Summary:...

  10. ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Nitrogen Control in Ladle and Casting Operations ITP Steel: Hydrogen and Nitrogen Control in Ladle and Casting Operations castingops.pdf More Documents & Publications...

  11. analog stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Naraghi, Reza 2009-01-01 2 Quantification of phase transformation in stainless steel 301LN sheets MIT - DSpace Summary: This thesis investigates the large deformation...

  12. arc stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Naraghi, Reza 2009-01-01 2 Quantification of phase transformation in stainless steel 301LN sheets MIT - DSpace Summary: This thesis investigates the large deformation...

  13. Friction Stir Spot Welding of Advanced High Strength Steels ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    does not contain any proprietary or confidential information Friction Stir Spot Welding of Advanced High Strength Steels (AHSS) (13056 ORNL, 13055 PNNL) Friction Stir Spot...

  14. activation martensitic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications. Open Access Theses and Dissertations Summary: ??In this...

  15. activation martensitic steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling and experimental study of brittle fracture in tempered martensitic steels for thermonuclear fusion applications. Open Access Theses and Dissertations Summary: ??In this...

  16. New Austenitic Stainless Steels for Exhaust Components (Agreement...

    Energy Savers [EERE]

    Documents & Publications CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components Vehicle Technologies Office Merit Review 2014: Materials for...

  17. Blast damage mitigation of steel structures from near- contact charges

    E-Print Network [OSTI]

    Wolfson, Janet Crumrine

    2008-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Blast Damage Mitigation of Steel35  Damage Levels Observed in LaboratoryFigure 3.34: Progression of damage for a Ballistic Loading

  18. a537 carbon steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine materials. MATERIALS AND DESIRED DATA Carbon-Carbon...

  19. Strain Rate Characterization of Advanced High Strength Steels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    design factor - New materials do not have design history available for conventional automotive materials (e.g. mild steel) - This lack of knowledge is compensated by...

  20. Auto/Steel Partnership: Fatigue of AHSS Strain Rate Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fatigue of AHSS Strain Rate Characterization AutoSteel Partnership: Fatigue of AHSS Strain Rate Characterization 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  1. alloyed stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paris-Sud XI, Universit de 3 Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution...

  2. alloy steels etudes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  3. alloy coated steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  4. alloy steel transition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  5. alloy coated steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    y-dend rites. (Note: primary y Cambridge, University of 2 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  6. alloys stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paris-Sud XI, Universit de 3 Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric Chloride solution...

  7. ITP Steel: Energy and Environmental Profile fo the U.S. Iron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile fo the U.S. Iron and Steel Industry ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry steelprofile.pdf More...

  8. CARBON ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY

    E-Print Network [OSTI]

    Barnard, S.J.

    2014-01-01T23:59:59.000Z

    ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY~4720 1 U.S.A. IntroductioE. Dual Phase steels are currentlymartensite-austenite dual phase steel, although the results

  9. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 0.1C STEEL WITH Nb

    E-Print Network [OSTI]

    Gau, Jing-Sheng

    2014-01-01T23:59:59.000Z

    and Properties of Dual-Phase Steels, R. A. Kot and J. W.and Prooerties of Dual-Phase Steels, R. A. Kot and J. W.Prooerties of Vanadium Dual Phase Steel and Cold Pressing

  10. DESIGN OF DUAL PHASE Fe/Mn/C STEEL FOR LOW TEMPERATURE APPLICATION

    E-Print Network [OSTI]

    Kim, Nack-Joon

    2013-01-01T23:59:59.000Z

    and Properties of Dual- Phase Steels, R. A. Kot and J. \\4.and Properties of Dual Phase Steels, R. A. Kot and J. W. ~Formable HSLA and Dual- Phase Steels, A. T. Davenport, ed. ,

  11. A MOSSBAUER STUDY OF AUSTENITE STABILITY AND IMPACT FRACTURE IN Fe - 6 Ni STEEL

    E-Print Network [OSTI]

    Fultz, Brent

    2011-01-01T23:59:59.000Z

    IMPACT FRACTURE IN Fe-6Ni STEEL Brent Thomas Fultz Materialscommercial cryogenic alloy steel was studied with regard toThe Experiments Fe-6Ni-lMn steel plate was received from the

  12. THE EFFECT OF SILICON ON THE ENVIRONMENTAL CRACKING BEHAVIOR OF A HIGH STRENGTH STEEL

    E-Print Network [OSTI]

    Cedeno, M.H.C.

    2010-01-01T23:59:59.000Z

    Low-Alloy, High-Strength Steel, Advanced Research ProjectsTests of High Strength Steels, BISRA Report September 1971.Cracking in High Strength Steels and in Titanium and

  13. People of Steel: The Support of a Town during the Homestead Strike

    E-Print Network [OSTI]

    Partida, Jason

    2013-01-01T23:59:59.000Z

    the riot between the steel strikers and the Pinkertons afterNovember 19, 1892. People of Steel 126 The position you1892, between the Carnegie Steel Company, Limited, and the

  14. WELDABILITY OF GRAIN-REFINED Fe-12Ni-0.25Ti STEEL FOR CRYOGENIC APPLICATIONS

    E-Print Network [OSTI]

    Morris Jr., J.W.

    2013-01-01T23:59:59.000Z

    of the Cryogenic Nickel Steels, WRC Bull, 205, May, 1975.REFINED Fe-12Ni-0.25Ti STEEL FOR CRYOGENIC APPLICATIONS D.E.REFINED Fe-12Ni-0.25Ti STEEL FOR CRYOGENIC APPLICATIONS D.

  15. Effect of polyurea on dynamic response and fracture resistance of steel plates under impulsive loads

    E-Print Network [OSTI]

    Amini, Mahmoud Reza

    2007-01-01T23:59:59.000Z

    on the dynamic response of steel plates, 2006 SEM AnnualPenetration protection of steel plates with polyurea layer,the post-failure motion of steel plates subjected to blast

  16. Propagating Waves Recorded in the Steel, Moment-Frame Factor Building During Earthquakes

    E-Print Network [OSTI]

    Kohler, Monica; Heaton, Thomas H.; Samuel C. Bradford

    2007-01-01T23:59:59.000Z

    studies of damage to tall steel moment-frame buildings inan instrumented 15-story steel- frame building, EarthquakePropagating Waves in the Steel, Moment-Frame Factor Building

  17. DESIGN OF DUAL PHASE Fe/Mn/C STEEL FOR LOW TEMPERATURE APPLICATION

    E-Print Network [OSTI]

    Kim, Nack-Joon

    2013-01-01T23:59:59.000Z

    and Properties of Dual- Phase Steels, R. A. Kot and J. \\4.Properties of Dual Phase Steels, R. A. Kot and J. W. ~lorrisand Hardenability in Steels, Symp. ASt~. ~. Garvey, Trans.

  18. Identification, Model Updating, and Response Prediction of an Instrumented 15-Story Steel-Frame Building

    E-Print Network [OSTI]

    Skolnik, Derek; Lei, Ying; Yu, Eunjong; Wallace, J W

    2006-01-01T23:59:59.000Z

    A. , 1998. Ductile Design of Steel Structure, McGraw Hill,monitoring of the steel-frame UCLA Factor Building,an Instrumented 15-Story Steel-Frame Building Derek Skolnik,

  19. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AISI 4340 STEEL MODIFIED WITH ALUMINUM AND SILICON

    E-Print Network [OSTI]

    Bhat, M.S.

    2010-01-01T23:59:59.000Z

    1968), G, Thomas. Iron and Steel Int, 46. 451 (1973), G,Containing High-Strength Steels, Cobalt Monograph Series, A.Strength Structural j Steels," ASTM Spec, Tech, PubL 498,

  20. Performance-Based Seismic Demand Assessment of Concentrically Braced Steel Frame Buildings

    E-Print Network [OSTI]

    Chen, Chui-Hsin

    2010-01-01T23:59:59.000Z

    and Ductility Factors for Steel Frames De- signed According1980), Inelastic Buckling of Steel Struts Under Cyclic LoadBS 5950: Structural use of steel work in building. Part1

  1. THE USE OF MICROSTRUCTURE CONTROL TO TOUGHEN FERRITIC STEELS FOR CRYOGENIC USE. II. Fe-Mn STEELS

    E-Print Network [OSTI]

    Hwang, S.K.

    2010-01-01T23:59:59.000Z

    steels in current use at LNG temperatures and below containtemperature to below LNG temperature. The resulting alloysis suitable for use to below LNG temperature in the grain-

  2. Preprint Author Copy -Vancostenoble, A., C. Duret-Thual, C. Bosch, and D. Delafosse. 2014. "Stress Corrosion Cracking of Cold Drawn Ferrito-Pearlitic Steels in Confined Aqueous Solutions Containing Dissolved CO2." In NACE Corrosion Conference 2014,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Corrosion Cracking of Cold Drawn Ferrito-Pearlitic Steels in Confined Aqueous Solutions Containing Dissolved CO2." In NACE Corrosion Conference 2014, 51314­4321­SG. Houston, Tx: NACE International. http://www.nace.org/cstm/Store/Product.aspx?id=762f2a5c-a5ba-e311-a396- 0050569a007e. Stress Corrosion Cracking of ferrito-pearlitic steel in aqueous

  3. Production, Manufacturing and Logistics Using real time information for effective dynamic scheduling

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    In many production processes real time information may be obtained from process control computers of the revised schedule against the production disturbance which results from changing the planned schedule. We into scheduling the complex production processes of steel continuous caster planning. Ó 2002 Elsevier Science B

  4. Analysis of local warm forming of high strength steel using near infrared ray energy

    SciTech Connect (OSTI)

    Yang, W. H., E-mail: whyang21@hyundai.com [Hyundai Motor Company, 700 Yeompo-ro, Buk-Gu, Ulsan, 683-791 (Korea, Republic of); Lee, K., E-mail: klee@deform.co.kr [Solution Lab, 502, 102, Dunsan-daero 117 beon-gil, Seo-Gu, Daejeon, 302-834 (Korea, Republic of); Lee, E. H., E-mail: mtgs2@kaist.ac.kr, E-mail: dyyang@kaist.ac.kr; Yang, D. Y., E-mail: mtgs2@kaist.ac.kr, E-mail: dyyang@kaist.ac.kr [KAIST, Science Town291, Daehak-ro, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of)

    2013-12-16T23:59:59.000Z

    The automotive industry has been pressed to satisfy more rigorous fuel efficiency requirements to promote energy conservation, safety features and cost containment. To satisfy this need, high strength steel has been developed and used for many different vehicle parts. The use of high strength steels, however, requires careful analysis and creativity in order to accommodate its relatively high springback behavior. An innovative method, called local warm forming with near infrared ray, has been developed to help promote the use of high strength steels in sheet metal forming. For this method, local regions of the work piece are heated using infrared ray energy, thereby promoting the reduction of springback behavior. In this research, a V-bend test is conducted with DP980. After springback, the bend angles for specimens without local heating are compared to those with local heating. Numerical analysis has been performed using the commercial program, DEFORM-2D. This analysis is carried out with the purpose of understanding how changes to the local stress distribution will affect the springback during the unloading process. The results between experimental and computational approaches are evaluated to assure the accuracy of the simulation. Subsequent numerical simulation studies are performed to explore best practices with respect to thermal boundary conditions, timing, and applicability to the production environment.

  5. Heavy-section steel irradiation program. Progress report, October 1992--March 1993

    SciTech Connect (OSTI)

    Corwin, W.R.

    1998-04-01T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is one of only two more safety-related components of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established at Oak Ridge National Laboratory (ORNL) under sponsorship of the Nuclear Regulatory Commission (NRC). The primary goal of this major safety program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior (in particular, the fracture toughness properties) of typical pressure-vessel steels as they relate to light-water-reactor pressure-vessel integrity. The program centers on experimental assessments of irradiation-induced embrittlement (including the completion of certain irradiation studies previously conducted by the Heavy-Section Steel Technology Program) augmented by detailed examinations and modeling of the accompanying microstructural changes. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties.

  6. Stress corrosion cracking of duplex stainless steel weldments in sour conditions

    SciTech Connect (OSTI)

    Schofield, M.J. [Cortest Labs. Ltd., Sheffield (United Kingdom); Bradshaw, R.; Cottis, R.A. [UMIST, Manchester (United Kingdom). Corrosion and Protection Centre

    1996-04-01T23:59:59.000Z

    Duplex stainless steels are widely used in the oil and gas production industry for a variety of applications. The stress corrosion cracking (SCC) behavior of wrought material is reasonably well understood, and usage limitations are placed upon these alloys in NACE MR0175 for sour service. However, the SCC behavior of weldments is not as well understood, limiting use of welded material in H{sub 2}S-containing environments. The SCC resistance of duplex stainless steels is influenced by their microstructure and chemical composition. An investigation of the SCC behavior of welded 22% Cr and 25% Cr alloys in a simulated oilfield environment has been conducted. Mechanized orbital TIG was used to butt weld 168 mm OD tubes. The shielding gas contained nitrogen additions of up to 7% (UNS S32760) and 10% (UNS S31803). Slow strain rate testing (SSRT) was conducted on cross-weld specimens in sodium chloride solutions overpressured with varying partial pressures of H{sub 2}S and CO{sub 2}. Nitrogen uptake from the shielding gas has a detrimental effect on SCC resistance of duplex stainless steel weldments. While this effect is only modest, it is in direct contrast to the beneficial effect it has on pitting corrosion resistance.

  7. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    SciTech Connect (OSTI)

    Christoph Beckermann; Kent Carlson

    2011-07-22T23:59:59.000Z

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting���¢��������s overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125�������°C. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU���¢��������s/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.

  8. Effects of Non-Fish Based Raw Materials on the Fish Muscle Quality of

    E-Print Network [OSTI]

    towards more sustainable. This thesis investigated the effects of sesamin, linseed oil (LO), rapeseed oil (RO), krill oil (KO), krill meal (KM), mussel meal (MM), and zygomycete meal (ZM) (Rhizopus oryzae of astaxanthin showed high level of oxidation products (thiobarbituric reactive substances). Sesamin and ZM

  9. Feasibility analysis of recycling radioactive scrap steel

    SciTech Connect (OSTI)

    Nichols, F. [Manufacturing Sciences Corp., Woodland, WA (United States); Balhiser, B. [MSE, Inc., Butte, MT (United States); Cignetti, N. [Cignetti Associates, North Canton, OH (United States)] [and others

    1995-09-01T23:59:59.000Z

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

  10. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect (OSTI)

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04T23:59:59.000Z

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  11. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, J.M.

    1984-01-01T23:59:59.000Z

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  12. Method for machining steel with diamond tools

    DOE Patents [OSTI]

    Casstevens, John M. (Greenville, TX)

    1986-01-01T23:59:59.000Z

    The present invention is directed to a method for machining optical quality inishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  13. Heavy-Section Steel Irradiation Program

    SciTech Connect (OSTI)

    Rosseel, T.M.

    2000-04-01T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

  14. Gas Atomization of Stainless Steel - Slow Motion

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Stainless steel liquid atomized by supersonic argon gas into a spray of droplets at ~1800ºC. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a black and white high speed video of a liquid metal stream being atomized by high pressure gas. This material was atomized at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov

  15. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, Ronald J. (Burnsville, MN)

    1985-01-01T23:59:59.000Z

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  16. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, R.J.

    1985-12-24T23:59:59.000Z

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  17. Microstructure of Super-duplex Stainless Steels

    E-Print Network [OSTI]

    Sharafi, Shahriar

    1993-12-07T23:59:59.000Z

    .1 Introduction 24 3.2 The Fe-Cr-Ni System . . . . . . . . . . . . 25 3.3 The Alloying Elements in Duplex Stainless Steels 33 3.4 Chromium and Nickel Equivalents . . . . . . . 42 3.5 The Effect of Creq/Nieq Ratio on Equilibrium Volume Fraction of Austenite 43 3... / Austenite Balance 6.1 Introduction . 6.2 Thermodynamic Calculations . . . . . 6.3 Equilibrium Isothermal Heat Treatments 6.4 Effect of Ferrite/ Austenite Balance on Hardness 6.5 Equilibrium Partitioning of Alloying Elements 6.6 Precipitation of Cr2N 6...

  18. Carbon Emissions: Iron and Steel Industry

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic Feet)Iron and Steel

  19. Kobe Steel Ltd Kobelco | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: Energy Resources JumpKobe Steel Ltd

  20. JFE Steel Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensysIsland GasItron IncJFEJFE Steel

  1. Steel Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringoutAPBF-DEC NOxBestPractices SteamOfficeSteel

  2. Collection sir Samuel Steele university of alberta libraries

    E-Print Network [OSTI]

    MacMillan, Andrew

    carrière de milicien, de policier à cheval et de soldat. La vaste correspondance entre Steele et sa femme nature personnelle de leur fils, Harwood Steele (1897 à 1978), qui fut soldat, explorateur de l. R #12;7 Le gouvernement canadien envoya une expédition armée de la milice canadienne et des soldats

  3. STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH

    E-Print Network [OSTI]

    Bruneau, Michel

    , University at Buffalo, Buffalo, NY 14260. #12;plate shear wall design and use of light-gage cold form platesSTEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH Michel Bruneau, P.E. 1 Dr areas. This paper provides an overview of the current state-of-the-art in steel plate shear wall design

  4. Rutherford backscattering analysis of gallium implanted 316 stainless steel 

    E-Print Network [OSTI]

    Ortensi, Javier

    2000-01-01T23:59:59.000Z

    Ion implantation of Ga ions into 316 stainless steel was performed at fluences ranging from 8x10¹? to 10¹? ions/cm². The depth profile of Ga in the steel was analyzed via Rutherford Backscattering and ToFSIMS. The surface effects were...

  5. Welding residual stresses in ferritic power plant steels

    E-Print Network [OSTI]

    Cambridge, University of

    REVIEW Welding residual stresses in ferritic power plant steels J. A. Francis*1 , H. K. D. H require therefore, an accounting of residual stresses, which often are introduced during welding. To do in the estimation of welding residual stresses in austenitic stainless steels. The progress has been less convincing

  6. Cinematography of Resistance Spot Welding of Galvanized Steel Sheet

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Cinematography of Resistance Spot Welding of Galvanized Steel Sheet Preweld and postweld current modifications on the resistance spot welding of galvanized steel sheet ·are analyzed using high phenomena through· out the weld process are discussed. In addition. the duration of current modifi· cation

  7. Plastic strain due to twinning in austenitic TWIP steels

    E-Print Network [OSTI]

    Cambridge, University of

    Plastic strain due to twinning in austenitic TWIP steels B. Qin and H. K. D. H. Bhadeshia* Twinning induced plasticity steels are austenitic alloys in which mechanical twinning is a prominent deformation, Twinning, Twinning induced plasticity, Automobiles Introduction Mechanical twinning is a plastic

  8. Corrosion protection of steel in ammonia/water heat pumps

    DOE Patents [OSTI]

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14T23:59:59.000Z

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  9. CLEAVAGE FRACTURE MICROMECHANISMS RELATED TO WPS EFFECT IN RPV STEEL

    E-Print Network [OSTI]

    Boyer, Edmond

    CLEAVAGE FRACTURE MICROMECHANISMS RELATED TO WPS EFFECT IN RPV STEEL S. R. Bordet1 , B. Tanguy1 , S vessel (RPV) steel. In this purpose, different WPS fracture test results obtained on compact tensile (CT fractographic investigations and finite element (FE) calculations, demonstrate a strong material aspect to WPS

  10. Sigma phase formation kinetics in stainless steel laminate composites

    SciTech Connect (OSTI)

    Wenmen, D.W.; Olson, D.L.; Matlock, D.K. [Colorado School of Mines, Golden, CO (United States)] [and others

    1994-12-31T23:59:59.000Z

    Stainless steel laminate composites were made to simulate weld microstructures. The use of laminates with variations in chemical composition allows for one dimensional analysis of phase transformation associated with the more complex three-dimensional solidification experience of weld metal. Alternate layers of austenitic (304L and 316L) and ferritic (Ebrite) stainless steels allowed for the study of sigma phase formation at the austenite-ferrite interface in duplex stainless steel. Two austenitic stainless steels, 304L (18.5Cr-9.2Ni-0.3Mo) and 316L (16.2Cr-10.1Ni-2.6Mo), and one ferritic stainless steel, Ebrite (26.3Cr-0Ni-1.0Mo) were received in the form of sheet which was laboratory cold rolled to a final thickness of 0.25 mm (0.030 in.). Laminate composites were prepared by laboratory hot rolling a vacuum encapsulated compact of alternating layers of the ferrite steel with either 304L or 316L stainless steel sheets. Laminate composite specimens, which simulate duplex austenite-ferrite weld metal structure, were used to establish the kinetics of nucleation and growth of sigma phase. The factors affecting sigma phase formation were identified. The effects of time, temperature, and transport of chromium and nickel were evaluated and used to establish a model for sigma phase formation in the austenite-ferrite interfacial region. Information useful for designing stainless steel welding consumables to be used for high temperature service was determined.

  11. Welding type 347 stainless steel -- An interpretive report

    SciTech Connect (OSTI)

    Thomas, R.D. Jr.; Messler, R.W. Jr.

    1997-05-01T23:59:59.000Z

    Stainless steels fall into three major classifications: ferritic, austenitic and martensitic. Type 347 stainless steels are classified as austenitic, though, as well be described later, they may contain small amounts of ferrite as well. They are of the 18-8 chromium-nickel type with up to 1% niobium, an element once referred to as columbium. Type 347 stainless steel is the primary focus of this document. Similar stainless steels containing niobium will be included, such as Types 348 and 309Nb, as these are frequently encountered in certain applications in welded construction. Ferritic and duplex stainless steels, some of which may contain niobium, are not within the scope of this report. This report covers the following topics: applicable welding processes; composition; properties; ferrite potential effect of weld thermal cycle; post-weld heat treatments; cracks and microfissures; and industrial applications.

  12. Repassivation of 13% Cr steel dependent on brine pH

    SciTech Connect (OSTI)

    Skogsberg, J.W.; Walker, M.L.

    2000-02-01T23:59:59.000Z

    A joint laboratory project, involving an oil production and oil well service company, investigated repassivation of martensitic 13% Cr steel. The rate at which this alloy is repassivated after losing its protective passive oxide layer to hydrochloric acid (HCI) depended on the pH of the spent acid returns. Test samples of 13% Cr cut from oilfield tubing were subjected to a fluid sequence of (1) initial brine, (2) HCI, (3) spent acid, and (4) final brine. In 9 days, the samples regained their passive oxide layers. When spent acid was taken out of the fluid sequence, the samples regained passive oxide layers in 3 days.

  13. INHIBITION OF STRESS CORROSION CRACKING OF CARBON STEEL STORAGE TANKS AT HANFORD

    SciTech Connect (OSTI)

    BOOMER, K.D.

    2007-01-31T23:59:59.000Z

    The stress corrosion cracking (SCC) behavior of A537 tank steel was investigated in a series of environments designed to simulate the chemistry of legacy nuclear weapons production waste. Tests consisted of both slow strain rate tests using tensile specimens and constant load tests using compact tension specimens. Based on the tests conducted, nitrite was found to be a strong SCC inhibitor. Based on the test performed and the tank waste chemistry changes that are predicted to occur over time, the risk for SCC appears to be decreasing since the concentration of nitrate will decrease and nitrite will increase.

  14. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    SciTech Connect (OSTI)

    Goshe, A.J.; Nodianos, M.J. [Wheeling-Pittsburgh Steel Corp., Follansbee, WV (United States)

    1995-12-01T23:59:59.000Z

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  15. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect (OSTI)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14T23:59:59.000Z

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  16. High temperature mechanical strength and microstructural stability of advanced 9-12%Cr steels and ODS steels.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and ODS steels. B. Fournier,1 M. Salvi1 , C. Caës1 , J. Malaplate1 , F. Dalle1 , M. Sauzay1 , Y. de Carlan. In the framework of Generation IV nuclear reactors and for fusion reactors, oxide dispersion strengthened (ODS. In the present article advanced 9-12%Cr steels, including their ODS grades, are tested under creep, fatigue

  17. Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Early Detection of Steel Rebar Corrosion by Acoustic Emission

    E-Print Network [OSTI]

    Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Alan D. Zdunek and David Prine BIRL Industrial Research, Evanston, IL 60201 Paper No. 547 presented at CORROSION95, the NACE International Annual Conference

  18. October 14 WA Division Newsletter Page 4 Tool durability and steel microstructure in friction stir welding of mild steel

    E-Print Network [OSTI]

    Cambridge, University of

    ) of aluminium alloys are cost effective and durable, whereas the much larger market for welding of steels for the welding of 7075 aluminium alloy. The results were presented as easy to use maps of "tool durability index- ium alloys has been applied to the FSW of steel. The calculations were extended to predict

  19. Raw neutron scattering data for strain measurement of hydraulically loaded granite and marble samples in triaxial stress state

    SciTech Connect (OSTI)

    Polsky, Yarom

    2014-05-23T23:59:59.000Z

    This entry contains raw data files from experiments performed on the Vulcan beamline at the Spallation Neutron Source at Oak Ridge National Laboratory using a pressure cell. Cylindrical granite and marble samples were subjected to confining pressures of either 0 psi or approximately 2500 psi and internal pressures of either 0 psi, 1500 psi or 2500 psi through a blind axial hole at the center of one end of the sample. The sample diameters were 1.5" and the sample lengths were 6". The blind hole was 0.25" in diameter and 3" deep. One set of experiments measured strains at points located circumferentially around the center of the sample with identical radii to determine if there was strain variability (this would not be expected for a homogeneous material based on the symmetry of loading). Another set of experiments measured load variation across the radius of the sample at a fixed axial and circumferential location. Raw neutron diffraction intensity files and experimental parameter descriptions are included.

  20. Raw neutron scattering data for strain measurement of hydraulically loaded granite and marble samples in triaxial stress state

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Polsky, Yarom

    This entry contains raw data files from experiments performed on the Vulcan beamline at the Spallation Neutron Source at Oak Ridge National Laboratory using a pressure cell. Cylindrical granite and marble samples were subjected to confining pressures of either 0 psi or approximately 2500 psi and internal pressures of either 0 psi, 1500 psi or 2500 psi through a blind axial hole at the center of one end of the sample. The sample diameters were 1.5" and the sample lengths were 6". The blind hole was 0.25" in diameter and 3" deep. One set of experiments measured strains at points located circumferentially around the center of the sample with identical radii to determine if there was strain variability (this would not be expected for a homogeneous material based on the symmetry of loading). Another set of experiments measured load variation across the radius of the sample at a fixed axial and circumferential location. Raw neutron diffraction intensity files and experimental parameter descriptions are included.

  1. A new copper borophosphate with novel polymeric chains and its structural correlation with raw materials in molten hydrated flux synthesis

    SciTech Connect (OSTI)

    Duan, Ruijing; Liu, Wei, E-mail: Weiliu@ouc.edu.cn; Cao, Lixin; Su, Ge; Xu, Hongmei; Zhao, Chenggong

    2014-02-15T23:59:59.000Z

    A novel copper borophosphate, Cu{sub 3}[B{sub 2}P{sub 3}O{sub 12}(OH){sub 3}] has been prepared by the molten hydrated flux method. Its crystal structure was determined by the single-crystal X-ray diffraction (monoclinic, Cc, a=6.1895 Å, b=13.6209 Å, c=11.9373 Å, ?=97.62°, V=997.5 Å{sup 3}, Z=4). The three-dimensional framework of the titled compound, is composed by two kinds of polymeric chains and isolated PO{sub 4} tetrahedral. One novel 4-membered tetrahedral rings has been observed in borophosphates. Magnetic measurements indicate that the title compound exits antiferromagnetic interactions. Due to the special reaction medium created by the molten hydrated flux method, a possible structural correlation between the final solids and the raw materials has been noted. - Graphical abstract: The 3D structure consists of a framework composed of CuO{sub x} polyhedra, BO{sub 4} and PO{sub 4} tetrahedra. A intersection angle between the metal chains and borophosphate chains can be noted. Display Omitted - Highlights: • A novel copper borophosphate has been prepared by the molten hydrated flux method. • One novel 4-membered tetrahedral ring has been observed firstly in borophosphates. • A possible structural correlation between the final solids and the raw materials has been noted.

  2. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect (OSTI)

    Professor Robert C. Voigt

    2003-02-02T23:59:59.000Z

    The science of heat treatment has been well studied and is the basis from which existing specifications and practices for the heat treatment of steel castings have been developed. Although these existing specifications address the general needs of steel castings to be heat-treated, they do not take into account the variability in the parameters that govern the processes. The need for a heat treatment qualification procedure that accounts for this variability during heat treatment is an important step toward heat treatment quality assurance. The variability in temperatures within a heat treatment furnace is one such variable that a foundry has to contend with in its day-to-day activity. Though specifications indicate the temperatures at which a particular heat treatment has to be conducted, heat treatment specifications do not adequately account for all aspects of heat treatment quality assurance. The heat treatment qualification procedure will comprise of a robust set of rules and guidelines that ensure that foundries will still be able to operate within the set of constraints imposed on them by non-deterministic elements within the processes.

  3. Cast alumina forming austenitic stainless steels

    DOE Patents [OSTI]

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30T23:59:59.000Z

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  4. New developments in pipeline charging preheated coal at Inland Steel

    SciTech Connect (OSTI)

    Sorensen, S.M. Jr.; Arsenault, A.A.; Rupp, P.A.

    1982-01-01T23:59:59.000Z

    The first commercial installation of a new pipeline oven charging system for preheated coal, designed by Dynamic Air, Inc., was made at Inland Steel's C Battery in October 1979. With the Dynamic Air charging sytem, production losses due to pipeline delays have been virtually eliminated, pipeline maintenance requirements have been reduced by 90%, conveying steam requirements have been significantly reduced, and oven charge weights have been increased by 500 kg (1000 lb). A test program was subsequently conducted during November and December 1980, to evaluate the use of nitrogen as a conveying medium for pipeline oven charging with the Dynamic Air system. The test results clearly demonstrated that the same weight of preheated coal could be charged into an oven by using either steam or nitrogen as the conveying medium. Moreover, it was found that pipeline oven charging with the Dynamic Air system is a function of the mass flow rate of the conveying medium. With nitrogen charging, an average 9% increase in oven charge rates was obtained at comparable conveying gas mass flow rates and charging bin pressures. In addition, average oven pressure during charging was reduced by approximately 40% and solids carryover was reduced by 100 kg (220 lb) per oven charge with nitrogen charging. It was found that solids carryover during pipeline oven charging is a function of the average pressure generated in the oven during charging, but it was also found that a large oven pressure surge at the end of the charge can produce excessive carryover to completely mask the effect.

  5. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    SciTech Connect (OSTI)

    Stoner, K.J.

    1999-11-05T23:59:59.000Z

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  6. Numerical simulations of welds of thick steel pieces of interest for the thermonuclear fusion ITER machine

    E-Print Network [OSTI]

    Carmignani, B

    2005-01-01T23:59:59.000Z

    Numerical simulations of welds of thick steel pieces of interest for the thermonuclear fusion ITER machine

  7. Spot weldability of d-TRIP steel containing , K. Y. Lee2

    E-Print Network [OSTI]

    Cambridge, University of

    of the strong dual phase steels,10,11 is large when compared with interstitial free or bake hardening steels in Table 1 according to the common standards.21­25 A dual phase steel DP-78026 has in this work been-TRIP steel, designed to retain d-ferrite as a stable phase at all temperatures below melting. Fully

  8. Modelling the role of non metallic inclusions on the anisotropic fatigue behaviour of forged steel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    reported as being 35% for 42CrMo4 steel [1] and 15% for a duplex stainless steel [2]. To design a forged steel E. Pessard* , F. Morel, A. Morel, D. Bellett LAMPA (EA1427) Arts et Métiers ParisTech Angers 2, Bd. This study aims at describing the high cycle fatigue response of a forged bainitic steel. This material

  9. Differences in synchrotron radiation induced gas desorption from stainless steel and aluminium alloy

    E-Print Network [OSTI]

    Andritschky, M; Mathewson, A G; Souchet, R; Strubin, Pierre M; Trickett, B A

    1990-01-01T23:59:59.000Z

    Differences in synchrotron radiation induced gas desorption from stainless steel and aluminium alloy

  10. NEUTRON DAMAGE IN REACTOR PRESSURE-VESSEL STEEL EXAMINED WITH POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

    E-Print Network [OSTI]

    Motta, Arthur T.

    NEUTRON DAMAGE IN REACTOR PRESSURE-VESSEL STEEL EXAMINED WITH POSITRON ANNIHILATION LIFETIME-vessel steels. We irradiated samples ofASTM A508 nuclear reactor pressure-vessel steel to fast neutron 17 2 (PALS) to study the effects of neutron damage in the steels on positron lifetimes. Non

  11. The morphology and formation mechanism of pearlite in steels

    SciTech Connect (OSTI)

    Zhang, M.-X., E-mail: Mingxing.Zhang@uq.edu.au [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia); Kelly, P.M. [Division of Materials, School of Engineering, University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2009-06-15T23:59:59.000Z

    A number of morphological features of pearlite were revealed through scanning electron microscopy using deeply etched specimens. These include cementite branching, bridging, gaps, holes and curvature. The presence of cementite thin films or networks along the austenite grain boundaries in eutectoid steel and at the interface between pearlite and proeutectoid ferrite in hypoeutectoid steel is another characteristic of pearlite. Furthermore, ferrite thin films surrounding the proeutectoid cementite in hypereutectoid steels are also observed. Hence, it is considered that in hypoeutectoid steels the nucleus for pearlite is a film of cementite rather than the expected proeutectoid ferrite and, similarly, in hypereutectoid steels pearlite forms from a ferrite film rather than from proeutectoid cementite. Convergent beam Kikuchi line diffraction was used to accurately determine the orientation relationships between pearlitic constituents and parent austenite in a Hadfields steel. The results show that neither the pearlitic ferrite nor the cementite is crystallographically related to the austenite grain into which the pearlite was growing and to that into which it was not growing. In addition, a new orientation relationship between pearlitic cementite and ferrite in the Hadfield steel was also observed.

  12. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Yoon-Jun Kim

    2004-12-19T23:59:59.000Z

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.

  13. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2005, the United States consumed about 11% of world chromite ore production

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  14. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2004, the United States consumed about 10% of world chromite ore production

    E-Print Network [OSTI]

    46 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  15. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev

    2014-01-21T23:59:59.000Z

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  16. Diode laser welding of aluminum to steel

    SciTech Connect (OSTI)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04T23:59:59.000Z

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  17. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); Braski, David N. (Oak Ridge, TN); Rowcliffe, Arthur F. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  18. Radiation resistant austenitic stainless steel alloys

    DOE Patents [OSTI]

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11T23:59:59.000Z

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  19. The over 20 year operating experience with carbon steel tubings at Abu Attifel Field. Problems and solutions

    SciTech Connect (OSTI)

    Cheldi, T. [ENI-AGIP Div., Milan (Italy); Rumash, K. [AGIP Oil, Tripoli (Libyan Arab Jamahiriya); Bazzoni, B. [Cescor srl, Milan (Italy)

    1999-11-01T23:59:59.000Z

    Abu Attifel onshore oil field (Libya) was discovered in 1968 and put in production in November 1972. The total average production is nowadays about 140,000 BOPD (22,260 m{sup 3}/d) with 46 producing wells. All the production wells were originally completed with carbon steel tubing, although the produced fluids contain CO{sub 2}-4% in the gas phase. After several years of production with minor downhole corrosion problems, several corrosion failures started to occur in the nineties at extremely high corrosion rate. In some cases corrosion attacks occurred although the water cut was negligible (lower than 1%). A detailed corrosion study was initiated to investigate the problem in order to identify the most critical production wells and the priority of intervention for well; this paper reports the corrosion assessment results and the actions undertaken to control the corrosion. A occurred corrosion events is also reported.

  20. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    SciTech Connect (OSTI)

    Gualtieri, Alessandro F., E-mail: alessandro.gualtieri@unimore.it [Dipartimento di Scienze della Terra, Universita di Modena e R.E., Via S. Eufemia 19, I-41100 Modena (Italy); Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele [Dipartimento di Scienze della Terra, Universita di Modena e R.E., Via S. Eufemia 19, I-41100 Modena (Italy); Lassinantti Gualtieri, Magdalena [Dipartimento Ingegneria dei Materiali e dell'Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Lusvardi, Gigliola [Dipartimento di Chimica, Universita degli Studi di Modena e Reggio Emilia, Via G. Campi 183, I-41100 Modena (Italy); Cavenati, Cinzia; Zanatto, Ivano [ZETADI S.r.l., Via dell'Artigianato 10, Ferno (Italy)

    2011-01-15T23:59:59.000Z

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  1. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01T23:59:59.000Z

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  2. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01T23:59:59.000Z

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  3. Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer

    SciTech Connect (OSTI)

    Kundu, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah - 711103 (India)], E-mail: erskundu@yahoo.com; Chatterjee, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah - 711103 (India)], E-mail: schatterjee46@yahoo.com

    2008-05-15T23:59:59.000Z

    Solid-state diffusion bonded joints were prepared between commercially pure titanium and 304 stainless steel with nickel as an intermediate material in the temperature range of 800-950 deg. C for 10.8 ks under a 3 MPa uniaxial pressure in vacuum. The interface microstructures and reaction products of the transition joints were investigated by optical and scanning electron microscopy. Up to 850 deg. C processing temperature, a 300-{mu}m nickel interlayer completely restricts the diffusion of titanium to stainless steel. However, the nickel interlayer cannot block the diffusion of Ti to the stainless side and {lambda} + {chi} + {alpha}-Fe, {lambda} + FeTi and {lambda} + FeTi + {beta}-Ti phase mixtures are formed at the SS-Ni interface, when bonding was processed at 900 deg. C and above. These reaction products were confirmed by X-ray diffraction. A maximum tensile strength of {approx} 270 MPa and shear strength of {approx} 194 MPa, along with 6.2% ductility, were obtained for the diffusion bonded joint processed at 850 deg. C. Fracture surface observation in SEM using EDS demonstrates that failure occurred through the Ni-Ti interface of the joints when processed up to 850 deg. C and through the SS-Ni interface when processed at and above 900 deg. C.

  4. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01T23:59:59.000Z

    Assessment of Electric Steel making Through the Year 2000,by Injection Technology” Steel Times, October 1994 pp.391-Hanes, C. , 1999. USS/Kobe Steel, Personal communication,

  5. THE INFLUENCE OF RETAINED AUSTENITE ON THE THICK SECTION MECHANICAL PROPERTIES OF A COMMERCIAL LOW ALLOY ULTRA-HIGH STRENGTH STEEL

    E-Print Network [OSTI]

    Horn, R.M.

    2010-01-01T23:59:59.000Z

    of Fracture of High Strength Steels, Final Tech. Report,Arsenal Lab. , K. J. Irvine, Steel Strengthening Mechanisms,Diagrams, United States Steel, Pittsburgh, PA, 1963. E. G.

  6. A COMPARISON OF THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 300-M STEEL MANUFACTURED BY THE VACUUM ARC REMELT AND THE ELECTROSLAG REMELT PROCESSES

    E-Print Network [OSTI]

    Lechtenberg, Thomas A.

    2011-01-01T23:59:59.000Z

    AND MECHANICAL PROPERTIES OF 300~M STEEL MANUFACTURED BY THEAND MECHANICAL PROPERTIES OF 300~M STEEL MANUFACTURED BY THEArc Remelt (VAR) 300-M steel were measured, These were

  7. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01T23:59:59.000Z

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  8. 31 October 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    building material made from lumber might catapult Oregon wood products to the forefront of construction buildings, CLT becomes a cost-effective replacement for steel or concrete, and using it in construction there is a growing buzz around using CLT because it "meets or beats" traditional construction materials on every

  9. Development of sodium silicate adhesives for electrical steel bonding

    E-Print Network [OSTI]

    Marks, Jordan (Jordan Christine)

    2014-01-01T23:59:59.000Z

    Inorganic adhesives have several benefits over traditional joining methods for joining electrical steels used in magnetic cores of numerous industrial applications. As insulators with very high melting temperatures, the ...

  10. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect (OSTI)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01T23:59:59.000Z

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  11. A structural analysis of the Cardington British Steel corner test 

    E-Print Network [OSTI]

    Gillie, Martin; Usmani, Asif; Rotter, J Michael

    2002-01-01T23:59:59.000Z

    This paper presents a structural analysis of the Cardington British Steel corner test. The test is a analyzes using ABAQUS, the commercial finite element program. The results of the analysis indicate that the response of ...

  12. axially loaded steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    image correlation and FE analysis Mathematics Websites Summary: conducted on dual-phase high-strength steel in a split-Hopkinson tension bar at a strain-rate in the...

  13. Process to Continuously Melt, Refine, and Cast High Quality Steel

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to conduct research and development targeted at designing an innovative steelmaking process to produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  14. Fracture and plasticity characterization of DH-36 Navy steel

    E-Print Network [OSTI]

    MacLean, Christopher Glenn

    2012-01-01T23:59:59.000Z

    Multi-layered plates consisting of DH-36 steel coated by a thick layer of polyurea, for increased blast and impact protection, are of increasing importance to the Department of Defense. A hybrid approach of experiments and ...

  15. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27T23:59:59.000Z

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  16. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  17. Plugging of intersubassembly gaps by downward flowing molten steel. [LMFBR

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1984-01-01T23:59:59.000Z

    In the assessment of the meltout phase of an LMFBR hypothetical core disruptive accident, a pathway for the escape of molten fuel from the disrupted core is provided by the narrow channels separating adjacent subassemblies. However, the removal of fuel through intersubassembly gaps might be impeded by steel blockage formation, if molten steel is postulated to enter the gap network ahead of disrupted fuel. Reported here are the results of an analysis of the conduction freezing controlled penetration behavior of molten steel flowing downward through the voided (of sodium) gap channels nominally separating adjacent subassemblies below the active core region. The objective is to determine the range of conditions under which the steel is predicted to be deposited as a thin crust on the channel walls leaving an open pathway remaining for subsequent fuel flow instead of forming a complete plug which closes off the gap channel and obstructs fuel removal immediately thereafter.

  18. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30T23:59:59.000Z

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  19. A Micro-Alloyed Ferritic Steel Strengthened by Nanoscale Precipitates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscope (TEM), fine carbides with an average diameter of 10 nm were observed in the ferrite matrix of the 0.08%Ti steel, and some cubic M23C6 precipitates were also observed at...

  20. A micro-alloyed ferritic steel strengthened by nanoscale precipitates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TEM), fine carbides TiC with an average diameter of 10 nm were observed in the ferrite matrix of the 0.08%Ti steel, and some cubic M23C6 precipitates were also observed at...

  1. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOE Patents [OSTI]

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24T23:59:59.000Z

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  2. Climate VISION: Private Sector Initiatives: Iron and Steel

    Office of Scientific and Technical Information (OSTI)

    Climate VISION goal of achieving a 10 percent increase in sector-wide average energy efficiency by 2012 using a 2002 baseline. Read the U.S. Steel Industry Energy Efficiency Fact...

  3. Climate VISION: Private Sector Initiatives: Iron and Steel: Technology...

    Office of Scientific and Technical Information (OSTI)

    results in the near, mid, and long term. Industry Vision & Roadmaps Saving One Barrel of Oil per Ton of Steel: A New Roadmap for Transformation of Steelmaking Process (October...

  4. Analysis of steel silo structures on discrete supports 

    E-Print Network [OSTI]

    Li, Hongyu

    The objective of this thesis is to broaden current knowledge of the strength and buckling/collapse of shells, with special reference to steel silo structures on discrete supports, and thus to provide design guidance of ...

  5. Buckling of circular steel cylindrical shells under different loading conditions 

    E-Print Network [OSTI]

    Chen, Lei

    2011-06-28T23:59:59.000Z

    Cylindrical shells are widely used in civil engineering. Examples include cooling towers, pipelines, nuclear containment vessels, steel silos and tanks for storage of bulk solids and liquids, and pressure vessels. The ...

  6. New Austenitic Stainless Steels for Exhaust Components (Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    diesel engines in January, 2007 CF8C-Plus steel SiMo Cast-iron * Exhaust combustor (turbo exhaust + injected fuel) to clean out particulate filters: high temperature and rapid...

  7. alloy steel standard: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels Engineering Websites Summary: Estimation of...

  8. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect (OSTI)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu ['Gheorghe Asachi' Technical University of Iasi, Department of Machine Manufacturing Technology, Blvd. D Mangeron 59A, 700050 Iasi (Romania); Schulze, Hans-Peter [Otto-von-Guericke-University Magdeburg, Institute of Fundamental Electrical Engineering and EMC Universitaetsplatz 2, D-39106 Magdeburg (Germany); Besliu, Irina [University 'Stefan cel Mare' of Suceava, Department of Technologies and Management, Str. Universitatii, 13, 720 229 Suceava (Romania)

    2011-05-04T23:59:59.000Z

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  9. Making Steel Framing as Thermally Efficient as Wood 

    E-Print Network [OSTI]

    Kosny, J.; Childs, P.

    2002-01-01T23:59:59.000Z

    the steel web with a less conductive material, and 4) placing foam insulation in locations where the thermal shorts are most critical. Researchers at Oak Ridge National Laboratory (ORNL) have utilized both hot box testing and computer simulations in aim...

  10. Galvanised steel to aluminium joining by laser and GTAW processes

    SciTech Connect (OSTI)

    Sierra, G. [CEA/DRT/DTEN/LITEN/UTIAC, Groupement d'Etudes et de Recherche pour l'Application Industrielle des Lasers de Puissance (GERAILP), Arcueil, 94114 (France); Universite Montpellier 2, Laboratoire de Mecanique et Genie Civil, UMR 5508 CNRS, Montpellier, 34095 (France); Peyre, P. [GIP-GERAILP, Laboratoire pour l'Application des Lasers de Puissance, UPR 1578 CNRS, Arcueil, 94114 (France); Deschaux Beaume, F. [Universite Montpellier 2, Laboratoire de Mecanique et Genie Civil, UMR 5508 CNRS, Montpellier, 34095 (France)], E-mail: deschaux@iut-nimes.fr; Stuart, D. [GIP-GERAILP, Laboratoire pour l'Application des Lasers de Puissance, UPR 1578 CNRS, Arcueil, 94114 (France); Fras, G. [Universite Montpellier 2, Laboratoire de Mecanique et Genie Civil, UMR 5508 CNRS, Montpellier, 34095 (France)

    2008-12-15T23:59:59.000Z

    A new means of assembling galvanised steel to aluminium involving a reaction between solid steel and liquid aluminium was developed, using laser and gas tungsten arc welding (GTAW) processes. A direct aluminium melting strategy was investigated with the laser process, whereas an aluminium-induced melting by steel heating and heat conduction through the steel was carried out with the GTAW process. The interfaces generated during the interaction were mainly composed of a 2-40 {mu}m thick intermetallic reaction layers. The linear strength of the assemblies can be as high as 250 N/mm and 190 N/mm for the assemblies produced respectively by laser and GTAW processes. The corresponding failures were located in the fusion zone of aluminium (laser assemblies), or in the reaction layer (GTAW assemblies)

  11. Steel-SiC Metal Matrix Composite Development

    SciTech Connect (OSTI)

    Smith, Don D.

    2005-07-17T23:59:59.000Z

    The goal of this project is to develop a method for fabricating SiC-reinforced high-strength steel. We are developing a metal-matrix composite (MMC) in which SiC fibers are be embedded within a metal matrix of steel, with adequate interfacial bonding to deliver the full benefit of the tensile strength of the SiC fibers in the composite.

  12. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect (OSTI)

    BOEHNKE, W.M.

    2000-07-13T23:59:59.000Z

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  13. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOE Patents [OSTI]

    Mott, Gerry (Pittsburgh, PA); Attaar, Mustan (Monroeville, PA); Rishel, Rick D. (Monroeville, PA)

    1989-08-08T23:59:59.000Z

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  14. Procedure for flaw detection in cast stainless steel

    DOE Patents [OSTI]

    Kupperman, David S. (Oak Park, IL)

    1988-01-01T23:59:59.000Z

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  15. Stability of stainless-steel nanoparticle and water mixtures

    E-Print Network [OSTI]

    Song, You Young; Bhadeshia, H. K. D. H.; Suh, Dong-Woo

    2014-11-28T23:59:59.000Z

    of such mixtures, especially for heavy metallic particles. For 0.017 wt% stainless steel-distilled water nanoparticle-fluid, the thermal conductivity increases by 8.3 % at the optimal stability condition of pH 11. Keywords: Stainless steel, Nanofluid, Stability... of larger particle density related to metallic particles, metallic nanoparticle-fluids have been studied much less than oxides or nanotube dispersions. An important characteristic of a nanoparticle-fluid mixture or nanofluid is its stability with respect...

  16. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01T23:59:59.000Z

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  17. Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen

    SciTech Connect (OSTI)

    Feng, Zhili [ORNL; Zhang, Wei [ORNL; Wang, Jy-An John [ORNL; Ren, Fei [ORNL

    2012-09-01T23:59:59.000Z

    A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the industry-standard pressure vessel technology. The real-world performance data of SCCV under actual operating conditions is imperative for this new technology to be adopted by the hydrogen industry for stationary storage of CGH2. Therefore, the key technology development effort in FY13 and subsequent years will be focused on the fabrication and testing of SCCV mock-ups. The static loading and fatigue data will be generated in rigorous testing of these mock-ups. Successful tests are crucial to enabling the near-term impact of the developed storage technology on the CGH2 storage market, a critical component of the hydrogen production and delivery infrastructure. In particular, the SCCV has high potential for widespread deployment in hydrogen fueling stations.

  18. Corrosion of reinforcing steel is typically one of the main problems causing deterioration of concrete structures. The Microcomposite Multistructural Formable (MMFX) steel, which is a

    E-Print Network [OSTI]

    Corrosion of reinforcing steel is typically one of the main problems causing deterioration available steel, has proven to have high corrosion resistance in comparison with conventional steel without provides a high resistance to corrosion due to severe environmental exposure in comparison to the use

  19. Design and analysis of prestressed composite steel beams

    SciTech Connect (OSTI)

    Thammasila, D.

    1992-01-01T23:59:59.000Z

    This study experimentally and analytically examined the behavior of prestressed composite steel beams. Methods for analysis and design of the prestressed composite steel beams with constant and variable eccentricities based on the load and resistance factor design and the working stress design were formulated. Three specimens were tested under static and cyclic loadings to verify the proposed design methods. The results from the cyclic loadings were used to test the feasibility of the prestressed composite steel beams under actual loading conditions. Finite element models were developed to study the behavior of the prestressed composite steel beams and to ensure the validity of the proposed design methods. The modes of failure of the three specimens tested were crushing of concrete slabs and yielding of steel beams and prestressing tendons. The cyclic loads reduced the ultimate strength of the specimens tested by 7.8 percent. Overall, the proposed design methods for the load and resistance factor design and the working stress design adequately predicted the behavior of the prestressed composite steel beams.

  20. A multi-display viewing station that increases productivity and saves space

    E-Print Network [OSTI]

    Saskatchewan, University of

    A multi-display viewing station that increases productivity and saves space Conserve desk space) per monitor · Low-profile base saves desk space · Durable aluminum and steel construction creates that are VESA® MIS-D, 100/75, C compliant · Five-year warranty Product Sheet Space-saving desk stands Ergotron

  1. SUBSURFACE DRIP IRRIGATION SYSTEMS FOR SPECIALTY CROP PRODUCTION IN NORTH DAKOTA

    E-Print Network [OSTI]

    Steele, Dean D.

    SUBSURFACE DRIP IRRIGATION SYSTEMS FOR SPECIALTY CROP PRODUCTION IN NORTH DAKOTA D.D.Steele, R.G.Greenland, B. L. Gregor ABSTRACT. Subsurface drip irrigation (SDI) systems offer advantages over other types of irrigation systems for specialty crop production, including water savings, improved trafficability

  2. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect (OSTI)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27T23:59:59.000Z

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  3. 13 Modern Bainitic Steels Steels with yield strengths in excess of 1000 MPa are important in certain

    E-Print Network [OSTI]

    Cambridge, University of

    .029 ± ± ± ± ± Rapidly cooled bainitic 5 0.100 0.25 1.00 ± ± ± ± ± ± ± ± ± Bainitic dual phase 6 0.040 ± 0.40 ± ± ± ± ± ± 0.05 ± ± Triple phase 7 0.150 0.35 1.40 ± ± ± 0.022 0.011 ± 0.035 ± ± Bainitic dual phase 8 0.120 113 Modern Bainitic Steels Steels with yield strengths in excess of 1000 MPa are important

  4. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect (OSTI)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01T23:59:59.000Z

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  5. Economics is the study of choices. Economics programs teach people how society distributes scarce resources, such as land, labor, raw materials, and

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Economics is the study of choices. Economics programs teach people how society distributes scarce resources, such as land, labor, raw materials, and machinery. Economics is also about much more than this. Using the tools of economics, students can better understand all kinds of choices and outcomes, ranging

  6. Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Noel, Joseph

    2011-04-25T23:59:59.000Z

    Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

  7. DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown Site - MOSutton Steele and

  8. High productivity in Australian blast furnaces

    SciTech Connect (OSTI)

    Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

    1995-12-01T23:59:59.000Z

    Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

  9. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    SciTech Connect (OSTI)

    William S. McPhee

    2001-08-31T23:59:59.000Z

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites.

  10. EFFECT OF VANADIUM ON STRUCTURE-PROPERTY RELATIONS OF DUAL PHASE Fe/Mn/Si/0.lC STEELS

    E-Print Network [OSTI]

    Nakagawa, Alvin

    2014-01-01T23:59:59.000Z

    Formable HSLA and Dual Phase Steels, Proceedings of AIME,and Properties of Dual Phase Steels, Proceedings of Aifv1E,in intercritically annealed dual phase steels. Many of the

  11. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Potentials in the Iron and steel Industry in China. Reportfor the U.S. Iron and Steel Industry. An ENERGY STAR Guidebusiness/industry/Iron_Steel_Guide.pdf Worrell, E. Ramesohl,

  12. Seismic testing of existing full-scale pile-to-deck connections : precast prestressed and steel piles

    E-Print Network [OSTI]

    Bell, Jared Keith

    2008-01-01T23:59:59.000Z

    volume ratio of confining steel. Section curvature. d b:f su : Ultimate stress of the longitudinal steel. fstress of the longitudinal steel. f yh : Yield stress of the

  13. Simulating the Inelastic Seismic Behavior of Steel Braced Frames Including the Effects of Low-Cycle Fatigue

    E-Print Network [OSTI]

    Huang, Yuli

    2009-01-01T23:59:59.000Z

    6 Studies of Steel Braced Frame Behavior 6.1 Brace3 Structural Steel Deterioration 3.1 Plastic behavior andv List of Figures Schematic steel building comprising braced

  14. CHARACTERIZATION OF FERRITIC G.M.A. WELD DEPOSITS IN 9percentNi STEEL FOR CRYOGENIC APPLICATIONS

    E-Print Network [OSTI]

    Mahin, Kim Walker

    2013-01-01T23:59:59.000Z

    Welding Electrode Div . • Kobe Steel, Japan, 1974, 51 pages;337s. 102. T. Ohwa: Kobe Steel vJorks Welding Lab. Rep. ,fo~ and Tough. Charac. and Steels, ed. P. L Mangonon, Jr. ,

  15. A Long, Contingent Path to Comparative Advantage: Industrial Policy and the Japanese Iron and Steel Industry, 1900-1973

    E-Print Network [OSTI]

    ELBAUM, BERNARD

    2006-01-01T23:59:59.000Z

    F. and Schorsch, Louis. Steel: Upheaval in a Basic Industry.Taplin, W. History of the British Steel Industry. Cambridge,Crandall, Robert W. The U.S. Steel Industry in Recurrent

  16. How Godzilla Ate Pittsburgh: The Long Rise of the Japanese Iron and Steel Industry, 1900–1973

    E-Print Network [OSTI]

    Bernard Elbaum

    2007-01-01T23:59:59.000Z

    1962. History of the British Steel Industry. Cambridge, MA:Robert W. 1981. The U.S. Steel Industry in Recurrent Crisis.Elbaum, Bernard. 1986. ‘The Steel Industry Before World War

  17. THE DESIGN OF AN Fe-12Mn-O.2Ti ALLOY STEEL FOR LOW TEMPERATURE USE

    E-Print Network [OSTI]

    Hwang, S.-K.

    2010-01-01T23:59:59.000Z

    62, p. 690. W. Jolley: J. Iron Steel Inst. , Feb. , 1968, V.V. 215, p. 2. J. Iron Steel Inst. , Mar. , 1958, Trans. M.v. 41, p. 1185. J. Iron Steel Inst. , Mar. , 1965, D. W.

  18. IN DRIFT CORROSION PRODUCTS

    SciTech Connect (OSTI)

    D.M. Jolley

    1999-12-02T23:59:59.000Z

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  19. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect (OSTI)

    DeHoff, R.; Glasgow, C. (MesoCoat, Inc.)

    2012-07-25T23:59:59.000Z

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  20. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect (OSTI)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31T23:59:59.000Z

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

  1. Production of High Purity Niobium Ingots at CBMM

    SciTech Connect (OSTI)

    Moura, Lourenco de; Faria Sousa, Clovis Antonio de; Burgos Cruz, Edmundo [CBMM-Companhia Brasileira de Metalurgia e Mineracao, Fazenda Corrego da Mata, P.O. Box 838.183.903, Araxa, MG (Brazil)

    2011-03-31T23:59:59.000Z

    CBMM is a fully integrated company, from the mine to the end line of the production chain, supplying different niobium products to the world market: ferroniobium, nickelniobium, niobium pentoxide and high purity metallic niobium. This high purity metallic niobium has long been known to exhibit superconductivity below 9.25 Kelvin. This characteristic has the potential to bring technological benefits for many different areas such as medicine, computing and environment. This paper presents the raw material requirements as well as CBMM experience on producing high purity niobium ingots. The results prove that CBMM material can be the best solution for special applications such as low cost superconductive radiofrequency cavities.

  2. Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels

    SciTech Connect (OSTI)

    Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-09-01T23:59:59.000Z

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  3. Heavy reflector experiments in the IPEN/MB-01 reactor: Stainless steel, carbon steel and nickel

    SciTech Connect (OSTI)

    Santos, Adimir dos; Andrade e Silva, Graciete Simoes de; Jerez, Rogerio; Liambos Mura, Luis Felipe; Fuga, Rinaldo [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242 - CEP 05508-000 Sao Paulo, SP (Brazil)

    2013-05-06T23:59:59.000Z

    New experiments devoted to the measurements of physical parameters of a light water core surrounded by a heavy reflector were performed in the IPEN/MB-01 research reactor facility. These experiments comprise three sets of heavy reflector (SS-304, Carbon Steel, and Nickel) in a form of laminates around 3 mm thick. Each set was introduced individually in the west face of the core of the IPEN/MB-01 reactor. The aim here is to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check for the SS-304 reflector experiment. The experimental results comprise critical control bank positions, temperatures and reactivities as a function of the number of the plates. Particularly to the case of Nickel, the experimental data are unique of its kind. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this nuclear data library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  4. Long-lived activation products in reactor materials

    SciTech Connect (OSTI)

    Evans, J.C.; Lepel, E.L.; Sanders, R.W.; Wilkerson, C.L.; Silker, W.; Thomas, C.W.; Abel, K.H.; Robertson, D.R.

    1984-08-01T23:59:59.000Z

    The purpose of this program was to assess the problems posed to reactor decommissioning by long-lived activation products in reactor construction materials. Samples of stainless steel, vessel steel, concrete, and concrete ingredients were analyzed for up to 52 elements in order to develop a data base of activatable major, minor, and trace elements. Large compositional variations were noted for some elements. Cobalt and niobium concentrations in stainless steel, for example, were found to vary by more than an order of magnitude. A thorough evaluation was made of all possible nuclear reactions that could lead to long lived activation products. It was concluded that all major activation products have been satisfactorily accounted for in decommissioning planning studies completed to date. A detailed series of calculations was carried out using average values of the measured compositions of the appropriate materials to predict the levels of activation products expected in reactor internals, vessel walls, and bioshield materials for PWR and BWR geometries. A comparison is made between calculated activation levels and regulatory guidelines for shallow land disposal according to 10 CFR 61. This analysis shows that PWR and BWR shroud material exceeds the Class C limits and is, therefore, generally unsuitable for near-surface disposal. The PWR core barrel material approaches the Class C limits. Most of the remaining massive components qualify as either Class A or B waste with the bioshield clearly Class A, even at the highest point of activation. Selected samples of activated steel and concrete were subjected to a limited radiochemical analysis program as a verification of the computer model. Reasonably good agreement with the calculations was obtained where comparison was possible. In particular, the presence of /sup 94/Nb in activated stainless steel at or somewhat above expected levels was confirmed.

  5. Investigations of Localized Corrosion of Stainless Steel after Exposure to Supercritical CO2

    SciTech Connect (OSTI)

    M. Ziomek-Moroz; W. O’Connor; S. Bullard

    2012-03-11T23:59:59.000Z

    Severe localized corrosion of a 316 stainless steel autoclave occurred during investigating Type H Portland cement stability in 0.16 M CaCl{sub 2} + 0.02 M MgCl{sub 2} + 0.82 M NaCl brine in contact with supercritical CO{sub 2} containing 4% O{sub 2}. The system operated at 85 C and pressure of 29 MPa. However, no corrosion was observed in the same type of autoclave being exposed to the same environment, containing Type H Portland cement cylindrical samples, also operating at pressure of 29 MPa but at 50 C. The operation time for the 85 C autoclave was 53 days (1272 hours) while that for the 50 C autoclave was 66 days (1584 hours). Debris were collected from the base of both autoclaves and analyzed by X-ray diffraction (XRD). Corrosion products were only found in the debris from the 85 C autoclave. The cement samples were analyzed before and after the exposure by X-ray florescence (XRF) methods. Optical microscopy was used to estimate an extent of the 316 stainless steel corrosion degradation.

  6. Heavy-section steel irradiation program. Semiannual progress report, October 1995--March 1996

    SciTech Connect (OSTI)

    Corwin, W.R.

    1997-04-01T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents which have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPVs fracture resistance which occurs during service, since without that radiation damage, it is virtually impossible to postulate a realistic scenario that would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties.

  7. Heavy-section steel irradiation program. Semiannual progress report, October 1996--March 1997

    SciTech Connect (OSTI)

    Rosseel, T.M.

    1998-02-01T23:59:59.000Z

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established. Its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into eight tasks: (1) program management, (2) irradiation effects in engineering materials, (3) annealing, (4) microstructural analysis of radiation effects, (5) in-service irradiated and aged material evaluations, (6) fracture toughness curve shift method, (7) special technical assistance, and (8) foreign research interactions. The work is performed by the Oak Ridge National Laboratory.

  8. Multi analysis of the effect of grain size on the dynamic behavior of microalloyed steels

    SciTech Connect (OSTI)

    Zurek, Anna K [Los Alamos National Laboratory; Muszka, K [AGH; Majta, J [AGH; Wielgus, M [AGH

    2009-01-01T23:59:59.000Z

    This study presents some aspects of multiscale analysis and modeling of variously structured materials behavior in quasi-static and dynamic loading conditions. The investigation was performed for two different materials of common application: high strength microalloyed steel (HSLA, X65), and as a reference more ductile material, Ti-IF steel. The MaxStrain technique and one pass hot rolling processes were used to produce ultrafine-grained and coarse-grained materials. The efficiency and inhomogeneity of microstructure refinement were examined because of their important role in work hardening and the initiation and growth of fracture under tensile stresses. It is shown that the combination of microstructures characterized by their different features contributes to the dynamic behavior and final properties of the product. In particular, the role of solute segregation at grain boundaries as well as precipitation of carbonitrides in coarse and ultrafine-grained structures is assessed. The predicted mechanical response of ultrafine-grained structures, using modified KHL model is in reasonable agreement with the experiments. This is a result of proper representation of the role of dislocation structure and the grain boundary and their multiscale effects included in this model.

  9. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    SciTech Connect (OSTI)

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15T23:59:59.000Z

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired Mechanical and Corrosion Properties (ORNL/TM-2005/81/R1). The final report on another related project at the University of Tennessee by George Pharr, Easo George, and Michael Santella has been published as Development of Combinatorial Methods for Alloy Design and Optimization (ORNL/TM-2005-133). The goal of the project was to increase the high-temperature strength by 50% and upper use temperature by 86 to 140 F (30 to 60 C) of H-Series of cast austenitic stainless steels. Meeting such a goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The goal of the project was achieved by using the alloy design methods developed at ORNL, based on precise microcharacterization and identification of critical microstructure/properties relationships and combining them with the modern computational science-based tools that calculate phases, phase fractions, and phase compositions based on alloy compositions. The combined approach of microcharacterization of phases and computational phase prediction would permit rapid improvement of the current alloy composition of an alloy and provide the long-term benefit of customizing alloys within grades for specific applications. The project was appropriate for the domestic industry because the current H-Series alloys have reached their limits both in high-temperature-strength properties and in upper use temperature. The desire of Duraloy's industrial customers to improve process efficiency, while reducing cost, requires that the current alloys be taken to the next level of strength and that the upper use temperature limit be increased. This project addressed a specific topic from the subject call: to develop materials for manufacturing processes that will increase high-temperature strength, fatigue resistance, corrosion, and wear resistance. The outcome of the project would benefit manufacturing processes in the chemical, steel, and heat-treating industries.

  10. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    SciTech Connect (OSTI)

    BOOMER KD

    2010-01-14T23:59:59.000Z

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  11. a533b steels investigated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude First Page Previous Page...

  12. advanced high-strength steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 346 Flexural...

  13. advanced high-strength steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 346 Flexural...

  14. austenitic cr-ni steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  15. austenite cr-mn steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  16. alloy-based ferritic steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut, Claude 407 Flexural...

  17. austenitic chromium-nickel steels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  18. austenitic chromium-nickel steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  19. a-890-1b stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...

  20. austenitic-ferritic stainless steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made Sammut,...