Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on AddThis.com...

2

Hybrid Electric Vehicles - HEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Modeling Background Because of time and cost constraints, designers cannot build and test each of the many possible powertrain configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a collaborative effort to further develop Autonomie in collaboration with General Motors. Autonomie is sponsored by the U.S. Department of Energy (DOE) Vehicle Technologies Program. Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

3

Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Hybrid Electric State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg

4

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

5

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Digg Find More places to share Alternative Fuels Data Center: Hybrid

6

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid

7

HEV Fleet Testing - 2001 Honda Insight Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Honda Insight Hybrid VIN JHMZE14781T002163 Date Mileage Description Cost 2202002 7,595 Changed oil, rotated tires 27.00 592002 15,119 15K service 160.21 6142002 19,290...

8

Current Hybrid Electric Vehicle performance based on temporal data from the world`s largest HEV fleet  

SciTech Connect

The United States Department of Energy (DOE) procured new data collection equipment for the 42 vehicles registered to compete in the 1994 Hybrid Electric Vehicle (HEV) Challenge, increasing the amount of information gathered from the worlds largest fleet of HEVs. Data were collected through an on-board data storage device and then analyzed to determine effects of different hybrid control strategies on energy efficiency and driving performance. In this paper, the results of parallel hybrids versus series hybrids with respect to energy usage and acceleration performance are examined, and the efficiency and performance of the power-assist types are compared to that of the range-extender types. Because on-board and off-board electrical charging performance is critical to an efficient vehicle energy usage cycle, charging performance is presented and changes and improvements from the 1993 HEV Challenge are discussed. Peak power used during acceleration is presented and then compared to the electric motor manufacturer ratings. Improvements in data acquisition methods for the 1995 HEV Challenge are recommended.

Wipke, K.

1994-09-01T23:59:59.000Z

9

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Early Market for Hybrid Electric Vehicles. ” TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyPower Assist Hybrid Electric Vehicles, and Plug-in Hybrid

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

10

HEV dynamometer testing with state-of-charge corrections in the 1995 HEV challenge  

DOE Green Energy (OSTI)

In the 1995 HEV Challenge competition, 17 prototype Hybrid Electric Vehicles (HEVs) were tested by using special HEV test procedures. The contribution of the batteries during the test, as measured by changes in battery state-of-charge (SOC), were accounted for by applying SOC corrections to the test data acquired from the results of the HEV test. The details of SOC corrections are described and two different HEV test methods are explained. The results of the HEV test methods are explained. The results of the HEV tests and the effects on the test outcome of varying HEV designs and control strategies are examined. Although many teams had technical problems with their vehicles, a few vehicles demonstrated high fuel economy and low emissions. One vehicle had emissions lower than California`s ultra-low emission vehicle (ULEV) emissions rates, and two vehicles demonstrated higher fuel economy and better acceleration than their stock counterparts.

Duoba, M.; Larsen, R.

1996-03-01T23:59:59.000Z

11

HEV Fleet testing maintenance sheet for Honda insight hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid VIN JHMZE14701T002688 Date Mileage Description Cost 272002 7,473 Changed oil, rotated tires 27.00 4122002 14,946 Changed oil, rotated tires 27.00 4172002...

12

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

13

Microsoft Word - HEV Spec Rev 1 copy.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

EV AMERICA: HYBRID ELECTRIC VEHICLE (HEV) TECHNICAL SPECIFICATIONS Revision 1 Effective November 1, 2005 Prepared by Electric Transportation Applications HEV AMERICA November 1,...

14

Design diversity of HEVs with example vehicles from HEV competitions  

DOE Green Energy (OSTI)

Hybrid Electric Vehicles (HEVS) can be designed and operated to satisfy many different operational missions. The three most common HEV types differ with respect to component sizing and operational capabilities. However, HEV technology offers design opportunities beyond these three types. This paper presents a detailed HEV categorization process that can be used to describe unique HEV prototype designs entered in college and university-level HEV design competitions. We explored possible energy management strategies associated with designs that control the utilization of the two on- board energy sources and use the competition vehicles to illustrate various configurations and designs that affect the vehicle`s capabilities. Experimental data is used to help describe the details of the power control strategies which determine how the engine and electric motor of HEV designs work together to provide motive power to the wheels.

Duoba, M.; Larsen, R.; LeBlanc, N.

1996-12-31T23:59:59.000Z

15

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

Automobile (2007) Future Toyota Hybrids: Prius Times Three.features/news/0706_future_toyota_hybrids/ Automotive News742. Freeman, S. (2003) “Toyota's Prius Hybrid Named Motor

Heffner, Reid R.

2007-01-01T23:59:59.000Z

16

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

In Early Markets For Hybrid Electric Vehicles. Institute ofon Plug-in Hybrid Electric Vehicle (PHEV) Technology,and Impacts of Hybrid Electric Vehicle Options. Electric

Heffner, Reid R.

2007-01-01T23:59:59.000Z

17

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

Bradford, S. (2003) Are Hybrid Cars Worth It? Smartmoney 28p. C1. Hakim, D. (2005b) Hybrid-Car Tinkerers Scoff at No-Dollars and Sense of Hybrid Cars. Available from: http://

Heffner, Reid R.

2007-01-01T23:59:59.000Z

18

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

Would You Buy a Hybrid Vehicle? Study #715238, conducted forGolf 12,000 miles/year Hybrid Vehicle 5a. Did you have toYellow Flag on 'Green' Hybrid Vehicles. Los Angeles Times. 7

Heffner, Reid R.

2007-01-01T23:59:59.000Z

19

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

Future Toyota Hybrids: Prius Times Three. Available from:S. (2003) “Toyota's Prius Hybrid Named Motor Trend's 'Car ofYork. MacCurdy (2006) PHEV Prius Test Program by Sacramento

Heffner, Reid R.

2007-01-01T23:59:59.000Z

20

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

DOE Green Energy (OSTI)

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

the Demand for Electric Vehicles. Transportation Research Ain Relation to the Electric Vehicle. Science, Technology,In Early Markets For Hybrid Electric Vehicles. Institute of

Heffner, Reid R.

2007-01-01T23:59:59.000Z

22

Developing a standardized test procedure for hybrid vehicles: The challenge of the SAE HEV task force  

DOE Green Energy (OSTI)

In 1992, the Society of Automotive Engineers (SAE) established a task force to develop a procedure for measuring electric energy consumption, all-electric range, fuel economy, and exhaust emissions for hybrid vehicles; the procedure will be submitted to regulatory agencies as representing the automotive industry`s recommendations. The draft procedure is currently being tested on hybrid vehicles. The University of Maryland`s parallel hybrid was tested in September 1994, and the University of California-Davis` parallel hybrid and the University of Illinois` series hybrid will be tested in November 1994 and January 1995, respectively. The procedure is being modified to incorporate any lessons learned, and the task force hopes to recommend the final procedure to the SAE by mid 1995.

Penney, T; Christensen, D [National Renewable Energy Lab., Golden, CO (United States); Poulos, S [General Motors Corp., Warren, MI (United States)

1994-11-01T23:59:59.000Z

23

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

24

Battery Choices for Different Plug-in HEV Configurations (Presentation)  

DOE Green Energy (OSTI)

Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

Pesaran, A.

2006-07-12T23:59:59.000Z

25

Improvement of an EVT-based HEV using dynamic programming  

E-Print Network (OSTI)

vehicle, dynamic programming, electrical variable transmission I. INTRODUCTION Hybrid Electric Vehicles for automotive hybridization [4], [6]. However other advanced SP-HEVs like the Electric Variable Transmission. Abstract- Automotive engineers and researchers have proposed different Series-Parallel Hybrid Electric

Recanati, Catherine

26

Evaluation of a Lower-Energy Energy Storage System (LEESS) for Full-Hybrid Electric Vehicles (HEVs) (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the evaluation of a lower-energy energy storage system for full-hybrid electric vehicles.

Gonder, J.; Ireland, J.; Cosgrove, J.

2013-04-01T23:59:59.000Z

27

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

SciTech Connect

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

28

DOE Field Operations Program EV and HEV Testing  

SciTech Connect

The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

Francfort, James Edward; Slezak, L. A.

2001-10-01T23:59:59.000Z

29

The 1995 HEV challenge: Results and technology summary  

DOE Green Energy (OSTI)

The objective of this paper is to analyze and summarize the performance results and the technology used in the 1995 Hybrid Electric Vehicle (HEV) Challenge. Government and industry are exploring hybrid electric vehicle technology to significantly improve fuel economy and reduce emissions of the vehicles without sacrificing performance. This last in a three-year series of HEV competitions provided the testing grounds to evaluate the different approaches of 29 universities and colleges constructing HEVS. These HEVs competed in an affay of events, including: acceleration, emissions testing, consumer acceptance, range, vehicle handling, HVAC testing, fuel economy, and engineering design. The teams also documented the attributes of their vehicles in the technical reports. The strategies and approaches to HEV design are analyzed on the basis of the data from each of the events. The overall performance for promising HEV approaches is also examined. Additional significant design approaches employed by the teams are presented, and the results from the events are discussed.

LeBlanc, N.; Larsen, R.; Duoba, M.

1996-03-01T23:59:59.000Z

30

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

31

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

DOE Green Energy (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

32

Challenges for the vehicle tester in characterizing hybrid electric vehicles  

DOE Green Energy (OSTI)

Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

Duoba, M.

1997-08-01T23:59:59.000Z

33

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

34

High Power SiC Modules for HEVs and PHEVs  

DOE Green Energy (OSTI)

With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. Research on SiC power electronics has shown their higher efficiency compared to Si power electronics due to significantly lower conduction and switching losses. This paper focuses on the development of a high power module based on SiC JFETs and Schottky diodes. Characterization of a single device, a module developed using the same device, and finally an inverter built using the modules is presented. When tested at moderate load levels compared to the inverter rating, an efficiency of 98.2% was achieved by the initial prototype.

Chinthavali, Madhu Sudhan [ORNL; Tolbert, Leon M [ORNL; Zhang, Hui [ORNL; Han, Jung H [ORNL; Barlow, Fred D. [University of Idaho; Ozpineci, Burak [ORNL

2010-01-01T23:59:59.000Z

35

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Vehicle (HEV) Acquisition Requirements to Hybrid Electric Vehicle (HEV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Digg

36

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Acquisition Requirements to and Hybrid Electric Vehicle (HEV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Digg

37

Elimination of Harmonics in a Multilevel Converter for HEV Applications  

E-Print Network (OSTI)

possible solu- tions are found. Keywords­ Hybrid Electric Vehicles, Multilevel Convert- ers, Harmonic Elimination, Resultants I. Introduction Designs for heavy duty hybrid-electric vehicles (HEVs) that have large electric drives such as tractor trailers, trans- fer trucks, or military vehicles will require advanced

Tolbert, Leon M.

38

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

42] Hakim, D. (2005) “Hybrid-Car Tinkerers Scoff at No-Plug-J. (1969) “…and a Commuter Car with Hybrid Drive. ” PopularCars Initiative (2007) Photo: Technical Photos of Plug-In Hybrids and

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

39

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) “Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

40

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

42

Technical analysis of the 1994 HEV challenge  

DOE Green Energy (OSTI)

The 1994 Hybrid Electric Vehicle Challenge provided the backdrop for collecting data and developing testing procedures for hybrid electric vehicle technology available at colleges and universities across North America. The data collected at the competition was analyzed using the HEV definitions from the draft SAE J1711 guidelines. The energy economy, percentage of electrical to total energy used, and acceleration performance was analyzed for any correlation between the over-the-road data and the commuter-sustaining, commuter-depleting, and reserve-sustaining hybrid vehicles. The analysis did not provide any direct correlation between over-the-road data and the three hybrid types. The analysis did show that the vehicle configurations provide the best information on vehicle performance. It was also clear that a comprehensive data analysis system along with a well-defined testing procedure would allow for a more complete analysis of the data.

LeBlanc, N.M.; Duoba, M.; Quong, S.; Larsen, R.P.; Stithim, M.; Rimkus, W.

1995-06-01T23:59:59.000Z

43

Modeling and Design Optimization of Plug-In Hybrid Electric Vehicle Powertrains.  

E-Print Network (OSTI)

??Hybrid electric vehicles (HEVs) were introduced in response to rising environmental challenges facing the automotive sector. HEVs combine the benefits of electric vehicles and conventional… (more)

Chehresaz, Maryyeh

2013-01-01T23:59:59.000Z

44

Modeling, simulation, and analysis of series hybrid electric vehicles for fuel economy improvement.  

E-Print Network (OSTI)

??A hybrid electric vehicle (HEV) combines a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system. In a series HEV, an electric… (more)

Khandaker, Masuma

2011-01-01T23:59:59.000Z

45

2008 Special Issue: Toyota Prius HEV neurocontrol and diagnostics  

Science Conference Proceedings (OSTI)

A neural network controller for improved fuel efficiency of the Toyota Prius hybrid electric vehicle is proposed. A new method to detect and mitigate a battery fault is also presented. The approach is based on recurrent neural networks and includes the ... Keywords: Battery diagnostics, Control, EKF, Fault mitigation, HEV, NN controller, NN model, Neurocontrol, RNN

Danil V. Prokhorov

2008-03-01T23:59:59.000Z

46

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

in the last century. Hybrid electric vehicles (HEVs) reduceon their design, hybrid electric vehicles employ electricof this paper, hybrid electric vehicles are a broad set of

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

47

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

48

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Digg Find More places to share Alternative Fuels Data Center: Alternative

49

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Digg

50

2011 Hyundai Sonata Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Sonata Hybrid Test cell location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture P2 HEV Vehicle Dynamometer Input...

51

Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)  

SciTech Connect

Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

Gonder, J.; Pesaran, A.

2010-03-18T23:59:59.000Z

52

Advanced Vehicle Testing Activity - Medium and Heavy Duty Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

an electric vehicle. Medium and heavy duty HEV testing results to date are posted below. Vehicle Testing Reports INL Hybrid Shuttle Busses INL Hybrid Shuttle Busses INL Hybrid...

53

Implications of NiMH Hysteresis on HEV Battery Testing and Performance  

SciTech Connect

Nickel Metal-Hydride (NiMH) is an advanced high-power battery technology that is presently employed in Hybrid Electric Vehicles (HEVs) and is one of several technologies undergoing continuing research and development by FreedomCAR. Unlike some other HEV battery technologies, NiMH exhibits a strong hysteresis effect upon charge and discharge. This hysteresis has a profound impact on the ability to monitor state-of-charge and battery performance. Researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) have been investigating the implications of NiMH hysteresis on HEV battery testing and performance. Experimental results, insights, and recommendations are presented.

Motloch, Chester George; Belt, Jeffrey R; Hunt, Gary Lynn; Ashton, Clair Kirkendall; Murphy, Timothy Collins; Miller, Ted J.; Coates, Calvin; Tataria, H. S.; Lucas, Glenn E.; Duong, T.Q.; Barnes, J.A.; Sutula, Raymond

2002-08-01T23:59:59.000Z

54

Just the Basics - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid electric vehicles (HEVs) offer reduced pollution and improved fuel economy. That's why the government and auto- makers are anxious to introduce a...

55

Simulation of PSO Fuzzy Control Stratety for Regenerative Braking of HEV  

Science Conference Proceedings (OSTI)

Based on particle swarm optimization algorithm, a new fuzzy controller was constructed and a fuzzy control strategy of regenerative braking for HEV was proposed. A model of a parallel hybrid electric vehicle was built. The performance of the default ... Keywords: hybrid electric vehicle, fuzzy control, regenerative braking, particle swarm optimization

Wang Chun; Tang Lan

2012-04-01T23:59:59.000Z

56

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Total miles driven: 161,532 Cumulative MPG: 37.23 Engine: 4-cylinder, 70 kW @ 5700 rpm Electric Motor: 10 kW Battery: Nickel Metal Hydride Seatbelt Positions: Five Payload: 882...

57

HEV Fleet Testing - 2001 Honda Insight Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

3212003 62,150 Changed oil, rotated tires 30.90 4222003 66,605 Replaced one damage tire 24.33 5122003 69,605 Changed oil, rotated tires 30.90 662003 73,484 75K service...

58

HEV Fleet Testing - 2003 Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

mileage objectives. Mileage accumulated in highway travel was less than 20% of the total miles driven. Major Operations & Maintenance Events: None Operating Cost: Purchase Cost:...

59

HEV Fleet Testing - 2003 Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

mileage objectives. Mileage accumulated in highway travel was less than 20% of the total miles driven. Major Operations & Maintenance Events: None Operating Cost: Purchase Cost:...

60

HEV Fleet Testing - 2000 Honda Insight Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.08mile Total Ownership Cost: 0.29mile Operating Performance: Total miles driven: 68,287 Cumulative MPG: 47.10 * Purchase includes dealer price with options...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.07mile Total Ownership Cost: 0.20mile Operating Performance: Total miles driven: 161,075 Cumulative MPG: 37.32 Engine: 4-cylinder, 70 kW @ 5700 rpm Electric...

62

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

mileage objectives. Mileage accumulated in highway travel was less than 20% of the total miles driven. Major Operations & Maintenance Events: None Operating Cost: Purchase Cost:...

63

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

64

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network (OSTI)

BATTERIES FOR USE IN HYBRID ELECTRIC VEHICLES R. Kostecki,ion batteries for hybrid electric vehicles. Nine 18650-sizebatteries for hybrid electric vehicle (HEV) applications.

2001-01-01T23:59:59.000Z

65

Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

Markel, T.; Simpson, A.

2005-09-01T23:59:59.000Z

66

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

67

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

68

Optimally Controlling Hybrid Electric Vehicles using Path Forecasting  

E-Print Network (OSTI)

The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

Kolmanovsky, Ilya V.

69

Personalized driving behavior monitoring and analysis for emerging hybrid vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles, such as hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs), hold the potential for substantial reduction of fuel consumption and greenhouse gas emissions. User driving behavior, which varies from person ...

Kun Li; Man Lu; Fenglong Lu; Qin Lv; Li Shang; Dragan Maksimovic

2012-06-01T23:59:59.000Z

70

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." TransportationPlug-in Hybrid Electric Vehicle (PHEV) Demonstration and

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

71

A Library of SIMULINK Blocks for Real-Time Control of HEV Traction John Chiasson1  

E-Print Network (OSTI)

, researchers have considered several motor types including the DC motor, induction motor, permanent magnet (PM algorithms for the various types of motor drives considered for hybrid electric vehicles (HEVs, and permanent magnet synchronous machines. This eliminates the need for specialized programming in C or assembly

Tolbert, Leon M.

72

Study of Shifting without Driving Force Interrupt for Double Electric Motor HEV  

Science Conference Proceedings (OSTI)

For traditional gearbox, the engine power is cut off while shifting, which will interrupt the power of power-train, make velocity down, affect the acceleration of up gear and lower the vehicle dynamic. A double electric motor hybrid electric vehicle ... Keywords: Double Electric Motor HEV, Shifting Without Driving Force Interrupt (SWDFI), Integrated Power-train

Wang Jiaxue; Wang Qingnian; Wang Weihua; Zeng Xiaohua; Li Chuan

2009-10-01T23:59:59.000Z

73

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

74

Hybrid Electric and Pure Electric vehicle testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric and Pure Electric Vehicle Testing (Advanced Vehicle Testing Activity) Jim Francfort Discovery Center of Idaho - September 2005 INLCON-05-00693 HEV & EV Testing...

75

HEV Fleet Testing Operating Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

calculated for this figure using mass air flow over dynamic vehicle operation. 2006 Toyota Highlander Hybrid Final Fleet Testing Results Operating Performance Cumulative MPG 1 :...

76

HEV Fleet Testing Operating Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

calculated for this figure using mass air flow over dynamic vehicle operation. 2007 Toyota Camry Hybrid Final Fleet Testing Results Operating Performance Cumulative MPG 1 : 33.6...

77

Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for HEVs / PHEVs

78

Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for HEVs / PHEVs

79

Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for HEVs / PHEVs

80

Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for HEVs / PHEVs

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Washington Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for HEVs / PHEVs

82

Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for HEVs / PHEVs

83

Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for HEVs / PHEVs

84

Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for HEVs / PHEVs

85

Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for HEVs / PHEVs

86

Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for HEVs / PHEVs

87

Alternative Fuels Data Center: California Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for HEVs / PHEVs

88

Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for HEVs / PHEVs

89

Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for HEVs / PHEVs

90

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for HEVs / PHEVs

91

Design and Control of the Propulsion System of a Series Hybrid Electric Vehicle  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles, HEV, are an attractive opportunity to use new energy sources in road transportation, not only to minimize fuel consumption but also to reduce air pollution. Efforts are being made to improve the HEV electrical subsystems, such ...

Patricia Caratozzolo; Manuel Canseco

2006-09-01T23:59:59.000Z

92

DESIGN OPTIMIZATION OF A PARALLEL HYBRID POWERTRAIN USING DERIVATIVE-FREE ALGORITHMS.  

E-Print Network (OSTI)

??A Hybrid Electric Vehicle (HEV) is a complex electro-mechanical-chemical system that involves two or more energy sources. The inherent advantages of HEVs are their increased… (more)

Porandla, Sachin Kumar

2005-01-01T23:59:59.000Z

93

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Digg Find More places to share Alternative Fuels Data Center: Alternative

94

Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative

95

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

96

Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

in relation to the electric vehicle." Science Technology &Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." Transportation

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

97

Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

Pesaran, A.; Gonder, J.; Keyser, M.

2009-04-01T23:59:59.000Z

98

An Ultracapacitor - Battery Energy Storage System for Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance but are quite expensive. In spite of their lower… (more)

Stienecker, Adam W

2005-01-01T23:59:59.000Z

99

Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations.  

E-Print Network (OSTI)

??Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these… (more)

Boyd, Steven J

2006-01-01T23:59:59.000Z

100

Plug-In Hybrid Electric Vehicles - PHEV Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

configurations for advanced vehicles. Thus, developing fuel cells and hybrid electric vehicles (HEVs) requires accurate, flexible simulation tools. Argonne undertook a...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

102

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

103

A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV)  

Science Conference Proceedings (OSTI)

Hybrid Electric Vehicles (HEV) combine the power from an electric motor with that from an internal combustion engine to propel the vehicle. The HEV electric motor is typically powered by a battery pack through power electronics. The HEV battery is recharged ...

Harpreetsingh Banvait; Sohel Anwar; Yaobin Chen

2009-06-01T23:59:59.000Z

104

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

DOE Green Energy (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

105

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

106

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

107

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Digg

108

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main… (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

109

Speed-sensorless torque control of induction motors for hybrid electric vehicles.  

E-Print Network (OSTI)

??Hybrid Electric Vehicles (HEVs) are exciting new additions to the car markets since they combine the best features of conventional and electric cars to improve… (more)

Fu, Tianjun

2005-01-01T23:59:59.000Z

110

Public policies for hybrid-electric vehicles| The impact of government incentives on consumer adoption.  

E-Print Network (OSTI)

?? This dissertation examines the outcomes and effectiveness of public policies designed to promote the adoption of hybrid-electric vehicles (HEVs). As a primary methodology, I… (more)

Diamond, David B.

2008-01-01T23:59:59.000Z

111

Development of simulation tools, control strategies, and a hybrid vehicle prototype .  

E-Print Network (OSTI)

??This thesis (1) reports the development of simulation tools and control strategies for optimizing hybrid electric vehicle (HEV) energy management, and (2) reports the design… (more)

Pei, Dekun

2012-01-01T23:59:59.000Z

112

Public Policies for Hybrid-Electric Vehicles: The Impact of Government Incentives on Consumer Adoption .  

E-Print Network (OSTI)

??This dissertation examines the outcomes and effectiveness of public policies designed to promote the adoption of hybrid-electric vehicles (HEVs). As a primary methodology, I employ… (more)

Diamond, David

2008-01-01T23:59:59.000Z

113

Shortest Path Stochastic Control for Hybrid Electric Vehicles , J.W. Grizzle2  

E-Print Network (OSTI)

1 of 28 Shortest Path Stochastic Control for Hybrid Electric Vehicles Ed Tate1 , J.W. Grizzle2 , Huei Peng3 Abstract: When a Hybrid Electric Vehicle (HEV) is certified for emissions and fuel economy this is the Hybrid Electric Vehicle (HEV) which consists of an electric powertrain coupled to a conventional

Grizzle, Jessy W.

114

Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle  

E-Print Network (OSTI)

Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle Namwook Kim. INTRODUCTION he optimal control of HEVs (Hybrid Electric Vehicles) is an important topic not only because, Sukwon Cha, Huei Peng Abstract - A number of strategies for the power management of HEVs (Hybrid Electric

Peng, Huei

115

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Laws & Incentives Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on

116

Recent Analysis of UCAPs in Mild Hybrids (Presentation)  

DOE Green Energy (OSTI)

This report presents the analysis of ultracapacitors for mild/moderate hybrid electric vehicle (HEV) performance. The objectives of this report are to: (1) review the fuel economy improvement trends of today's HEVs with respect to degree of hybridization; (2) perform analysis to see the extent of fuel economy improvement possible with various strategies in mild/moderate HEVs, with no engine downsizing, using either batteries or ultracapacitors; (3) identify energy requirements of various driving events/functions--what matches a limited ucap's energy; and (4) discuss potential roles for high-voltage ultracapacitors in HEVs, if any.

Pesaran, A.; Gonder, J.

2006-05-01T23:59:59.000Z

117

Symbolism in California’s Early Market for Hybrid Electric Vehicles  

E-Print Network (OSTI)

1. Why would anyone buy a hybrid electric vehicle? FirstUS in 1999, hybrid electric vehicles (HEVs) are a radicalearly market for hybrid electric vehicles Reid R. He?ner * ,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

118

Hybrid & electric vehicle technology and its market feasibility  

E-Print Network (OSTI)

In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the current limitations and the future potential ...

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

119

Residential Customer Rate Options for Electric Vehicles and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper summarizes results of a survey conducted in the summer of 2006 that examined residential electric rates available to Californias electric vehicle EV and plug-in hybrid electric vehicle PHEV customers.

2008-03-31T23:59:59.000Z

120

Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range.  

E-Print Network (OSTI)

??Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in… (more)

Lo, Joshua

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Power storage options for hybrid electric vehicles—A survey  

Science Conference Proceedings (OSTI)

Hybrid electric vehicles (HEVs) are the future transportation structure as they provide better fuel economy. Energy storage devices are therefore required for the HEVs. The problem for deciding the optimum combination of power storage is still unresolved. The power storage options in this regard must have a feasible weight/energy ratio for better performance. This survey is about the comparison of different power storage options for HEV including the batteries

Hadeed Ahmed Sher; Khaled E. Addoweesh

2012-01-01T23:59:59.000Z

122

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

123

HEV America - 2003 Honda Civic Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

inches Rear Window Defroster 1 State-Of-Charge Meter TIRES Low Rolling Resistance Tires Tire Mfg: Dunlop BATTERY Tire Model: SP20 FE Tire Size: 18570R14 Manufacturer: Panasonic EV...

124

HEV America - 2001 Honda Insight Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

t H y b r i d E l e c t r i c V e h i c l e HEVAMERICA U.S. DEPARTMENT OF ENERGY ADVANCED VEHICLE TESTING ACTIVITY PERFORMANCE STATISTICS Acceleration 0-50 mph At 100% SOC: 11.3...

125

EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and...

126

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whys early market for hybrid electric vehicles. TransportationDriving Plug-In Hybrid Electric Vehicles: Reports from U.S.

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

127

Hybrid Rate Control for IEEE 802.11  

E-Print Network (OSTI)

Streaming multimedia content in real-time over a wireless link is a challenging task because of the rapid fluctuations in link conditions that can occur due to movement, interference, and so on. The popular IEEE 802.11 standard includes low-level tuning parameters like the transmission rate. Standard device drivers for today's wireless products are based on gathering statistics, and consequently, adapt rather slowly to changes in conditions. To meet the strict latency requirements of streaming applications, we designed and implemented an advanced control algorithm that uses signal-strength (SNR) information to achieve fast responses. Since SNR readings are quite noisy we do not use that information to directly control the rate setting, but rather as a safeguard limiting the range of feasible settings to choose from. We report on real-time experiments involving two laptops equipped with IEEE 802.11a wireless interface cards. The results show that using SNR information greatly enhances responsiveness in comparison to statistics-based rate controllers.

Ivaylo Haratcherev; Reginald Lagendijk; Koen Langendoen; Henk Sips

2004-01-01T23:59:59.000Z

128

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

129

Hybrid Electric Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics Hybrid Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles. Hybrid electric vehicles typically combine the internal combustion engine of a conventional vehicle with the battery and electric motor of an electric vehicle. The combination offers low emissions and convenience-HEVs never need to be plugged in.

130

NREL: Learning - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles Hybrid Electric Vehicles Photo of the front and part of the side of a bus parked at the curb of a city street with tall buildings in the background. This diesel hybrid electric bus operated by the Metropolitan Transit Authority, New York City Transit, was part of a test study that recently investigated the fuel efficiency and reliability of these buses. Credit: Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. HEVs are powered by two energy sources: an energy conversion unit, such as

131

Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Vermont laws and incentives

132

Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Georgia laws and incentives

133

Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for HEVs / PHEVs

134

Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Oregon laws and incentives related

135

Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Alabama laws and incentives

136

Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives for HEVs / PHEVs

137

Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Arizona laws and incentives

138

Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for HEVs / PHEVs

139

Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Florida laws and incentives

140

Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Indiana laws and incentives

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Nevada laws and incentives related

142

Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Carolina Laws and Incentives for HEVs / PHEVs

143

Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Maine laws and incentives related

144

Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Federal laws and incentives

145

Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Idaho laws and incentives related

146

Alternative Fuels Data Center: New York Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for HEVs / PHEVs

147

Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: South Carolina Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Carolina Laws and Incentives for HEVs / PHEVs

148

Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Utah laws and incentives related

149

An assessment of the potential environmental impact of electric and hybrid-electric vehicles in Texas  

E-Print Network (OSTI)

Increases in environmental and air quality problems due to continued growth in automobile population and usage have prompted many states including Texas to consider the implementation of an alternative vehicle program to alleviate these problems. Given the need for such programs, there has been minimal research conducted in analyzing the potential impacts of alternative vehicles, namely electric vehicles (EVs) and hybrid-electric vehicles (HEVs). This research addresses the need for assessing the potential environmental impacts of alternative vehicles for the state of Texas. The main contributions of this research are the derivation of emission rates for EVs that are representative of Texas, and an analysis of the potential impact of various alternative vehicle programs incorporating EVs and HEVS. Specifically, emission inventory results from various alternative vehicle Scenarios were compared to a Baseline Scenario with conventional vehicles, in order to measure the relative benefits of each program. Emission inventories were generated by standard EPA procedure using Mobile5b. Two major findings of this research were the negative impact of EVs on NO,, Emissions and the HEVs superior Emissions performance for all the three pollutants addressed in this study. Based on the research findings, the use of HEVs as an alternative vehicle for the state of Texas is recommended.

Kim, Jung-Woo

1998-01-01T23:59:59.000Z

150

HEV Fleet Testing - 2002 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid VIN JT2BK12U920038976 Date Mileage Description Cost 3222002 7,607 Changed oil, rotated tires 27.00 592002 15,309 Changed oil, rotated tires 27.00 6252002 22,523...

151

HEV Fleet Testing - Toyota Prius - Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Hybrid VIN JT2BK12U310035828 1242002 7,618 Change oil and rotate tires 27.00 Date Mileage Description Cost 4302002 15,050 Change oil and rotate tires 27.00 ...

152

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications  

E-Print Network (OSTI)

Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun layer capacitors, or simply supercapacitors, have extremely low internal resistance, and a battery-supercapacitor architecture comprising a simple parallel connection does not perform well when the supercapacitor capacity

Pedram, Massoud

153

Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV) will benefit from their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole power train system in a HEV, and thus performance and cost. In this work, the performance of HEVs is analyzed using PSAT (powertrain system analysis tool, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved and the vehicles consume less energy and emit less harmful gases. It also makes it possible to improve the system compactness with simplified thermal management system. For the PHEV, the benefits are more distinct. Especially, the size of battery bank can be reduced for optimum design.

Zhang, Hui [ORNL; Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

2008-01-01T23:59:59.000Z

154

Route-Based Control of Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

Gonder, J. D.

2008-01-01T23:59:59.000Z

155

Optimally controlling hybrid electric vehicles using path forecasting  

E-Print Network (OSTI)

Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

Katsargyri, Georgia-Evangelina

2008-01-01T23:59:59.000Z

156

Path dependent receding horizon control policies for hybrid electric vehicles  

E-Print Network (OSTI)

Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

Kolmanovsky, Ilya V.

157

The prospects for hybrid electric vehicles, 2005-2020 : results of a Delphi Study.  

DOE Green Energy (OSTI)

The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized.

Ng, H. K.; Santini, D. J.; Vyas, A. D.

1999-07-22T23:59:59.000Z

158

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

159

Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric and Hybrid Electric Vehicle Sales: December 2010 - June Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. 062010-092013_EV_HEV Sales.xlsx Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (Excel) 062010-092013_EV_HEV Sales.csv Description Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (CSV) 062010-092013_EV_HEV Sales.jpeg Description Chart of Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 (JPG) More Documents & Publications Federal Reporting Recipient Information Natural Gas Imports and Exports - Second Quarter Report 2013 Federal Reporting Recipient Information

160

Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

may prove to be a limitation for realizing technologies for very high gradient accelerators. In this article, we present a scheme that uses a hybrid dielectric and iris-loaded...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

162

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

DOE Green Energy (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

2006-11-01T23:59:59.000Z

163

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

164

Issues in emissions testing of hybrid electric vehicles.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

165

How Hybrids Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Hybrids Work How Hybrids Work Diagram of full hybrid vehicle components, including (1) an internal combustion engine, (2) an electric motor, (3) a generator, (4) a power split device, and (5) a high-capacity battery. Flash Animation: How Hybrids Work (Requires Flash 6.0 or higher) HTML Version: How Hybrids Work Hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to obtain different objectives, such as improved fuel economy, increased power, or additional auxiliary power for electronic devices and power tools. Some of the advanced technologies typically used by hybrids include Regenerative Braking. The electric motor applies resistance to the drivetrain causing the wheels to slow down. In return, the energy from the

166

hybrid electric vehicle and lithium polymer nev testing  

NLE Websites -- All DOE Office Websites (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

167

Large Improvements in MS/MS Based Peptide Identification Rates using a Hybrid Analysis  

SciTech Connect

We have developed a hybrid method for identifying peptides from global proteomics studies that significantly increases sensitivity and specificity in matching peptides to tandem mass spectra using database searches. The method increased the number of spectra that can be assigned to a peptide in a global proteomics study by 57-147% at an estimated false discovery rate of 5%, with clear room for even greater improvements. The approach combines the general utility of using consensus model spectra typical of database search methods1-3 with the accuracy of the intensity information contained in spectral libraries4-6. This hybrid approach is made possible by recent developments that elucidated the statistical framework common to both data analysis and statistical thermodynamics, resulting in a chemically inspired approach to incorporating fragment intensity information into both database searches and spectral library searches. We applied this approach to proteomics analysis of Synechococcus sp. PCC 7002, a cyanobacterium that is a model organism for studies of photosynthetic carbon fixation and biofuels development. The increased specificity and sensitivity of this approach allowed us to identify many more peptides involved in the processes important for photoautotrophic growth.

Cannon, William R.; Rawlins, Mitchell M.; Baxter, Douglas J.; Callister, Stephen J.; Lipton, Mary S.; Bryant, Donald A.

2011-05-06T23:59:59.000Z

168

An analysis of hybrid-electric vehicles as the car of the future  

E-Print Network (OSTI)

This thesis will examine the validity of the benefits of the Hybrid-Electric Vehicle (HEV). With the recent focus on energy initiatives, reflected through Bush's state of the union, as well as President Hockfield's MIT ...

Kang, Heejay

2007-01-01T23:59:59.000Z

169

Assessment of Current Knowledge of Hybrid Vehicle Characteristics and Impacts  

Science Conference Proceedings (OSTI)

EPRI has taken a leadership role in bringing together representatives from the utility and automotive industries, along with those of the U. S. Department of Energy (DOE) and other regulatory agencies to participate in a study: Assessment of Current Knowledge of Hybrid Vehicle Characteristics and Impacts. This study focused on key attribute areas of HEV energy efficiency, emissions, life cycle, and customer acceptance and HEV's potential impacts on private and public stakeholders.

1999-09-16T23:59:59.000Z

170

Choices and Requirements of Batteries for EVs, HEVs, PHEVs (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the choices available and requirements for batteries for electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles.

Pesaran, A. A.

2011-04-01T23:59:59.000Z

171

Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals  

Science Conference Proceedings (OSTI)

This study applies clustering analysis for data mining and machine learning to predict trends in technology professional turnover rates, including the hybrid artificial neural network and clustering analysis known as the self-organizing map (SOM). This ... Keywords: Clustering analysis, Neural network clustering, Self-organizing map, Turnover trend

Chin-Yuan Fan; Pei-Shu Fan; Te-Yi Chan; Shu-Hao Chang

2012-08-01T23:59:59.000Z

172

Novel Hybrid Monte Carlo/Deterministic Technique for Shutdown Dose Rate Analyses of Fusion Energy Systems  

SciTech Connect

The rigorous 2-step (R2S) method uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the neutron transport calculation of the R2S method. The prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their use in the accurate full-scale neutronics analyses of fusion reactors. This paper describes a novel hybrid Monte Carlo/deterministic technique that uses the Consistent Adjoint Driven Importance Sampling (CADIS) methodology but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) method speeds up the Monte Carlo neutron calculation of the R2S method using an importance function that represents the importance of the neutrons to the final SDDR. Using a simplified example, preliminarily results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the increase over analog Monte Carlo is higher than 10,000.

Ibrahim, Ahmad M [ORNL; Peplow, Douglas E. [ORNL; Peterson, Joshua L [ORNL; Grove, Robert E [ORNL

2013-01-01T23:59:59.000Z

173

Research on optimal control method of hybrid electric vehicles  

Science Conference Proceedings (OSTI)

Energy saving and environmental protection are the two main themes of today's auto industry development. The hybrid electric vehicle (HEV) has become one of the most practical significant ways to solve energy and emission problems with good fuel economy ... Keywords: Hybrid electric vehicle, control strategy, energy efficiency, optimization method, system efficiency

Jing Lian, Hu Han, Linhui Li, Yafu Zhou, Jian Feng

2013-09-01T23:59:59.000Z

174

Optimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles  

E-Print Network (OSTI)

Optimization and Comparison of Heuristic Control Strategies for Parallel Hybrid-Electric Vehicles independent. Thus, these control strategies are predestinated for the use in a real vehicle. Keywords: Hybrid-electric vehicle (HEV), control strategies, optimization. 1. Introduction Due to the structure of hybrid-electric

Noé, Reinhold

175

Comparison of Early-stage Design Methods for a Two-mode Hybrid Electric Vehicle  

E-Print Network (OSTI)

Comparison of Early-stage Design Methods for a Two-mode Hybrid Electric Vehicle Kukhyun Ahn+ , J the propulsion system of a hybrid electric vehicle (HEV), engine, transmission, motor, battery, power electronics. In this paper, two design optimization methods for a two-mode hybrid vehicle are examined: The first integrates

Papalambros, Panos

176

The Efficacy of Electric Vehicle Time-of-Use Rates in Guiding Plug-in Hybrid Electric Vehicle Charging Behavior  

Science Conference Proceedings (OSTI)

This paper presents a series of analyses that seek to enhance understanding of the extent to which time-of-use (TOU) rates can economically incentivize off-peak charging of plug-in hybrid electric vehicles (PHEV). The total cost of fueling a PHEV under modeled and real-world TOU rates is compared to the total cost of fueling a PHEV under constant rates. Time-resolved vehicle energy consumption and fueling costs for a variety of PHEV designs are derived from travel survey data and charging behavior models...

2011-12-20T23:59:59.000Z

177

Spinel LiMn(2)O(4)/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries  

DOE Green Energy (OSTI)

A well-crystallized and nano-sized spinel LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid cathode material for high rate lithium-ion batteries has been successfully synthesized via a microwave-assisted hydrothermal method at 200 C for 30 min without any post heat-treatment. The nano-sized LiMn{sub 2}O{sub 4} particles were evenly dispersed on the reduced graphene oxide template without agglomeration, which allows the inherent high active surface area of individual LiMn{sub 2}O{sub 4} nanoparticles in the hybrid. These unique structural and morphological properties of LiMn{sub 2}O{sub 4} on the highly conductive reduced graphene oxide sheets in the hybrid enable achieving the high specific capacity, an excellent high rate capability and stable cycling performance. An analysis of the cyclic voltammogram data revealed that a large surface charge storage contribution of the LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid plays an important role in achieving faster charge/discharge.

Bak, S.M.; Nam, K.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X-Q.; Kim, K.-B.

2011-10-04T23:59:59.000Z

178

Diesel hybridization and emissions.  

DOE Green Energy (OSTI)

The CTR Vehicle Systems and Fuels team a diesel hybrid powertrain. The goal of this experiment was to investigate and demonstrate the potential of diesel engines for hybrid electric vehicles (HEVs) in a fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact of the hybrid control strategy on fuel economy and emissions-in particular, nitrogen oxides (NO{sub x}) and particulate matter (PM). The same hardware and test procedure were used throughout the entire experiment to assess the impact of different control approaches.

Pasquier, M.; Monnet, G.

2004-04-21T23:59:59.000Z

179

Heavy Vehicle Systems, Int. J. of Vehicle Design, Vol. 11, Nos. 3/4, 2004 349 Modelling and control of a medium-duty hybrid  

E-Print Network (OSTI)

engine. Keywords: electric vehicles, electric-vehicle simulation, hybrid electric vehicles, hybrid-duty hybrid electric truck', Int. J. of Heavy Vehicle Systems, Vol. 11, Nos. 3/4, pp. 349­370. 1 Introduction. Hybrid-electric vehicles (HEV) appear to be one of the most viable technologies with significant

Peng, Huei

180

Consumer Ready Plug-in Hybrid Electric Vehicle Andrew Shabashevich, Douglas Saucedo, Terrence Williams, Christian Reif, Cuyler Lattoraca,  

E-Print Network (OSTI)

1 Year 3 Consumer Ready Plug-in Hybrid Electric Vehicle Andrew Shabashevich, Douglas Saucedo as an all-electric vehicle, and a as a charge-sustaining, or a conventional Hybrid Electric Vehicle (HEV) is developing a Plug-in Hybrid Electric Vehicle (PHEV) to participate in the 2007 Challenge X competition

California at Davis, University of

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

182

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

DOE Green Energy (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

183

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

184

Hybrid electric vehicle technology assessment : methodology, analytical issues, and interim results.  

DOE Green Energy (OSTI)

This report presents the results of the first phase of Argonne National Laboratory's (ANL's) examination of the costs and energy impacts of light-duty hybrid electric vehicles (HEVs). We call this research an HEV Technology Assessment, or HEVTA. HEVs are vehicles with drivetrains that combine electric drive components (electric motor, electricity storage) with a refuelable power plant (e.g., an internal combustion engine). The use of hybrid drivetrains is widely considered a key technology strategy in improving automotive fuel efficiency. Two hybrid vehicles--Toyota's Prius and Honda's Insight--have been introduced into the U.S. market, and all three auto industry participants in the Partnership for a New Generation of Vehicles (PNGV) have selected hybrid drivetrains for their prototype vehicles.

Plotkin, S.; Santini, D.; Vyas, A.; Anderson, J.; Wang, M.; Bharathan, D.; He, J.

2002-03-13T23:59:59.000Z

185

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

186

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

187

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Dynamic Reconfiguration of Photovoltaic Energy Harvesting System in Hybrid Electric Vehicles Yanzhi, xuelin, pedram}@usc.edu, 2 {naehyuck}@elpl.snu.ac.kr ABSTRACT Photovoltaic (PV) energy harvesting system is a promising energy source for battery replenishment in hybrid electric vehicles (HEVs.) The PV cell array

Pedram, Massoud

188

Dynamic reconfiguration of photovoltaic energy harvesting system in hybrid electric vehicles  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) energy harvesting system is a promising energy source for battery replenishment in hybrid electric vehicles (HEVs.) The PV cell array is installed on different parts of a vehicle body such as the engine hood, door panels, and the roof ... Keywords: dynamic programming., hybrid electric vehicle, photovoltaic array reconfiguration, photovoltaic system

Yanzhi Wang; Xue Lin; Naehyuck Chang; Massoud Pedram

2012-07-01T23:59:59.000Z

189

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks  

E-Print Network (OSTI)

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested, similar in shape and size to a Chevrolet S-10, which was converted to an electric vehicle

Rudnick, Hugh

190

AvAilAble for licensing Higher-performance, more cost-effective batteries for PHEVs and HEVs.  

E-Print Network (OSTI)

AvAilAble for licensing Higher-performance, more cost-effective batteries for PHEVs and HEVs. Benefits Higher-performance, more cost-effective batteries for PHEVs and HEVs. Reduced costs by lowering cost is easier, faster, and more cost-effective. Electrode Materials for Rechargeable Li-ion Batteries

Kemner, Ken

191

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

objectives, like using less foreign oil. To Mike, world oilreducing dependence of foreign oil could be resolved, butand independence from foreign oil. Mike’s desire to balance

Heffner, Reid R.

2007-01-01T23:59:59.000Z

192

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

s (1988b) long interview technique. For the first two studyusing ethnographic interview techniques. Data are examinedthat this structured interview technique views interviewer-

Heffner, Reid R.

2007-01-01T23:59:59.000Z

193

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

spent in visits to the gas station. However, fuel economyconflict, photos of gas stations, and pictures of electronicmade fewer trips to the gas station than when she had owned

Heffner, Reid R.

2007-01-01T23:59:59.000Z

194

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network (OSTI)

drilling in the Arctic National Wildlife Refuge (ANWR).opposed any exploration in ANWR because of the environmentalnoting that oil from ANWR would reduce U.S. dependence on

Heffner, Reid R.

2007-01-01T23:59:59.000Z

195

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

196

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

197

2007 Nissan Altima-2351 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of on-road accelerated testing. This report documents the battery testing performed and the battery testing results for the 2007 Nissan Altima HEV, number 2351 (VIN 1N4CL21E87C172351). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec). The Idaho National Laboratory and eTec conduct the AVTA for DOE’s Vehicle Technologies Program.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

198

Low-cost flexible packaging for high-power Li-Ion HEV batteries.  

DOE Green Energy (OSTI)

Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

Jansen, A. N.; Amine, K.; Henriksen, G. L.

2004-06-18T23:59:59.000Z

199

Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options  

Science Conference Proceedings (OSTI)

Download report 1000349 for FREE. This project continues the Hybrid Electric Vehicle Working Group (WG) study, in which EPRI has brought together representatives from the utility and automotive industries, the U.S. Department of Energy (DOE), other regulatory agencies, and university research organizations. The first study, "Assessment of Current Knowledge of Hybrid Vehicle Characteristics and Impacts" (EPRI report TR-113201), defined some of the ground rules for studying HEV technology. This stu...

2001-07-19T23:59:59.000Z

200

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

202

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

203

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

204

Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles  

Science Conference Proceedings (OSTI)

State of health (SOH) determination becomes an increasingly important issue for a safe and reliable operation of lithium-ion batteries in hybrid electric vehicles (HEVs). Characteristic performance parameters as capacity and resistance change over lifetime ... Keywords: Extended Kalman filter, Hybrid electric vehicle, Internal resistance estimation, Lithium-ion batteries, State of health, Structured neural networks

D. Andre, A. Nuhic, T. Soczka-Guth, D. U. Sauer

2013-03-01T23:59:59.000Z

205

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department

Tolbert, Leon M.

206

Development of Fuzzy Logic and Neural Network Control and Advanced Emissions Modeling for Parallel Hybrid Vehicles  

DOE Green Energy (OSTI)

This report describes the development of new control strategies and models for Hybrid Electric Vehicles (HEV) by the Ohio State University. The report indicates results from models created in NREL's ADvanced VehIcle SimulatOR (ADVISOR 3.2), and results of a scalable IC Engine model, called in Willan's Line technique, implemented in ADVISOR 3.2.

Rajagopalan, A.; Washington, G.; Rizzoni, G.; Guezennec, Y.

2003-12-01T23:59:59.000Z

207

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report  

DOE Green Energy (OSTI)

This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

Barnitt, R.

2011-01-01T23:59:59.000Z

208

Analysis of Ultracapacitors for Use in a Grid-Connected Hybrid Electric Vehicle  

Science Conference Proceedings (OSTI)

This study assessed the benefits of combining the unique energy-storage capabilities of ultracapacitors with a grid-connected hybrid electric vehicle (HEV). Ultracapacitors reduce the peak power requirements of the power pack and could thus allow the use of alternate battery technologies with better cost and life cycle characteristics.

2002-10-30T23:59:59.000Z

209

Power management of plug-in hybrid electric vehicles using neural network based trip modeling  

Science Conference Proceedings (OSTI)

The plug-in hybrid electric vehicles (PHEV), utilizing more battery power, has become a next-generation HEV with great promise of higher fuel economy. Global optimization charge-depletion power management would be desirable. This has so far been hampered ...

Qiuming Gong; Yaoyu Li; Zhongren Peng

2009-06-01T23:59:59.000Z

210

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

211

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

212

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

213

Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-Effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

Availability of affordable advanced battery technology is a crucial challenge to the growth of the electric-drive vehicle (EDV) market. This study assesses the state of advanced battery technology for EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles (HEV 0s -- hybrids without electric driving range), plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. The first part of this study presents assessments of current battery performance and cycle life ca...

2004-05-31T23:59:59.000Z

214

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

215

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

216

High Energy Batteries for Hybrid Buses  

DOE Green Energy (OSTI)

EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

Bruce Lu

2010-12-31T23:59:59.000Z

217

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

218

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

219

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

220

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

222

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

Science Conference Proceedings (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

223

cDNA encoding a polypeptide including a hev ein sequence  

DOE Patents (OSTI)

A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

2000-07-04T23:59:59.000Z

224

TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEAM TEAM HEV ARC HITECTURE ENGIN E FU EL TRANS MISSION EN ERGY STOR AGE MO TOR Michigan Technological University Through-the-road Parallel 2.0-L 4 Cylinder Spark Ignition Reformulated Gasoline 4-speed Automatic COBASYS, Nickel Metal Hydride - 288V 50 kW Solectria AC Induction Transaxle Mississippi State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) GM F40 6-speed Manual Johnson Controls, Nickel Metal Hydride - 330V 45 kW Ballard Integrated Power Transaxle The Ohio State University Through-the-road Parallel 1.9-L GM Direct Injection Turbo Diesel Bio Diesel (B20) Aisin-Warner AF40 6-speed Automatic Transaxle Panasonic, Nickel Metal Hydride - 300V 67 kW Ballard AC Induction Transaxle /10.6 kW Kollmorgen Brushless DC Generator Pennsylvania State

225

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices is the 2004 Toyota Prius HEV, which has a split powertrain architecture shown in Fig. 1. The other is a plug

Tolbert, Leon M.

226

Evaluation of performance and magnetic characteristics of a radial-radial flux compound-structure permanent-magnet synchronous machine used for hybrid electric vehicle  

Science Conference Proceedings (OSTI)

A breed of compound-structure permanent-magnet synchronous machine (CS-PMSM) is used for power-split hybrid electric vehicles(HEVs). It can help to fulfill both the speed and torque control of the internal combustion engine and

Ping Zheng; Ranran Liu; Lin Shen; Lina Li; Weiguang Fan; Qian Wu; Jing Zhao

2008-01-01T23:59:59.000Z

227

Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report  

DOE Green Energy (OSTI)

The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

2001-12-01T23:59:59.000Z

228

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

229

A Development of Design and Control Methodology for Next Generation Parallel Hybrid Electric Vehicle  

E-Print Network (OSTI)

Commercially available Hybrid Electric Vehicles (HEVs) have been around for more than ten years. However, their market share remains small. Focusing only on the improvement of fuel economy, the design tends to reduce the size of the internal combustion engine in the HEV, and uses the electrical drive to compensate for the power gap between the load demand and the engine capacity. Unfortunately, the low power density and the high cost of the combined electric motor drive and battery packs dictate that the HEV has either worse performance or much higher price than the conventional vehicle. In this research, a new design philosophy for parallel HEV is proposed, which uses a full size engine to guarantee the vehicle performance at least as good as the conventional vehicle, and hybridizes with an electrical drive in parallel to improve the fuel economy and performance beyond the conventional cars. By analyzing the HEV fuel economy versus the increasing of the electrical drive power on typical driving conditions, the optimal hybridization electric power capacity is determined. Thus, the full size engine HEV shows significant improvement in fuel economy and performance, with relatively short cost recovery period. A new control strategy, which optimizes the fuel economy of parallel configured charge sustained hybrid electric vehicles, is proposed in the second part of this dissertation. This new approach is a constrained engine on-off strategy, which has been developed from the two extreme control strategies of maximum SOC and engine on-off, by taking their advantages and overcoming their disadvantages. A system optimization program using dynamic programming algorithm has been developed to calibrate the control parameters used in the developed control strategy, so that the control performance can be as close to the optimal solution as possible. In order to determine the sensitivity of the new control strategy to different driving conditions, a passenger car is simulated on different driving cycles. The performances of the vehicle with the new control strategy are compared with the optimal solution obtained on each driving condition with the dynamic programming optimization. The simulation result shows that the new control strategy always keeps its performance close to the optimal one, as the driving condition changes.

Lai, Lin

2013-05-01T23:59:59.000Z

230

Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV  

DOE Green Energy (OSTI)

This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

O'Keefe. M. P.; Markel, T.

2006-11-01T23:59:59.000Z

231

2011 Hyundai Sonata Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata Hybrid Hyundai Sonata Hybrid Test cell location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture P2 HEV Vehicle Dynamometer Input Document date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3750 26.8 Target B [lb/mph] Target C [lb/mph^2] 0.15 0.0145 Revision number 3 Notes: Test Fuel Information Fuel type EPA Tier II EEE Gasoline Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.742 18202 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e [ m i ] C

232

Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report  

DOE Green Energy (OSTI)

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

Marlino, Laura D [ORNL

2007-09-01T23:59:59.000Z

233

Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

2007-09-30T23:59:59.000Z

234

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

235

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

236

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

237

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

238

Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report  

DOE Green Energy (OSTI)

Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

Mulligan, James C.; Gould, Richard D.

2001-10-31T23:59:59.000Z

239

Screening report on cell materials for high-power Li-Ion HEV batteries.  

DOE Green Energy (OSTI)

The Battery Technology Department at Argonne National Laboratory is a major participant in the U.S. Department of Energy's Advanced Technology Development (ATD) program. This multi-national laboratory program is dedicated to improving lithium-ion batteries for high-power HEV and FCEV applications. As part of the FreedomCAR Partnership, this program is addressing the three key barriers for high-power lithium-ion batteries: calendar life, abuse tolerance, and cost. All three of these barriers can be addressed by the choice of materials used in the cell chemistry. To date, the ATD program has developed two high-power cell chemistries, denoted our Gen 1 and Gen 2 cell chemistries. The selection of materials for use in the Gen 2 cell chemistry was based largely on reducing material cost and extending cell calendar life, relative to our Gen 1 cell chemistry. Table 1 provides a list of the materials used in our Gen 2 cell chemistry and their projected costs, when produced in large-scale quantities. In evaluating advanced materials, we have focused our efforts on materials that are lower cost than those listed in Table 1, while simultaneously offering enhanced chemical, structural, and thermal stability. Therefore, we have focused on natural graphite anode materials (having round-edge particle morphologies), cathode materials that contain more Mn and less Co and Ni (which can be produced via low-cost processes), lower cost electrode binders and/or binders that possess superior bonding properties at lower concentrations, and lower cost salts and solvents (with superior thermal and oxidation/reduction stability) for use in the electrolyte. The purpose of this report is to document the results of screening tests that were performed on a large number of advanced low-cost materials. These materials were screened for their potential to impact positively on the calendar life, safety, and/or cost of high-power lithium-ion cell chemistries, relative to our Gen 2 cell chemistry. As part of this effort, we developed and employed a set of standard test protocols to evaluate all of the materials. After brief descriptions of the screening test methodologies and equipment, relevant data on each material are summarized in the body of this report. We have evaluated five categories of materials, and the report is organized accordingly. Results will be presented on advanced carbons for anodes, improved cathode materials, new salts and solvent systems, alternative binders, and novel separators.

Liu, J.; Kahaian, A.; Belharouak, I.; Kang, S.; Oliver, S.; Henriksen, S.; Amine, K.

2003-04-24T23:59:59.000Z

240

Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle  

DOE Green Energy (OSTI)

This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

Nelson, S.C.

2002-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

242

2007 Toyota Camry-6330 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) conducts several different types of tests on hybrid electric vehicles (HEVs), including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K673006330). Testing was performed by the Electric Transportation Engineering Corporation. The AVTA is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct AVTA for the U.S. Department of Energy.

Tyler Gray; Chester Motloch; James Francfort

2010-01-01T23:59:59.000Z

243

DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications  

SciTech Connect

This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors.

Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL; Du, Zhong [ORNL; Chiasson, John N [ORNL

2009-01-01T23:59:59.000Z

244

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

245

A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications  

SciTech Connect

This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

246

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

247

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives  

DOE Green Energy (OSTI)

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

Giorgio Rizzoni

2005-09-30T23:59:59.000Z

248

Hybrid Electric Vehicles: How They Perform in the Real World | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World Hybrid Electric Vehicles: How They Perform in the Real World October 5, 2009 - 11:27am Addthis John Lippert One advantage of working on a U.S. Department of Energy (DOE) support team is that I'm exposed to the impressive work DOE is doing to develop and promote advanced energy technologies. I'm particularly impressed with the data DOE has gathered as part of the Advanced Vehicle Testing Activity (AVTA) on many of the makes and models of hybrid-electric vehicles (HEVs) commercially available in the United States. The AVTA works with government, commercial, and industry fleets to measure real-world vehicle performance of production and pre-production advanced technology vehicles and makes this information available to fleets and the general public.

249

Hydrogen Highways  

E-Print Network (OSTI)

hybrid gasoline-electric vehicles (HEVs), “plug-in” HEVs, and advanced batter y-powered electric vehicles—

Lipman, Timothy

2005-01-01T23:59:59.000Z

250

The prospects for electric and hybrid electric vehicles: Second-stage results of a two-stage Delphi study  

DOE Green Energy (OSTI)

This study was conducted to collect information for a technical and economic assessment of electric (EV) and hybrid (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994, while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. Key results: EVs will penetrate the market first, followed by internal combustion engine HEVs, while gas turbine and fuel cell HEVs will come after 2020. By 2020, EVs and internal combustion engine HEVs will have a 15% share of the new vehicle market; they will also cost 18-50% more and will be slightly inferior to 1993 gasoline cars. AC induction motor is projected to be superior to DC and DC brushless motors by 2020, although the DC motor will be less expensive in 2000. DC brushless motors are projected to be the most expensive. Though generally declining, battery costs will remain high. EVs are believed to be effective in reducing urban emissions; however, their costs must be reduced drastically. Petroleum is expected to be the predominant fuel for hybrid vehicles through 2020. Mean energy equivalent fuel economy of electric drivetrain vehicles is projected to be 20-40% greater than for conventional vehicles in 2000, and to rise a few percents during the projection period. Respondents anticipate only a 16% increase in conventional vehicle fuel economy from 2000 to 2020.

Ng, H.K.; Anderson, J.L.; Santini, D.J.; Vyas, A.D.

1996-08-01T23:59:59.000Z

251

Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the...

252

Hybrid Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with...

253

Hybrid Vehicle Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Links Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Hybrid Vehicles and Manufacturers Acura ILX Hybrid Audi Q5 Hybrid BMW ActiveHybrid 3 ActiveHybrid 5 ActiveHybrid 7 Buick LaCrosse eAssist* Regal eAssist* Chevrolet Malibu Eco* Impala eAssist* Ford Fusion Hybrid Honda Accord Hybrid Civic Hybrid Honda CR-Z Honda Insight Hyundai Sonata Hybrid Infiniti M Hybrid Q50 Hybrid Q50 S Hybrid QX60 Hybrid Kia Optima Hybrid Lexus CT 200h Lexus ES 300h GS 450h LS 600h L RX 450h Lincoln MKZ Hybrid Mercedes-Benz Mercedes E400 Hybrid Nissan Pathfinder Hybrid Porsche Cayenne S Hybrid Subaru XV Crosstrek Hybrid Toyota Avalon Hybrid

254

Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod  

Science Conference Proceedings (OSTI)

The dispersion relation of guided electromagnetic waves propagating in an elliptical metallic waveguide with a dielectric rod driven by relativistic elliptical electron beam (REEB) is investigated. The electric field profiles and the growth rates of the waves are numerically calculated by using Mathieu functions. The effects of relative permittivity constant of dielectric rod, accelerating voltage, and current density of REEB on the growth rate are presented.

Jazi, B.; Rahmani, Z.; Abdoli-Arani, A. [Faculty of Physics, Department of Laser and Photonics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Faculty of Physics, Department of Condense Matter, University of Kashan, Kashan (Iran, Islamic Republic of)

2012-10-15T23:59:59.000Z

255

Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives  

Science Conference Proceedings (OSTI)

High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce the characteristic current to value of the rated current, which will enable them to operate at high CPSR. This feature also limits short-circuit fault currents. Second, their segmented structure simplifies assembly problems and is expected to reduce assembly costs. Third, the back-emf waveform is nearly sinusoidal with low cogging. To examine in depth this design ORNL entered into a collaborative agreement with the University of Wisconsin to build and test a 6 kW laboratory demonstration unit. Design, fabrication, and testing of the unit to 4000 rpm were completed during FY 2005. The motor will be sent to ORNL to explore ways to control its inverter to achieve higher efficiency during FY 2006. This paper first reviews the concept of characteristic current and what is meant by optimal flux weakening. It then discusses application of the fractional-slot concentrated winding technique to increase the d-axis inductance of a PMSM showing how this approach differs from an integral-slot motor with sinusoidal-distributed windings. This discussion is followed by a presentation of collaborative analyses and comparison with the University of Wisconsin's measured data on a 6 kW, 36-slot, 30-pole motor with concentrated windings. Finally ORNL presents a PMSM design with integral-slot windings that appears to meet the FreedomCAR Specifications, but has some disadvantages. Further collaboration with the University of Wisconsin is planned for FY 2006 to design a motor that meets FreedomCAR specifications.

Bailey, J.M.

2005-10-24T23:59:59.000Z

256

Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System  

DOE Green Energy (OSTI)

Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

Burress, Timothy A [ORNL; Campbell, Steven L [ORNL; Coomer, Chester [ORNL; Ayers, Curtis William [ORNL; Wereszczak, Andrew A [ORNL; Cunningham, Joseph Philip [ORNL; Marlino, Laura D [ORNL; Seiber, Larry Eugene [ORNL; Lin, Hua-Tay [ORNL

2011-03-01T23:59:59.000Z

257

Evaluation of 2005 Honda Accord Hybrid Electric Drive System  

DOE Green Energy (OSTI)

The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

Staunton, R.H.; Burress, T.A.; Marlino, L.D.

2006-09-11T23:59:59.000Z

258

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

news.cfm? newsid=8142 [30] Toyota Motor Sales (2006) Photo: Toyota Prius Interior, Electronic MultifunctionYork: 2 Apr. p. C 1 [43] Toyota Motor Corporation (2007) “

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

259

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

District (2006) “PHEV Prius Test Program by SacramentoMotor Sales (2006) Photo: Toyota Prius Interior, Electronichttp://www.toyota.com/prius/interior.html Accessed 2 April

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

260

Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)  

DOE Data Explorer (OSTI)

The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

262

Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) and American automotive manufacturers General Motors, Ford, and DaimlerChrysler began a five-year, cost-shared partnership in 1993. Currently, hybrid electric vehicle (HEV) research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. Under the FCVT program, support is provided through a three-phase approach [1] which is intended to: • Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry’s recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; • Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and • Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed in this area will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in hybrid electric, electric, and fuel-cell-powered vehicles.

Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P.

2008-04-15T23:59:59.000Z

263

Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption from FY05 Milestone Report (Presentation)  

DOE Green Energy (OSTI)

Presented to DOE management staff on September 14, 2005 at the DOE headquarters in Washington DC. Content was updated January 19, 2006 for publication. This presentation addresses plug-in hybrid electric vehicle (PHEV) market and technology issues for research and development efforts.

Markel, T.; O'Keefe, M.; Simpson, A.; Gonder, J.; Brooker, A.

2006-01-19T23:59:59.000Z

264

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence  

SciTech Connect

This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davisâ??s existing GATE centers have become the campusâ??s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

Erickson, Paul

2012-05-31T23:59:59.000Z

265

Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

266

Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

267

Plug-In Hybrid Electric Vehicles' Potential for Petroleum Use...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery and ICE energy use under several different driving patterns, varying in average speed and aggressiveness of driving. A DISCUSSION OF HEV, PHEV, and EV TYPES Parallel...

268

AZD Power Electronics for Hybrid Vehicles June 13, 2011  

Science Conference Proceedings (OSTI)

... Agenda >Azure Dynamics Background >P/HEV and EV Products ... Page 3. Who is Azure Dynamics? >Azure Dynamics is an industry leader in ...

2011-11-03T23:59:59.000Z

269

Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

McKeever, JW

2005-06-16T23:59:59.000Z

270

Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles  

SciTech Connect

Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

McKeever, JW

2005-06-16T23:59:59.000Z

271

Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.  

Science Conference Proceedings (OSTI)

Since 1989, the Northeast Sustainable Energy Association (NESEA) has organized the American Tour de Sol in which a wide variety of participants operate electric vehicles (EVs) and hybrid electric vehicles (HEVs) for several hundred miles under various roadway conditions (e.g., city center and highway). The event offers a unique opportunity to collect on-the-road energy efficiency data for these EVs and HEVs as well as comparable gasoline-fueled conventional vehicles (CVs) that are driven under the same conditions. NESEA and Argonne National Laboratory (ANL) collaborated on collecting and analyzing vehicle efficiency data during the 1998 and 1999 NESEA American Tour de Sols. Using a transportation fuel-cycle model developed at ANL with data collected on vehicle fuel economy from the two events as well as electric generation mix data from the utilities that provided the electricity to charge the EVs on the two Tours, we estimated full fuel-cycle energy use and GHG emissions of EVs and CVs. This paper presents the data, methodology, and results of this study, including the full fuel-cycle energy use and GHG emission reduction potential of the EVs operating on the Tour.

Singh, M.; Wang, M.; Hazard, N.; Lewis, G.; Energy Systems; Northeast Sustainable Energy Association; Univ. of Michigan

2000-01-01T23:59:59.000Z

272

Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles  

SciTech Connect

This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

273

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

274

Hybrid automobile  

SciTech Connect

The invention discloses a parallel hybrid drive system for self propelled vehicles including a direct current motor-generator having a drive shaft in common with an internal combustion engine leading to a variable speed transmission and a final drive train. The motor-generator has a no-load speed, established by a separate field exciter, below which it drives the shaft as a motor and above which it is driven by the shaft as a generator. Storage batteries are operatively connected to the motor-generator to supply power to it below the no-load speed. The internal combustion engine operates over a small RPM range around its most efficient speed at a power level established by a fixed throttle setting. The transmission is operatively connected to an accelerator and direction selector switch to vary the speed and direction of the vehicle.

Lynch, T.E.; Eastman, D.P.; Price, R.P.

1979-08-28T23:59:59.000Z

275

Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems  

DOE Green Energy (OSTI)

Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

Cao, J.; Bharathan, D.; Emadi, A.

2007-01-01T23:59:59.000Z

276

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

277

Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System  

Science Conference Proceedings (OSTI)

Subsystems of the 2008 Lexus 600h hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies program not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Wereszczak, A.A.; Cunningham, J.P.; Marlino, L.D.; Seiber, L.E.; Lin, H.T.

2009-01-15T23:59:59.000Z

278

Formula Hybrid International Competition  

E-Print Network (OSTI)

challenge. We are delighted that they are directing their ingenuity and creativity to advancing hybrid with a traditional combustion engine into a hybrid vehicle, overcoming numerous technical challenges along the way of the hybrid gasoline engine, there are more components to a hybrid drivetrain, including the electric motor

Carver, Jeffrey C.

279

Neutron diagnostics for mirror hybrids  

SciTech Connect

Fusion-fission (FuFi) hybrids will need instrumentation to diagnose the deuteriumtritium plasma, whose 14-MeV neutron emission is the driver of the sub-critical fission core. While the fission neutron yield rate (Y{sub fi} and hence power P{sub fi}) can be monitored with standard instrumentation, fusion plasmas in hybrids require special diagnostics where the determination of Y{sub th} ({proportional_to}P{sub fu}) is a challenge. Information on Y{sub fu} is essential for assessing the fusion plasma performance which together with Y{sub fi} allows for the validation of the neutron multiplication factor (k) of the subcritical fission core. Diagnostics for hybrid plasmas are heuristically discussed with special reference to straight field line mirror (SFLM). Relevant DT plasma experience from JET and plans for ITER in the main line of fusion research were used as input. It is shown that essential SFLM plasma information can potentially be obtained with proposed instrumentation, but the state of the hybrid plasma must be predictably robust as derived from fully diagnosed dedicated experiments without interface restrictions of the hybrid application.

Kaellne, Jan; Noack, Klaus; Agren, Olov; Gorini, Giuseppe; Tardocchi, Marco; Grosso, Giovanni [Department of Engineering Sciences, Uppsala University, Box 256, SE-751 21 Uppsala (Sweden); Universita degli Studi di Milano - Bicocca, Dip. di Fisica 'G. Occhialini', Piazza della Scienza 3, 20126, Milan (Italy)

2012-06-19T23:59:59.000Z

280

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gen II Insight HEV Accelerated Testing - August 2012 Two model year 2010 Honda Generation II Insight hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Rhode Island Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

related to HEVs PHEVs. Laws and Regulations Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements To reduce fuel consumption and...

282

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

test tracks and fleet testing arrangements 3 Vehicle Testing Objectives - cont'd * Hybrid Electric Vehicles (HEVs) - Reduce HEV battery and vehicle uncertainties and document...

283

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gen III Prius HEV Accelerated Testing - May 2012 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a...

284

Mesoscale hybrid calibration artifact  

DOE Patents (OSTI)

A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

2010-09-07T23:59:59.000Z

285

Hybrid armature projectile  

SciTech Connect

A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

1993-01-01T23:59:59.000Z

286

The hydrogen hybrid option  

SciTech Connect

The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

Smith, J.R.

1993-10-15T23:59:59.000Z

287

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

288

Hybridization and Selective Release of DNA Microarrays  

SciTech Connect

DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to single spots to release hybridized DNA. This work leverages LLNL expertise in optics, microfluids, and bioinformatics.

Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

2011-11-29T23:59:59.000Z

289

Field Operations Program Toyota Prius Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle. Unlike electric vehicles, where a kilowatt- hour meter can accurately measure energy flows, the energy use of a Prius type of HEV (non-grid connected) is determined by...

290

Gen I 2003 Honda Civic Hybrid electric Fleet and Accelerated...  

NLE Websites -- All DOE Office Websites (Extended Search)

testing during May 2002 in two fleets in Arizona. Two of the Gen I Civic HEVs were driven 25,000 miles each (Fleet testing) and the remaining two were driven until they...

291

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline performance testing new HEVs Fleet testing (160k miles in 36 months) End-of-life testing (fuel economy & battery testing at 160k miles) WWW information location 3...

292

Real-time power management of parallel full hybrid electric vehicles.  

E-Print Network (OSTI)

??Lastly, the fuel saving capability of the HEV through intelligent driving was investigated. The intelligent vehicle velocity modification algorithm proposed by Manzie et al. is… (more)

Adhikari, Sunil

2010-01-01T23:59:59.000Z

293

Hybrid Cooling Systems  

Science Conference Proceedings (OSTI)

Water consumption by power plants has become an increasingly contentious siting issue. In nearly all fossil-fired and nuclear plants, water for plant cooling is by far the greatest water requirement. Therefore, the use of water-conserving cooling systems such as dry or hybrid cooling is receiving increasing attention. This technology overview from the Electric Power Research Institute (EPRI) provides a brief introduction to hybrid cooling systems. As defined in the report, the term "hybrid cooling" refer...

2011-11-23T23:59:59.000Z

294

Test des Systèmes hybrides.  

E-Print Network (OSTI)

??Les systèmes hybrides, systèmes combinant à la fois une dynamique continue et discrète, s'avèrent être un modèle mathématique utile pour différents phénomènes physiques, technologiques, biologiques… (more)

Nahhal, Tarik

295

Hybrid Vehicle design and evaluation Andrew Burke and Hengbing Zhao  

E-Print Network (OSTI)

-mode (Toyota/Prius) c. Multiple-planetary,dual-mode (GM) d. Multiple-shaft, dual-clutch transmission (VW effi ciency data from simulations for 2004 Prius and 2006 Civic HEV Drive Cycle NEDC FUDS HWFE T US06 Si m 3.2 (74) 3.5 (68) 3.6 (66) 5.5 (43)2004 Prius HEV EP A 3.6 (67) a 3.6 (65) c Si m 4.1 (58) 4

California at Davis, University of

296

New & Upcoming Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Hybrids New & Upcoming Hybrids 2014 Model Year Vehicle EPA MPG Estimates Price (MSRP) Chevrolet Impala eAssist Large Car Chevrolet Impala eAssist Chart: City, 25; Highway, 35; Combined, 29 NA Infiniti Q50 Hybrid Compact Car Infiniti Q50 Hybrid Chart: City, 29; Highway, 36; Combined, 31 $43,950 Infiniti Q50 Hybrid AWD Compact Car Infiniti Q50 Hybrid AWD Chart: City, 28; Highway, 35; Combined, 30 $45,750 Infiniti Q50S Hybrid Compact Car Infiniti Q50S Hybrid Chart: City, 28; Highway, 34; Combined, 30 $46,350 Infiniti Q50S Hybrid AWD Compact Car Infiniti Q50S Hybrid AWD Chart: City, 27; Highway, 31; Combined, 28 $48,150 Infiniti QX60 Hybrid AWD Standard SUV Infiniti QX60 Hybrid AWD Chart: City, 25; Highway, 28; Combined, 26 NA Infiniti QX60 Hybrid FWD

297

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

298

912 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 47, NO. 2, MARCH/APRIL 2011 Impact of SiC Devices on Hybrid Electric and  

E-Print Network (OSTI)

and weight and the vehicle's fuel economy. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV Prius HEV. The vehicle-level benefits from the introduction of SiC devices are demonstrated://ieeexplore.ieee.org. Digital Object Identifier 10.1109/TIA.2010.2102734 Fig. 1. Powertrain architecture of 2004 Toyota Prius

Tolbert, Leon M.

299

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance: Total miles driven: 68,287 Cumulative MPG: 47.10 * Purchase includes dealer price with options plus taxes. It does not include title, license, registration, extended...

300

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance: Total miles driven: 160,091 Cumulative MPG: 44.98 * Purchase includes dealer price with options plus taxes. It does not include title, license, registration, extended...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HEV Fleet Testing Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

U520038836 Advanced Vehicle Testing Activity Date Mileage Description Cost 8-Aug 11,142 Oil change 35.44 11-Oct 14,133 Rear Bumper damaged in collision (not included in...

302

HEV Fleet Testing Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Bicyclist rams vehicle denting hood. Damage not repaired. (not included in maintenance costs) ---- 10292002 9,594 Oil change 20.67 1242003 12,953 Oil change 20.67 623...

303

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.22mile Total Ownership Cost: 1.30mile Operating Performance: Total miles driven: 8,962 Cumulative MPG: 46.38 * Purchase includes dealer price with options...

304

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.12mile Total Ownership Cost: 0.65mile Operating Performance: Total miles driven: 18,612 Cumulative MPG: 49.36 * Purchase includes dealer price with options...

305

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.14mile Total Ownership Cost: 0.79mile Operating Performance: Total miles driven: 15,746 Cumulative MPG: 44.38 * Purchase includes dealer price with options...

306

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.07mile Total Ownership Cost: 0.29mile Operating Performance: Total miles driven: 145,902 Cumulative MPG: 44.05 Engine: 3-cylinder, 48 kW @ 5700 rpm Electric...

307

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK12U620041883 * Purchase includes dealer price with options plus...

308

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2001 Toyota Prius VIN JT2BK12U310035828 Vehicle Specifications VINJT2BK12U310035828 0 10 20 30...

309

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK18U820042105 Vehicle Specifications VIN JT2BK18U820042105 0 10 20 30...

310

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK18U720044279 Vehicle Specifications VIN JT2BK18U720044279 0 10 20 30...

311

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK12U920038976 * Purchase includes dealer price with options plus...

312

HEV Fleet Testing - Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission See HEVAmerica Baseline Performance Fact Sheet for more information. 2002 Toyota Prius VIN JT2BK18U520038836 Vehicle Specifications VIN JT2BK18U520038836 0 10 20 30...

313

HEV Fleet Testing Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Description Cost 272002 8,668 Oil change 50.17 522002 12,898 Driver ran over debris on road causing foreign object damage to front coolers. Coolers replaced. (not...

314

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

the interest in hybrid electric vehicles (HEVs) and hydrogenfollowed by hybrid electric vehicles. G.O. Collantes /are replaced only by hybrid electric vehicles and hybrid

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

315

Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual  

SciTech Connect

This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

1997-10-01T23:59:59.000Z

316

High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal  

E-Print Network (OSTI)

and electric machinery (APEEM) activity is to develop technology towards achieving overall electric propulsion of these components. Plug-in hybrid electric vehicle (PHEV) cost targets for the APEEM as established by DOE for PHEVs. Research in eliminating the low temperature loop and using the engine coolant for the APEEM shows

Tolbert, Leon M.

317

Rate Schedules  

Energy.gov (U.S. Department of Energy (DOE))

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

318

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

319

Top 10 tech cars [hybrid electric vehicles  

Science Conference Proceedings (OSTI)

A number of new hybrid electric vehicle owners have expressed their disappointment with their purchase because of poor mileage. Official ratings for fuel use, based on the outdated driving patterns of US government test, turned out to be a poor predictor ...

J. Voelcker

2005-03-01T23:59:59.000Z

320

Hybrid electric vehicles TOPTEC  

SciTech Connect

This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

1994-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Artificial mismatch hybridization  

DOE Patents (OSTI)

An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

Guo, Zhen (Madison, WI); Smith, Lloyd M. (Madison, WI)

1998-01-01T23:59:59.000Z

322

Rates - WAPA-137 Rate Order  

NLE Websites -- All DOE Office Websites (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

323

Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers  

Science Conference Proceedings (OSTI)

To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

324

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment DOE-funded research, in collaboration with Allison Buses and General Motors Corporation has led to the commercialization of a dramatically different hybrid transmission system for heavy-duty and light-duty applications. The Dual-Mode or Two-Mode hybrid system is an infinitely variable speed hybrid transmission that works with the engine and battery system and automatically chooses to operate in a parallel or series hybrid path to maximize efficiency and minimize emissions, fuel consumption and noise. Parallel and Series hybrid configurations are found on most hybrid vehicles today, both with their own pluses and minuses. The Dual- Mode/Two-Mode systems uses the positive characteristics from both systems to maximize fuel

325

Hybrid matrix geometric algebra  

Science Conference Proceedings (OSTI)

The structures of matrix algebra and geometric algebra are completely compatible and in many ways complimentary, each having their own advantages and disadvantages. We present a detailed study of the hybrid 2 × 2 matrix geometric algebra M(2,IG) ...

Garret Sobczyk; Gordon Erlebacher

2004-05-01T23:59:59.000Z

326

Hybrid Systems Diagnosis  

Science Conference Proceedings (OSTI)

This paper reports on an on-going project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial ...

Sheila A. McIlraith; Gautam Biswas; Dan Clancy; Vineet Gupta

2000-03-01T23:59:59.000Z

327

Assimilating hybridized architecture  

E-Print Network (OSTI)

The thesis searches for means of operation to deal with hybridized architecture. As a conceptual framework, sociology theory appears to be an insightful precedent, for it analyzes and classifies how multiple constituents ...

Wu, Jane C., 1977-

2005-01-01T23:59:59.000Z

328

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

329

Optimal scheduling for constant-rate multi-mode systems  

Science Conference Proceedings (OSTI)

Constant-rate multi-mode systems are hybrid systems that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent constant rates. The schedulability problem for such ... Keywords: cyber-physical systems, green scheduling, hybrid automata, peak minimization, switched systems

Rajeev Alur; Ashutosh Trivedi; Dominik Wojtczak

2012-04-01T23:59:59.000Z

330

Energy Rating  

E-Print Network (OSTI)

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

331

Insertion Rates  

Science Conference Proceedings (OSTI)

HOME > Insertion Rates. TECH HEADLINES. Research Explores a New Layer in Additive Manufacturin... Grand Opening Slated for Electron Microscopy Facility.

332

Rate schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

333

Plug-in Hybrid Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

334

Hybrid Systems Architectures  

E-Print Network (OSTI)

ion suppression of lower-level information not relevant for the current task Encapsulation (information hiding) implementation details are hidden, only interface information is visible F. Kurfeß Hybrid System Architectures ASHS '96 37 Inheritance common characteristics are derived from ancestors Polymorphism appropriate instances of classes and operators can be selected at runtime Advantages ffl very flexible ffl suitable for large systems ffl support reuse Problems ffl handling of new and atypical situations ffl quite complex ffl formal verification F. Kurfeß Hybrid System Architectures ASHS '96 38 Expert System What is an Expert System? Basic concepts ffl designer / user supplies facts and information ffl user asks queries and receives expert advice ffl limited to a problem domain (knowledge domain) Components ffl user interface ffl knowledge base ffl inference mechanism Synonyms: knowledge-based system, knowledge-based expert system F. Kurfeß Hybrid System Archi...

Franz J. Kurfeß

1996-01-01T23:59:59.000Z

335

Diagnostics for hybrid reactors  

SciTech Connect

The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

Orsitto, Francesco Paolo [ENEA Unita' Tecnica Fusione , Associazione ENEA-EURATOM sulla Fusione C R Frascati v E Fermi 45 00044 Frascati (Italy)

2012-06-19T23:59:59.000Z

336

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

337

Issue 5: High Interest in Hybrid Cars  

E-Print Network (OSTI)

and Associates. (2002). Hybrid Vehicle Consumer Acceptancedefinitely” consider a hybrid vehicle, and any of these werepercent or more for a hybrid vehicle. O THER V ARIATIONS IN

Ong, Paul M.; Haselhoff, Kim

2005-01-01T23:59:59.000Z

338

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

339

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network (OSTI)

vehicles (EV), plug-in hybrid electric vehicles (PHEVs),or hybrid electric vehicles (HEVs). To reduce materialsapplications (plug-in hybrid electric vehicles (PHEVs) and

Doeff, Marca M.

2010-01-01T23:59:59.000Z

340

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, Volume 1: NationwideBEVs or plug-in hybrid electric vehicles (PHEVs) requirescell vehicle; HEV = Hybrid electric vehicle; ICE = Internal

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

s Electric and Hybrid Electric Vehicle Program. SAE Hybrida regular gasoline hybrid electric vehicle (HEV), while theIn the global hybrid electric vehicle market, no automakers

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

342

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

343

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles,” Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

344

ACCESS Magazine Fall 2005  

E-Print Network (OSTI)

hybrid gasoline-electric vehicles (HEVs), “plug-in” HEVs, and advanced batter y-powered electric vehicles—electric drive-train components for hybrid vehicles, and advanced

Cervero, Robert; Koppelman, Frank S.; Lipman, Timothy; Ogden, Joan; Varaiya, Pravin

2005-01-01T23:59:59.000Z

345

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ElDorado National - E-Z Rider II BRT Thomas Built Buses - Saf-T-Liner C2e Hybrid Freightliner - M2 106 Hybrid Nova Bus - LFS Artic HEV Nova Bus - LFS HEV Nova Bus - LFX Cummins -...

346

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

347

PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES  

Science Conference Proceedings (OSTI)

The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

Seidman, M.R.; Markel, T.

2008-01-01T23:59:59.000Z

348

Efficient simulation of hybrid systems: A hybrid bond graph approach  

Science Conference Proceedings (OSTI)

Accurate and efficient simulations facilitate cost-effective design and analysis of large, complex, embedded systems, whose behaviors are typically hybrid, i.e. continuous behaviors interspersed with discrete mode changes. In this paper we present an ... Keywords: component-oriented modeling, dynamic causal assignment, hybrid bond graphs, modeling and simulation environments, simulation of hybrid systems

Indranil Roychoudhury; Matthew J Daigle; Gautam Biswas; Xenofon Koutsoukos

2011-06-01T23:59:59.000Z

349

Standards Development as Hybridization  

Science Conference Proceedings (OSTI)

While users in the rest of the World have been offered 3G mobile phones based on either the CDMA2000 or W-CDMA standards, users in China have the additional option of using phones based on the TD-SCDMA standard. As a technology largely developed by Chinese ... Keywords: Global, Hybridization, Indigenous, Innovation, Mobile Phones, National, Technology

Xiaobai Shen, Ian Graham, James Stewart, Robin Williams

2013-07-01T23:59:59.000Z

350

Federal Tax Credits for Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrids Hybrids Hybrid Vehicle Photo Federal tax credit up to $3,400! Hybrids purchased or placed into service after December 31, 2005 may be eligible for a federal income tax credit of up to $3,400. Credit amounts begin to phase out for a given manufacturer once it has sold over 60,000 eligible vehicles. Vehicles purchased after December 31, 2010 are not eligible for this credit. The information below is provided for those filing amended tax returns for previous years. BMW Chrysler/Dodge Ford Brands GM Brands Honda Mazda Mercedes Nissan Porsche Toyota/Lexus 2011 Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2006 TBD TBD Jan. 1, 2011 BMW ActiveHybrid 750i 2011 BMW ActiveHybrid 750i $900 -- -- $0 BMW ActiveHybrid 750Li 2011 BMW ActiveHybrid 750Li $900 -- -- $0

351

New Plug-in Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars 2014 Midsize Cars Fuel Economy Specs 2013 Chevrolet Volt 2012 Fisker Karma Plug-in Hybrid Vehicle 2012 Chevy Volt Plug-in Hybrid Vehicle 2012 Karma Fisker Configuration...

352

Mirror fusion--fission hybrids  

SciTech Connect

The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described.

Lee, J.D.

1978-05-01T23:59:59.000Z

353

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

Science Conference Proceedings (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

354

Condensing Hybrid Water Heater Monitoring Field Evaluation  

Science Conference Proceedings (OSTI)

This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

2011-10-01T23:59:59.000Z

355

The Rate of Shattercane x Sorghum Hybridization in situ.  

E-Print Network (OSTI)

??Cultivated sorghum (Sorghum bicolor subsp. bicolor) can interbreed with its close weedy relative shattercane (S. bicolor subsp. drummondii). The introduction of traits from cultivated sorghum… (more)

Schmidt, Jared J

2011-01-01T23:59:59.000Z

356

Hybrid and Hierarchical Composite Materials  

Science Conference Proceedings (OSTI)

Chang Soo Kim, University of Wisconsin -Milwaukee. Scope, Hybrid and hierarchical composite materials have several advantageous characteristics that  ...

357

The Effect of Nonlinearity in Hybrid KMC-Continuum models  

E-Print Network (OSTI)

Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic tha...

Balter, Ariel; Tartakovsky, Alexandre M

2011-01-01T23:59:59.000Z

358

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

359

SolarHybrid AG | Open Energy Information  

Open Energy Info (EERE)

SolarHybrid AG Jump to: navigation, search Name SolarHybrid AG Place Germany Sector Solar Product Germany-based solar thermal hybrid product manufacturer References SolarHybrid...

360

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Tariff Rates FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY 2011 Rates and Rate Schedules FY 2010 Rates and Rate Schedules FY...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

362

Hybrids for Photovoltaics - Programmaster.org  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Photovoltaics Program Organizers: Andrei Jitianu, Lehman College, City University of ...

363

Hybrids for Batteries and Fuel Cells  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Batteries and Fuel Cells Program Organizers: Andrei Jitianu, Lehman College, City ...

364

Can a Hybrid Save Me Money?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can a Hybrid Save Me Money? Can a Hybrid Save Me Money? Step 1: Show me a hybrid. I want to compare... 2013 Acura ILX Hybrid 2013 Acura ILX Hybrid Tech Pkg 2014 Buick LaCrosse eAssist 2013 Cadillac Escalade Hybrid 2WD 2013 Cadillac Escalade Hybrid 4WD 2013 Chevrolet Malibu Eco 2SA 2013 Ford Fusion Hybrid 2013 Ford Fusion Hybrid Titanium 2013 GMC Yukon Denali Hybrid 2WD 2013 GMC Yukon Denali Hybrid 4WD 2013 Honda Insight 2013 Honda Civic Hybrid 2013 Honda Civic Hybrid w/ Nav 2013 Hyundai Sonata Hybrid 2013 Hyundai Sonata Hybrid Limited 2013 Infiniti M35h 2014 Infiniti Q50 Hybrid Premium 2014 Infiniti Q50 Hybrid Premium AWD 2013 Kia Optima Hybrid 2013 Lexus ES 300h 2013 Lexus GS 450h 2013 Lincoln MKZ Hybrid 2013 Toyota Avalon Hybrid XLE Touring 2013 Toyota Avalon Hybrid Limited 2014 Toyota Camry Hybrid LE 2014 Toyota Camry Hybrid XLE 2013 Toyota Highlander Hybrid 4WD 2013 Toyota Prius c One 2013 Toyota Prius Two

365

Full Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

highlighted Stop/Start button banner graphic: blue bar highlighted Stop/Start button banner graphic: blue bar subbanner graphic: gray bar Overview Button highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some driving conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection.

366

Pulsed hybrid field emitter  

DOE Patents (OSTI)

A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

Sampayan, S.E.

1998-03-03T23:59:59.000Z

367

Pulsed hybrid field emitter  

SciTech Connect

A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

Sampayan, Stephen E. (Manteca, CA)

1998-01-01T23:59:59.000Z

368

Full Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some driving conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection.

369

Hybrid electroluminescent devices  

DOE Patents (OSTI)

A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

Shiang, Joseph John (Niskayuna, NY); Duggal, Anil Raj (Niskayuna, NY); Michael, Joseph Darryl (Schenectady, NY)

2010-08-03T23:59:59.000Z

370

Mirror hybrid reactors  

SciTech Connect

The fusion-fission hybrid is a combination of the fusion and fission processes, having features which are complementary. Fission energy is running out of readily available fuel, and fusion has extra neutrons which can be used to breed that fission fuel. Fusion would have to take on an extra burden of radioactivity, but this early application would give fusion, which does not work well enough now to make power, practical experience which may accelerate development of pure fusion.

Moir, R.W.

1978-09-11T23:59:59.000Z

371

Hybrid2: The hybrid power system simulation model  

DOE Green Energy (OSTI)

There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids (including wind turbines, PV, diesel generators, AC/DC energy storage) as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, NREL and U. Mass. researchers developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed.

Baring-Gould, E I; Green, H J; van Dijk, V A.P. [National Renewable Energy Lab., Golden, CO (United States); Manwell, J F [Massachusetts Univ., Amherst, MA (United States). Renewable Energy Research Lab.

1996-07-01T23:59:59.000Z

372

INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION  

DOE Green Energy (OSTI)

Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy costs, (2) lower building peak electric load, (3) increase energy efficiency, and (4) provide standby power. This new hybrid product is designed to allow the engine to generate electricity or drive the chiller's compressor, based on the market price and conditions of the available energy sources. Building owners can minimize cooling costs by operating with natural gas or electricity, depending on time of day energy rates. In the event of a backout, the building owner could either operate the product as a synchronous generator set, thus providing standby power, or continue to operate a chiller to provide air conditioning with support of a small generator set to cover the chiller's electric auxiliary requirements. The ability to utilize the same piece of equipment as a hybrid gas/electric chiller or a standby generator greatly enhances its economic attractiveness and would substantially expand the opportunities for high efficiency cooling products.

Todd Kollross; Mike Connolly

2004-06-30T23:59:59.000Z

373

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

and compared emissions and energy usages. HEVs were found toforecasting emission and energy usages. Time frames play ansimilar emission and energy usage as current ICV operation.

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

374

Solar thermal electric hybridization issues  

DOE Green Energy (OSTI)

Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.

Williams, T A; Bohn, M S; Price, H W

1994-10-01T23:59:59.000Z

375

Picosecond to Nanosecond Measurements at High Repetition Rate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Picosecond to Nanosecond Measurements at High Repetition Rate Since FY2012, SSRL is now scheduling three to four three-day periods each year dedicated to running SPEAR3 in hybrid...

376

Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.  

DOE Green Energy (OSTI)

Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

2009-03-31T23:59:59.000Z

377

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Letter - Preliminary Review of Drought Adder Component for 2011 Firm Power Rates 2010 Rates and Rate Schedule - Current * 2009 Rates and Rate Schedule 2008 Rates and...

378

Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid geothermal heat pump systems offer many of the benefits of full geothermal systems but at lower installed costs. A hybrid geothermal system combines elements of a conventional water loop heat pump system in order to reduce the geothermal loop heat exchanger costs, which are probably the largest cost element of a geothermal system. These hybrid systems have been used successfully where sufficient ground space to install large heat exchangers for full geothermal options was unavailable, or where the...

2009-12-21T23:59:59.000Z

379

Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods  

Science Conference Proceedings (OSTI)

This paper proposes a novel hybrid learning algorithm with stable learning laws for Adaptive Network based Fuzzy Inference System (ANFIS) as a system identifier and studies the stability of this algorithm. The new hybrid learning algorithm is based on ... Keywords: ANFIS, Fuzzy neural networks, Fuzzy systems, Gradient based, Hybrid learning algorithm, Identification, Intelligent optimization, Learning rate, Lyapunov theory, Recursive least square and particle swarm optimization, Stability analysis

Mahdi Aliyari Shoorehdeli; Mohammad Teshnehlab; Ali Khaki Sedigh; M. Ahmadieh Khanesar

2009-03-01T23:59:59.000Z

380

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

382

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

383

Hybrid vehicle potential assessment. Volume 7. Hybrid vehicle review  

DOE Green Energy (OSTI)

Review of hybrid vehicles (HVs) built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes on-road hybrid passenger cars, trucks, vans, and buses.

Leschly, K.O.

1979-09-30T23:59:59.000Z

384

Hybrid solar lighting distribution systems and components  

Science Conference Proceedings (OSTI)

A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

2011-07-05T23:59:59.000Z

385

Hybrid solar lighting systems and components  

DOE Patents (OSTI)

A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

Muhs, Jeffrey D. (Lenoir City, TN); Earl, Dennis D. (Knoxville, TN); Beshears, David L. (Knoxville, TN); Maxey, Lonnie C. (Powell, TN); Jordan, John K. (Oak Ridge, TN); Lind, Randall F. (Lenoir City, TN)

2007-06-12T23:59:59.000Z

386

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

387

Conceptual innovations in hybrid reactors  

SciTech Connect

A number of innovations in the conception of fusion-fission hybrid reactors, including the blanket, the fusion driver, the coupling of the fusion and the fission components as well as the application of hybrid reactors are described, and their feasibility assessed.

Greenspan, E.; Miley, G.H.

1980-01-01T23:59:59.000Z

388

Take Notes from Corn Hybrid Plots  

E-Print Network (OSTI)

Corn harvest is slow to get going this year, with only 5 % of the state’s crop reported harvested as of 24 Sep (USDA-NASS, 25 Sep 2006). The causes of the slow start to harvest are slower than normal maturation of the grain (Fig 1), cool temperatures (slower grain drying), and muddy field conditions due to the continuing pattern of frequent rains. The slow pace of corn harvest coupled with the poor stalk quality in some fields (Nielsen, 2006) reminds us how spoiled we were with generally good harvest conditions of the past two seasons. But, that is not the point of this article. Fig. 1. Percent of Indiana’s corn crop that is rated “mature and safe from frost”, as of 24 Sep 2006. Data source: USDA-NASS. If rainy weather and soggy field conditions are keeping you from your own harvest, spend some of your down time to walk or re-walk neighborhood on-farm hybrid plots before they are harvested. Many of these trials are still “signed ” so that you can identify © 2006, Purdue UnivRL (Bob) Nielsen Page 2 9/27/2006 the seed company and their hybrid numbers. Record notes on hybrid characteristics such as ear height, ear size, completeness of kernel set, husk coverage, standability, and

R. L. (bob Nielsen

2006-01-01T23:59:59.000Z

389

Hybrid Canola Seed Production Harvest Management Study  

E-Print Network (OSTI)

INTRODUCTION The long cool growing season and isolation from commercial canola fields makes the Maritimes a suitable region for hybrid canola seed production. From 1996 to1999, commercial scale production has shown that, in the Maritimes, high yields of hybrid seed can be economically produced and that seed quality parameters, including germination, purity, hybridity and seed size met or exceeded expectations (Walker, personal communication). However low seed vigor of N.B. grown seed rated as low as 15 % compared to Western Canada standards which are normally above 85%. Both germination and vigor were reduced as days in the swath increased; in seed lots left more than 10 days in the swath, germination dropped by about 0.4 % per day while vigor decreased by about 1.1% per day (Atlin et al., 2000). It is reasonable to believe that the poor drying conditions of this region will require new harvesting techniques. The objectives of this study were to determine the effects of three

Agri-food Canada; Agroalimentaire Canada; Senator Hervé; J. Michaud; Serge Leblanc Jean-Pierre; Serge Leblanc; Jean-pierre Privé; Jean-pierre Privé; Dave Walker; Dave Walker; Pam S; Pam S; Anthony Smith; Anthony Smith

2001-01-01T23:59:59.000Z

390

Hybrids Plus | Open Energy Information  

Open Energy Info (EERE)

Hybrids Plus Hybrids Plus Jump to: navigation, search Name Hybrids Plus Address 3245 Prarie Ave Place Boulder, Colorado Zip 80301 Sector Vehicles Product Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website http://www.eetrex.com/ Coordinates 40.022143°, -105.250981° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.022143,"lon":-105.250981,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Self-assembly of LiFePO4 nanodendrites in a novel system of ethylene glycolwater  

E-Print Network (OSTI)

-ion batteries in electrical vehicles (EVs) and hybrid electric vehicles (HEVs) that demand both fast charging Science and Technology Nanjing 210044, P.R. China a r t i c l e i n f o Article history: Received 24 March to its intrinsic low electrical conductivity and limited Li ion diffusion rate [2,3,5­7]. Its electrical

Endres. William J.

392

Issue 5: High Interest in Hybrid Cars  

E-Print Network (OSTI)

2005). “High Interest in Hybrid Cars. ” SCS Fact Sheet, Vol.May 2005 High Interest in Hybrid Cars I NTRODUCTION PublicThe unique features of a hybrid car mean that it is more

Ong, Paul M.; Haselhoff, Kim

2005-01-01T23:59:59.000Z

393

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

secrets, but the price of hybrid cars and trucks are betweenCosts of hybrid vehicles Depending on whether a car companydiesel-hybrid prototypes that attained 70 MPG (Green Car

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

394

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

395

Hybrid powertrain controller  

DOE Patents (OSTI)

A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

Jankovic, Miroslava (Birmingham, MI); Powell, Barry Kay (Belleville, MI)

2000-12-26T23:59:59.000Z

396

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Loveland Area Project Firm Power Rates Transmission and Ancillary Services Rates 2012 Rate Adjustment-Transmission and Ancillary Services 2010 Rate Adjustment-Firm Power 2009...

397

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Consolidated Rate Schedules FY 2014 Rates BCP Annual Rate Process Central Arizona Project Transmission Rate Process DSW Multiple System Transmission...

398

Hybrid checkpointing using emerging nonvolatile memories for future exascale systems  

Science Conference Proceedings (OSTI)

The scalability of future Massively Parallel Processing (MPP) systems is being severely challenged by high failure rates. Current centralized Hard Disk Drive (HDD) checkpointing results in overhead of 25% or more at petascale. Since systems become ... Keywords: Checkpoint, background checkpoint, checkpoint prototype, exascale, hybrid checkpoint, in-disk checkpoint, in-memory checkpoint, incremental checkpoint, optimum checkpoint model, petascale, phase-change memory

Xiangyu Dong; Yuan Xie; Naveen Muralimanohar; Norman P. Jouppi

2011-07-01T23:59:59.000Z

399

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

400

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

Phadke, Amol

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Vehicle Testing Activity: Chevrolet Silverado Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Silverado Hybrid Electric Vehicle Accelerated Reliability Testing - April 2009 to someone by E-mail Share Advanced Vehicle Testing Activity: Chevrolet Silverado Hybrid...

402

Calibration of Hygrometers with the Hybrid Humidity ...  

Science Conference Proceedings (OSTI)

... Hybrid Humidity Generator ... The HHG combines the two-pressure and divided-flow humidity generation techniques (hence the name “hybrid”). ...

2012-05-22T23:59:59.000Z

403

Hybrid Car Calculator | Open Energy Information  

Open Energy Info (EERE)

Hybrid Car Calculator Jump to: navigation, search Tool Summary Name: Hybrid Car Calculator AgencyCompany Organization: New American Dream Phase: "Evaluate Options and Determine...

404

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report LBNL Report Number LBNL-1248E Year of Publication 2008 Authors...

405

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report Year of Publication 2008 Authors Phadke, Amol, Charles A....

406

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

407

2010 Hyundai LPI Hybrid Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai LPI Hybrid Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Alternative Fuel Hybrid...

408

Development of a Novel Air Hybrid Engine.  

E-Print Network (OSTI)

??An air hybrid vehicle is an alternative to the electric hybrid vehicle that stores the kinetic energy of the vehicle during braking in the form… (more)

Fazeli, Amir

2011-01-01T23:59:59.000Z

409

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Fusion Hybrid Electric Vehicle Accelerated Testing - May 2012 Two model year 2010 Ford Fusion hybrid electric vehicles (HEVs) entered Accelerated testing during August 2009 in...

410

Microsoft Word - Mindy - writeup Nissan Altima AR Testing.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Nissan Altima Hybrid Electric Vehicle Accelerated Testing - October 2009 Two model year 2007 Nissan Altima hybrid electric vehicles (HEVs) entered Accelerated testing during...

411

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Silverado Hybrid Electric Vehicle Accelerated Testing - April 2009 Two model year 2004 Chevrolet Silverado hybrid electric vehicles (HEVs) entered Accelerated testing during...

412

An Updated Anual Energy Outlook 2009 Reference Case  

U.S. Energy Information Administration (EIA)

Plug-in Hybrid and Electric Vehicle Tax Credits ARRA contains several changes to the plug-in hybrid electric vehicle (P HEV) t ax credit

413

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Accord Hybrid Electric Vehicle Accelerated Testing - April 2008 Two Honda Accord hybrid electric vehicles (HEVs) entered Accelerated testing during January 2005 in a fleet in...

414

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Camry Hybrid Electric Vehicle Accelerated Testing - January 2009 Two model year 2007 Toyota Camry hybrid electric vehicles (HEVs) entered Accelerated testing during July 2006 in a...

415

Microsoft Word - EVS24 rev3.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion...

416

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlander Hybrid Electric Vehicle Accelerated Testing - January 2009 Two Toyota Highlander all-wheel drive hybrid electric vehicles (HEVs) entered Accelerated testing in a fleet...

417

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Civic Hybrid Electric Vehicle Accelerated Testing - January 2009 Two model year 2006 (Gen II) Honda Civic hybrid electric vehicles (HEVs) entered Accelerated testing during...

418

Microsoft Word - Mindy - writeup Saturn Vue AR Testing.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Saturn Vue Hybrid Electric Vehicle Accelerated Testing - April 2010 Two model year 2007 Saturn Vue hybrid electric vehicles (HEVs) entered Accelerated testing during November 2006...

419

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

* Comparison of Internal combustion engine (ICE), hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies electric (BEV)...

420

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicle Accelerated Testing - July 2008 One front-wheel drive and one 4-wheel drive Ford Escape hybrid electric vehicles (HEV) entered Accelerated testing during...

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicle Accelerated Testing (Model Year 2004) - October 2007 Two (Model Year 2004) Toyota Prius hybrid electric vehicles (HEVs) entered accelerated testing in a...

422

Microsoft Word - Mindy - writeup Chevrolet Tahoe AR Testing.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Tahoe Hybrid Electric Vehicle Accelerated Testing - September 2010 Two model year 2008 Chevrolet Tahoe hybrid electric vehicles (HEVs) entered Accelerated testing during...

423

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

* Comparison of Internal combustion engine (ICE), hybrid electric (HEV), plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies * Grid connected...

424

A8: Effect of Doping in Ti4Ni4Si7 Matrix Confining Nano-Si for ...  

Science Conference Proceedings (OSTI)

... to meet the demands of industries that is likely apply LIB to electric vehicles ( EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV).

425

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

426

Thirty-Six Month Evaluation of UPS Diesel Hybrid-Electric Delivery Vans  

DOE Green Energy (OSTI)

This evaluation compared six hybrids and six standard diesels in UPS facilities in Phoenix, Arizona. Dispatch and maintenance practices are the same at both facilities. GPS logging, fueling, and maintenance records are used to evaluate the performance of these step delivery vans. The hybrids' average monthly mileage rate was 18% less than the diesel vans. The hybrids consistently were driven a fewer number of miles throughout the evaluation period. The hybrids idled more and operating at slower speeds than the diesels, and the diesels spent slightly more time operating at greater speeds, accounting for much of the hybrids fewer monthly miles. The average fuel economy for the hybrid vans is 13.0 mpg, 23% greater than the diesel vans 10.6 mpg. Total hybrid maintenance cost/mile of $0.141 was 9% more than the $0.130 for the diesel vans. Propulsion-related maintenance cost/mile of $0.037 for the hybrid vans was 25% more than the $0.029 for the diesel vans. Neither difference was found to be statistically significant. The hybrid group had a cumulative average of 96.3% uptime, less than the diesel group's 99.0% uptime. The hybrids experienced troubleshooting and recalibration issues related to prototype components that were primarily responsible for the lower uptime figures.

Lammert, M.; Walkowicz, K.

2012-03-01T23:59:59.000Z

427

Hybrid lighting: Illuminating our future  

SciTech Connect

Hybrid lighting is a combination of natural and artificial illumination to be used indoors for all lighting needs. Ideally, hybrid lighting is effectively indistinguishable from standard artificial lighting except in quality and cost, where it will likely be an improvement. Hybrid lighting systems are produced by a combination of four technologies: collecting natural light, generating artificial light, transporting and distributing light to where it is needed, and controlling the amounts of both natural and artificial light continuously during usage. Lighting demands a large fraction of our energy needs. If we can control or decrease this demand, we are able to accommodate societal growth without energy demand growth.

Cates, M.R.

1996-12-31T23:59:59.000Z

428

Hybrid Vehicle Program. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

429

Rates & Repayment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

430

Hybrid Fiber Optics  

SciTech Connect

Instruments and devices based on optical fiber were originally simple and passive. That has changed. A variety of devices uses optical fiber for sensing, communications and various optoelectronic functions. This paper discusses the creation of a hybrid optical fiber that incorporates not just the light transmission function but other types of materials and new multiple fiber arrangements. Recent experiences with a fiber draw tower reveal new possibilities for achieving multifunctional devices able to perform diverse instrumentation sensing applications. This is achievable even with feature sizes, when desired, on the nanoscale. For instance, fiber comprised of one or more light guides and one or more electrically conducting wires is feasible. This combination of optical fiber and metal wire may be termed a wiber . The wiber could determine temperature and proximity to surfaces, detect radio-frequency radiation, and provide electrical power. At the same time, a wiber would have the capability to simultaneously transmit light where the light is utilized to sense temperature and proximity and give illumination. There are many possible uses--depending on design and configuration--cutting across many technologies and programs.

Allison, Stephen W [ORNL; Simpson, John T [ORNL; Gillies, George [ORNL

2010-01-01T23:59:59.000Z

431

Full Hybrid: Starting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

highlighted Low Speed button Cruising button Passing button Braking button Stopped button highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Battery (highlighted): The battery stores energy generated from the gasoline engine or, during regenerative braking, from the electric motor. Since the battery powers the vehicle at low speeds, it is larger and holds much more energy than batteries used to start conventional vehicles. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an intersection.

432

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

2000-12-01T23:59:59.000Z

433

Plug-In Hybrid Electric Vehicle Penetration Scenarios  

DOE Green Energy (OSTI)

This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

Balducci, Patrick J.

2008-04-03T23:59:59.000Z

434

Physics Out Loud - Hybrid Meson  

NLE Websites -- All DOE Office Websites (Extended Search)

Hadron Previous Video (Hadron) Physics Out Loud Main Index Next Video (Laser) Laser Hybrid Meson We're well on our way in exploring how the strong force glues the nucleus together....

435

Global optimization of hybrid systems  

E-Print Network (OSTI)

Systems that exhibit both discrete state and continuous state dynamics are called hybrid systems. In most nontrivial cases, these two aspects of system behavior interact to such a significant extent that they cannot be ...

Lee, Cha Kun

2006-01-01T23:59:59.000Z

436

Hybrid Fuel Cell Technology Overview  

SciTech Connect

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

437

NIST 'Hybrid Metrology' Method Could Improve Computer ...  

Science Conference Proceedings (OSTI)

NIST 'Hybrid Metrology' Method Could Improve Computer Chips. From NIST Tech Beat: September 5, 2012. ...

2012-09-06T23:59:59.000Z

438

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

VIN # 1N4CL21E87C172351 Date Mileage Description Cost 10/22/2007 3,658 Changed oil $36.39 11/14/2007 7,562 Changed oil $36.39 12/4/2007 12,008 Changed oil $36.41 1/3/2008 15,418 Changed oil $42.31 1/24/2008 19,057 Changed oil $27.60 1/29/2008 19,109 Replaced one tire $82.13 3/4/2008 24,662 Changed oil and filter $35.84 4/8/2008 32,703 Changed oil and filter $27.85 4/30/2008 37,495 Changed oil and filter $27.91 5/21/2008 40,655 Replaced and balanced four tires $258.41 5/29/2008 44,833 Changed oil and filter $27.91 7/2/2008 53,778 Changed oil and filter $27.91 8/4/2008 62,686 Changed oil and filter, replaced air filter and cabin air filter, replaced coolant, and rotated tires $246.04 8/22/2008 66,967 Changed oil and filled windshield washer $41.30

439

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Ford Escape 2WD 5 Ford Escape 2WD VIN # 1FMYU95H75KC45881 Date Mileage Description Cost 5/25/2005 6,707 Changed oil (5W20 synthetic) and purchased oil for three oil changes $105.47 7/15/2005 17,236 15K service $438.65 8/17/2005 22,221 Changed oil and rotated tires $27.44 9/26/2005 27,425 Changed oil and rotated tires $28.20 11/8/2005 32,703 30K service $211.63 11/25/2005 33,560 Repaired tire $20.00 1/12/2006 42,632 45K service (included: tire balancing, replacing fuel filter and replacing cabin filter) $274.16 3/8/2006 52,141 Changed oil and rotated tires $31.56 4/19/2006 59,883 60K service $317.80 4/19/2006 59,883 HV traction battery connection failed $262.50 5/17/2006 64,641 Changed oil and rotated tires $34.73 6/5/2006 66,059 Recall for absorbing materials being insufficient above forward corner of the interior headliner no charge

440

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Lexus RX400h Lexus RX400h VIN # JTJHW31U160002575 Date Mileage Description Cost 7/27/2005 5,159 Changed oil no charge 10/5/2005 10,375 10K service $212.23 1/4/2006 15,835 Changed oil and rotated tires $18.21 4/11/2006 21,752 Changed oil and rotated tires $18.69 8/16/2006 26,957 Changed oil and rotated tires $18.69 9/7/2006 27,641 Replaced power switch on rear door Warranty 11/20/2006 29,275 13 trouble codes with install of data box - replaced auxiliary battery Warranty 12/13/2006 32,283 Changed oil and rotated tires $23.18 1/4/2007 36,620 Changed oil $32.38 1/26/2007 41,491 changed oil and replaced filter $55.78 2/19/2007 45,948 Changed oil $40.47 3/29/2007 57,021 Changed oil $31.78 4/20/2007 61,238 Changed oil $35.92 5/11/2007 66,417 Changed oil $33.28

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Activity Maintenance Sheet for 2007 Saturn Vue VIN # 5GZCZ33Z07S838122 Date Mileage Description Cost 12/8/2006 5,055 Changed oil $33.95 1/9/2007 12,509 Changed oil $25.88 2/8/2007 17,916 Changed oil $42.78 2/15/2007 19,841 Installed Lojack antitheft system $625.00 4/17/2007 30,124 Changed oil $42.36 6/19/2007 45,307 Changed oil $40.70 6/20/2007 45,695 Replaced two tires $257.46 7/10/2007 50,522 Changed oil $38.94 8/15/2007 55,654 Changed oil $32.85 9/3/2007 Vehicle involved in motor vehicle accident - deer hit car windshield and car was under repair 9/12/2007 60,395 Changed oil and replaced air filter $73.48 10/4/2007 65,226 Changed oil and replaced oil filter $37.16 10/19/2007 65,278 Transaxle service and replaced faulty AC compressor $1,056.62 (paid deductible) $100.00

442

HEV Fleet Testing - Honda Insight - Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

12262001 22,768 Replace front tires. Original equipment tires ordered by Discount Tire Company 141.59 1262002 27,426 Change oil 21.97 542002 32,853 Change oil 35.96 ...

443

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

15,288 15K service 236.58 11132006 22,611 Changed oil 31.14 2162007 31,126 Changed oil, replaced filter, and changed transmission fluid 179.90 3122007 37,111 Safety...

444

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

charging systems, and balanced and installed one tire 245.02 7182009 76,011 Changed oil and filter, replaced left motor mount and front shocks 637.33 7302009 85,718...

445

HEV Fleet Testing - 2002 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

27.62 8212002 31,897 Check Engine Light on, dealer found an open circuit and broken wire due to manufacturer defect in wire harness of vacuum NC 932002 33,432 Changed oil,...

446

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

18R207400 Date Mileage Description Cost 7312008 7,363 Changed oil and filter and rotated tires 20.30 8222008 Purchased spare tire 362.43 10142008 22,316 Changed oil and...

447

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Saturn Vue VIN 5GZCZ33Z37S813344 Date Mileage Description Cost 5162007 5,172 Changed oil and rotated tires 35.22 6212007 7,200 Passenger side window was shattered in...

448

HEV Fleet Testing Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

VIN 1N4CL21E27C177982 Date Mileage Description Cost 1312008 4,856 Changed oil 25.45 2182008 9,817 Changed oil 35.84 482008 18,289 Changed oil and filter 27.85 5272008...

449

HEV Fleet Testing - Honda Insight - Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

35.96 672002 44,130 Four wheel brake service 177.78 8202002 53,249 Replace 12 volt accessory battery 70.00 11152002 58,228 60,000 mile service and replace 2 tires...

450

HEV Fleet Testing - 2002 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

mileage objectives. Mileage accumulated in highwa travel was less than 20% of the total miles driven. Major Operations & Maintenance Events: None Operating Cost: Purchase Cost:...

451

HEV Fleet Testing - 2002 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

mileage objectives. Mileage accumulated in highway travel was less than 20% of the total miles driven. Major Operations & Maintenance Events: Rack and pinion replaced @ 25,000 and...

452

HEV Fleet Testing - 2002 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

tires 30.31 7211999 83,542 Changed oil, rotated tires 30.31 871999 87,138 Inverter cooling malfunction the inverter overheated due to external temperature NC 8191999...

453

HEV Information Needs Study - Summary of Results  

NLE Websites -- All DOE Office Websites (Extended Search)

not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors...

454

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

1) HEV to PHEV Conversions Toyota Priuses were purchased anddisplays based on the stock Toyota Prius Energy Monitor andin the 2007 and 2008 model Toyota Priuses converted to PHEVs

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

455

Design of isolated renewable hybrid power systems  

Science Conference Proceedings (OSTI)

Isolated electrical power generating units can be used as an economically viable alternative to electrify remote villages where grid extension is not feasible. One of the options for building isolated power systems is by hybridizing renewable power sources like wind, solar, micro-hydro, etc. along with appropriate energy storage. A method to optimally size and to evaluate the cost of energy produced by a renewable hybrid system is proposed in this paper. The proposed method, which is based on the design space approach, can be used to determine the conditions for which hybridization of the system is cost effective. The simple and novel methodology, proposed in this paper, is based on the principles of process integration. It finds the minimum battery capacity when the availability and ratings of various renewable resources as well as load demand are known. The battery sizing methodology is used to determine the sizing curve and thereby the feasible design space for the entire system. Chance constrained programming approach is used to account for the stochastic nature of the renewable energy resources and to arrive at the design space. The optimal system configuration in the entire design space is selected based on the lowest cost of energy, subject to a specified reliability criterion. The effects of variation of the specified system reliability and the coefficient of correlation between renewable sources on the design space, as well as the optimum configuration are also studied in this paper. The proposed method is demonstrated by designing an isolated power system for an Indian village utilizing wind-solar photovoltaic-battery system. (author)

Sreeraj, E.S.; Chatterjee, Kishore [Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Bandyopadhyay, Santanu [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

2010-07-15T23:59:59.000Z

456

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of veh

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

457

Flavorful hybrid anomaly-gravity mediation  

SciTech Connect

We consider supersymmetric models where anomaly and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of anomaly mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of anomaly mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing energy at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.

Gross, Christian; Hiller, Gudrun [Institut fuer Physik, Technische Universitaet Dortmund, D-44221 Dortmund (Germany)

2011-05-01T23:59:59.000Z

458

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

459

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

460

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

462

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

463

Requirements Specifications For Hybrid Systems  

E-Print Network (OSTI)

this paper is to present a formal framework for representing and reasoning about the requirements of hybrid systems. As background, the paper briefly reviews an abstract model for specifying system and software requirements, called the Four Variable Model [12], and a related requirements method, called SCR (Software Cost Reduction) [10, 1]. The paper then introduces a special discrete version of the Four Variable Model, the SCR requirements model [8] and proposes an extension of the SCR model for specifying and reasoning about hybrid systems. 2 Background

Constance Heitmeyer

1996-01-01T23:59:59.000Z

464

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

The parallel hybrid passenger car (VW Golf) combined an EDLCpassenger cars using the ultracapacitors in micro-hybrid,passenger car using both carbon/carbon and hybrid carbon

Burke, Andy

2009-01-01T23:59:59.000Z

465

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

466

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

467

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and impacts of hybrid electric vehicle options for compactof plug-in hybrid electric vehicles, vol. 1: nationwideimpacts of hybrid electric vehicle options. Report #1000349,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

468

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

469

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

470

Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I  

E-Print Network (OSTI)

Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

Gris, Arturo E.

1991-01-01T23:59:59.000Z

471

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

472

Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I  

E-Print Network (OSTI)

of Potential Hybrid Electric Vehicle Applications Volume IOF POTENTIAL HYBRID ELECTRIC VEHICLE APPLICATIONS VOLUME IVIII International Electric Vehicle Symposium, "The Hybrid

Gris, Arturo E.

1991-01-01T23:59:59.000Z

473

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

474

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

capacitors fuel-cell hybrid electric vehicle optimizationsize for fuel cell hybrid electric vehicle-Part I, Journalbeen developed for hybrid electric vehicles with an internal

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

475

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

simulations of hybrid and electric vehicles Simulation ofand Application in Hybrid and Electric Vehicles Andrew Burkemarketing of hybrid and electric vehicles of various types

Burke, Andy

2009-01-01T23:59:59.000Z

476

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

477

1997 hybrid electric vehicle specifications  

DOE Green Energy (OSTI)

The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

Sluder, S.; Larsen, R.; Duoba, M.

1996-10-01T23:59:59.000Z

478

Hybrid free electron laser devices  

Science Conference Proceedings (OSTI)

We consider hybrid free electron laser devices consisting of Cerenkov and undulator sections. We will show that they can in principle be used as segmented devices and also show the possibility of exploiting Cerenkov devices for the generation of nonlinear harmonic coherent power. We discuss both oscillator and amplifier schemes.

Asgekar, Vivek; Dattoli, G. [Department of Physics, University of Pune, Pune 411007 (India); ENEA, Unita Tecnico Scientifica Technologie Fisiche, Avanzate, Centro Ricerche Frascati, C.P. 65-00044 Frascati, Rome (Italy)

2007-03-15T23:59:59.000Z

479

Are hybrid cars too quiet?  

Science Conference Proceedings (OSTI)

The increase in availability of alternative fuel vehicles has elicited concerns for pedestrians who might not hear the approach of these quieter cars. Three experiments tested the relative audibility of hybrid vehicles (in their electric mode) and internal combustion engine (ICE) cars. Binaural recordings were made of the cars approaching from either the right or left

2009-01-01T23:59:59.000Z

480

Hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

Electrical energy is a high quality form of energy that can be easily converted to other forms of energy with high efficiency and, even more importantly, it can be used to control lower grades of energy quality with ease. However, building a cost-effective ... Keywords: charge, electrical storage, energy, energy storage, hybrid storage, management

Massoud Pedram; Naehyuck Chang; Younghyun Kim; Yanzhi Wang

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "rating hev hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

482

Dynamic programming for hybrid pneumatic vehicles  

Science Conference Proceedings (OSTI)

Pneumatic hybridization of internal combustion engines may prove to be a viable and cost-efficient alternative to electric hybridization. This paper investigates the fuel consumption reduction that is possible with this rather new concept in combination ...

Christian Dönitz; Iulian Vasile; Christopher Onder; Lino Guzzella

2009-06-01T23:59:59.000Z

483

Issue 5: High Interest in Hybrid Cars  

E-Print Network (OSTI)

Survey of Oregon Hybrid Gas-Electric Car Owners. July. U.S.of a qualifying gas-electric car, but because this is aor leasing a hybrid car (gas-electric)” (Baldassare, 2004).

Ong, Paul M.; Haselhoff, Kim

2005-01-01T23:59:59.000Z

484

Hybrid vehicle-centric route guidance  

E-Print Network (OSTI)

This thesis proposes a hybrid route guidance system in which predictive guidance is generated in a centralized layer and revised in a reactive, decentralized layer that resides on-board the vehicle. This hybrid approach ...

Farver, Jennifer M. (Jennifer Margaret), 1976-

2005-01-01T23:59:59.000Z

485

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

486

Axisymmetric Magnetic Mirror Fusion-Fission Hybrid  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

R. W. Moir; N. N. Martovetsky; A. W. Molvik; D. D. Ryutov; T. C. Simonen

487

SYNTHESIS AND CHARACTERIZATION OF A HYBRID BIO ...  

Science Conference Proceedings (OSTI)

Synthesis and characterization of A Hybrid bio/synthetic biomimetic aggrecan Macromolecule for the treatment of Low Back Pain. ...

488

Development of Hybrid Supercapacitors for Portable Power ...  

Science Conference Proceedings (OSTI)

Examples of integrated devices built using Battelle's hybrid supercapacitor materials are presented and work ... Energy Storage for Advanced Electric Vehicles.

489

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

hybrid combined cycle power plant natural gas combined cyclePower Plants study, Volume 1: Bituminous Coal and Natural Gas

Phadke, Amol

2008-01-01T23:59:59.000Z

490

The Hybrid Automobile and the Atkinson Cycle  

Science Conference Proceedings (OSTI)

The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle instead of the Otto cycle; and what are the advantages and disadvantages of the hybrid automobile. This is a follow-up to my two previous papers on the physics of automobile engines.1

Bernard J. Feldman

2008-01-01T23:59:59.000Z

491

Hybrid Controller for Multiple Energy Storage Devices ...  

Summary. A new hybrid energy storage controller developed by researchers at Pacific Northwest National Laboratory is designed for a centralized ...

492

Hybrid Organic: Inorganic Materials for Alternative Energy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Hybrid Organic: Inorganic Materials for Alternative Energy. Sponsorship.

493

Advanced titania nanostructures and composites for lithium ion battery  

E-Print Network (OSTI)

in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and other electric utilities gen- eration of energy storage technologies applied in hybrid electric vehicles (HEVs) [2], plug-in hybrid electric vehicles (PHEVs) [3, 4], and storage systems for renew- able and intermittent energy

Guo, John Zhanhu

494

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

LBNL-1248E Advanced Coal Wind Hybrid: Economic Analysis Principal Authors Amol Phadke1 , Charles;Advanced Coal Wind Hybrid: Economic Analysis ii LBNL-1248E Advanced Coal Wind Hybrid: Economic Analysis and Analysis of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. #12;#12;Advanced Coal

495

Excitation of fast waves by slow waves near the lower-hybrid frequency  

SciTech Connect

Resonant and non-resonant decays of short wavelength lower