Sample records for rates homes based

  1. Home energy rating systems: Program descriptions

    SciTech Connect (OSTI)

    Vine, E.; Barnes, B.K.; Ritschard, R.

    1987-02-01T23:59:59.000Z

    This report contains the descriptions of home energy rating and labelling programs (HERS) that were surveyed in January 1986 as part of a national evaluation of HERS.

  2. Home Energy Ratings and Building Performance 

    E-Print Network [OSTI]

    Gardner, J.C.

    2008-01-01T23:59:59.000Z

    an accepted method to determine home efficiency based on standards developed and overseen by the Residential Energy Services Network (RESNET), a not-for-profit corporation. The paper will discuss the effect of various building systems and effects of local...

  3. Implementation of home energy rating systems

    SciTech Connect (OSTI)

    Vine, E.; Barnes, B.K.; Ritschard, R.

    1987-02-01T23:59:59.000Z

    This paper presents the findings of a national survey of home energy rating and labelling programs (HERS). We discuss the nature of different implementation problems and the kinds of strategies that have been used to deal with them to ensure the effective penetration of HERS to all HERS-users. Of further special interest to us has been the nature of different delivery systems. We examined 34 HERS, located in 28 states: 13 of these were located in the southeast, 8 in the midwest, 5 in the northeast, 4 in the Pacific/mountain region, and 3 in the southwest. Although our survey does not represent a scientific sampling of HERS, we believe that the final distribution accurately reflects the distribution of HERS through the country and the full range of likely implementation and delivery programs.

  4. Comparison of two different rating programs for sustainable homes

    E-Print Network [OSTI]

    Bjarnadottir, Margret Halla

    2009-01-01T23:59:59.000Z

    This thesis compares two different rating programs for sustainable homes; The Code for Sustainable Homes in the United Kingdom, and LEED for Homes in the United States. The comparison is both in general and with respect ...

  5. Instrumented home energy rating and commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    Potential Benefits of Commissioning California Homes”.Delp. 2000. “Residential Commissioning: A Review of Related2001. “Residential Commissioning to Assess Envelope and HVAC

  6. Financial Choices Home Page (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91,SecurityFinance

  7. Home Energy Ratings and Building Performance

    E-Print Network [OSTI]

    Gardner, J.C.

    climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials...

  8. Home energy ratings systems: Actual usage may vary

    SciTech Connect (OSTI)

    Stein, J.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-09-01T23:59:59.000Z

    Home energy ratings (HERS) attempt to predict typical energy costs for a given residence and estimate the savings potentials of various energy retrofits. This article discusses where the ratings could be improved to more accurately predict the actual energy consumption. Topics covered include the following: is HERS on target (scores, energy predictions, recommended energy improvements); why HERS aren`t perfect; improvements in HERS; the possibility that home energy ratings systems will become market driven. 1 fig., 2 tabs.

  9. The Wisconsin Home Energy Rating System: Final report

    SciTech Connect (OSTI)

    Ebisch, L.

    1986-09-30T23:59:59.000Z

    The Wisconsin Home Energy Rating System (HERS) has been developed by the Department of Industry, Labor, and Human Relations under contract to the Department of Administration, Division of State Energy. The contract is funded by the US Department of Energy. The contract calls for development of a home energy rating system for 1- and 2-family dwellings, or adaptation of an already existing one, for one by the State of Wisconsin. The rating system was to be developed in the form of a simple rating tool which could be distributed for testing through municipal building inspectors. At the time it was distributed, results were to be returned and analyzed for accuracy and ease of use. Computer modeling was to be used to verify accuracy. An Ad Hoc Committee of people involved in the home market, in utilities, and in state government energy conservation agencies was established to advise DILHR and DSE staff on development of the rating system. (See Appendix G for a list of the Ad Hoc Committee members). The Ad Hoc Committee had a number of concerns about how the HERS might affect the real estate market, and whether it was worth doing. Their input helped set the direction the HERS was to aim at, and their advice, from several different angles of the home market, was very helpful to staff. This report will give some background on the process of development of the HERS and the Ad Hoc Committee, and then will give details of the technical development.

  10. electricity rates for military bases | OpenEI Community

    Open Energy Info (EERE)

    electricity rates for military bases Home > Groups > Utility Rate Hi, I was hoping to find rates for military bases, but have been unable to find anything. Are they just charged as...

  11. Evaluation of the implementation of home energy rating systems

    SciTech Connect (OSTI)

    Vine, E.; Barnes, B.K.; Ritschard, R.

    1987-09-01T23:59:59.000Z

    We evaluate the implementation of home energy rating and labelling programs (HERS) that are being conducted around the country. We examine the nature of different implementation problems and the kinds of strategies that have been used to deal with them to ensure the effective penetration of HERS to all HERS users. We use a model of the implementation process that assumes implementation is strongly influenced by the local context, involves two-way communication, and assumes little commonality of purpose among participants, saving a consensus on reaching some sort of decision.

  12. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a...

  13. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for improving the energy efficiency of homes. To qualify, the home must meet the standards of the U.S. Environmental...

  14. Piedmont EMC- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers an incentive to its residential customers for residing in an energy efficient home. To qualify, the home must meet the standards of the US...

  15. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for purchasing or building new energy efficient homes. To qualify the home must meet the standards of the US...

  16. Duke Energy (Electric)- Energy Star Homes Rate Discount Program (South Carolina)

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through its [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a rate...

  17. SoPC based Smart Home Embedded Computer Capable of Caring for the Home Occupants

    E-Print Network [OSTI]

    Khan, Gul N.

    SoPC based Smart Home Embedded Computer Capable of Caring for the Home Occupants G. N. Khan and J. Toronto, Ontario Canada M5B 2K3 Abstract--We present a Smart-Home Embedded Computer (SHEC) system Ethernet network. A home simulator software incorporating virtual appliances and devices models the smart

  18. From Space to Smart Homes: Constraint-Based Planning for Domestic Assistance From Space to Smart Homes: Constraint-Based

    E-Print Network [OSTI]

    Flener, Pierre

    From Space to Smart Homes: Constraint-Based Planning for Domestic Assistance From Space to Smart 2009 1 / 43 #12;From Space to Smart Homes: Constraint-Based Planning for Domestic Assistance Outline 1 to Smart Homes: Constraint-Based Planning for Domestic Assistance Motivation: Contextualized Proactive

  19. A SIP-based Home Automation Platform: an Experimental Study

    E-Print Network [OSTI]

    Boyer, Edmond

    A SIP-based Home Automation Platform: an Experimental Study Benjamin Bertran, Charles Consel INRIA automation applications that consist of heterogeneous, distributed entities. We describe how SIP fulfills the requirements of home automation; we present the resulting architecture of a home automation system; and, we

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Computing and Visualization INL Logo Home Applied Computing and Visualization Mission Statement Enable advanced modeling and simulation at the Idaho National Laboratory...

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great science AsPublic

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great science

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great sciencedefault

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energy

  5. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In About |

  6. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In About

  7. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign In

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign Indefault Sign

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign Indefault

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Sign

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault Sign In

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault Sign

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefault

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault Signdefaultdefault

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault *** The next NSSAB

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storage

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault Sign In

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault Sign

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefault

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy Storagedefaultdefault

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergy

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In About |

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In About

  5. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign In

  6. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign Indefault

  7. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Sign

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault Signdefault

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefault

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll Events Sign

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll Events

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAll

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAlldefault Sign

  14. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundlesHistoryEnergydefaultAlldefault

  15. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High

  16. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact |

  17. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact |default

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | Contact

  19. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers | ContactPages

  20. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |

  1. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default Sign In

  2. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default Sign

  3. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |default

  4. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |defaultdefault

  5. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers |defaultdefaultATC

  6. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | Careers

  7. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About | CareersInterconnection

  8. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |

  9. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |Pages default Sign In About

  10. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHigh

  11. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHighMSA

  12. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST

  13. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRSTApplied Computing and

  14. MavHome: An AgentBased Smart Home Diane J. Cook, Michael Youngblood, Edwin O. Heierman, III,

    E-Print Network [OSTI]

    Cook, Diane J.

    MavHome: An Agent­Based Smart Home Diane J. Cook, Michael Youngblood, Edwin O. Heierman, III­ habitant action prediction. We demonstrate the effective­ ness of these algorithms on smart home data. 1. Introduction The MavHome smart home project focuses on the cre­ ation of an environment that acts

  15. RESILIENCE IN HOME-BASED CAREGIVERS IN LIMPOPO, SOUTH AFRICA

    E-Print Network [OSTI]

    Omiecinski, Curtis

    I 188 RESILIENCE IN HOME-BASED CAREGIVERS IN LIMPOPO, SOUTH AFRICA Theresa M. Mieh, McNair Scholar-based caregivers (HBCs) in Limpopo South Africa. The PEN-3 model is used to investigate cultural influences on care cultures. Data were gathered from participants' responses in 4 focus group interviews held in South Africa

  16. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates FY 15 PRR worksheet (PDF - 31K) FY...

  17. Pilot States Program report: Home energy ratings systems and energy-efficient mortgages

    SciTech Connect (OSTI)

    Farhar, B.

    2000-04-04T23:59:59.000Z

    This report covers the accomplishments of the home energy ratings systems/energy-efficient mortgages (HERS/EEMs) pilot states from 1993 through 1998, including such indicators as funding, ratings and EEMs achieved, active raters, and training and marketing activities. A brief description of each HERS program's evolution is included, as well as their directors' views of the programs' future prospects. Finally, an analysis is provided of successful HERS program characteristics and factors that appear to contribute to HERS program success.

  18. Linking home energy rating systems with energy efficiency financing: Progress on national and state programs

    SciTech Connect (OSTI)

    Farhar, B.C.; Collins, N.E.; Walsh, R.W.

    1996-10-01T23:59:59.000Z

    In 1991 and early 1992, the U.S. Department of Energy (DOE), in cooperation with the U.S. Department of Housing and Urban Development (HUD), established a National Collaborative on Home Energy Rating Systems (HERS) and Energy Efficient Mortgages (EEMs). The Collaborative's purpose was to involve stakeholders at a national policy level to develop a plan leading the nation toward a voluntary system linking HERS with EEMs. The National Renewable Energy Laboratory (NREL) coordinated the National Collaborative's meetings for DOE. Composed of representatives from 25 stakeholder organizations, the Collaborative, after some 14 meetings, reached consensus on two documents, both published by NREL in mg 1992: A National Program for Energy-Efficient Mortgages and Home Energy Rating Systems: A Blueprint for Action and Going National with HERS and EEMs: Issues and Impacts, The Collected Papers of the National Collaborative.

  19. Home energy ratings and energy codes -- A marriage that should work

    SciTech Connect (OSTI)

    Verdict, M.E.; Fairey, P.W.; DeWein, M.C.

    1998-07-01T23:59:59.000Z

    This paper examines how voluntary home energy ratings systems (HERS) can be married to mandatory energy codes to increase code compliance while providing added benefits to consumers, builders, and code officials. Effective code enforcement and compliance is a common problem for state and local jurisdictions attempting to reduce energy consumption and increase housing affordability. Reasons frequently cited for energy code noncompliance are: (1) builder resistance to government regulations and change in building practices; (2) the perceived complexity of the code; (3) a lack of familiarity of energy impacts by cod officials and the housing industry, and (4) inadequate government resources for enforcement. By combing ratings and codes, one can create a win-win approach for code officials and energy rating organizations, the housing industry, as well as consumers who wish to reduce air pollution and energy waste. Additionally, state and local government experiences where the marriage between codes and ratings has begun are highlighted and the barriers and benefits assessed.

  20. National status report: Home energy rating systems and energy-efficient mortgages

    SciTech Connect (OSTI)

    Plympton, P.

    2000-04-27T23:59:59.000Z

    The Energy Policy Act of 1992 included several provisions promoting the use of HERS and EEMs, which strengthened efforts to develop a national infrastructure for HERS and to promote the use of EEMs. This report documents HERS and EEMs activities since 1992 by the U.S. Department of Energy, the U.S. Environmental Protection Agency, the U.S. Department of Housing and Urban Development, mortgage lenders, and other organizations. Though the process of establishing HERS has faced some barriers, this report shows that, as of November 1999, home energy ratings were available in 47 states and the District of Columbia, which represents a significant increase from 1993 when home energy ratings were available in 17 states. Both national and state organizations have developed HERS and related residential energy-efficiency programs. The availability and use of EEMs has also increased significantly. The number of EEMs supported by the Federal Housing Administration has increased more than eight times in the last three years. More than $2.5 billion in federally supported EEMs have been issued to date. Several national lenders offer EEMs, and six states have state-specific EEM or loan programs. EEMs have been used to finance energy-efficient homes in every state.

  1. Home energy rating system business plan feasibility study in Washington state

    SciTech Connect (OSTI)

    Lineham, T.

    1995-03-01T23:59:59.000Z

    In the Fall of 1993, the Washington State Energy Office funded the Washington Home Energy Rating System project to investigate the benefits of a Washington state HERS. WSEO established a HERS and EEM Advisory Group. Composed of mortgage lenders/brokers, realtors, builders, utility staff, remodelers, and other state agency representatives, the Advisory Group met for the first time on November 17, 1993. The Advisory Group established several subcommittees to identify issues and options. During its March 1994 meeting, the Advisory Group formed a consensus directing WSEO to develop a HERS business plan for consideration. The Advisory Group also established a business plan subcommittee to help draft the plan. Under the guidance of the business plan subcommittee, WSEO conducted research on how customers value energy efficiency in the housing market. This plan represents WSEO`s effort to comply with the Advisory Group`s request. Why is a HERS Business Plan necessary? Strictly speaking this plan is more of a feasibility plan than a business plan since it is designed to help determine the feasibility of a new business venture: a statewide home energy rating system. To make this determination decision makers or possible investors require strategic information about the proposed enterprise. Ideally, the plan should anticipate the significant questions parties may want to know. Among other things, this document should establish decision points for action.

  2. Building America Whole-House Solutions for New Home: Fort Devens: Cold Climate Market-Rate Townhomes

    Broader source: Energy.gov [DOE]

    Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

  3. Energy-efficient mortgages and home energy rating systems: A report on the nation`s progress

    SciTech Connect (OSTI)

    Farhar, B.C.; Eckert, J.

    1993-09-01T23:59:59.000Z

    This report summarizes progress throughout the nation in establishing voluntary programs linking home energy rating systems (HERS) and energy-efficient mortgages (EEMs). These programs use methods for rating the energy efficiency of new and existing homes and predicting energy cost savings so lenders can factor in energy cost savings when underwriting mortgages. The programs also encourage lenders to finance cost-effective energy-efficiency improvements to existing homes with low-interest mortgages or other instruments. The money saved on utility bills over the long term can more than offset the cost of such energy-efficiency improvements. The National Collaborative on HERS and EEMs recommended that this report be prepared.

  4. A national program for energy-efficient mortgages and home energy rating systems: A blueprint for action

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This Review Draft reports findings and recommendations of the National Collaborative on Home Energy Rating Systems and Mortgage Incentives for Energy Efficiency. The US Department of Energy, in cooperation with the US Department of Housing and Urban Development, formed this National Collaborative as a National Energy Strategy initiative. Participating in the Collaborative were representatives of the primary and secondary mortgage markets, builder and remodeler organizations, real estate and appraiser associations, the home energy rating system industry, utility associations, consumer and public interest groups, state and local government interest groups, and environmental organizations. The Collaborative's purpose was to develop a voluntary national program encouraging energy efficiency in homes through mortgage incentives linked to home energy ratings.

  5. Health Monitoring in an Agent-Based Smart Home by Activity Prediction

    E-Print Network [OSTI]

    Cook, Diane J.

    Health Monitoring in an Agent-Based Smart Home by Activity Prediction Sajal K. Das and Diane J objective of this paper is to investigate techniques for using agent-based smart home technologies-based smart home project funded by NSF. 1 Introduction and Motivation We live in an increasingly connected

  6. Family Centered Home-Based Models for Placement Prevention

    E-Print Network [OSTI]

    Swaim, Tara; Petr, Chris

    2003-02-01T23:59:59.000Z

    goal of maintaining children in the family home. They also avoid pathologizing the client, family, and surrounding systems. MST and Wraparound have the most saliently developed theoretical frameworks. Guidelines for MST provider credentials, caseload... saliently developed structure in reference to caseload size and duration/frequency of service, but lacks specificity of provider credentials. Case Management is the least clearly defined in the literature. Finally, MST has the most well- developed...

  7. The Self-Programming Thermostat: Optimizing Setback Schedules based on Home Occupancy Patterns

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Introduction Heating, ventilation, and air conditioning (HVAC) is the largest energy consumer in the home- grammable thermostats can reduce the energy needed to heat and cool a home by 10-30% without reducingThe Self-Programming Thermostat: Optimizing Setback Schedules based on Home Occupancy Patterns Ge

  8. Prediction Models for a Smart Home based Health Care System Vikramaditya R. Jakkula1

    E-Print Network [OSTI]

    Cook, Diane J.

    Prediction Models for a Smart Home based Health Care System Vikramaditya R. Jakkula1 , Diane J health care. Smart health care systems at home can be used to provide such solutions. A technology a prediction model in an intelligent smart home system can be used for identifying health trends over time

  9. Trainable, Vision-Based Automated Home Cage Behavioral Phenotyping

    E-Print Network [OSTI]

    Poggio, Tomaso

    . Most previous automated systems [3, 6] rely on the use of non-visual sensors (i.e. infrared beam measurements obtained from these sensor-based and tracking-based approaches limit the complexity behaviors.In addition, the systems have not been comprehensively evaluated against large, human

  10. Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids

    E-Print Network [OSTI]

    Namboodiri, Vinod

    1 Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids Vinod Namboodiri and the consumer. This work takes a comprehensive look at wireless security in the smart meter-based home, Student Member, IEEE, Ward Jewell, Fellow, IEEE Abstract--Compared to the conventional grid, the smart

  11. So You Want to Start a Home-Based Business in Texas 

    E-Print Network [OSTI]

    Brown, Pamela J.; Clary, Gregory M.; White, Lynn

    1999-09-16T23:59:59.000Z

    Home-based businesses are very popular, but many fail because of a lack of planning and little knowledge about how to ensure success. This publication contains information on business management and legal matters, as well as detailed instructions...

  12. Home energy rating system building energy simulation test (HERS BESTEST). Volume 2, Tier 1 and Tier 2 tests reference results

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, Subtitle A, Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that Facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. The HERS BESTEST work is divided into two volumes. Volume 1 contains the test case specifications and is a user's manual for anyone wishing to test a computer program. Volume 2 contains the reference results and suggestions for accrediting agencies on how to use and interpret the results.

  13. Evaluation procedure for building energy performance prediction tools: Accuracy and Home Energy Rating Systems---Issues and recommendations

    SciTech Connect (OSTI)

    Not Available

    1985-06-01T23:59:59.000Z

    This three section report explores the accuracy issues which affect Home Energy Rating Systems (HERS), briefly defined as procedures which rate the energy efficiency of single-family houses. The first section of this report reviews the problems of determining accuracy in HERS, concluding that acceptable accuracy varies with the audience and is greatly dependent upon the specific application. Section two examines the previous approaches to the determination of accuracy/validity of HERS which have predominantly relied upon primary and secondary testing methods. The final section investigates several different approaches to certify the accuracy of HERS, with the conclusion that field tests similar to those carried out in a Massachusetts HERS program be used to verify accuracy. 54 refs.

  14. Utility-Based Wireless Resource Allocation for Variable Rate Transmission

    E-Print Network [OSTI]

    Zhang, Xiaolu; Ng, Chun Sum

    2007-01-01T23:59:59.000Z

    For most wireless services with variable rate transmission, both average rate and rate oscillation are important performance metrics. The traditional performance criterion, utility of average transmission rate, boosts the average rate but also results in high rate oscillations. We introduce a utility function of instantaneous transmission rates. It is capable of facilitating the resource allocation with flexible combinations of average rate and rate oscillation. Based on the new utility, we consider the time and power allocation in a time-shared wireless network. Two adaptation policies are developed, namely, time sharing (TS) and joint time sharing and power control (JTPC). An extension to quantized time sharing with limited channel feedback (QTSL) for practical systems is also discussed. Simulation results show that by controlling the concavity of the utility function, a tradeoff between the average rate and rate oscillation can be easily made.

  15. Comfort-Aware Home Energy Management Under Market-Based Demand-Response

    E-Print Network [OSTI]

    Boutaba, Raouf

    pricing and consumption data in South Korea. Index Terms--smart grid, demand-response, energy management I-based pricing. In peak capping, each home is allocated an energy quota. In market-based pricing, the price-term viable way of regulating energy consumptions. We work with day-ahead market pricing in this paper

  16. Load-Based (LB) CRAC (rates/adjustments)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let usNuclear SecurityTechnologyLoad-Based (LB)

  17. Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned.

  18. A System for Smart Home Control of Appliances based on Timer and Speech Interaction

    E-Print Network [OSTI]

    Haque, S M Anamul; Islam, Md Ashraful

    2010-01-01T23:59:59.000Z

    The main objective of this work is to design and construct a microcomputer based system: to control electric appliances such as light, fan, heater, washing machine, motor, TV, etc. The paper discusses two major approaches to control home appliances. The first involves controlling home appliances using timer option. The second approach is to control home appliances using voice command. Moreover, it is also possible to control appliances using Graphical User Interface. The parallel port is used to transfer data from computer to the particular device to be controlled. An interface box is designed to connect the high power loads to the parallel port. This system will play an important role for the elderly and physically disable people to control their home appliances in intuitive and flexible way. We have developed a system, which is able to control eight electric appliances properly in these three modes.

  19. Job Title Licensed Professional Counselor Foster Care & Adoption Home-Based Services

    E-Print Network [OSTI]

    Azevedo, Ricardo

    compassionately provides quality, continuity, and a continuum of care approach to treatment. These integrated providers firmly believe that mental health and substance abuse treatment is most effective and outcomeJob Title Licensed Professional Counselor Foster Care & Adoption Home-Based Services Employer

  20. MINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE

    E-Print Network [OSTI]

    Minnesota, University of

    Policy Center Oregon Road User Fee Pilot Program Other Interest: Nevada, Texas, Ohio, Idaho, etc. May Cellular Tower Data Warehouse May 24, 2012 6 #12;Determination of Mileage Fees · MBUF Rate StructureMINNESOTA ROAD FEE TEST MILEAGE BASED USER FEE RATE STRUCTURE CONCEPT 23rd Annual Transportation

  1. Optimization of time-based rates in forward energy markets

    E-Print Network [OSTI]

    Wang, J.

    This paper presents a new two-step design approach of Time-Based Rate (TBR) programs for markets with a high penetration of variable energy sources such as wind power. First, an optimal market time horizon must be determined ...

  2. Subtypes of aggressive children based on parent ratings

    E-Print Network [OSTI]

    Rodman, Jennifer K

    2013-02-22T23:59:59.000Z

    The existence of subtypes of aggressive children based on their parents' ratings of their aggressive behavior was examined in this study. The subjects' raw scores from the Child Behavior Checklist (Achenbach & Edelbrock, 1991) were used to perform a...

  3. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01T23:59:59.000Z

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  4. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    SciTech Connect (OSTI)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2012-10-01T23:59:59.000Z

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

  5. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on...

  6. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1...

  7. Evolutionary struggles of supply chain strategy in home-based health care delivery

    E-Print Network [OSTI]

    Fowler, Katherine Szabo

    2008-01-01T23:59:59.000Z

    As the healthcare industry in United States continues to be constrained by increasing costs, new delivery channels are coming into practice. One such channel is home healthcare. Home healthcare presents challenges on the ...

  8. Tips: Time-Based Electricity Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAirTips: Shopping

  9. COOKING APPLIANCE USE IN CALIFORNIA HOMES DATA COLLECTED FROM A WEB-BASED SURVEY

    SciTech Connect (OSTI)

    Klug, Victoria; Lobscheid, Agnes; Singer, Brett

    2011-08-01T23:59:59.000Z

    Cooking of food and use of natural gas cooking burners generate pollutants that can have substantial impacts on residential indoor air quality. The extent of these impacts depends on cooking frequency, duration and specific food preparation activities in addition to the extent to which exhaust fans or other ventilation measures (e.g. windows) are used during cooking. With the intent of improving our understanding of indoor air quality impacts of cooking-related pollutants, we created, posted and advertised a web-based survey about cooking activities in residences. The survey included questions similar to those in California's Residential Appliance Saturation Survey (RASS), relating to home, household and cooking appliance characteristics and weekly patterns of meals cooked. Other questions targeted the following information not captured in the RASS: (1) oven vs. cooktop use, the number of cooktop burners used and the duration of burner use when cooking occurs, (2) specific cooking activities, (3) the use of range hood or window to increase ventilation during cooking, and (4) occupancy during cooking. Specific cooking activity questions were asked about the prior 24 hours with the assumption that most people are able to recollect activities over this time period. We examined inter-relationships among cooking activities and patterns and relationships of cooking activities to household demographics. We did not seek to obtain a sample of respondents that is demographically representative of the California population but rather to inexpensively gather information from homes spanning ranges of relevant characteristics including the number of residents and presence or absence of children. This report presents the survey, the responses obtained, and limited analysis of the results.

  10. Home Energy Rating System Building Energy Simulation Test for Florida (Florida-HERS BESTEST): Tier 1 and Tier 2 Tests; Vol. 1 (User's Manual) and Vol. 2 (Reference Results)

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1997-08-01T23:59:59.000Z

    In 1991, the U.S. Department of Energy, in cooperation with the Department of Housing and Urban Development (HUD), initiated a collaborative process to define a residential energy efficiency rating program linked with energy-efficient mortgage (EEM) financing. During this process, the collaborative, consisting of a broad-based group representing stakeholder organizations, identified the need for quality control procedures to evaluate and verify the energy prediction methods used by Home Energy Rating System (HERS) providers. Such procedures were needed so a variety of locally developed rating systems would have equal opportunity to qualify under the umbrella of a national HERS/EEM system by meeting minimum technical requirements (National Renewable Energy Laboratory).

  11. Rate-based degradation modeling of lithium-ion cells

    SciTech Connect (OSTI)

    E.V. Thomas; I. Bloom; J.P. Christophersen; V.S. Battaglia

    2012-05-01T23:59:59.000Z

    Accelerated degradation testing is commonly used as the basis to characterize battery cell performance over a range of stress conditions (e.g., temperatures). Performance is measured by some response that is assumed to be related to the state of health of the cell (e.g., discharge resistance). Often, the ultimate goal of such testing is to predict cell life at some reference stress condition, where cell life is defined to be the point in time where performance has degraded to some critical level. These predictions are based on a degradation model that expresses the expected performance level versus the time and conditions under which a cell has been aged. Usually, the degradation model relates the accumulated degradation to the time at a constant stress level. The purpose of this article is to present an alternative framework for constructing a degradation model that focuses on the degradation rate rather than the accumulated degradation. One benefit of this alternative approach is that prediction of cell life is greatly facilitated in situations where the temperature exposure is not isothermal. This alternative modeling framework is illustrated via a family of rate-based models and experimental data acquired during calendar-life testing of high-power lithium-ion cells.

  12. A Scenario-Based Mobile Application for Robot-Assisted Smart Digital Homes

    E-Print Network [OSTI]

    Manashty, Ali Reza; Jahromi, Zahra Forootan

    2010-01-01T23:59:59.000Z

    Smart homes are becoming more popular, as every day a new home appliance can be digitally controlled. Smart Digital Homes are using a server to make interaction with all the possible devices in one place, on a computer or webpage. In this paper we designed and implemented a mobile application using Windows Mobile platform that can connect to the controlling server of a Smart Home and grants the access to the Smart Home devices and robots everywhere possible. UML diagrams are presented to illustrate the application design process. Robots are also considered as devices that are able to interact to other object and devices. Scenarios are defined as a set of sequential actions to help manage different tasks all in one place. The mobile application can connect to the server using GPRS mobile internet and Short Message System (SMS). Interactive home map is also designed for easier status-checking and interacting with the devices using the mobile phones.

  13. Financial-Based (FB) CRAC (rates/adjustments)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico

  14. Tips: Time-Based Electricity Rates | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips:Smart

  15. electricity rates for military bases | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History ViewZAPZinc

  16. DOE Zero Ready Home Case Study: Mandalay Homes, Pronghorn Ranch...

    Broader source: Energy.gov (indexed) [DOE]

    Zero Energy Ready Home certifi ed, every home will have a Home Energy Rating System (HERS) score of 50 or less. Everson fi rst heard about the DOE Zero Energy Ready Home program...

  17. DOE Zero Ready Home Case Study: Cobblestone Homes, 2014 Model...

    Broader source: Energy.gov (indexed) [DOE]

    Challenge Home and made it a true zero energy home with a -4 Home Energy Rating System (HERS) score," said Melissa. Cobblestone's fi rst DOE Zero Energy Ready Home scored a HERS 49...

  18. Measurement-Based Evaluation of Installed Filtration System Performance in Single-Family Homes

    SciTech Connect (OSTI)

    Chan, Wanyu Rengie; Singer, Brett C.

    2014-04-03T23:59:59.000Z

    This guide discusses important study design issues to consider when conducting an on-site evaluation of filtration system performance. The two most important dichotomies to consider in developing a study protocol are (1) whether systems are being evaluated in occupied or unoccupied homes and (2) whether different systems are being compared in the same homes or if the comparison is between systems installed in different homes. This document provides perspective and recommendations about a suite of implementation issues including the choice of particle measurement devices, selection of sampling locations, ways to control and/or monitor factors and processes that can impact particle concentrations, and data analysis approaches.

  19. Credit-Based Interest Rate Spread for Title XVII

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us ContactPracticesWinter (Part 2) |Creating

  20. A Field Comparison of Performance Based Energy Efficient and Conventionally Constructed Homes in South Texas

    E-Print Network [OSTI]

    Schertz, S.; Stracener, J.

    1986-01-01T23:59:59.000Z

    . The program, originally developed at Gulf Power Co., is an energy efficiency designation and implied the inclusion of some or all of ten recommended construction features. Central Power and Light Company's criteria for qualification as a "Good Cents Home...

  1. Energy-efficient control of a smart grid with sustainable homes based on distributing risk

    E-Print Network [OSTI]

    Ono, Masahiro, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The goal of this thesis is to develop a distributed control system for a smart grid with sustainable homes. A central challenge is how to enhance energy efficiency in the presence of uncertainty. A major source of uncertainty ...

  2. A New Series of Rate Decline Relations Based on the Diagnosis of Rate-Time Data

    E-Print Network [OSTI]

    Boulis, Anastasios

    2010-01-14T23:59:59.000Z

    point for their derivation is given by the definitions of the "loss ratio" and the "derivative of the loss ratio", where the "loss ratio" is the ratio of rate data to derivative of rate data, and the "derivative of the loss ratio" is the "b...

  3. Cost Bases for Incentive Rates Applicable to Industrial Loads

    E-Print Network [OSTI]

    Stover, C. N.

    great deal of attention and increased acceptance. This represents a substantial change in attitude, particularly on the part of the regulatory commissions; a few years ago any proposal related to an incentive type rate would not have been... in rate discrimination as between customer classes. Over the last few years many utilities have experienced changes that have resulted in increased interest in incentive rates by the utility, by its customer, and by the regulatory commission. In most...

  4. Development of a data base on radon in US homes and applications. Final technical report

    SciTech Connect (OSTI)

    Cohen, B.L.

    1991-12-31T23:59:59.000Z

    This research led to the development of the compilation of data on radon in homes which is included in this document. This research also contributed to the development of two papers analyzing the results. These are a case control study test and tests of the liner no-threshold theory for lung cancer induced by exposure to radon in residential buildings.

  5. Development of a data base on radon in US homes and applications

    SciTech Connect (OSTI)

    Cohen, B.L.

    1991-01-01T23:59:59.000Z

    This research led to the development of the compilation of data on radon in homes which is included in this document. This research also contributed to the development of two papers analyzing the results. These are a case control study test and tests of the liner no-threshold theory for lung cancer induced by exposure to radon in residential buildings.

  6. Wavelet Based Volatility Clustering Estimation of Foreign Exchange Rates

    E-Print Network [OSTI]

    A. N. Sekar Iyengar

    2009-10-01T23:59:59.000Z

    We have presented a novel technique of detecting intermittencies in a financial time series of the foreign exchange rate data of U.S.- Euro dollar(US/EUR) using a combination of both statistical and spectral techniques. This has been possible due to Continuous Wavelet Transform (CWT) analysis which has been popularly applied to fluctuating data in various fields science and engineering and is also being tried out in finance and economics. We have been able to qualitatively identify the presence of nonlinearity and chaos in the time series of the foreign exchange rates for US/EURO (United States dollar to Euro Dollar) and US/UK (United States dollar to United Kingdom Pound) currencies. Interestingly we find that for the US-INDIA(United States dollar to Indian Rupee) foreign exchange rates, no such chaotic dynamics is observed. This could be a result of the government control over the foreign exchange rates, instead of the market controlling them.

  7. Cost Bases for Incentive Rates Applicable to Industrial Loads 

    E-Print Network [OSTI]

    Stover, C. N.

    1987-01-01T23:59:59.000Z

    Incentive rates applicable to industrial customers are presently receiving a great deal of attention and increased acceptance. This represents a substantial change in attitude, particularly on the part of the ...

  8. Slow-Rate Utility-Based Resource Allocation in Wireless Networks

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    is to maximize the time-averaged utility rate subject to a stochastic total power constraint at the transmitter the time average utility rate, given a constraint on the total power transmitted by the base station. Since

  9. Chemical Emissions of Residential Materials and Products: Review of Available Information The Home Energy Scoring Tool: A

    E-Print Network [OSTI]

    The Home Energy Scoring Tool: A Simplified Asset Rating for Single thereof or the Regents of the University of California. #12;1 The Home Energy Scoring Tool: A Simplified-based computer tool and method for providing an energy asset rating of single-family homes. The resulting Home

  10. Credit-Based Interest Rate Spread for Title XVII | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy CopyinEnergyCredit-Based

  11. Providing radiometric traceability for the calibration home base of DLR by PTB

    SciTech Connect (OSTI)

    Taubert, D. R.; Hollandt, J.; Sperfeld, P.; Pape, S.; Hoepe, A.; Hauer, K.-O. [Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, 10587 Berlin (Germany); Gege, P.; Schwarzmaier, T.; Lenhard, K.; Baumgartner, A. [Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Methodik der Fernerkundung, 82234 Oberpfaffenhofen (Germany)

    2013-05-10T23:59:59.000Z

    A dedicated calibration technique was applied for the calibration of the spectral radiance transfer standard (RASTA) of the German Aerospace Center (DLR) at the Physikalisch-Technische Bundesanstalt (PTB), consisting of two independent but complementing calibration procedures to provide redundancy and smallest possible calibration uncertainties. Procedure I included two calibration steps: In a first step the optical radiation source of RASTA, an FEL lamp, was calibrated in terms of its spectral irradiance E{sub {lambda}}({lambda}) in the wavelength range from 350 nm to 2400 nm using the PTB Spectral Irradiance Calibration Equipment (SPICE), while in a second step the spectral radiance factor {beta}{sub 0 Degree-Sign :45 Degree-Sign }({lambda}) of the RASTA reflection standard was calibrated in a 0 Degree-Sign :45 Degree-Sign -viewing geometry in the wavelength range from 350 nm to 1700 nm at the robot-based gonioreflectometer facility of PTB. The achieved relative standard uncertainties (k= 1) range from 0.6 % to 3.2 % and 0.1 % to 0.6 % respectively. Procedure II was completely independent from procedure I and allowed to cover the entire spectral range of RASTA from 350 nm to 2500 nm. In the second procedure, the 0 Degree-Sign :45 Degree-Sign -viewing geometry spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign }({lambda}) of RASTA was directly calibrated at the Spectral Radiance Comparator Facility (SRCF) of PTB. The relative uncertainties for this calibration procedure range from 0.8 % in the visible up to 7.5 % at 2500 nm (k= 1). In the overlapping spectral range of both calibration procedures the calculated spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign ,calc}({lambda}) from procedure I is in good agreement with the direct measurement of procedure II, i.e. well within the combined expanded uncertainties (k= 2) of both procedures.

  12. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us Contact

  13. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us ContactAUG 18

  14. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us ContactAUG

  15. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us

  16. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home

  17. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home User

  18. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home User

  19. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home Home

  20. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home HomeCAES

  1. Home Energy Appraisal Form of the Texas Association of Builders

    E-Print Network [OSTI]

    Moore, J.

    1986-01-01T23:59:59.000Z

    HOME ENERGY APPRAISAL FORM OF THE TEXAS ASSOCIATION OF BUILDERS JIM MOORE Chairman Energy Committee Austin. Texas ABSTRACT The Home Energy Appraisal Rating form is a versatile, climate specific point system, based on actual performance... (LBL) in Berkeley. California for the purpose of performing energy simulations for buildings were used by Steven Winter Associates in developing the rating points for the TAB rating forms for the six designated areas of Texas. LBL also developed...

  2. An Empirical Assessment of a Home-Based Exercise Treatment Package for People with Severe Mobility-Related Disabilities Using a Changing Criterion Design: Two Studies

    E-Print Network [OSTI]

    Nary, Dorothy E.

    2010-12-13T23:59:59.000Z

    A single-subject changing criterion design was used in two studies to empirically assess a home-based exercise treatment package for sedentary participants with severe mobility-related disabilities. The independent variable ...

  3. Sequence-Based Prediction of Protein Folding Rates Using Contacts, Secondary Structures and Support Vector Machines

    E-Print Network [OSTI]

    Cheng, Jianlin Jack

    Sequence-Based Prediction of Protein Folding Rates Using Contacts, Secondary Structures and Support, Columbia, Missouri * Corresponding author: chengji@missouri.edu Abstract Predicting protein folding rate is useful for understanding protein folding process and guiding protein design. Here we developed a method

  4. Home | DOEpatents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHomeDiscover

  5. Challenge Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy0 Chairs Meeting -June1ChairsDOE

  6. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES Home

  7. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES HomeRequest

  8. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws pdfAUG

  9. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws

  10. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws User ID:

  11. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws User

  12. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws UserMaCS

  13. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylaws

  14. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUG 18

  15. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUG 18MaCS

  16. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUG

  17. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1MostBylawsAUGArchive

  18. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries

  19. Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign In About |Pages default Sign221

  20. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAES

  1. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About MaCS

  2. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About MaCS

  3. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About

  4. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0 By KortnyBCAESMaCS About User

  5. GCPCC home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunitiesTheGAO AuditHKL-2000

  6. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen

  7. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2 Click on

  8. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2 Click

  9. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2 Click

  10. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2

  11. Home Page

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 sGwen2Ecology

  12. Home | DOEpatents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, Stephen G"EnergyENERGYMSAContact Us

  13. Fermilab | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹ ›Energy.govFermi

  14. BCP Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELATED LINKS Home Page Image Welcome Hoover Dam is the highest and third largest concrete dam in the United States. The dam, power plant, and high-voltage switchyards are...

  15. The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution

    E-Print Network [OSTI]

    Jian-Miin Liu

    2002-10-20T23:59:59.000Z

    The Coulomb barrier is in general much higher than thermal energy. Nuclear fusion reactions occur only among few protons and nuclei with higher relative energies than Coulomb barrier. It is the equilibrium velocity distribution of these high-energy protons and nuclei that participates in determining the rate of nuclear fusion reactions. In the circumstance it is inappropriate to use the Maxwellian velocity distribution for calculating the nuclear fusion reaction rate. We use the relativistic equilibrium velocity distribution for this purpose. The rate based on the relativistic equilibrium velocity distribution has a reduction factor with respect to that based on the Maxwellian distribution, which factor depends on the temperature, reduced mass and atomic numbers of the studied nuclear fusion reactions. This signifies much to the solar neutrino problem.

  16. WWW.THEEIR.COM THE EUROPEAN INVESTMENT REVIEW 1 A RATING-BASED

    E-Print Network [OSTI]

    Jeanblanc, Monique

    WWW.THEEIR.COM THE EUROPEAN INVESTMENT REVIEW 1 A RATING-BASED MODEL FOR CREDIT DERIVATIVES not sustained by itself derivative-linked liabilities on oil and elec- tricitycontracts INVESTMENT REVIEW WWW.THEEIR.COM is a positive random function of the two vari- ables x and R, which

  17. Influence of dimensionality on deep tunneling rates: A study based on the hydrogen-nickel system

    E-Print Network [OSTI]

    Zeiri, Yehuda

    Influence of dimensionality on deep tunneling rates: A study based on the hydrogen-nickel system hydrogen into a surface site of a nickel crystal is used to investigate deep tunneling phenomena. A method of a hydrogen atom in a nickel fcc crystal is studied. The atom is located in a subsurface interstitial site

  18. Rate Adaptation and Base Station Reconfiguration for Battery Efficient Video Download

    E-Print Network [OSTI]

    Dey, Sujit

    dynamically depending on battery and buffer levels of the mobile device, the channel conditions experienced conditions so as to avoid stalling, and do not consider the effect of video download on mobile device batteryRate Adaptation and Base Station Reconfiguration for Battery Efficient Video Download Ranjini

  19. Cut-off Rate based Outage Probability Analysis of Frequency Hopping Mobile Radio under Jamming

    E-Print Network [OSTI]

    Yýlmaz, Özgür

    Cut-off Rate based Outage Probability Analysis of Frequency Hopping Mobile Radio under Jamming Conditions G¨okhan M. G¨uvensen Electrical and Electronics Eng. Dept. Middle East Technical University Ankara, Turkey Email: guvensen@metu.edu.tr Yalc¸in Tanik Electrical and Electronics Eng. Dept. Middle East

  20. A comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium

    E-Print Network [OSTI]

    Crist, Kevin Craig

    1983-01-01T23:59:59.000Z

    by Cuddihy. Predictions fr'om bai. h models based on the dissolution rates of the amount of oxidized depleted uranium that wau'ld be cleared to blood irom the pu lraana ry region i'o'i)owing an i nba !at i cn exposure were compared . It was f:urd ti... to oxidized depleted uranium (DU) aerosol. The ob, ject. ive of th. is i:hesis was three fold: (1) to determine the dissolution rates for two respirable DU samples, (2) to determine the specific pulmonary clearance characteristics of oxidized DU, (3) Co...

  1. A new algorithm for wavelet-based heart rate variability analysis

    E-Print Network [OSTI]

    García, Constantino A; Vila, Xosé; Márquez, David G

    2014-01-01T23:59:59.000Z

    One of the most promising non-invasive markers of the activity of the autonomic nervous system is Heart Rate Variability (HRV). HRV analysis toolkits often provide spectral analysis techniques using the Fourier transform, which assumes that the heart rate series is stationary. To overcome this issue, the Short Time Fourier Transform is often used (STFT). However, the wavelet transform is thought to be a more suitable tool for analyzing non-stationary signals than the STFT. Given the lack of support for wavelet-based analysis in HRV toolkits, such analysis must be implemented by the researcher. This has made this technique underutilized. This paper presents a new algorithm to perform HRV power spectrum analysis based on the Maximal Overlap Discrete Wavelet Packet Transform (MODWPT). The algorithm calculates the power in any spectral band with a given tolerance for the band's boundaries. The MODWPT decomposition tree is pruned to avoid calculating unnecessary wavelet coefficients, thereby optimizing execution t...

  2. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque...

    Energy Savers [EERE]

    Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM Case study of a New Mexico-based home builder who has built more DOE Zero Energy Ready certified homes than...

  3. NYSERDA- Energy Star Home Builders

    Broader source: Energy.gov [DOE]

    NYSERDA offers a program to encourage more industry involvement in the building of Energy Star rated Homes. Incentives are available for newly constructed residential dwellings of 3 stories or less...

  4. Instrumented home energy rating and commissioning

    E-Print Network [OSTI]

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-01-01T23:59:59.000Z

    air conditioner indicated that it is a 25 year old, low efficiency unit that is in need of replacement.

  5. ACCEPTANCE REQUIREMENTS AND HOME ENERGY RATING SYSTEMS

    E-Print Network [OSTI]

    ................................................................................................. NJ-5 NJ.6. Lighting Control Systems ........................................................................................................... NJ-6 NJ.6.1 Automatic Daylighting Controls Acceptance ........................................................................... NJ-9 NJ.6.4 Automatic Time Switch Control Acceptance

  6. Instrumented home energy rating and commissioning

    SciTech Connect (OSTI)

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2003-05-01T23:59:59.000Z

    Currently, houses do not perform optimally or even as many codes and forecasts predict, largely because they are field assembled and there is no consistent process to identify deficiencies or to correct them. Solving this problem requires field performance evaluations using appropriate and agreed upon procedures in the form of a new process called residential commissioning. The purpose of this project is to develop and document these procedures and to demonstrate the value that applying them could provide in both new and existing California houses. This project has four specific objectives: to develop metrics and diagnostics for assessing house performance, to provide information on the potential benefits of commissioning using a whole-house approach, to develop programmatic guidelines for commissioning, and to conduct outreach efforts to transfer project results to industry stakeholders. The primary outcomes from this project are the development of residential commissioning guidelines and the analytical confirmation that there are significant potential benefits associated with commissioning California houses, particularly existing ones. In addition, we have made substantial advances in understanding the accuracy and usability of diagnostics for commissioning houses. In some cases, we have been able to work with equipment manufacturers to improve these aspects of their diagnostic tools. These outcomes provide a solid foundation on which to build a residential commissioning program in California. We expect that a concerted effort will be necessary to integrate such a program with existing building industry efforts and to demonstrate its use in the field.

  7. Home Inventory User Manual About Home Inventory

    E-Print Network [OSTI]

    Wolfgang, Paul

    Home Inventory User Manual About Home Inventory The HomeInventory Project consists of a customized. With two types of roles, Users and Administrators, clients logged into the HomeInventory have access to a variety of commands. HomeInventory stores each user's items safely and privately, without worry

  8. OG&E Uses Time-Based Rate Program to Reduce Peak Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No. EA-212-AOAHU2014) |OFFICIAL USE ONLYOFPP1

  9. Analysis of Customer Enrollment Patterns in TIme-Based Rate Programs:

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas | Department ofAmyAn Update

  10. Bryan Texas Utilities- SmartHOME Program

    Broader source: Energy.gov [DOE]

    The Bryan Texas Utilities (BTU) SmartHOME Programs offers incentives to owners of single- and multi-family homes for insulation, windows, and solar screens. The incentive rate is set at $900/kW...

  11. New Homes Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust's New Homes Program offers builders cash incentives for energy efficient measures included in new homes, where the measures exceed the building code. Lighting upgrades, whole home...

  12. Manufactured Homes Simulated Thermal Analysis and Cost Effectiveness Report.

    SciTech Connect (OSTI)

    Baylon, David

    1990-05-17T23:59:59.000Z

    In 1988 and 1989, 150 manufactured homes were built to comply with Super Good Cents (SGC) specifications adapted from the existing specifications for site-built homes under the Residential Construction Demonstration Project (RCDP). Engineering calculations and computer simulations were used to estimate the effects of the SGC specifications on the thermal performance of the homes. These results were compared with consumer costs to establish the cost-effectiveness of individual measures. Heat loss U-factors for windows, walls, floors and ceilings were established using the standard ASHRAE parallel heat flow method. Adjustments resulted in higher U-factors for ceilings and floors than assumed at the time the homes were approved as meeting the SGC specifications. Except for those homes which included heat pumps, most of the homes did not meet the SGC compliance standards. Nonetheless these homes achieved substantial reductions in overall heat loss rate (UA) compared to UAs estimated for the same homes using the standard insulation packages provided by the manufacturers in the absence of the RCDP program. Homes with conventional electric furnaces showed a 35% reduction in total UA while homes with heat pumps had a 25% reduction. A regression analysis showed no significant relationship between climate zone, manufacturer and UA. A modified version of SUNDAY building simulation program which simulates duct and heat pump performance was used to model the thermal performance of each RCDP home as built and the same home as it would have been built without SGC specifications (base case). Standard assumptions were used for thermostat setpoint, thermal mass, internal gains and infiltration rates. 11 refs., 5 figs., 5 tabs.

  13. CfA Home HCO Home SAO Home Donate Search

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    CfA Home HCO Home SAO Home Donate Search Measuring the Ancient Solar Nebula's Magnetic Field meteorites that formed in brief heating events in the young solar nebula. They probably constitute sized constituents of primitive meteorites that formed in brief heating events in the young solar nebula

  14. DOE Zero Energy Ready Home Verification...

    Broader source: Energy.gov (indexed) [DOE]

    Zero Energy Ready Home Verification Summary DRAFT REMRate - Residential Energy Analysis and Rating Software v14.5.1 This information does not constitute any warranty of energy...

  15. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  16. address home address: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Healthy, Low-Energy Homes University of California eScholarship Repository Summary: Home Ventilating Products Directory: Certified Ratings in Air Delivery, Sound and...

  17. address office home: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Healthy, Low-Energy Homes University of California eScholarship Repository Summary: Home Ventilating Products Directory: Certified Ratings in Air Delivery, Sound and...

  18. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    SciTech Connect (OSTI)

    Mendell, Mark J.; Fisk, William J.

    2014-02-01T23:59:59.000Z

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

  19. New American Home{reg_sign}: Atlanta, Georgia - 2001; Building America--The New American Home

    SciTech Connect (OSTI)

    IBACOS; Anderson, R.

    2001-07-19T23:59:59.000Z

    The New American Home{reg_sign} is an annual showcase project designed by committee and co-sponsored by the National Association of Home Builders' National Council of the Housing Industry, BUILDERS Magazine, and Ladies Home Journal. Hedgewood Properties teamed with Building America's IBACOS Consortium and Southface Energy Institute to build a house with a Home Energy Rating Systems (HERS) level of 90.

  20. Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43andPropertyForPlans FactFort Devens:

  1. Extraction of radiative and nonradiative rates in Sb based midwave infrared lasers using a novel approach

    E-Print Network [OSTI]

    Krishna, Sanjay

    of applications such as remote sensing, LADAR, detection of chemical warfare agents, intelligence, surveillance for fabricating MWIR lasers employs antimonide based materials. Electronic and opto- electronic devices based

  2. Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovemberInvestigationsCommittee on EnergyMarketHollett Takes on1 Homes

  3. Home Energy Solutions for Existing Homes

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon offers a variety of incentives and services through their Home Energy Solutions program. All equipment eligible for incentives needs to meet the efficiency requirements...

  4. Building America Whole-House Solutions for New Homes: Nexus EnergyHome...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    indoor environmental quality, achieving the highest rating possible under the National Green Building Standard Nexus EnergyHomes - Frederick, Maryland More Documents &...

  5. Rate-Based Modeling of Reactive Absorption of CO2 and H2S into Aqueous Methyldiethanolamine

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Rate-Based Modeling of Reactive Absorption of CO2 and H2S into Aqueous Methyldiethanolamine Manuel in the liquid phase. This framework was applied to the selective absorption of H2S from fuel gas containing CO2 primarily by physical absorption. Gas-film resistance is never significant for CO2 absorption. For H2S

  6. 4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ RADAR

    E-Print Network [OSTI]

    Hogan, Robin

    Terrestre et Plan´etaire, V´elizy, France University of Reading, Reading, United Kingdom 1. INTRODUCTION. The variance 1 #12;v 2 of the mean wind is an indicator of the kinetic energy in turbulent scales4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ

  7. Energy Efficiency Interest Rate Reduction Program

    Broader source: Energy.gov [DOE]

    The Alaska Housing Finance Corporation (AHFC) offers interest rate reductions to home buyers purchasing new and existing homes with 5 Star and 5 Star Plus energy ratings. All homes constructed on...

  8. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

    2013-02-15T23:59:59.000Z

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  9. How to calculate financial information for home energy raters, lenders and savvy home buyers

    SciTech Connect (OSTI)

    Vieira, R.K.; Cummings, J.E.; Fairey, P.W.; Hannani, K.

    1998-07-01T23:59:59.000Z

    Home ratings and energy-efficient mortgages are becoming the key vehicles in the process of moving more buyers and builders to energy efficiency that exceed minimum code limits. The energy-efficient mortgages industry requires both the projected savings of energy-conservation measures and other key financial information for builders, realtors, buyers and lenders. This paper presents the methodology used by the one state's home rating software for calculating and reporting key financial information and for selecting the most cost-effective upgrades automatically through an optimization process. Historically, many statistics have been calculated based on two pieces of information--the cost of the energy conservation measures and the projected savings from the measures. Unfortunately, when attempting to upgrade an existing or code-minimum new home up to more efficient level, such as EPA's Energy Star Home program level, a number of measures interact. The savings of a package of upgrades can be determined, but a methodology was required for attributing the savings due to each measure as required for certain national mortgage products. When examining the cash flow of measures there are a host of other factors - the amount of the upgrade that will be borrowed, the income tax rate used for deducting interest, any increase to the property that will result in higher property tax and insurance rates and the maintenance on the upgrade. The reporting of the financial analysis is of significant importance to the lending industry. This paper presents many report options contained in the Florida software, Energy Gauge, and its ability to meet the requirements of HUD, Fannie Mae, and the national HERS guidelines.

  10. Frame-Rate Spatial Referencing Based on Invariant Indexing and Alignment with

    E-Print Network [OSTI]

    Lin, Gang

    (such as a laser) pointed at the human retina, from a series of image frames. We treat the problem in the US alone [13], [24], [25], [32], but still has only a 50 percent success rate. A major cause of the energy delivered anywhere on the retina, and there are no automatic alarms or safety shut-offs when

  11. Effective Reservoir Management Using Streamline-Based Reservoir Simulation, History Matching and Rate Allocation Optimization

    E-Print Network [OSTI]

    Tanaka, Shusei

    2014-08-28T23:59:59.000Z

    of the effectiveness of wells. The rate is updated to maximize the field NPV. The proposed approach avoids the use of complex optimization tools. Instead, we emphasize the visual and the intuitive appeal of streamline methods and utilize flow diagnostic plots...

  12. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman...

    Energy Savers [EERE]

    Garbett Homes, Herriman, UT, Production Home DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, UT, Production Home Case study of a DOE Zero Energy Ready Home in...

  13. Overview of Existing Home Energy Labels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctoberMultifamily Landlords1 DOE Hydrogen andRating

  14. NABERS: Lessons from 12 Years of Performance Based Ratings in Australia

    E-Print Network [OSTI]

    Bannister, P.

    2012-01-01T23:59:59.000Z

    of corporate and property trust portfolios. By setting and achieving strong environmental targets, Australian property funds have been able to 0 200 400 600 800 1000 1200 1400 1600 19992000200120022003200420052006200720082009201020112012 Nu mb er... Efficiency Improvements All of the major property portfolios have embarked on a program of NABERS upgrades over the past 6 years. The results from these have been significant: ? Investa: Increase in average NABERS Energy Rating from 2.6 to 3.99 stars...

  15. Home Energy Assessments

    ScienceCinema (OSTI)

    Dispenza, Jason

    2013-05-29T23:59:59.000Z

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Find out more at: http://www.energysavers.gov/your_home/energy_audits/index.cfm/mytopic=11160

  16. Homes | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| DepartmentPumpHome Office and

  17. Homes Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy Highlights fromHome Solar1 Homes

  18. UNDERSTANDING HOME RENOVATION DECISIONS

    E-Print Network [OSTI]

    Watson, Andrew

    UNDERSTANDING HOME RENOVATION DECISIONS - A Research Project - Background to Our Research Energy to renovate their homes. We're interested in energy efficiency, but in all other efficient renova/ons can lower energy bills, improve comfort by reducing dra

  19. A comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium 

    E-Print Network [OSTI]

    Crist, Kevin Craig

    1983-01-01T23:59:59.000Z

    INTRODUCT1ON . RF VIEbl OF LITLRAiURE Page y1 V111 I4ETHODOI OBY Respi ral le Aeroso I 'enera Lion Dissolution Experiment Ana I y( es RESULTS DISCUSSION CONCLUSIONS RFCONINENDAi ION REFERI=NCES 17 18 21 24 47 APPEND'X A C'lassif. ication...!Ilpl e DU9 Test of Hypothesis ('Go=0) for 5'lopes Obtained from Linear Beg!. essicns (Figs. 8 and 9) 37 VII Determination oi Average Dissolution Rate and a 97. 5 Percent Confidence Interval on That Average for DL!5 and DU9 VIII Resuii. s from...

  20. Development of the town data base: Estimates of exposure rates and times of fallout arrival near the Nevada Test Site

    SciTech Connect (OSTI)

    Thompson, C.B.; McArthur, R.D. [Univ. and Community College System of Nevada, Las Vegas, NV (United States); Hutchinson, S.W. [Mead Johnson Nutritional Group, Evansville, IN (United States)

    1994-09-01T23:59:59.000Z

    As part of the U.S. Department of Energy`s Off-Site Radiation Exposure Review Project, the time of fallout arrival and the H+12 exposure rate were estimated for populated locations in Arizona, California, Nevada, and Utah that were affected by fallout from one or more nuclear tests at the Nevada Test Site. Estimates of exposure rate were derived from measured values recorded before and after each test by fallout monitors in the field. The estimate for a given location was obtained by retrieving from a data base all measurements made in the vicinity, decay-correcting them to H+12, and calculating an average. Estimates were also derived from maps produced after most events that show isopleths of exposure rate and time of fallout arrival. Both sets of isopleths on these maps were digitized, and kriging was used to interpolate values at the nodes of a 10-km grid covering the pattern. The values at any location within the grid were then estimated from the values at the surrounding grid nodes. Estimates of dispersion (standard deviation) were also calculated. The Town Data Base contains the estimates for all combinations of location and nuclear event for which the estimated mean H+12 exposure rate was greater than three times background. A listing of the data base is included as an appendix. The information was used by other project task groups to estimate the radiation dose that off-site populations and individuals may have received as a result of exposure to fallout from Nevada nuclear tests.

  1. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01T23:59:59.000Z

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  2. Convergence and Rate of Convergence of A Manifold-Based Dimension Reduction Algorithm

    E-Print Network [OSTI]

    Huo, Xiaoming

    of a particular manifold- based learning algorithm: LTSA [12]. The main technical tool is the perturbation analysis on the linear invariant subspace that corresponds to the solution of LTSA. We derive the upper bound for errors under the worst case for LTSA; it naturally leads to a convergence result. We

  3. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    SciTech Connect (OSTI)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01T23:59:59.000Z

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  4. Large Improvements in MS/MS Based Peptide Identification Rates using a Hybrid Analysis

    SciTech Connect (OSTI)

    Cannon, William R.; Rawlins, Mitchell M.; Baxter, Douglas J.; Callister, Stephen J.; Lipton, Mary S.; Bryant, Donald A.

    2011-05-06T23:59:59.000Z

    We have developed a hybrid method for identifying peptides from global proteomics studies that significantly increases sensitivity and specificity in matching peptides to tandem mass spectra using database searches. The method increased the number of spectra that can be assigned to a peptide in a global proteomics study by 57-147% at an estimated false discovery rate of 5%, with clear room for even greater improvements. The approach combines the general utility of using consensus model spectra typical of database search methods1-3 with the accuracy of the intensity information contained in spectral libraries4-6. This hybrid approach is made possible by recent developments that elucidated the statistical framework common to both data analysis and statistical thermodynamics, resulting in a chemically inspired approach to incorporating fragment intensity information into both database searches and spectral library searches. We applied this approach to proteomics analysis of Synechococcus sp. PCC 7002, a cyanobacterium that is a model organism for studies of photosynthetic carbon fixation and biofuels development. The increased specificity and sensitivity of this approach allowed us to identify many more peptides involved in the processes important for photoautotrophic growth.

  5. Highway crash rates and age-related driver limitations: Literature review and evaluation of data bases

    SciTech Connect (OSTI)

    Hu, P.S. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Young, J.R. [Tennessee Univ., Knoxville, TN (United States)] [Tennessee Univ., Knoxville, TN (United States); Lu, An [Oak Ridge Associated Universities, Inc., TN (United States)] [Oak Ridge Associated Universities, Inc., TN (United States)

    1993-08-01T23:59:59.000Z

    American society is undergoing a major demographic transformation that is resulting in a larger proportion of older individuals in the population. Moreover, recent travel surveys show that an increasing number of older individuals are licensed to drive and that they drive more than their same age cohort a decade ago. However, they continue to take shorter trips than younger drivers and they avoid driving during congested hours. This recent demographic transformation in our society, the graying of America, coupled with the increasing mobility of the older population impose a serious highway safety issue that cannot be overlooked. Some of the major concerns are the identification of ``high-risk`` older drivers and the establishment of licensing guidelines and procedures that are based on conclusive scientific evidence. Oak Ridge National Laboratory`s (ORNL) objectives in this project can be characterized by the following tasks: Review and evaluate the 1980 American Association of Motor Vehicle Administrators (AAMVA) and National Highway Traffic Safety Administration (NHTSA) licensing guidelines. Determine whether the license restriction recommended in the 1980 AAMVA and NHTSA guidelines was based on scientific evidence or on judgement of medical advisors. Identify in the scientific literature any medical conditions which are found to be highly associated with highway crashes, and which are not mentioned in the 1980 guidelines. Summarize States` current licensing practices for drivers with age-related physical and mental limitations. Identify potential data sources to establish conclusive evidence on age-related functional impairments and highway crashes.

  6. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions; Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01T23:59:59.000Z

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt-recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  7. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect (OSTI)

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01T23:59:59.000Z

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR(R) (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  8. Energy Efficiency -- Home Page

    U.S. Energy Information Administration (EIA) Indexed Site

    If you are having trouble, call 202-586-8800 for help. Home >Energy Users EEnergy Efficiency Page Energy-Efficiency Measurement MEASUREMENT DISCUSSION: Measures and Policy Issues...

  9. Inside RHIC | Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BNL People Inside RHICRelativistic Heavy Ion Collider Home Archives Submission Guidelines Contact RHIC Latest Stories gnes Mcsy RHIC Physics Feeds Future High-Tech Workforce:...

  10. Home Safety: Radon Gas 

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12T23:59:59.000Z

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  11. Home Safety: Radon Gas

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12T23:59:59.000Z

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  12. Ozark Mountain solar home

    SciTech Connect (OSTI)

    Miller, B.

    1998-03-01T23:59:59.000Z

    If seeing is believing, Kyle and Christine Sarratt are believers. The couple has been living in their passive solar custom home for almost two years, long enough to see a steady stream of eye-opening utility bills and to experience the quality and comfort of energy-efficient design. Skeptical of solar homes at first, the Sarratts found an energy-conscious designer that showed them how they could realize their home-building dreams and live in greater comfort while spending less money. As Kyle says, {open_quotes}We knew almost nothing about solar design and weren`t looking for it, but when we realized we could get everything we wanted in a home and more, we were sold.{close_quotes} Now the couple is enjoying the great feeling of solar and wood heat in the winter, natural cooling in the summer and heating/cooling bills that average less than $20/month. The Sarratts` home overlooks a large lake near the town of Rogers, tucked up in the northwest corner of Arkansas. It is one of three completed homes out of 29 planned for the South Sun Estates subdivision, where homes are required by covenant to incorporate passive solar design principles. Orlo Stitt, owner of Stitt Energy Systems and developer of the subdivision, has been designing passive solar, energy-efficient homes for twenty years. His passive solar custom home development is the first in Arkansas.

  13. Home | Better Buildings Workforce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Connect with Us LinkedIn Twitter Better Buildings...

  14. DOE Challenge Home Verification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartmentBegins DOE Challenge Home

  15. HomeCooling101

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,GlenLearningDepartment of EnergyHomes

  16. Home | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHomeDiscover

  17. LAPD 2013 - home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as ReadyAppointedKyungmin2010SciencesLANS16th

  18. DOE Challenge Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTPFeedstockDepartment DOE

  19. Partnership for Home Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESSHeavy-duty EnginePartnersPartnership for

  20. WIPP Home Page Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLargeHome Page Search Enter

  1. WIPP Home Page header

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLargeHome Page Search Enter |

  2. Home Energy Score Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p aDepartment ofEnergy

  3. My Home EQ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, New Mexico | DepartmentServicesMy

  4. HOMEe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoodsGuangzhou,GuizhouGuyana: EnergyHEROHOMEe Jump to:

  5. Home - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRSTApplied ComputingHome

  6. Home - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRSTApplied ComputingHome

  7. High Repetition Rate, LINAC-based Nuclear Resonance Fluorescence FY 2009 Final Report

    SciTech Connect (OSTI)

    Mathew Kinlaw; Scott Watson; James Johnson; Alan Hunt; Heather Seipel; Edward Reedy

    2009-10-01T23:59:59.000Z

    Nuclear Resonance Fluorescence (NRF), which is possible for nuclei with atomic numbers greater than helium (Z=2), occurs when a nuclear level is excited by resonant absorption of a photon and subsequently decays by reemission of a photon. The excited nuclear states can become readily populated, provided the incident photon’s energy is within the Doppler-broadened width of the energy level being excited. Utilizing continuous energy photon spectra, as is characteristic of a bremsstrahlung photon beam, as the inspection source, ensures that at least some fraction of the impinging beam will contribute to the population of the excited energy levels in the material of interest. Upon de-excitation, either to the ground state or to a lower-energy excited state, the emitted fluorescence photon’s energy will correspond to the energy difference between the excited state and the state to which it decays. As each isotope inherently contains unique nuclear energy levels, the NRF states for each isotope are also unique. By exploiting this phenomenon, NRF photon detection provides a well-defined signature for identifying the presence of individual nuclear species. This report summarizes the second year (Fiscal Year [FY] 2009) of a collaborative research effort between Idaho National Laboratory, Idaho State University’s Idaho Accelerator Center, and Pacific Northwest National Laboratory. This effort focused on continuing to assess and optimize NRF-based detection techniques utilizing a slightly modified, commercially available, pulsed medical electron accelerator.

  8. Transferring PACE Assessments Upon Home Sale

    SciTech Connect (OSTI)

    National Renewable Energy Laboratory (NREL); Coughlin, Jason; Fuller, Merrian; Zimring, Mark

    2010-04-12T23:59:59.000Z

    A significant barrier to investing in renewable energy and comprehensive energy efficiency improvements to homes across the country is the initial capital cost. Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing this upfront cost issue. Recently, the White House cited PACE programs as an important element of its 'Recovery through Retrofit' plan. The residential PACE model involves the creation of a special clean energy financing district that homeowners elect to opt into. Once opted in, the local government (usually at the city or county level) finances the upfront investment of the renewable energy installation and/or energy efficiency improvements. A special lien is attached to the property and the assessment is paid back as a line item on the property tax bill. As of April 2010, 17 states have passed legislation to allow their local governments to create PACE programs, two already have the authority to set up PACE programs, and over 10 additional states are actively developing enabling legislation. This policy brief analyzes one of the advantages of PACE, which is the transferability of the special assessment from one homeowner to the next when the home is sold. This analysis focuses on the potential for the outstanding lien to impact the sales negotiation process, rather than the legal nature of the lien transfer itself. The goal of this paper is to consider what implications a PACE lien may have on the home sales negotiation process so that it can be addressed upfront rather than risk a future backlash to PACE programs. If PACE programs do expand at a rapid rate, the chances are high that there will be other cases where prospective buyers uses PACE liens to negotiate lower home prices or require repayment of the lien as a condition of sale. As a result, PACE programs should highlight this issue as a potential risk factor for the sake of full disclosure. A good example of this is in Boulder County where the following statement is included in the ClimateSmart PACE program materials: 'Please Note: There is no legal requirement that the loan be paid off when you refinance or sell your home. However, this may be an item subject to negotiation with a future buyer and may also be a matter of negotiation with the mortgage lender.' Such candid disclosure for what might be a low risk event can be debated. However, a selling point of PACE programs is the transferability of the lien to the new homeowner. To the degree this benefit is questioned, PACE programs may end up looking more like home equity loan financing, with the associated debt repaid at closing, rather than property-based financing that remains with the improved home. While it is possible that upfront disclosure might negatively impact participation rates in PACE programs, it also will protect the integrity of a PACE program in later years if such situations come to pass. Ideally, this will become less of an issue over time as more homebuyers understand the positive economic and societal benefits of owning a home with clean energy features.

  9. The Home Microbiome Project

    ScienceCinema (OSTI)

    Gilbert, Jack

    2014-09-15T23:59:59.000Z

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  10. GREEN HOMES LONG ISLAND

    E-Print Network [OSTI]

    Kammen, Daniel M.

    energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes to yourevery day. By making basic improvements to yourevery day home, you can reduce your carbon footprint

  11. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Broader source: Energy.gov (indexed) [DOE]

    and lighting. A minisplit heat pump with 5 indoor heads heats and cools the home. Green Extreme Homes & Carl Franklin Homes - Garland, TX More Documents & Publications DOE...

  12. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergy InnovationRecentPreviouspower-rates

  13. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |

  14. Smart Home Concepts: Current Trends

    E-Print Network [OSTI]

    Venkatesh, Alladi

    2003-01-01T23:59:59.000Z

    Smart Home Concepts: Current Trends Alladi Venkatesh Ph.D.developments concerning smart home technologies and theirNews (Southern Report): Smart homes and high-tech clothing

  15. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    and implementation of smart home energy management systemsStandard Technologies for Smart Home Area Networks EnablingInteroperability framework for smart home systems”, Consumer

  16. DOE Zero Ready Home Case Study: Clifton View Homes, Kaltenbach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    want to go anywhere else," said Clifton. Clifton, founder of Clifton View Homes, offers net zero energy homes and home designs. Clifton has been building high-performance homes...

  17. Interim Report on Consumer Acceptance, Retention, and response to Time-based rates from the Consumer Behavior Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among States in theWAPA1Interim Final

  18. Analysis of Customer Enrollment Patterns in Time-Based Rate Programs - Initial Results from the SGIG Consumer Behavior Studies

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate -Amir Roth About UsLaboratory |New RifleTuba

  19. Home Inspection Checklist.

    E-Print Network [OSTI]

    Quiring, Susan M.

    1987-01-01T23:59:59.000Z

    ment, recreational and health facilities? Is the site free from threat of flooding? Are local zoning laws compatible with your plans for use of the home? Are paved streets, water, sewer and public walkways provided? Are local property taxes...8-1586 Texas Agricultural Extension Service HOME INSPECTION CHECKLIST MAR 3 1 1988 Susan M. Quiring* Why A Home Inspection? If you're looking for a "perfect" house, you won't find it. Every house has its strengths and weaknesses. Some flaws...

  20. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of ScienceCinema Database

  1. Home | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of ScienceCinema

  2. Homes | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of ScienceCinemaScience

  3. Home | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy Energydefault *** The nextError

  4. Comments on: Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April

  5. Home Energy Score graphic

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist,theA12345 Honeysuckle Lane 1,800

  6. nstec_home.xls

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. HirschOccurrencei-rapter | ¡ ¢ £ ¤ ¥

  7. Kids DO Science Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015JustKateKent5 B O N N E V

  8. Life Sciences Division Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienert namedLife Sciences

  9. Stellarator News Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep Slope Calculator Estimates Cooling andRequirements

  10. David Gates home page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OFSupplementalC. L. Martin andandTopFoster About ESnet

  11. RevCom Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources Resources About1 Sign In About | Careersweb

  12. Fermilab | DASTOW | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:Job OpportunitiesDASTOW '15 U.S.

  13. Comments on: Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES ThematerialsAboutCenter athourly 1

  14. Comments on: Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES ThematerialsAboutCenter athourly 1

  15. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartupHe!

  16. The Ren Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacility |TheDepartment-|

  17. Yennello Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12 recognized forCyclotron Chemistry Dept.

  18. Schuck Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanketPlease contact the beamlineAug 14

  19. Genomics Division Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGeneGenome Engineering withfor Genomics

  20. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels Biomass and Biofuels FindReclamationLSD Logo

  1. Home | DOE Data Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, Stephen G"EnergyENERGYMSAContact Us MemberDDE

  2. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, Stephen G"EnergyENERGYMSAContact UsScienceCinema

  3. Rates & Repayment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and...

  4. Validation of the Manufactured Home Energy Audit (MHEA)

    SciTech Connect (OSTI)

    Ternes, Mark P [ORNL

    2007-12-01T23:59:59.000Z

    The Manufactured Home Energy Audit (MHEA) is an energy audit tool designed specifically to identify recommended weatherization measures for mobile homes as part of the U.S. Department of Energy's (DOE's) Weatherization Assistance Program. A field validation of MHEA was performed using billing/delivery data collected on 86 mobile homes heated primarily by electricity, natural gas, or propane to assess the audit's accuracy and the validity of its recommendations. The validation found that MHEA overpredicts the annual space-heating energy savings of weatherization measures to be installed in mobile homes, which leads to low realization rates, primarily because of its large overprediction of annual pre-weatherization space-heating energy consumption. However, MHEA's annual space-heating energy savings estimates and realization rates can be improved considerably using MHEA's built-in billing adjustment feature. In order to improve the accuracy of MHEA's annual space-heating energy savings estimates and realization rate, the cause of MHEA's overprediction of annual pre-weatherization space-heating energy consumption needs to be further investigated and corrected. Although MHEA's billing adjustment feature improved MHEA's annual space-heating energy savings estimates, alternative methods of making the correction that may provide improved performance should be investigated. In the interim period before permanent improvements to MHEA can be made, the following recommendations should be followed: (a) do not enter into MHEA insulation thicknesses of 1 in. or less and especially zero (0 in.) unless such low levels have been verified through visual inspection of several parts of the envelope area in question; (b) use MHEA's billing adjustment feature to develop a list of recommended measures based on adjusted energy savings if possible, especially in mobile homes that have several major energy deficiencies; and (c) do not use MHEA's "evaluate duct sealing" option at this time (although certainly seal all duct leaks and use diagnostics as appropriate to find leakage sites and quantify improvements).

  5. AIM: A Home-Owner Usable Energy Calculator for Existing Residential Homes

    E-Print Network [OSTI]

    Marshall, K.; Moss, M.; Malhotra, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.

    , R., "Impacts of Duct Leakage on Infiltration Rates, Space Conditioning Energy Use, and Peak Electrical Demand in Florida Homes," Proceedings of the ACEEE 1990 Summer Study, Pacific Grove, CA, August 1990. ESL-IC-09-11-09 Proceedings...

  6. Building America Whole-House Solutions for New Homes: Nexus EnergyHomes- Frederick, Maryland

    Broader source: Energy.gov [DOE]

    This new duplex home successfully combines affordability with state-of-the-art efficiency and indoor environmental quality, achieving the highest rating possible under the National Green Building Standard

  7. The Home Broiler Flock

    E-Print Network [OSTI]

    Thornberry, Fredrick D.

    2002-04-23T23:59:59.000Z

    Many families are interested in producing their own broiler chickens for home consumption. This publication discusses purchasing chicks, preparing and operating the brooder, feeding chicks, maintaining proper lighting and ventilation, and ensuring...

  8. BCP Annual Rate Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 BCP Annual Rate Process (FY 2016 Base Charge & Rate) Informal Process Rate Activity Schedule (doc) Informal Customer Meeting Thursday March 11, 2015 at 10:30 A.M. Conf Rms 3&4...

  9. The passive solar home

    SciTech Connect (OSTI)

    Weiss, J.; Stone, L. [Solar Energy International, Carbondale, CO (United States)

    1995-02-01T23:59:59.000Z

    This article describes a home designed with both energy efficiency and solar principles in mind. The house is situated in Colorado and maintains a comfortable, relatively even heat year around with little backup heat needed. The sun heats the home and the energy efficient design works to store and distribute the heat slowly and continuously. Specific design elements discussed include the following: collection, storage, distribution and retention of solar energy.

  10. What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss

    E-Print Network [OSTI]

    What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss from exposed skin caused by the effects of wind and cold. As the wind increases, the body is cooled at a faster rate causing the skin temperature to drop. Wind Chill does not impact

  11. Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate brachytherapy of the prostate cancer

    E-Print Network [OSTI]

    Pouliot, Jean

    Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate in Medicine. DOI: 10.1118/1.1785454 Key words: high dose rate brachytherapy, computed tomography, prostate at risk OARs by providing three-dimensional 3D anatomical information from computed tomography CT

  12. Performance House -- A Cold Climate Challenge Home

    SciTech Connect (OSTI)

    Puttagunta, S.; Grab, J.; Williamson, J.

    2013-08-01T23:59:59.000Z

    Working with builder partners on a test homes allows for vetting of whole-house building strategies to eliminate any potential unintended consequences prior to implementing these solution packages on a production scale. To support this research, CARB partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, CT. The philosophy and science behind the 2,700 ft2 'Performance House' was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adapt with the homeowners. The technologies and strategies used in the 'Performance House' were not cutting-edge, but simply 'best practices practiced'. The focus was on simplicity in construction, maintenance, and operation. When seeking a 30% source energy savings targets over a comparable 2009 IECC code-built home in the cold climate zone, nearly all components of a home must be optimized. Careful planning and design are critical. To help builders and architects seeking to match the performance of this home, a step-by-step guide through the building shell components of DOE's Challenge Home are provided in a pictorial story book. The end result was a DOE Challenge Home that achieved a HERS Index Score of 20 (43 without PV, the minimum target was 55 for compliance). This home was also awarded the 2012 HOBI for Best Green Energy Efficient Home from the Home Builders & Remodelers Association of Connecticut.

  13. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPowerRates

  14. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics PowerPowerRates

  15. NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTGUIDEBOOK SEPTEMBER 2006 CEC-300. Custom Homes and Small Developments .......................................................... 17 1

  16. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    in home automation and LonWorks is widely used in industrialto industrial control, building and home automation. Fig.

  17. [FIXED RATE GUARANTEED OBLIGATIONS]

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong,Women @JoinEnergy ZEROFIXED RATE GUARANTEED

  18. Mountain Home Well - Photos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shervais, John

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  19. IEEE COMMUNICATIONS LETTERS, VOL. 10, NO. 1, JANUARY 2006 31 Price-Based Max-Min Fair Rate Allocation in

    E-Print Network [OSTI]

    Andrew, Lachlan

    of the max- imum utility rate allocations is max-min fair. This approach is applied to wireless in [5

  20. Home Weatherization Visit

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29T23:59:59.000Z

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  1. Best Practice Upgrades for New Energy Efficient Homes in Hot and Humid Climates

    E-Print Network [OSTI]

    Meisegeier, D.; Hall, J.

    2000-01-01T23:59:59.000Z

    The EPA's ENERGY STAR Homes program is a national voluntary program that promotes the construction of new homes that are 30% more efficient than the Model Energy Code. Accordingly, with the Home Energy Rating System (HERS) scoring system, ENERGY...

  2. Best Practice Upgrades for New Energy Efficient Homes in Hot and Humid Climates 

    E-Print Network [OSTI]

    Meisegeier, D.; Hall, J.

    2000-01-01T23:59:59.000Z

    The EPA's ENERGY STAR Homes program is a national voluntary program that promotes the construction of new homes that are 30% more efficient than the Model Energy Code. Accordingly, with the Home Energy Rating System (HERS) scoring system, ENERGY...

  3. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    SciTech Connect (OSTI)

    Deng, X.

    2006-01-01T23:59:59.000Z

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

  4. Communication in Home Area Networks

    E-Print Network [OSTI]

    Wang, Yubo

    2012-01-01T23:59:59.000Z

    AMR uses UNB-PLC to read smart meter every 15 minutes [29].can be shared. Home 1 Smart meter Utility distribution2 HomePlug AV HomePlug GP Smart meter Cable PEV Appliance

  5. NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK DECEMBER 2006 CEC-300 Executive Director Payam Narvand Program Lead NEW SOLAR HOMES PARTNERSHIP Bill Blackburn Supervisor EMERGING RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Drake Johnson Office Manager RENEWABLE ENERGY PROGRAM

  6. NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK NOVEMBER 2006 CEC................................................................................................ 1 C. Comparison of Emerging Renewables Program and New Solar Homes Partnership Guidebooks....................................................................................... 19 B. Custom Homes and Small Developments..................

  7. Developing energy-efficiency packages for new production homes

    SciTech Connect (OSTI)

    Brown, R.E.; Atkinson, C.S.; Warner, J.L.; Roberson, J.A.; Sanchez, M.C.; Bretz, S.E.; Koomey, J.G.

    1998-07-01T23:59:59.000Z

    The Environmental Protection Agency's ENERGY STAR{reg{underscore}sign} Homes program promotes the construction of new homes that consume at least 30% less energy than the 1993 Model Energy Code specifications for heating, cooling, and water heating end-uses, as determined using the draft National Home Energy Rating System (HERS) Guidelines. The authors developed packages of energy-efficiency measures to help production home builders in 14 US metropolitan areas meet the guidelines of this program. They evaluated the energy savings and costs of over 70 commercially available measures for the building shell and heating, cooling, and water heating equipment to optimize these packages for broad categories of new homes. The authors began by developing building prototypes for energy analysis, based on a survey of construction practices in the 14 cities. They also compiled the best published price data for the more than 70 energy-efficiency measures. They then applied the draft HERS guidelines using the DOE-2 building simulation model, to accurately estimate the energy savings for a wide variety of efficiency measures. To select cost-optimized packages of measures that meet the ENERGY STAR guidelines, they devised an automated economic model that used the building simulation results and measure cost data. This model ordered the measures by cost-effectiveness, accounting for measure interactions to avoid double-counting of energy savings. The resulting packages of measures were modified for certain locations to counting of energy savings. The resulting packages of measures were modified for certain locations to eliminate measures that builders are reluctant to adopt because of limited product availability, home buyer concerns, and other factors. The packages were also adjusted to ensure greater consistency within each city.

  8. Home Gardening in Texas.

    E-Print Network [OSTI]

    Cotner, Sam; Larsen, John

    1978-01-01T23:59:59.000Z

    Spinach Very Difficult Without Using Containers Beans Cantaloupe Corn Cucumber Peas Squash Turnip Wahnnelon Watering and fertilizing by the use of sunken pots provides optimum growth conditions for tomato plants. One level teospoon of complete... buildups. Table 1. Home Small Garden Vegetables Beets Green beans Broccoli Lettuce Bush squash Onions Cabbage Parsley Carrots Peppers Eggplant Radishes English peas Spinach Garlic Tomatoes Garden Vegetables Large Garden Vegetables Cantaloupes...

  9. Home Energy Efficiency Twitter Chat

    Broader source: Energy.gov [DOE]

    Did you miss our home energy efficiency Twitter Chat? We compiled the discussion so you can learn ways to save energy and money at home.

  10. Exploring California PV Home Premiums

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    of Photovoltaic Energy Systems on Residential Selling PricesResidential Photovoltaic Energy Systems on Home Sales PricesResidential Photovoltaic Energy Systems on Home Sales Prices

  11. Home Performance with Energy Star

    Broader source: Energy.gov [DOE]

    Through the Home Performance with Energy Star program, Focus on Energy offers instant rewards for installing select recommended efficiency measures following a home energy audit. Energy consultants...

  12. Zero-Energy COURTESY OF WAUSAU HOMES

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    for heating and cooling, lighting, siding and insulation, roofing, and solar power. The most advanced energy window your budget will allow. Windows are rated two ways: the U-factor and the solar heat gain-energy homes feature airtight construction using structural insulated panels (SIPs), or something similar

  13. Alliant Energy Interstate Power and Light- New Home Construction Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light's New Home Program gives incentives to builders and contractors who build energy efficient homes. A base rebate is available to those customers that make the minimum...

  14. Regression-based estimates of the rate of accumulation of anthropogenic CO2 in the ocean: A fresh look

    E-Print Network [OSTI]

    and guidelines for improvement are presented. Following these guidelines leads to a local two- regression method to quantify the rate of accumulation. While a formal measure of the accumulation rate's uncertainty profiling floats capable of the same sorts of measurements as obtained by the hydrographic surveys were

  15. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >Utility Rate Home

  16. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtility Rate Home

  17. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartmentPower-Rates Sign In About |

  18. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department ofDepartmentPower-Rates Sign

  19. Settlement PF Exchange Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the Stage for the Next SolarRate

  20. Lighting Options for Homes.

    SciTech Connect (OSTI)

    Baker, W.S.

    1991-04-01T23:59:59.000Z

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  1. Home Fruit Production - Pears.

    E-Print Network [OSTI]

    Lipe, John A.; Lyons, Calvin; Stein, Larry

    1988-01-01T23:59:59.000Z

    System ? College Station, Texas (Blank Pa,ge -in Origi.aI BoHetiDl ' : . 1 r . .- HOME FRUIT PRODUCTION - PEARS John A. Upe, Calvin Lyons and Larry Stein* Pears are long-lived attractive trees for Texas land scapes. Selected varieties produce good... to Texas and adaptation is still undetermined. SITE AND SOIL REQUIREMENTS Climatically, pears are adapted to all areas of Texas north of a line from Corpus Christi to Laredo. Pears are not recommended farther south, although a few trees have grown...

  2. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19 Evaluation1-01Storage SiteMissed

  3. Context Ontology Implementation for Smart Home

    E-Print Network [OSTI]

    Van Nguyen, Tam; Nguyen, Huy; Choi, Deokjai; Lee, Chilwoo

    2010-01-01T23:59:59.000Z

    Context awareness is one of the important fields in ubiquitous computing. Smart Home, a specific instance of ubiquitous computing, provides every family with opportunities to enjoy the power of hi-tech home living. Discovering that relationship among user, activity and context data in home environment is semantic, therefore, we apply ontology to model these relationships and then reason them as the semantic information. In this paper, we present the realization of smart home's context-aware system based on ontology. We discuss the current challenges in realizing the ontology context base. These challenges can be listed as collecting context information from heterogeneous sources, such as devices, agents, sensors into ontology, ontology management, ontology querying, and the issue related to environment database explosion.

  4. Rate Schedules | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartmentEnergy April 20138Rate Schedules Rate Schedules

  5. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates > Rate Cases > Rates

  6. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    DOE Patents [OSTI]

    Horn, Kevin M. (Albuquerque, NM)

    2008-05-20T23:59:59.000Z

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  7. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustom Home |RIProductionVA | Department

  8. Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Rating curves and estimation of average water depth at the upper Negro River based on satellite for 21 ``virtual gauge stations'' located at the upper Negro River (Amazon Basin, Brazil). A virtual station can be defined as any crossing of water body surface (i.e., large rivers) by radar altimeter

  9. A GIS-based Estimate of Net Erosion Rate for Semi-arid Watersheds in New Mexico Richardson, C.P.1

    E-Print Network [OSTI]

    Cal, Mark P.

    A GIS-based Estimate of Net Erosion Rate for Semi-arid Watersheds in New Mexico Richardson, C.P.1 and Environmental Engineering, New Mexico Tech 801 Leroy Place Socorro, NM, 87801, h2odoc@nmt.edu 2 Jose B. Gallegos.gallegos@arcadis-us.com 3 Jaime Ealey, Graduate Research Assistant, Dept. of Civil and Environmental Engineering, New Mexico

  10. Home audit program: management manual

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Many public power systems have initiated home energy audit programs in response to the requests of their consumers. The manual provides smaller public power systems with the information and specific skills needed to design and develop a program of residential energy audits. The program is based on the following precepts: locally owned public systems are the best, and in many cases the only agencies available to organize and coordinate energy conservation programs in many smaller communities; consumers' rights to energy conservation information and assistance should not hinge on the size of the utility that serves them; in the short run, public power systems of all sizes should offer residential energy conservation assistance to their consumers, because such assistance is desirable, necessary, and in the public interest; and in the long run, such programs will complement national energy goals and will produce economic benefits for both consumers and the public power system. A detailed description of home audit program planning, organization, and management are given. (MCW)

  11. Home Performance with ENERGY STAR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p pof Energy Home PerformanceHome

  12. Laser-based irradiation apparatus and methods for monitoring the dose-rate response of semiconductor devices

    DOE Patents [OSTI]

    Horn, Kevin M. (Albuquerque, NM)

    2006-03-28T23:59:59.000Z

    A scanned, pulsed, focused laser irradiation apparatus can measure and image the photocurrent collection resulting from a dose-rate equivalent exposure to infrared laser light across an entire silicon die. Comparisons of dose-rate response images or time-delay images from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems allows precise identification of those specific age-affected circuit structures within a device that merit further quantitative analysis with targeted materials or electrical testing techniques. Another embodiment of the invention comprises a broad-beam, dose rate-equivalent exposure apparatus. The broad-beam laser irradiation apparatus can determine if aging has affected the device's overall functionality. This embodiment can be combined with the synchronized introduction of external electrical transients into a device under test to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure.

  13. PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes

    E-Print Network [OSTI]

    ,500 square-foot Lab Homes for experiments focused on reducing energy use and peak demand on the electric grid. Results and reports from the experiments will be available at labhomes.pnnl.gov. ENERGY EFFICIENCY. To account for human activity, researchers will simulate occupancy in each home. "The PNNL Lab Homes project

  14. Residential solar home resale analysis

    SciTech Connect (OSTI)

    Noll, S.A.

    1980-01-01T23:59:59.000Z

    One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

  15. Processing Poultry at Home

    E-Print Network [OSTI]

    Davis, Michael

    2006-01-04T23:59:59.000Z

    them out. Also try to get your hand in front of the heart so that when you remove the viscera, you bring essentially all organs out at one pull. Often it is possible to remove the lungs, but usually they must be removed separately. For people... bladder. Gall contaminating the liver imparts a bit- ter taste. After the giblets have been harvested, wash them and place them in chilled water. If several birds are processed at once, use a sepa- rate chill container for giblets. 9 The lungs usually...

  16. revised for resubmission to IEEE Trans. on Pattern Analysis and Machine Intelligence Frame-Rate Spatial Referencing Based on Invariant

    E-Print Network [OSTI]

    retina, from a series of image frames. We treat the problem as a registration problem, using diagnostic million people in the US alone [13, 24, 25, 32], but still has only a 50% success rate. A major cause of the energy delivered anywhere on the retina, and there are no automatic alarms or safety shut-offs when

  17. NEW SOLAR HOMES PARTNERSHIP GUIDEBOOKSTAFFDRAFT

    E-Print Network [OSTI]

    RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Mark Hutchison Office Manager RENEWABLE ENERGY PROGRAMCALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK­STAFFDRAFT JUNE 2007 CEC-300-2007-008-SD Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY COMMISSION Jackalyne Pfannenstiel Chairman

  18. SCE- California Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    Southern California Edison offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new...

  19. Energy Star Homes (New Construction)

    Broader source: Energy.gov [DOE]

    For individuals building a new home, Efficiency Vermont offers free technical assistance and targeted rebates to help ensure that the home is as energy efficient as possible. The first step is to...

  20. Northwest home buyers' fuel and energy-efficiency preferences

    SciTech Connect (OSTI)

    Lee, A.D.; Harkreader, S.A.; Bruneau, C.L.; Volke, S.M.

    1990-11-01T23:59:59.000Z

    This study for the Bonneville Power Administration (Bonneville) investigated home buyers' heating fuel and energy-efficiency preferences, and the influence of incentives on their choices. The study was conducted in four regions of Washington State: Spokane and Pierce Counties, where the Model Conservation Standards (MCS) for new electrically heated homes have been adopted as local code, and King and Clark Counties, where the MCS has been implemented only through a voluntary marketing program. The results of this study provide useful information about energy-efficiency, space heating fuel type, and alternative incentive programs. They provide initial evidence that fuel-specific energy-efficiency standards may significantly affect the shares of different heating fuels in the new home market. They also suggest that cash rebates and utility rate incentives may have a modest effect on the shares for different heating fuels. Because these results are based on a technique relying on hypothetical choices and because they reflect only four metropolitan areas, further study must be conducted to determine whether the results apply to other locations and whether other analytic approaches produce similar findings. 3 refs.

  1. Assistive Devices for the Home

    E-Print Network [OSTI]

    Harris, Janie

    2002-01-31T23:59:59.000Z

    , contact a physical therapist or occupational therapist through a home health agency or your local hospital. The following Web sites have information about devices that can make your home safer and more functional: http...Assistive Devices for the Home Janie Harris Extension Specialist, Housing and Environment The Texas A&M University System If you were to become impaired or disabled from an accident or illness, how ?user-friendly? would your home be? There are many...

  2. Imagine Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind

  3. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy Will

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > PostsUtility Rate

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >Utility Rate

  6. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtility Rate

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility Rate Home >

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility Rate Home

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > UtilityUtility Rate HomeUtility

  10. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  11. 4Home | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. National SoftwareE Place:3TIER4C4Home

  12. Winchester Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: Energy ResourcesHomes Jump to:

  13. DOE Challenge Home Label Methodology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -StateOffshoreFuel Cycle |Department of

  14. Home | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHolocene Magmatic GeothermalHomeOpenEI

  15. Insight Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,Innoferm GmbH Jump to:EnergyInsight Homes

  16. Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar PowerCommercial Cold ClimateHiringHistory

  17. The Future of Home Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe Facts on Gas Prices:The FirstThe Future

  18. Baldwin Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public UtilitiesBaldHomes Jump to:

  19. Belcher Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes Jump to: navigation, search Name: Belcher

  20. CAES MaCS Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home About Us Dr. Yaqiao (Y.

  1. Home Performance with Energy Star

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p pof Energy HomeEnergy- HPwES

  2. DOE Zero Energy Ready Home Case Study, KB Home, San Marcos, CA, Production Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |

  3. DOE Zero Ready Home Case Study: Cobblestone Homes, 2014 Model Home, Midland, MI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials |Production | Zero Energy

  4. Building America Business Solutions for New Homes: Marketing Zero Energy Homes: Lifestyle Homes, Melbourne, Florida

    Broader source: Energy.gov [DOE]

    Building America research has shown that high performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign, and sometimes a little flair. This case study highlights LifeStyle Homes’ successful marketing approach for their SunSmart home package.

  5. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01T23:59:59.000Z

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

  6. Affordable High Performance in Production Homes: Artistic Homes...

    Broader source: Energy.gov (indexed) [DOE]

    and technical assistance to Artistic Homes.Read about this Top Innovation. Find more case studies of Building America projects across the country that demonstrate how high...

  7. DOE Challenge Home (Now Zero Energy Ready Home) - Building America...

    Energy Savers [EERE]

    performance. Read about this Top Innovation. See an example of a DOE Challenge Home. Find case studies of Building America builders across the country that are taking the...

  8. DOE Zero Ready Home Case Study: Southern Energy Homes, First...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and water heating installed or conduit and electric panel space installed for future solar equipment installation. The DOE Zero Energy Ready-certified home actually exceeded the...

  9. Guidelines for Home Energy Professionals Project: Benefits for Home Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResource Guideand Contractors | Department

  10. Home Energy Audits: Making Homes More Energy Efficient and Comfortable |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37Energy Highlights from the

  11. Masco Home Services/WellHome | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to:source History View NewMarysville TestMasco

  12. Affordable High Performance in Production Homes: Artistic Homes,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate - Issue 55-July 2014 Advocate -

  13. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOEHeatEnergyInc.,| DepartmentCT, Custom |VA |

  14. Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (PART 1)

    E-Print Network [OSTI]

    M. Danilov; Yu. Gilitsky; T. Kvaratschellia; L. Laptin; I. Tichomirov; M. Titov; Yu. Zaitsev

    2001-11-23T23:59:59.000Z

    Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance $R$ from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiation. The possible application of these results to the construction of a large area gaseous detectors for operation in high rate environments is presented.

  15. Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (Part 2)

    E-Print Network [OSTI]

    M. Danilov; Yu. Gilitsky; T. Kvaratschellia; L. Laptin; I. Tichomirov; M. Titov; Yu. Zaitsev

    2001-11-23T23:59:59.000Z

    Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance R from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiation. The possible application of these results to the construction of a large area gaseous detectors for operation in high rate environments is presented.

  16. Tap Density Equations of Granular Powders Based on the Rate Process Theory and the Free Volume Concept

    E-Print Network [OSTI]

    Tian Hao

    2014-09-05T23:59:59.000Z

    Tap density of a granular powder is often linked to the flowability via Carr Index that measures how tight a powder can be packed, under an assumption that more easily packed powders usually flow poorly. Understanding how particles are packed is important for revealing why a powder flows better than others. There are two types of empirical equations that were proposed to fit the experimental data of packing fractions vs. numbers of taps in literature: The inverse logarithmic and the stretched exponential. Using the rate process theory and the free volume concept, we obtain the tap density equations and they can be reducible to the two empirical equations currently widely used in literature. Our equations could potentially fit experimental data better with an additional adjustable parameter. The tapping amplitude and frequency, the weight of the granular materials, and the environment temperature are grouped into one parameter that weighs the pace of packing process. The current results, in conjunction with our previous findings, may imply that both dry(granular)and wet(colloidal and polymeric) particle systems are governed by the same physical mechanisms in term of the role of the free volume and how particles behave (a rate controlled process).

  17. Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    By working with builder partners on test homes, researchers from the U.S. Department of Energy's Building America program can vet whole-house building strategies and avoid potential unintended consequences of implementing untested solution packages on a production scale. To support this research, Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, Connecticut. The philosophy and science behind the 2,700 ft2 "Performance House" was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adaptable to the needs of homeowners. The technologies and strategies used in the "Performance House" were best practices rather than cutting edge, with a focus on simplicity in construction, maintenance, and operation. Achieving 30% source energy savings compared with a home built to the 2009 International Energy Conservation Code in the cold climate zone requires that nearly all components and systems be optimized. Careful planning and design are critical. The end result was a DOE Challenge Home that achieved a Home Energy Rating System (HERS) Index Score of 20 (43 without photovoltaics [PV]).

  18. Local Recurrence in Women With Stage I Breast Cancer: Declining Rates Over Time in a Large, Population-Based Cohort

    SciTech Connect (OSTI)

    Canavan, Joycelin, E-mail: canavanjoycelin@gmail.com [Radiation Therapy Program and Breast Cancer Outcomes Unit, British Columbia Cancer Agency, Vancouver Island Centre, University of British Columbia, Victoria, British Columbia (Canada); Truong, Pauline T.; Smith, Sally L. [Radiation Therapy Program and Breast Cancer Outcomes Unit, British Columbia Cancer Agency, Vancouver Island Centre, University of British Columbia, Victoria, British Columbia (Canada); Lu, Linghong; Lesperance, Mary [Department of Mathematics and Statistics, University of Victoria, British Columbia (Canada); Olivotto, Ivo A. [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary (Canada)

    2014-01-01T23:59:59.000Z

    Purpose: To evaluate whether local recurrence (LR) risk has changed over time among women with stage I breast cancer treated with breast-conserving therapy. Methods and Materials: Subjects were 5974 women aged ?50 years diagnosis with pT1N0 breast cancer from 1989 to 2006, treated with breast-conserving surgery and radiation therapy. Clinicopathologic characteristics, treatment, and LR outcomes were compared among 4 cohorts stratified by year of diagnosis: 1989 to 1993 (n=1077), 1994 to 1998 (n=1633), 1999 to 2002 (n=1622), and 2003 to 2006 (n=1642). Multivariable analysis was performed, with year of diagnosis as a continuous variable. Results: Median follow-up time was 8.6 years. Among patients diagnosed in 1989 to 1993, 1994 to 1998, 1999 to 2002, and 2003 to 2006, the proportions of grade 1 tumors increased (16% vs 29% vs 40% vs 39%, respectively, P<.001). Surgical margin clearance rates increased from 82% to 93% to 95% and 88%, respectively (P<.001). Over time, the proportions of unknown estrogen receptor (ER) status decreased (29% vs 10% vs 1.2% vs 0.5%, respectively, P<.001), whereas ER-positive tumors increased (56% vs 77% vs 86% vs 86%, respectively, P<.001). Hormone therapy use increased (23% vs 23% vs 62% vs 73%, respectively, P<.001), and chemotherapy use increased (2% vs 5% vs 10% vs 13%, respectively, P<.001). The 5-year cumulative incidence rates of LR over the 4 time periods were 2.8% vs 1.7% vs 0.9% vs 0.8%, respectively (Gray's test, P<.001). On competing risk multivariable analysis, year of diagnosis was significantly associated with decreased LR (hazard ratio, 0.92 per year, P=.0003). Relative to grade 1 histology, grades 2, 3, and unknown were associated with increased LR. Hormone therapy use was associated with reduced LR. Conclusion: Significant changes in the multimodality management of stage I breast cancer have occurred over the past 2 decades. More favorable-risk tumors were diagnosed, and margin clearance and systemic therapy use increased. These changes contributed to the observed declining LR rates among patients treated with breast-conserving therapy.

  19. A comparison of recharge rates in aquifers of the United States based on groundwater-age data

    E-Print Network [OSTI]

    . McMahon & L. N. Plummer & J. K. Böhlke & S. D. Shapiro & S. R. Hinkle Abstract An overview of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions, numerical hydraulic modeling, water-table fluctuations, stream base-flow separation, and various other types

  20. Rating Element

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo.Frequency |DepartmentEventRangeScore

  1. Energy 101: Home Energy Assessment

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician - often called an energy auditor - can give your home a checkup. You can also do some of the steps yourself. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera.

  2. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Broader source: Energy.gov (indexed) [DOE]

    home in northern AZ that achieved a HERS score of 48 without PV or 25 if 3.5 kW PV were added. The two-story, 2,469-ft2 production home has 2x4 walls filled with R-13 open-cell...

  3. NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEFINALGUIDEBOOK NOVEMBER 2006 CEC .................................................................. 8 A. Technology and System Ownership ................................................. 10 G. Estimated Performance Using Commission PV Calculator ................................ 10 H

  4. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amy Glickson | Web Development Email the editor Archives 6 Energy Saving Homes and Buildings 5 Sustainable Transportation 4 NREL Leads Energy Systems Integration 3 Spectrum...

  5. FORGE Home | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORGE Home The Energy Department envisions Frontier Observatory for Research in Geothermal Energy (FORGE) as a dedicated site where scientists and engineers will be able to...

  6. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  7. Department of Energy Home Page

    Office of Scientific and Technical Information (OSTI)

    US DEPARTMENT OF ENERGY Search Home Page Contents ABOUT DOE About The Department of Energy (Learn about the Department of Energy, its mission, plans, organizational structure,...

  8. Home Heating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHome DesignHeating

  9. Home Weatherization | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of greatHome

  10. New American Home 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This brochure details the New American Home 2009, which demonstrates the use of innovative building materials, cutting-edge design, and the latest construction techniques.

  11. Lesson Plan: Home Energy Investigation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLesson 8 -Makes A

  12. Challenge Home | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014 ENVIRONMENTAL MANAGEMENT2 ChairsChallenge

  13. Ryerson University Â… Harvest Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l iRuralDepartmentRyerson

  14. Home | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHolocene Magmatic

  15. Home Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey:Heights,Holyoke, Massachusetts:

  16. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy WillCalifornia Program

  17. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy WillCalifornia

  18. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterials | DepartmentEnergy WillCalifornia5) May

  19. Your Home Fire Safety Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contributeSecuritysupportsEnergyYourYourHome

  20. Pardee Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisadesParachute,Paramus, New Jersey:

  1. Challenge Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy0 Chairs Meeting

  2. Clayton Homes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClark Energy Coop

  3. Home | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation HessHirschmannScoring Tool Jump to:OpenEI

  4. Building America Business Solutions for New Homes: Marketing Zero Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevs BatteriesWashingtonOFFICEHomes: Tommy

  5. Clinical implementation of a digital tomosynthesis-based seed reconstruction algorithm for intraoperative postimplant dose evaluation in low dose rate prostate brachytherapy

    SciTech Connect (OSTI)

    Brunet-Benkhoucha, Malik; Verhaegen, Frank; Lassalle, Stephanie; Beliveau-Nadeau, Dominic; Reniers, Brigitte; Donath, David; Taussky, Daniel; Carrier, Jean-Francois [Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada) and Departement de Radio-Oncologie, Centre Hospitalier de l'Universite de Montreal, 1560 rue Sherbrooke Est, Quebec, Montreal, Quebec H2L 4M1 (Canada); Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology (MAASTRO), GROW Research Institute, University Medical Centre Maastricht, Maastricht (Netherlands); Departement de Radio-Oncologie, Centre Hospitalier de l'Universite de Montreal, 1560 rue Sherbrooke Est, Quebec, Montreal, Quebec H2L 4M1 (Canada); Medical Physics Unit, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology (MAASTRO), GROW Research Institute, University Medical Centre Maastricht, Maastricht (Netherlands); Departement de Radio-Oncologie, Centre Hospitalier de l'Universite de Montreal, 1560 rue Sherbrooke Est, Quebec, Montreal, Quebec H2L 4M1 (Canada); Departement de Radio-Oncologie, Centre Hospitalier de l'Universite de Montreal, 1560 rue Sherbrooke Est, Quebec, Montreal, Quebec H2L 4M1 (Canada) and CRCHUM, Centre Hospitalier de l'Universite de Montreal, 1560 rue Sherbrooke Est, Quebec, Montreal, Quebec H2L 4M1 (Canada)

    2009-11-15T23:59:59.000Z

    Purpose: The low dose rate brachytherapy procedure would benefit from an intraoperative postimplant dosimetry verification technique to identify possible suboptimal dose coverage and suggest a potential reimplantation. The main objective of this project is to develop an efficient, operator-free, intraoperative seed detection technique using the imaging modalities available in a low dose rate brachytherapy treatment room. Methods: This intraoperative detection allows a complete dosimetry calculation that can be performed right after an I-125 prostate seed implantation, while the patient is still under anesthesia. To accomplish this, a digital tomosynthesis-based algorithm was developed. This automatic filtered reconstruction of the 3D volume requires seven projections acquired over a total angle of 60 deg. with an isocentric imaging system. Results: A phantom study was performed to validate the technique that was used in a retrospective clinical study involving 23 patients. In the patient study, the automatic tomosynthesis-based reconstruction yielded seed detection rates of 96.7% and 2.6% false positives. The seed localization error obtained with a phantom study is 0.4{+-}0.4 mm. The average time needed for reconstruction is below 1 min. The reconstruction algorithm also provides the seed orientation with an uncertainty of 10 deg. {+-}8 deg. The seed detection algorithm presented here is reliable and was efficiently used in the clinic. Conclusions: When combined with an appropriate coregistration technique to identify the organs in the seed coordinate system, this algorithm will offer new possibilities for a next generation of clinical brachytherapy systems.

  6. Infiltration Testing of Homes in the Houston Gulf Coast Area

    E-Print Network [OSTI]

    Howel, E. S.

    1990-01-01T23:59:59.000Z

    that is displaced by outside a% in a 1 hour period. The Manual J Load Calculation Handbook 1.1) specifies ACH values n a 2000 square foot home from .2 to 1.8. Load calculations based on Manual J procedures on a home of 1800 square feet in the Houston, Texas... area show that when ACH is .7 (average new home), infiltration becomes a significaht contributor to heatin (20%) and air conditionyng (34% ) loads. Additionally, when the 1800 square foot home has an ACH of 1.5 (average existin home...

  7. Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings

    E-Print Network [OSTI]

    Kim, Hyojin 1981-

    2012-11-14T23:59:59.000Z

    for Administrative/Professional Office Buildings and Other Eight Representative Building Types based on the U.S. DOE EIA CBECS Database. ..................................................................................................................... 84 Figure... help in distributing and collecting the surveys at the case-study building. I am also grateful to my friends and colleagues at the Energy Systems Laboratory. Dr. Juan-Carlos Baltazar always supported and inspired me to complete this dissertation. Mr...

  8. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump to: navigation,

  9. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    the installation of PV in new Energy Star residentialtwo market-rate, zero-energy new home developments with75 and 38 new zero-energy homes, respectively – both of

  10. U.S. Aims for Zero-Energy: Support for PV on New Homes

    E-Print Network [OSTI]

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Figure 1. Relative Cost of PV on New, Market-Rate Homesfor Zero-Energy: Support for PV on New Homes Galen Barbose,segment for solar photovoltaic (PV) adoption, new homes have

  11. GRID INDEPENDENT FUEL CELL OPERATED SMART HOME

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2003-12-07T23:59:59.000Z

    A fuel cell power plant, which utilizes a smart energy management and control (SEMaC) system, supplying the power need of laboratory based ''home'' has been purchased and installed. The ''home'' consists of two rooms, each approximately 250 sq. ft. Every appliance and power outlet is under the control of a host computer, running the SEMaC software package. It is possible to override the computer, in the event that an appliance or power outage is required. Detailed analysis and simulation of the fuel cell operated smart home has been performed. Two journal papers has been accepted for publication and another journal paper is under review. Three theses have been completed and three additional theses are in progress.

  12. Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (PART 1)

    E-Print Network [OSTI]

    Danilov, M; Kvaratskheliia, T; Laptin, L; Tichomirov, I; Titov, M L; Zaitsev, Yu; Gilitsky, Yu.; Zaitsev, Yu.

    2001-01-01T23:59:59.000Z

    Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance $R$ from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradi...

  13. Aging Studies of Large Area Proportional Chambers under High-Rate Irradiation with $CF_4$-based Mixtures (Part 2)

    E-Print Network [OSTI]

    Danilov, M; Kvaratskheliia, T; Laptin, L; Tichomirov, I; Titov, M L; Zaitsev, Yu; Gilitsky, Yu.; Zaitsev, Yu.

    2001-01-01T23:59:59.000Z

    Experimental conditions at the HERA-B experiment impose very strong requirements for gaseous detectors. The charged particle fluxes through the HERA-B tracking system, varying with the radial distance R from the beam line, are about $2 \\times 10^{7}/R^{2}$ particles per second, and comparable to those that will be encountered by LHC experiments. The severe radiation environment of the HERA-B experiment leads to a maximum charge deposit on a wire, within the muon detector, of 200 mC/cm per year. We report recent results of aging studies performed by irradiating proportional wire chambers filled with $Ar/CF_4/CH_4$ (74:20:6), $Ar/CF_4/CH_4$ (67:30:3), $Ar/CF_4/CO_2$ (65:30:5), $Ar/CF_4$ (70:30), $CF_4/CH_4$ (90:10), $CF_4/CH_4$ (80:20) mixtures in a three different experimental setups. The size of the irradiation zone varied in the tests from 1 cm up to 500 cm. Our experience shows that the aging rate depends not only on the total collected charge, but, in addition, on the mode of operation and area of irradiat...

  14. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus of Mixing on Acceptable Indoor Air Quality in Homes ABSTRACT Ventilation reduces occupant exposure to indoor different dilution rates and contaminant source strengths. The total ventilation rate is the most important

  15. 110 Home Power #79 October / November 2000 Code Corner

    E-Print Network [OSTI]

    Johnson, Eric E.

    (NFPA) fire rating. The fire rating is used with local building codes when the PV module110 Home Power #79 · October / November 2000 Code Corner PV Modules, Conductors, & the Code John (PV) modules produce electrical energy when exposed to light and connected to a load. Determining

  16. NEW SOLAR HOMES PARTNERSHIP GUIDEBOOKCOMMITTEEDRAFT

    E-Print Network [OSTI]

    SOLAR HOMES PARTNERSHIP Heather Raitt Technical Director RENEWABLE ENERGY PROGRAM Mark Hutchison OfficeCALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK­COMMITTEEDRAFT JULY 2007 CEC-300-2007-008-CTD Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY COMMISSION Jackalyne Pfannenstiel Chairman

  17. Precision zero-home locator

    DOE Patents [OSTI]

    Stone, W.J.

    1983-10-31T23:59:59.000Z

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  18. Permanent Home Number: Residential Number

    E-Print Network [OSTI]

    Viglas, Anastasios

    Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

  19. Comparison of Home Retrofit Programs in Wisconsin

    SciTech Connect (OSTI)

    Cunningham, K.; Hannigan, E.

    2013-03-01T23:59:59.000Z

    To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

  20. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > Posts by term

  1. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > Posts by

  2. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > Posts byUtility

  3. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > Posts

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate > PostsUtility

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >

  6. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >Utility

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate >Utilitycommercial

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility Rate

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobal Atlas Type Term

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobal Atlas Type

  11. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobal Atlas

  12. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobal AtlasUtility

  13. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobal

  14. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtility

  15. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home > Utility RateGlobalUtilityUtility

  16. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA...

    Energy Savers [EERE]

    KB Home, San Marcos, CA, Production Home DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production Home Case study of a DOE Zero Energy Ready Home in San Marcos,...

  17. DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit...

    Energy Savers [EERE]

    basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater. DOE Zero Energy Ready Home:...

  18. DOE Zero Energy Ready Home Case Study, Mandalay Homes, Phoenix...

    Broader source: Energy.gov (indexed) [DOE]

    home has R-21 framed walls, a sealed closed-cell spray foamed attic, an air-source heat pump with forced air, and a solar combo system that provides PV, hot water, and space...

  19. DOE Zero Energy Ready Home Case Study: Southern Energy Homes...

    Office of Environmental Management (EM)

    and an R-28 fiberglass blanket under the floor joists. One mini-split ductless heat pump heats and cools the home with thermostat-controlled in-wall fans to transfer heat to...

  20. DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland...

    Broader source: Energy.gov (indexed) [DOE]

    in Midland, MI, that scored HERS 49 without PV or HERS 44 with 1.4 kW of PV. The custom home served as a prototype and energy efficiency demonstration model while performance...

  1. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-20 open-cell spray foam insulated attic, triple-pane windows, a 95% efficient gas furnace, and an ERV. Mandalay Homes: Pronghorn Ranch - Prescott Valley, AZ More Documents &...

  2. DOE Zero Energy Ready Home Case Study, e2Homes, Winterpark, FL, Custom Homes

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Winter Park, FL that scored HERS 57 without PV or HERS -7 with PV. This 4,305 ft2 custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps.

  3. FORGE Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA Support Services forEnergy

  4. EPSCI Home | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hosted byCold FusionEPSCI

  5. Fermilab | Fermilab at Work | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophoto Fermilab at Work Main

  6. Home Cooling | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy years of great

  7. NREL: Biomass Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13 DenverIntegratedPhoto of a

  8. NREL: Buildings Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13 DenverIntegratedPhoto of

  9. NREL: Computational Science Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13 DenverIntegratedPhoto

  10. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13Summer 2015 / Issue 8

  11. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13Summer 2015 / Issue 8Spring

  12. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13Summer 2015 / Issue 8Spring

  13. NREL: Education Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contact

  14. NREL: Geothermal Technologies Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundation ofThermalPhoto of

  15. NREL: International Activities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure TheSolar Energy Sponsors and

  16. NREL: Research Facilities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure JohnEnergyThin FilmWorking withNREL

  17. NREL: Solar Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure JohnEnergyThin FilmWorkingSolar

  18. NREL: Sustainable NREL Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |InfrastructureAerial photo of the South Table

  19. NREL: Technology Deployment Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |InfrastructureAerial photo ofWebmaster

  20. NREL: Technology Transfer Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |InfrastructureAerialWork-for-Others

  1. NREL: Transportation Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in front of NREL

  2. SSRL Accelerator Phycics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a lNA-0019SSRL FY2001 SPEARSPEAR

  3. NREL: Energy Analysis Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in the Insights In

  4. NREL: Innovation Impact Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in the Insights

  5. NREL: Photovoltaics Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in the National

  6. NREL: Wind Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in theState

  7. Computing at SSRL Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergyEventscontents you are

  8. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustry PhotoPartnering:Winter

  9. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustry

  10. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustryIssue 3 Continuum. Clean

  11. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustryIssue 3 Continuum.

  12. NREL: Continuum Magazine Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustryIssue 3 Continuum.Spring

  13. Fermilab | Director's Policy Manual | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013 NAME:Job OpportunitiesDASTOW '15

  14. Fermilab | Users' Executive Committee | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013FocusreceivesTrafficUsers Organization

  15. The Yi Liu Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth'sConnect,LLC THE WESTERN42 Marchwith

  16. NREL: Energy Sciences Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletterAcademy AlumniNews

  17. Fermilab | Users' Executive Committee | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget »Travel and Lodging DirectionsSurface

  18. Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab research yields first direct observation of carbon dioxide's increasing greenhouse effect at the Earth's surface. The culprit? Fossil fuel emissions. Research Extreme...

  19. Marketing energy conservation options to Northwest manufactured home buyers

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Mohler, B.L.; Taylor, Z.T.; Lee, A.D.; Onisko, S.A.

    1985-06-01T23:59:59.000Z

    This study relies on extensive, existing survey data and new analyses to develop information that would help design a marketing plan to achieve energy conservation in new manufactured homes. Existing surveys present comprehensive information about regional manufactured home occupants and their homes that are relevant to a potential conservation marketing plan. An independent analysis of the cost-effectiveness of various efficiency improvements provides background information for designing a marketing plan. This analysis focuses on the economic impacts of alternative energy conservation options as perceived by the home owner. Identifying impediments to conservation investments is also very important in designing a marketing plan. A recent report suggests that financial constraints and the need for better information and knowledge about conservation pose the major conservation investment barriers. Since loan interest rates for new manufactured homes typically exceed site-built rates by a considerable amount and the buyers tend to have lower incomes, the economics of manufactured home conservation investments are likely to significantly influence their viability. Conservation information and its presentation directly influences the manufactured home buyer's decision. A marketing plan should address these impediments and their implications very clearly. Dealers express a belief that consumer satisfaction is the major advantage to selling energy efficient manufactured homes. This suggests that targeting dealers in a marketing plan and providing them direct information on consumers' indicated attitudes may be important. 74 refs.

  20. Producing Quail for Home Consumption

    E-Print Network [OSTI]

    Thornberry, Fredrick D.

    1998-08-21T23:59:59.000Z

    Hobby and backyard producers are becoming interested in producing quail for home consumption. This publication gives tips on housing and brooding, nutrition, lighting, cannibalism, health and slaughter. It includes three recipes....

  1. Hamilton County- Home Improvement Program

    Broader source: Energy.gov [DOE]

    The Hamilton County, Ohio, Home Improvement Program (HIP) was originally initiated in 2002, and then reinstated in May 2008. The HIP loan allows homeowners in Hamilton County communities to borrow...

  2. Texas Home Vegetable Gardening Guide

    E-Print Network [OSTI]

    Masabni, Joseph

    2009-02-24T23:59:59.000Z

    With this manual, home gardeners are sure to be successful growing vegetables. It includes information on garden planning, crop selection, soil preparation, fertilization, planting techniques, watering, pest control and harvesting. Tables show...

  3. DEMCO- Touchstone Energy Home Program

    Broader source: Energy.gov [DOE]

    DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

  4. Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    still com- monly used in home heating and smoking rates arefound exposure to coal home heating and ETS increase youngcigarette smoke, coal heating, and respiratory symptoms of

  5. RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES

    E-Print Network [OSTI]

    Meier, Alan K.

    2008-01-01T23:59:59.000Z

    the effectiveness of home heating controls in the UK 60 . Itmobile phones to the home’s heating and cooling system sothe home and track time of operation for heating and cooling

  6. October 1996 - September 2001 Wholesale Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA charges

  7. October 2001 - March 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA charges1

  8. October 2001 - September 2006 Wholesale Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA charges11

  9. October 2002 - March 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 - March

  10. October 2003 - March 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 - March3

  11. October 2004 - March 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 -

  12. October 2005 - March 2006 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctober 1996 - September 2001 The rates BPA2 -5 -

  13. How are flat demand charges based on the highest peak over the...

    Open Energy Info (EERE)

    How are flat demand charges based on the highest peak over the past 12 months designated in the database (LADWP does this) Home > Groups > Utility Rate Submitted by Marcroper on 11...

  14. An internet tool for designing energy efficient homes

    SciTech Connect (OSTI)

    Milne, M.; Gomez, C.; Leeper, D.; Zurick, J.; Nindra, A.; Shen, J.; Kobayashi, Y.

    1999-07-01T23:59:59.000Z

    To help their 4.5 million residential customers make energy efficient decisions, Southern California Gas asked UCLA to develop an Internet-based simulation tool called Project REED (Residential Energy Efficient Design). The critical problem is to give these ratepayers an easy way to visualize the relative effectiveness of their various options. REED is a internet-based tool that calculates the annual gas and electricity cost for each separate building design or operating decision. Hourly climate data for the Typical Meteorological Year (TMY2) in all the climate zones in the SoCalGas service area are built in, as well as utility rates for each type of residential service. REED's Expert System first designs a basic Code Compliant home, then designs a more Energy Efficient design based on local climate, and it shows how much money ratepayers would save. The simulation engine inside REED is SOLAR-5, one of the nation's most widely used whole building energy design tools. SOLAR-5 has been validated against DOE-2 using the BESTEST procedure. This paper, one of a pair describing REED, explains the project from the user's point of view and describes what was learned from the Ratepayer Usability Test. The second paper explains the project from the simulation and software engineering point of view.

  15. Winchester Homes and Camberley Homes, Silver Spring, Maryland...

    Energy Savers [EERE]

    standards. Further design engineering may be required to achieve target ventilation rates. * Commissioning and testing was valuable for new construction test house performance...

  16. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect (OSTI)

    Deng, Xunming [University of Toledo] [University of Toledo; Fan, Qi Hua

    2011-12-31T23:59:59.000Z

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Ĺ/s a-Si and >= 20 Ĺ/s nc-Si or 4 Ĺ/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  17. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01T23:59:59.000Z

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

  18. Building America Performance Analysis Procedures for Existing Homes

    SciTech Connect (OSTI)

    Hendron, R.

    2006-05-01T23:59:59.000Z

    Because there are more than 101 million residential households in the United States today, it is not surprising that existing residential buildings represent an extremely large source of potential energy savings. Because thousands of these homes are renovated each year, Building America is investigating the best ways to make existing homes more energy-efficient, based on lessons learned from research in new homes. The Building America program is aiming for a 20%-30% reduction in energy use in existing homes by 2020. The strategy for the existing homes project of Building America is to establish technology pathways that reduce energy consumption cost-effectively in American homes. The existing buildings project focuses on finding ways to adapt the results from the new homes research to retrofit applications in existing homes. Research activities include a combination of computer modeling, field demonstrations, and long-term monitoring to support the development of integrated approaches to reduce energy use in existing residential buildings. Analytical tools are being developed to guide designers and builders in selecting the best approaches for each application. Also, DOE partners with the U.S. Environmental Protection Agency (EPA) to increase energy efficiency in existing homes through the Home Performance with ENERGY STAR program.

  19. Composition of Management System for Smart Homes

    E-Print Network [OSTI]

    Levin, Mark Sh; Klapproth, Alexander

    2011-01-01T23:59:59.000Z

    The paper addresses modular hierarchical design (composition) of a management system for smart homes. The management system consists of security subsystem (access control, alarm control), comfort subsystem (temperature, etc.), intelligence subsystem (multimedia, houseware). The design solving process is based on Hierarchical Morphological Multicriteria Design (HMMD) approach: (1) design of a tree-like system model, (2) generation of design alternatives for leaf nodes of the system model, (3) Bottom-Up process: (i) multicriteria selection of design alternatives for system parts/components and (ii) composing the selected alternatives into a resultant combination (while taking into account ordinal quality of the alternatives above and their compatibility). A realistic numerical example illustrates the design process of a management system for smart homes.

  20. Byggmeister Test Home: Analysis and Initial Results of Cold Climate Wood-Framed Home Retrofit

    SciTech Connect (OSTI)

    Gates, C.

    2013-01-01T23:59:59.000Z

    BSC seeks to further the energy efficiency market for New England area retrofit projects by supporting projects that are based on solid building science fundamentals and verified implementation. With the high exposure of energy efficiency and retrofit terminology being used in the general media at this time, it is important to have evidence that measures being proposed will in fact benefit the homeowner through a combination of energy savings, improved durability, and occupant comfort. There are several basic areas of research to which the technical report for these test homes can be expected to contribute. These include the combination of measures that is feasible, affordable and acceptable to homeowners as well as expectations versus results. Two Byggmeister multi-family test homes in Massachusetts are examined with the goal of providing case studies that could be applied to other similar New England homes.