Sample records for rated pack energy

  1. Energy Saving in Distillation Using Structured Packing and Vapor Recompression

    E-Print Network [OSTI]

    Hill, J.H.

    "Distillation is a big consumer of energy in process plant operations. A first step to energy cost savings is the use of high efficiency structured packing in place of trays or dumped packings in conventionally operated distillation columns. Larger...

  2. A numerical investigation of high-rate gas flow for gravel-packed completions

    E-Print Network [OSTI]

    Forrest, James Kenyon

    1983-01-01T23:59:59.000Z

    A-2 Three-Dimensional Cylindrical Grid System for Simulation of Gravel-Packed Gas Well 58 D-I Perforation Model Schematic 74 INTRODUCTION In recent years, operators have produced gas at ultra high flow rates from shallow, unconsolidated sands... the application of "Systems Analysis" to cased-hole, gravel-packed wells. The second part concerns the numerical simulation of flow in perforations and gravel-packed wells. The method presently used by some operators to analyze the productivity of wells...

  3. Battery Pack Requirements and Targets Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from BrineHardwareID:Pack

  4. Packing TRU Waste Containers Design | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en YMedicine - Assistant PIAEnergyPacking TRU Waste

  5. An investigation into the inflow performance characteristics of high-rate gravel-packed gas wells

    E-Print Network [OSTI]

    Jordan, Douglas Lee

    1984-01-01T23:59:59.000Z

    , surrounded by gravel. Gravel-filled perforations extend from the inside diameter of the casing, through the casing and cement sheath, and into the formation. The assumptions which apply to the numerical model and its application to this type of system... Performance 60 32 The Effect of Reservoir Temperature on Inflow Performance 62 33 The Effect of Reservoir Permeability on Inflow Performance 63 INTRODUCTION High-rate gas wells along the Gulf Coast are often completed with a gravel pack to control sand...

  6. Energy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta,

    E-Print Network [OSTI]

    Lefèvre, Laurent

    Energy Consumption Library Data Acquisition Tool Data Monitoring Tool Energy Profiler 3 ConclusionsEnergy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta, Amal Sayah, Jean Consumption Tools Pack 1 / 23 #12;Outline 1 Introduction Motivation Our proposal 2 Energy Consumption Tools

  7. Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage

    E-Print Network [OSTI]

    White, Alexander; McTigue, Joshua; Markides, Christos

    2014-03-26T23:59:59.000Z

     .     The  reservoirs  of  interest  here  typically  comprise  a  cylindrical  pressure  vessel  containing  the  solid  storage  medium  in  the  form  of  a  packed  bed  of  pebbles  or  gravel,  or  a  uniform... WAVE  PROPAGATION  AND  THERMODYNAMIC  LOSSES  IN  PACKED-­?BED  THERMAL  RESERVOIRS  FOR  ENERGY  STORAGE       Alexander  White1,  Joshua  McTigue1,  Christos  Markides2   1  Cambridge  University...

  8. Distillation: Energy Savings and Other Benefits From the Use of High Efficiency Packings

    E-Print Network [OSTI]

    Bravo, J. L.; Fair, J. R.; Humphrey, J. L.

    DISTILLATION: ENERGY SAVINGS AND OTHER BENEFITS. FROM THE USE OF HIGH-EFFICIENCY PACKINGS -. Jose L. Bravo, James R. Fair, and Jimmy L. Humpnrey The University of Texas at Austin Austin, Texas ABSTRACT A great deal of attention has been... focused lately on the use of high-efficiency packings for distillation applications. This paper discusses benefits that can be derived from the use of these devices. In parti~ular, the reduction in energy requirements for a given separation...

  9. Utilization of Structured Packing for Energy Savings in Distillation and Absorption Columns

    E-Print Network [OSTI]

    Berven, O. J.; Howard, W. E.

    "UTILIZATION OF STRUCTURED PACKING FOR ENERGY SAVINGS IN DISTILLATION AND ABSORPTION COLUMNS" O. Jeffrey Berven and Wendell E. Howard Koch Engineering Company, Inc. Wi chita, Kansas As the need to reduce production costs causes... manufacturers to re-evaluate process ing schemes, hi gh efficiency structured packings are increasingly recognized as an effective alternative for reducing energy consumption in heat and mass transfer operations. In distillation, the high efficiency and low...

  10. PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications

    E-Print Network [OSTI]

    PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications Rong Ge of power and energy on the computer systems community, few studies provide insight to where and how power of these systems. These analyses include the impacts of chip multiprocessing on power and energy efficiency

  11. Energy Management Through Innovative Rates

    E-Print Network [OSTI]

    Williams, M. L.

    1982-01-01T23:59:59.000Z

    of energy efficiency in the industrial sector and specific rate design alternatives for doing so....

  12. Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarneysource HistoryInformation

  13. GM Li-Ion Battery Pack Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTALnaturalGENII2 DOE Hydrogen and

  14. GM Li-Ion Battery Pack Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTALnaturalGENII2 DOE Hydrogen and1

  15. GM Li-Ion Battery Pack Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTALnaturalGENII2 DOE Hydrogen

  16. LEDS Collaboration in Action Workshop Participant Pack | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas:KujuBiography Jump

  17. Packing TRU Waste Containers Design | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and OilGeothermal andofEnergy

  18. Leaders of the Fuel Cell Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of Energy Laser-Firing

  19. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA Few Simple Steps2 DOE Hydrogen

  20. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA Few Simple Steps2 DOE

  1. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA Few Simple Steps2 DOE1 DOE

  2. Rate Schedules | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartmentEnergy April 20138Rate Schedules Rate Schedules

  3. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01T23:59:59.000Z

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  4. Attachments Energy Ratings Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource HeatEnergy2).pdfAttachments Energy Ratings

  5. Energy Efficiency Interest Rate Reduction Program

    Broader source: Energy.gov [DOE]

    The Alaska Housing Finance Corporation (AHFC) offers interest rate reductions to home buyers purchasing new and existing homes with 5 Star and 5 Star Plus energy ratings. All homes constructed on...

  6. Austin Energy's Residential Solar Rate

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given by Leslie Libby of Austin Energy at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

  7. Home energy rating systems: Program descriptions

    SciTech Connect (OSTI)

    Vine, E.; Barnes, B.K.; Ritschard, R.

    1987-02-01T23:59:59.000Z

    This report contains the descriptions of home energy rating and labelling programs (HERS) that were surveyed in January 1986 as part of a national evaluation of HERS.

  8. Packed Lunches.

    E-Print Network [OSTI]

    Reasonover, Frances L.

    1982-01-01T23:59:59.000Z

    and digestion is easily upset, so plan light and easily digested foods. Because the body loses a lot of fluid in an effort to stay cool, drink plenty of water. A thermos of lemonade, iced tea with lemon or some other fruit drink is particularly refreshing... precautions used with paper bags. Another packing container is an insulated bag. In this case, frozen water in plastic cartons or reuseable ice packs can be used to keep food cold until lunchtime. Or, use thermos bottles to keep foods hot or cold. Small...

  9. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump to: navigation,

  10. Kold Pack: Order (2013-CE-5323)

    Broader source: Energy.gov [DOE]

    DOE ordered Kold Pack, Inc. to pay a $8,000 civil penalty after finding Kold Pack had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  11. PSNC Energy (Gas)- Green Building Rate Discount

    Broader source: Energy.gov [DOE]

    This discounted rate is available to commercial customers whose building meets the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification or equivalent. To...

  12. Rating of Solar Energy Devices (Texas)

    Broader source: Energy.gov [DOE]

    The Public Utility Commission has regulatory authority over solar energy devices installed and used in the state of Texas. The Commission can choose to adopt standards pertaining to the rating of...

  13. Attachments Energy Ratings Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa OPAMAttachment_Flash2010-71.pdfAttachments Energy

  14. Approximating semidefinite packing programs ?

    E-Print Network [OSTI]

    2010-10-25T23:59:59.000Z

    In this paper we define semidefinite packing programs and describe an ... Semidefinite packing programs arise in many applications such as semidefinite.

  15. DOE Commercial Building Energy Asset Rating Program Focus Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in Seattle -- Final Report DOE Commercial Building Energy Asset Rating Program Focus Groups...

  16. Face-centered cubic (FCC) lattice models for protein folding: energy function inference and biplane packing

    E-Print Network [OSTI]

    Istrail, Sorin

    Face-centered cubic (FCC) lattice models for protein folding: energy function inference and biplane simplified. The objective of PSP (also known as protein folding) is to select the molecule conformation which to infer general energy functions for the protein folding problem. While the general problem is intractable

  17. An atomistic methodology of energy release rate for graphene at nanoscale

    SciTech Connect (OSTI)

    Zhang, Zhen; Lee, James D., E-mail: jdlee@gwu.edu [Department of Mechanical and Aerospace Engineering, the George Washington University, Washington, DC 20052 (United States); Wang, Xianqiao [College of Engineering, University of Georgia, Athens, Georgia 30602 (United States)

    2014-03-21T23:59:59.000Z

    Graphene is a single layer of carbon atoms packed into a honeycomb architecture, serving as a fundamental building block for electric devices. Understanding the fracture mechanism of graphene under various conditions is crucial for tailoring the electrical and mechanical properties of graphene-based devices at atomic scale. Although most of the fracture mechanics concepts, such as stress intensity factors, are not applicable in molecular dynamics simulation, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at nanoscale. This work introduces an atomistic simulation methodology, based on the energy release rate, as a tool to unveil the fracture mechanism of graphene at nanoscale. This methodology can be easily extended to any atomistic material system. We have investigated both opening mode and mixed mode at different temperatures. Simulation results show that the critical energy release rate of graphene is independent of initial crack length at low temperature. Graphene with inclined pre-crack possesses higher fracture strength and fracture deformation but smaller critical energy release rate compared with the graphene with vertical pre-crack. Owing to its anisotropy, graphene with armchair chirality always has greater critical energy release rate than graphene with zigzag chirality. The increase of temperature leads to the reduction of fracture strength, fracture deformation, and the critical energy release rate of graphene. Also, higher temperature brings higher randomness of energy release rate of graphene under a variety of predefined crack lengths. The energy release rate is independent of the strain rate as long as the strain rate is small enough.

  18. Building Energy Rating and Disclosure Policies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartmentRating and

  19. Property:HeatRate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:DocketFlowGpmGrossGen JumpRating Jump

  20. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergyEnergyInformation Property

  1. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier2Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:EnergyInformation Pages using

  2. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:EnergyInformationInformation

  3. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergy InformationInformation

  4. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation,Information

  5. Fixed Rate Agreement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Departmentof OhioFirst Annual PostSmart Grid Progress |Fixed Rate

  6. Home energy ratings systems: Actual usage may vary

    SciTech Connect (OSTI)

    Stein, J.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-09-01T23:59:59.000Z

    Home energy ratings (HERS) attempt to predict typical energy costs for a given residence and estimate the savings potentials of various energy retrofits. This article discusses where the ratings could be improved to more accurately predict the actual energy consumption. Topics covered include the following: is HERS on target (scores, energy predictions, recommended energy improvements); why HERS aren`t perfect; improvements in HERS; the possibility that home energy ratings systems will become market driven. 1 fig., 2 tabs.

  7. DOE Commercial Building Energy Asset Rating Program Focus Groups...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rating Program Focus Groups with Primary Stakeholders in Seattle -- Final Report DOE Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in...

  8. Implementation of home energy rating systems

    SciTech Connect (OSTI)

    Vine, E.; Barnes, B.K.; Ritschard, R.

    1987-02-01T23:59:59.000Z

    This paper presents the findings of a national survey of home energy rating and labelling programs (HERS). We discuss the nature of different implementation problems and the kinds of strategies that have been used to deal with them to ensure the effective penetration of HERS to all HERS-users. Of further special interest to us has been the nature of different delivery systems. We examined 34 HERS, located in 28 states: 13 of these were located in the southeast, 8 in the midwest, 5 in the northeast, 4 in the Pacific/mountain region, and 3 in the southwest. Although our survey does not represent a scientific sampling of HERS, we believe that the final distribution accurately reflects the distribution of HERS through the country and the full range of likely implementation and delivery programs.

  9. Apply: Increase Residential Energy Code Compliance Rates (DE...

    Energy Savers [EERE]

    Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) April 21, 2014 - 12:32pm Addthis...

  10. Home Energy Ratings and Building Performance

    E-Print Network [OSTI]

    Gardner, J.C.

    climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials...

  11. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Sell | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump to:

  12. Rating the energy performance of buildings

    E-Print Network [OSTI]

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-01-01T23:59:59.000Z

    Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

  13. Commercial Building Energy Asset Rating Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadbandof theCommercial BuildingRating

  14. Energy Productivity Via Time-of-Day Rates

    E-Print Network [OSTI]

    Michael, R. S.

    1984-01-01T23:59:59.000Z

    Prompted by a combination of PURPA and a national concern about electricity price and supply, many utilities now have in place industrial time-of-day electric rates. When properly designed, these rates present an opportunity for energy...

  15. Kold Pack: Proposed Penalty (2013-CE-5323)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Kold Pack, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  16. Utility Rate Structures and the Impact of Energy Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Structures and the Impact on Energy Efficiency and Renewable Projects Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida...

  17. Rates for Alternate Energy Production Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    The Utilities Board may require public utilities furnishing gas, electricity, communications, or water to public consumers, to own alternate energy production facilities, enter into long-term...

  18. Wholesale Power Rate Schedules | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergy WASHINGTON, DCOctober 1,

  19. Austin Energy- Value of Solar Residential Rate (Texas)

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and...

  20. Floating Rate Agreement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf More DocumentsFlash_2010_-24.pdfIndustry

  1. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced GeothermalInformationResidential Solar

  2. Wholesale Power Rate Schedules | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart,Department ofWelcomeWhatWhite| Program

  3. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6 July 16, 2006Science7Validation

  4. Commercial Building Energy Asset Rating Tool User's Guide

    SciTech Connect (OSTI)

    Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

    2012-05-01T23:59:59.000Z

    The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

  5. Home Energy Ratings and Building Performance 

    E-Print Network [OSTI]

    Gardner, J.C.

    2008-01-01T23:59:59.000Z

    an accepted method to determine home efficiency based on standards developed and overseen by the Residential Energy Services Network (RESNET), a not-for-profit corporation. The paper will discuss the effect of various building systems and effects of local...

  6. Category:Utility Rates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as exploration techniques,

  7. Utility Rate Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and toolsoperation plansUtiliFlex Jumpsource

  8. Utility Rate Discount | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and toolsoperation plansUtiliFlex

  9. Utility Rate Discounts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and toolsoperation plansUtiliFlexDiscounts

  10. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations JumpInformationEnergyInformation

  11. Floating Rate Agreement | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOE Acquisition Guide Chapter3Flexible

  12. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins

  13. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a...

  14. Assessment of the Energy Rating of Insulated Wall Assemblies - A Step Towards Building Energy Labeling 

    E-Print Network [OSTI]

    Elmahdy, H.; Maref, W.; Saber, H.; Swinton, M.; Glazer, R.

    2010-01-01T23:59:59.000Z

    Considerable efforts are recently focusing on energy labeling of components and systems in buildings. In Canada, the energy rating of windows was established, which provides a protocol to rate different types of windows ...

  15. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max Jump to:

  16. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max JumpInformation

  17. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2MaxInformation

  18. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformationInformation

  19. Microsoft Word - Energy balancing rate settlement signals commitment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, May 16, 2013 CONTACT: Doug Johnson, 503-230-5840 or 503-230-5131 Energy balancing rate settlement signals commitment to work on broader solutions Portland, Ore. - As...

  20. Optimization of time-based rates in forward energy markets

    E-Print Network [OSTI]

    Wang, J.

    This paper presents a new two-step design approach of Time-Based Rate (TBR) programs for markets with a high penetration of variable energy sources such as wind power. First, an optimal market time horizon must be determined ...

  1. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for improving the energy efficiency of homes. To qualify, the home must meet the standards of the U.S. Environmental...

  2. Progress Energy Carolinas- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Progress Energy Carolinas (PEC) offers an incentive to residential customers for purchasing or building new energy efficient homes. To qualify the home must meet the standards of the US...

  3. Commercial Building Energy Asset Rating Program -- Market Research

    SciTech Connect (OSTI)

    McCabe, Molly J.; Wang, Na

    2012-04-19T23:59:59.000Z

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  4. Duke Energy (Electric)- Energy Star Homes Rate Discount Program (South Carolina)

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through its [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a rate...

  5. The Wisconsin Home Energy Rating System: Final report

    SciTech Connect (OSTI)

    Ebisch, L.

    1986-09-30T23:59:59.000Z

    The Wisconsin Home Energy Rating System (HERS) has been developed by the Department of Industry, Labor, and Human Relations under contract to the Department of Administration, Division of State Energy. The contract is funded by the US Department of Energy. The contract calls for development of a home energy rating system for 1- and 2-family dwellings, or adaptation of an already existing one, for one by the State of Wisconsin. The rating system was to be developed in the form of a simple rating tool which could be distributed for testing through municipal building inspectors. At the time it was distributed, results were to be returned and analyzed for accuracy and ease of use. Computer modeling was to be used to verify accuracy. An Ad Hoc Committee of people involved in the home market, in utilities, and in state government energy conservation agencies was established to advise DILHR and DSE staff on development of the rating system. (See Appendix G for a list of the Ad Hoc Committee members). The Ad Hoc Committee had a number of concerns about how the HERS might affect the real estate market, and whether it was worth doing. Their input helped set the direction the HERS was to aim at, and their advice, from several different angles of the home market, was very helpful to staff. This report will give some background on the process of development of the HERS and the Ad Hoc Committee, and then will give details of the technical development.

  6. Professional Training Information Pack

    E-Print Network [OSTI]

    Davies, Christopher

    Intending Professional Training Students Year 2 Information Pack #12;- 1 - Applying for a Professional Training Placement To be allowed to do the Professional Training you must have enrolled on one must talk to Dr J. M. Thompson immediately. General introduction to professional training Students

  7. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergyEnergy

  8. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Sell | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergyEnergyInformation

  9. Building Energy Rating and Disclosure Policies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding RetrofitforCamberlyDepartment BEopt 2.4

  10. Property:EnergyRateStructure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSpp Jump

  11. The Gamma Ray Burst Rate at High Photon Energies

    E-Print Network [OSTI]

    Karl Mannheim; Dieter Hartmann; Burkhardt Funk

    1996-05-17T23:59:59.000Z

    Some gamma-ray burst (GRB) spectra exhibit high energy tails with the highest photon energy detected at 18 GeV. The spectral slope of the high-energy tails is sufficiently flat in nu F_nu to consider the possibility of their detection at still higher energies. We calculate how many bursts can reasonably be expected above a given energy threshold for a cosmological distribution of bursts satisfying the observed apparent brightness distribution. The crucial point is that the gamma-ray absorption by pair production in the intergalactic diffuse radiation field eliminates bursts from beyond the gamma-ray horizon tau ~ 1, thus drastically reducing the number of bursts at high energies. Our results are consistent with the non-detection of bursts by current experiments in the 100 GeV to 100 TeV energy range. For the earth-bound detector array MILAGRO, we predict a maximal GRB rate of ~ 10 events per year. The Whipple Observatory can detect, under favorable conditions, ~1 event per year. The event rate for the HEGRA array is ~ 0.01 per year. Detection of significantly higher rates of bursts would severely challenge cosmological burst scenarios.

  12. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01T23:59:59.000Z

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  13. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier2Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:Energy

  14. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier2Sell | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:EnergyInformation Pages

  15. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:EnergyInformation

  16. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergy Information

  17. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Sell | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergy

  18. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates FY 15 PRR worksheet (PDF - 31K) FY...

  19. Packed Bed Combustion: An Overview

    E-Print Network [OSTI]

    Hallett, William L.H.

    Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

  20. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge

  1. Property:OpenEI/UtilityRate/EnergyRateStructure/Period | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, search

  2. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation,

  3. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Sell | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:

  4. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Sell | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump

  5. Santee-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-E Wholesale Power Rate

  6. Santee-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-E Wholesale Power Rate2-E

  7. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on...

  8. Enumerating rigid sphere packings

    E-Print Network [OSTI]

    Miranda C. Holmes-Cerfon

    2015-05-08T23:59:59.000Z

    Packing problems, which ask how to arrange a collection of objects in space to meet certain criteria, are important in a great many physical and biological systems, where geometrical arrangements at small scales control behaviour at larger ones. In many systems there is no single, optimal packing that dominates, but rather one must understand the entire set of possible packings. As a step in this direction we enumerate rigid clusters of identical hard spheres for $n\\leq 14$, and clusters with the maximum number of contacts for $n\\leq 19$. A rigid cluster is one that cannot be continuously deformed while maintaining all contacts. This is a nonlinear notion that arises naturally because such clusters are the metastable states when the spheres interact with a short-range potential, as is the case in many nano- or micro-scale systems. We expect these lists are nearly complete, except for a small number of highly singular clusters (linearly floppy but nonlinearly rigid.) The data contains some major geometrical surprises, such as the prevalence of hypostatic clusters: those with less than the $3n-6$ contacts generically necessary for rigidity. We discuss these and several other unusual clusters, whose geometries may shed insight into physical mechanisms, pose mathematical and computational problems, or bring inspiration for designing new materials.

  9. Analytical study of the energy rate balance equation for the magnetospheric storm-ring current

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analytical study of the energy rate balance equation for the magnetospheric storm-ring current A. L of the analytical integration of the energy rate balance equation, assum- ing that the input energy rate of the energy function to ht times a constant factor in the energy rate balance equation (e.g. Gonzalez et al

  10. Home energy ratings and energy codes -- A marriage that should work

    SciTech Connect (OSTI)

    Verdict, M.E.; Fairey, P.W.; DeWein, M.C.

    1998-07-01T23:59:59.000Z

    This paper examines how voluntary home energy ratings systems (HERS) can be married to mandatory energy codes to increase code compliance while providing added benefits to consumers, builders, and code officials. Effective code enforcement and compliance is a common problem for state and local jurisdictions attempting to reduce energy consumption and increase housing affordability. Reasons frequently cited for energy code noncompliance are: (1) builder resistance to government regulations and change in building practices; (2) the perceived complexity of the code; (3) a lack of familiarity of energy impacts by cod officials and the housing industry, and (4) inadequate government resources for enforcement. By combing ratings and codes, one can create a win-win approach for code officials and energy rating organizations, the housing industry, as well as consumers who wish to reduce air pollution and energy waste. Additionally, state and local government experiences where the marriage between codes and ratings has begun are highlighted and the barriers and benefits assessed.

  11. Review of existing residential energy efficiency certification and rating programs

    SciTech Connect (OSTI)

    Hendrickson, P.L.

    1986-11-01T23:59:59.000Z

    This report was prepared for the Office of Buildings and Community Systems, US Department of Energy (DOE). The principal objective of the report is to present information on existing Home Energy Rating Systems (HERS) and their features. Much of the information in this report updates a 1982 report (PNL-4359), also prepared by the Pacific Northwest Laboratory (PNL) for DOE. Secondary objectives of the report are to qualitatively examine the benefits and costs of HERS programs, review survey results on the attitudes of various user groups toward the programs, and discuss selected design and implementation issues.

  12. Widget:UtilityRateEntryHelper | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMap JumpNOTITLETATGalleryUtilityRateEntryHelper

  13. Widget:UtilityRateEntryHelperVideo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMapUtilityRateEntryHelperVideo Jump to: navigation,

  14. Widget:UtilityRateFinder | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMapUtilityRateEntryHelperVideo Jump to:

  15. Widget:UtilityRateNamingHelper | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMapUtilityRateEntryHelperVideo Jump

  16. Widget:UtilityRatesByCompany | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMapUtilityRateEntryHelperVideo

  17. Property:Heat Recovery Rating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:DocketFlowGpmGrossGen JumpRating Jump to:

  18. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1...

  19. Hydraulic controls of summer Arctic pack ice albedo H. Eicken,1

    E-Print Network [OSTI]

    Eicken, Hajo

    Hydraulic controls of summer Arctic pack ice albedo H. Eicken,1 T. C. Grenfell,2 D. K. Perovich,3 J. Perovich, J. A. Richter-Menge, and K. Frey (2004), Hydraulic controls of summer Arctic pack ice albedo, J that feedback processes involving the input of solar energy and subsequent changes in Arctic pack-ice albedo

  20. Linear Free Energy Relationships between Dissolution Rates and Molecular Modeling Energies of Rhombohedral

    E-Print Network [OSTI]

    Linear Free Energy Relationships between Dissolution Rates and Molecular Modeling Energies, and Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0750 Received July 24, 2003. In Final Form: December 18, 2003 Bulk and surface energies are calculated for endmembers

  1. Energy levels, radiative rates and electron impact excitation rates for transitions in C III

    E-Print Network [OSTI]

    Aggarwal, K M

    2015-01-01T23:59:59.000Z

    We report energy levels, radiative rates (A-values) and lifetimes for the astrophysically-important Be-like ion C III. For the calculations, 166 levels belonging to the $n \\le$ 5 configurations are considered and the {\\sc grasp} (General-purpose Relativistic Atomic Structure Package) is adopted. Einstein A-coefficients are provided for all E1, E2, M1 and M2 transitions, while lifetimes are compared with available measurements as well as theoretical results, and no large discrepancies noted. Our energy levels are assessed to be accurate to better than 1\\% for a majority of levels, and A-values to better than 20\\% for most transitions. Collision strengths are also calculated, for which the Dirac Atomic R-matrix Code ({\\sc darc}) is used. A wide energy range, up to 21 Ryd, is considered and resonances resolved in a fine energy mesh in the thresholds region. The collision strengths are subsequently averaged over a Maxwellian velocity distribution to determine effective collision strengths up to a temperature of 8...

  2. Pilot States Program report: Home energy ratings systems and energy-efficient mortgages

    SciTech Connect (OSTI)

    Farhar, B.

    2000-04-04T23:59:59.000Z

    This report covers the accomplishments of the home energy ratings systems/energy-efficient mortgages (HERS/EEMs) pilot states from 1993 through 1998, including such indicators as funding, ratings and EEMs achieved, active raters, and training and marketing activities. A brief description of each HERS program's evolution is included, as well as their directors' views of the programs' future prospects. Finally, an analysis is provided of successful HERS program characteristics and factors that appear to contribute to HERS program success.

  3. Evaluation of the implementation of home energy rating systems

    SciTech Connect (OSTI)

    Vine, E.; Barnes, B.K.; Ritschard, R.

    1987-09-01T23:59:59.000Z

    We evaluate the implementation of home energy rating and labelling programs (HERS) that are being conducted around the country. We examine the nature of different implementation problems and the kinds of strategies that have been used to deal with them to ensure the effective penetration of HERS to all HERS users. We use a model of the implementation process that assumes implementation is strongly influenced by the local context, involves two-way communication, and assumes little commonality of purpose among participants, saving a consensus on reaching some sort of decision.

  4. Contractor Rating and Feedback Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex(GC-72) | DepartmentEnergy8Rating and Feedback

  5. The energy production rate & the generation spectrum of UHECRs

    E-Print Network [OSTI]

    Boaz Katz; Ran Budnik; Eli Waxman

    2009-03-18T23:59:59.000Z

    We derive simple analytic expressions for the flux and spectrum of ultra-high energy cosmic-rays (UHECRs) predicted in models where the CRs are protons produced by extra-Galactic sources. For a power-law scaling of the CR production rate with redshift and energy, d\\dot{n} /dE\\propto E^-\\alpha (1+z)^m, our results are accurate at high energy, E>10^18.7 eV, to better than 15%, providing a simple and straightforward method for inferring d\\dot{n}/dE from the observed flux at E. We show that current measurements of the UHECR spectrum, including the latest Auger data, imply E^2d\\dot{n}/dE(z=0)=(0.45\\pm0.15)(\\alpha-1) 10^44 erg Mpc^-3 yr^-1 at E<10^19.5 eV with \\alpha roughly confined to 2\\lesseq\\alpha<2.7. The uncertainty is dominated by the systematic and statistic errors in the experimental determination of individual CR event energy, (\\Delta E/E)_{sys} (\\Delta E/E)_{stat} ~20%. At lower energy, d\\dot{n}/dE is uncertain due to the unknown Galactic contribution. Simple models in which \\alpha\\simeq 2 and the transition from Galactic to extra-Galactic sources takes place at the "ankle", E ~10^19 eV, are consistent with the data. Models in which the transition occurs at lower energies require a high degree of fine tuning and a steep spectrum, \\alpha\\simeq 2.7, which is disfavored by the data. We point out that in the absence of accurate composition measurements, the (all particle) energy spectrum alone cannot be used to infer the detailed spectral shapes of the Galactic and extra-Galactic contributions.

  6. Contractor Rating and Feedback Systems | Department of Energy

    Energy Savers [EERE]

    Contractor Rating and Feedback Systems Contractor Rating and Feedback Systems Better Buildings Residential Workforce Business Partners Peer Exchange Call Series: Contractor Rating...

  7. Convex Optimization Course Welcome Pack

    E-Print Network [OSTI]

    Hall, Julian

    1 NATCOR Convex Optimization Course 23rd ­ 27th June 2014 Welcome Pack This pack contains. ABSTRACT Convex optimization is the fundamental process of optimal decision-making. Although mathematically restrictive, many practical problems may be modelled directly as convex optimization problems. Convex

  8. Linking home energy rating systems with energy efficiency financing: Progress on national and state programs

    SciTech Connect (OSTI)

    Farhar, B.C.; Collins, N.E.; Walsh, R.W.

    1996-10-01T23:59:59.000Z

    In 1991 and early 1992, the U.S. Department of Energy (DOE), in cooperation with the U.S. Department of Housing and Urban Development (HUD), established a National Collaborative on Home Energy Rating Systems (HERS) and Energy Efficient Mortgages (EEMs). The Collaborative's purpose was to involve stakeholders at a national policy level to develop a plan leading the nation toward a voluntary system linking HERS with EEMs. The National Renewable Energy Laboratory (NREL) coordinated the National Collaborative's meetings for DOE. Composed of representatives from 25 stakeholder organizations, the Collaborative, after some 14 meetings, reached consensus on two documents, both published by NREL in mg 1992: A National Program for Energy-Efficient Mortgages and Home Energy Rating Systems: A Blueprint for Action and Going National with HERS and EEMs: Issues and Impacts, The Collected Papers of the National Collaborative.

  9. Valve stem and packing assembly

    DOE Patents [OSTI]

    Wordin, J.J.

    1991-09-03T23:59:59.000Z

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  10. Valve stem and packing assembly

    DOE Patents [OSTI]

    Wordin, John J. (Bingham County, ID)

    1991-01-01T23:59:59.000Z

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  11. Method for packing chromatographic beds

    DOE Patents [OSTI]

    Freeman, David H. (Potomac, MD); Angeles, Rosalie M. (Germantown, MD); Keller, Suzanne (Rockville, MD)

    1991-01-01T23:59:59.000Z

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  12. Santee-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Santee-3-E Wholesale Power Rate Schedule Santee-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public...

  13. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15T23:59:59.000Z

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  14. Davis-Bacon Act Wage Rates for ARRA-Funded State Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Davis-Bacon Act Wage Rates for ARRA-Funded State Energy Program Projects Involving Residential Weatherization Work Davis-Bacon Act Wage Rates for ARRA-Funded State Energy Program...

  15. Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont

    E-Print Network [OSTI]

    Williams, M. M.

    1981-01-01T23:59:59.000Z

    As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

  16. California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings

    Broader source: Energy.gov [DOE]

    Fact sheet from the Federal Energy Management Program (FEMP) describes rate-responsive building operations for cost and energy savings in California federal facilities.

  17. Trends in Contractor Conversion Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Conversion Rates Trends in Contractor Conversion Rates Better Buildings Residential Network Workforce Business Partners Peer Exchange Call Series: Trends in Contractor...

  18. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergyEnergyInformationEnergy

  19. National status report: Home energy rating systems and energy-efficient mortgages

    SciTech Connect (OSTI)

    Plympton, P.

    2000-04-27T23:59:59.000Z

    The Energy Policy Act of 1992 included several provisions promoting the use of HERS and EEMs, which strengthened efforts to develop a national infrastructure for HERS and to promote the use of EEMs. This report documents HERS and EEMs activities since 1992 by the U.S. Department of Energy, the U.S. Environmental Protection Agency, the U.S. Department of Housing and Urban Development, mortgage lenders, and other organizations. Though the process of establishing HERS has faced some barriers, this report shows that, as of November 1999, home energy ratings were available in 47 states and the District of Columbia, which represents a significant increase from 1993 when home energy ratings were available in 17 states. Both national and state organizations have developed HERS and related residential energy-efficiency programs. The availability and use of EEMs has also increased significantly. The number of EEMs supported by the Federal Housing Administration has increased more than eight times in the last three years. More than $2.5 billion in federally supported EEMs have been issued to date. Several national lenders offer EEMs, and six states have state-specific EEM or loan programs. EEMs have been used to finance energy-efficient homes in every state.

  20. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    E-Print Network [OSTI]

    Hadley, O.L.

    2010-01-01T23:59:59.000Z

    2007). As the snow pack ages the ice crystals undergoIn older snow packs containing larger ice grains, albedoarctic sea ice, mountain glaciers and snow packs. This study

  1. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:EnergyInformation PagesEnergy

  2. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergyEnergy Information

  3. Cylinder valve packing nut studies

    SciTech Connect (OSTI)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31T23:59:59.000Z

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  4. Max-min Fair Rate Allocation and Routing in Energy Harvesting Networks: Algorithmic Analysis

    E-Print Network [OSTI]

    Hone, James

    Max-min Fair Rate Allocation and Routing in Energy Harvesting Networks: Algorithmic Analysis Jelena@ee}.columbia.edu ABSTRACT This paper considers max-min fair rate allocation and rout- ing in energy harvesting networks energy profile and focus on the design of efficient and opti- mal algorithms that can serve as benchmarks

  5. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01T23:59:59.000Z

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  6. DataPackInvrpt

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas production well,505 UCC-700

  7. The Scaleup of Structured Packing from Distillation Pilot Plant Testing to Commercial Application

    E-Print Network [OSTI]

    Berven, O. J.; Ulowetz, M. A.

    The Scaleup of Structured Packing From Distillation Pilot Plant Testing to Commercial Application O. Jeffrey'Berven and Michael A. Ulowetz Koch Engineering Company, Inc. Wichita, Kansas Structured packing is being utilized more and more... in the process industry for increased efficiency, greater capacity, and energy savings in distillation columns. Pilot plant testing of the actual chemical system using commercially available structured packing is invaluable, but years of experience in pilot...

  8. Energy-Optimized Lossless Compression: Rate-Variability Tradeoff

    E-Print Network [OSTI]

    Wu, Yihong

    is larger in this case. This motivates the problem of designing efficient compressors to minimize total Alto, CA 94304 Email: marcelo.weinberger@hp.com Abstract--We pose the problem of energy energy consumption. Such energy-optimized compressors could prove useful for embedded systems

  9. What Is the Right Rate? Loan Rates and Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofof EnergyDepartment ofI Do to

  10. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations JumpInformationEnergy

  11. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, searchEnergy

  12. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier2Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to:Energy Information

  13. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge JumpEnergy Information Tier4Adjustment

  14. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins

  15. Students & Mental Health Resource Pack

    E-Print Network [OSTI]

    Stevenson, Mark

    Students & Mental Health Resource Pack Produced by - www.rethink.org/at-ease/ SHEFFIELD EARLY://clik.to/eis NORTH EAST SHEFFIELD Northlands Community Health Centre, Southey Hill, Sheffield S5 8BE Tel: 0114 is severe mental illness? 1.4 Treatment and prognosis What is mental health awareness? 2.1 Introduction 2

  16. DAVIS-BACON ACT WAGE RATES FOR ARRA-FUNDED ENERGY EFFICIENCY...

    Energy Savers [EERE]

    (EECBG) PROGRAM PROJECTS INCLUDING RESIDENTIAL WEATHERIZATION WORK DAVIS-BACON ACT WAGE RATES FOR ARRA-FUNDED ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANT (EECBG) PROGRAM...

  17. DAVIS-BACON ACT WAGE RATES FOR ARRA-FUNDED STATE ENERGY PROGRAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM (SEP) PROJECTS INCLUDING RESIDENTIAL WEATHERIZATION WORK DAVIS-BACON ACT WAGE RATES FOR ARRA-FUNDED STATE ENERGY PROGRAM (SEP) PROJECTS INCLUDING RESIDENTIAL...

  18. New Rate Schedule CV-UUP1 UNITED STATES DEPARTMENT OF ENERGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UUP1 UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION CENTRAL VALLEY PROJECT SCHEDULE OF RATE FOR UNRESERVED USE PENALTIES Effective: October 1, 2011, through...

  19. New Rate Schedule CV-GID1 UNITED STATES DEPARTMENT OF ENERGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GID1 UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION CENTRAL VALLEY PROJECT SCHEDULE OF RATE FOR GENERATOR IMBALANCE SERVICE Effective: October 1, 2011,...

  20. ALA-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment of EnergyEnergyProposed -Systems |

  1. Farmers Electric Cooperative (Kalona)- Renewable Energy Purchase Rate

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are...

  2. FITCH RATES ENERGY NORTHWEST (WA) ELECTRIC REV REF BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SECURITY Energy Northwest (ENW) bonds are secured by payments from the Bonneville Power Administration (Bonneville). Bonneville's payment to ENW is made as an operating...

  3. What Is the Right Rate? Loan Rates and Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe&Management AlertWhatOn

  4. Property:OpenEI/UtilityRate/DemandRateStructure/Period | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations JumpInformation

  5. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max Jump to: navigation,

  6. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max Jump

  7. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation Tier2Max

  8. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizationsInformation

  9. Energy-efficient mortgages and home energy rating systems: A report on the nation`s progress

    SciTech Connect (OSTI)

    Farhar, B.C.; Eckert, J.

    1993-09-01T23:59:59.000Z

    This report summarizes progress throughout the nation in establishing voluntary programs linking home energy rating systems (HERS) and energy-efficient mortgages (EEMs). These programs use methods for rating the energy efficiency of new and existing homes and predicting energy cost savings so lenders can factor in energy cost savings when underwriting mortgages. The programs also encourage lenders to finance cost-effective energy-efficiency improvements to existing homes with low-interest mortgages or other instruments. The money saved on utility bills over the long term can more than offset the cost of such energy-efficiency improvements. The National Collaborative on HERS and EEMs recommended that this report be prepared.

  10. Energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 21?Z?28

    SciTech Connect (OSTI)

    Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.

    2012-11-15T23:59:59.000Z

    We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 21?Z?28. The General-Purpose Relativistic Atomic Structure Package is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac Atomic R-matrix Code is used. Oscillator strengths, radiative rates, and line strengths are listed for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are given over a wide temperature range up to 10{sup 7.8} K. Additionally, lifetimes are listed for all calculated levels of these ions. Finally, extensive comparisons are made with results available in the literature, as well as with our analogous calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the results.

  11. Energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12?Z?20

    SciTech Connect (OSTI)

    Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.

    2013-03-15T23:59:59.000Z

    We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 12?Z?20. The GRASP (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code is used. Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are reported over a wide temperature range up to 10{sup 7.4} K. Additionally, lifetimes are also listed for all calculated levels of the ions. Finally, extensive comparisons are made with results available in the literature, as well as with our parallel calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the reported results.

  12. Energy Performance Ratings for Windows, Doors, and Skylights | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs,EnergyAugust 10,Installof Energy

  13. CSI-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,TheEnergy December 14, 2007Workshop TranscriptSouthern

  14. Tips: Time-Based Electricity Rates | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews &Appliances Tips:Smart

  15. Energy Performance Ratings for Windows, Doors, and Skylights | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | DocumentsElements ofin Log HomesEnergyof

  16. Trends in Contractor Conversion Rates | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfact sheetTransferringInc. | Department ofClean

  17. Replacement-2-A Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department of Energy 1.Department

  18. Replacement-3 Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department of Energy

  19. SOCO-1-E Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartment ofNoneORDERNational WindSNR Denton US LLP 1301

  20. CTV-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request | Domain NameEnergy CTTRANSIT Operates

  1. Energy Benchmarking, Rating, and Disclosure for Local Governments |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 inJohn Schueler John Schueler

  2. Energy Benchmarking, Rating, and Disclosure for State Governments |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 inJohn Schueler John SchuelerDepartment of

  3. Duke-3-E Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy | DepartmenttheFebruarySunShotSUMMARYis from a BuildingNone

  4. Duke-4-E Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy | DepartmenttheFebruarySunShotSUMMARYis from a

  5. Physics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    , Vibrations and Waves (W.W. Norton and Company, New York, 1971). First, we compute the kinetic energyPhysics 5B Winter 2009 Rate of Energy Transfer by Sinusoidal Waves on a String Consider the kinetic energy and the potential energy of this string segment due to the passage of a traveling wave

  6. College Fights Energy Rate Hikes with 'Grid Positive' Plan |...

    Broader source: Energy.gov (indexed) [DOE]

    Train-the-Trainers program in the Rocky Mountain region take part in a roof-mount solar panel install lab exercise at Solar Energy International's PV Lab Yard in Paonia,...

  7. Piedmont EMC- Rate Discount for Energy Star Homes

    Broader source: Energy.gov [DOE]

    Piedmont Electric Membership Corporation (PEMC) offers an incentive to its residential customers for residing in an energy efficient home. To qualify, the home must meet the standards of the US...

  8. Sandia Energy - CRF Researchers Measure Reaction Rates of Second Key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome

  9. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18T23:59:59.000Z

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  10. Neutrino and antineutrino energy loss rates in massive stars due to isotopes of titanium

    E-Print Network [OSTI]

    Nabi, Jameel-Un

    2011-01-01T23:59:59.000Z

    Weak interaction rates on titanium isotopes are important during the late phases of evolution of massive stars. A search was made for key titanium isotopes from available literature and a microscopic calculation of weak rates of these nuclei were performed using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. Earlier the author presented the stellar electron capture rates on titanium isotopes. In this paper I present the neutrino and antineutrino energy loss rates due to capture and decay rates on isotopes of titanium in stellar environment. Accurate estimate of neutrino energy loss rates are needed for the study of the late stages of the stellar evolution, in particular for cooling of neutron stars and white dwarfs. The results are also compared against previous calculations. At high stellar temperatures the calculated neutrino and antineutrino energy loss rates are bigger by more than two orders of magnitude as compared to the large scale shell model results and favor stellar c...

  11. Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method

    E-Print Network [OSTI]

    Papalambros, Panos

    Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 vehicle applications using a hybrid numerical optimization method that combines multiple individual is applied to minimize the mass, volume and material costs. The optimized pack design satisfies the energy

  12. Emulsion separation rate enhancement with high frequency energy

    SciTech Connect (OSTI)

    Peterson, E.R. [Phonon Technologies, Inc., Houston, TX (United States)

    1997-06-01T23:59:59.000Z

    The preponderance of stable oil/water emulsions, commonly encountered as pit oils or tank bottoms and known as sludges, presents an ever worsening remediation problem to oil producers and refiners. As the world`s crudes become heavier, the problem of emulsion generation becomes larger. Increasing regulatory and worldwide environmental controls also drive the need for cost effective reclamation of emulsions and sludges. Traditional methods of heating emulsions to force them to separate are difficult to practice. Emulsions can be hard to pump or may leave residue on heat transfer surfaces. High temperature processing can lead to loss of valuable volatiles. Revolutionary, cost effect technology for high frequency (RFM) energy separation of oil emulsions has been developed by Imperial Petroleum Recovery Corporation. RFM energy energizes the aqueous, surfactant and solid particulate components selectively, providing differential energy input. Proper choice of frequency provides dynamic coupling of the energy field to the natural frequency of the water component of the emulsion, accelerating coalescence of the water droplets into a separated phase. Field results have demonstrated the unique capabilities of RFM energy to accelerate separation of oil/water emulsions.

  13. CBR-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015 Peer Review |PeerOnes |Big

  14. CC-1-I Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015 Peer Review |PeerOnes

  15. CEK-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6 (2-91)A2015 Peer ReviewCCSCEAJune

  16. CK-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March 2013CIGNLFeatured

  17. CM-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March003MEAM, MDEA, and SMEPA

  18. VA-1-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorized Access | Department2 1 2 1

  19. VA-2-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorized Access | Department2 1 2

  20. VA-3-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorized Access | Department2 1 2to

  1. VA-4-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorized Access | Department2 1

  2. VANC-1 Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivilegesUnauthorized Access | Department2 16 I

  3. Generating Facility Rate-Making | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRXRate-Making Jump to: navigation,

  4. POLICY GUIDANCE MEMORANDUM #10 Category Rating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyofHSSPIA - I-Manage STARSDepartmentThis guidance is

  5. Project Definition Rating Index (PDRI) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCODepartment ofRecipientsand Project Analysis StandardProject

  6. Regulation-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyas of 7/16/2015

  7. Replacement-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto theandRenewableReno

  8. AP-1-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW W. TUNNELL t: (205)Thisand

  9. AP-2-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW W. TUNNELL t:

  10. AP-3-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW W. TUNNELL t:to whom power

  11. AP-4-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA TrainingANDREW W. TUNNELL t:to whom

  12. Widget:UtilityRateEntryHelperTable | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJumpGoogleAreaMap

  13. Property:CommercialAvgRate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType Jump to: navigation, search ThisCollaborating

  14. Property:DemandRateStructure | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to: navigation,DayQuantity

  15. Property:FirstWellFlowRate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property NameFirstWellDepth Jump to:

  16. Property:OpenEI/UtilityRate/Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResultsUtility Jump to:

  17. DOE Commercial Building Energy Asset Rating Program Focus Groups with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project forDepartment ofCurriculum |Energy

  18. Help:Utility Rate Data Entry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station - SouthEntry Jump to:

  19. Regulation-1 Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29,3, 2012Visitors Can Register

  20. New Rating System for Enhancing Window Energy Performance | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartmentCyber SecurityDepartment

  1. Trends in Contractor Conversion Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter GetsEnergySpecification: Revision 1Contractor

  2. NC-1-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges are Associated withandGasVirginia

  3. Property:GeofluidGeosteamFlowRate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number Jump to:GenDelToGrid

  4. Property:IndustrialAvgRate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc Jump to:Ind cons

  5. Pump-2 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergyProviding GridCommercialPublications022 *PumpPump-2

  6. Thermal Evaluation of the Honda Insight Battery Pack: Preprint

    SciTech Connect (OSTI)

    Zolot, M.D.; Kelly, K.; Keyser, M.; Mihalic, M.; Pesaran, A.; Hieronymus, A.

    2001-06-18T23:59:59.000Z

    The hybrid vehicle test efforts at National Renewable Energy Laboratory (NREL), with a focus on the Honda Insight's battery thermal management system, are presented. The performance of the Insight's high voltage NiMH battery pack was characterized by conducting in-vehicle dynamometer testing at Environmental Testing Corporation's high altitude dynamometer test facility, on-road testing in the Denver area, and out-of-car testing in NREL's Battery Thermal Management Laboratory. It is concluded that performance does vary considerably due to thermal conditions the pack encounters. The performance variations are due to both inherent NiMH characteristics, and the Insight's thermal management system.

  7. Adhesive Loose Packings of Small Particles

    E-Print Network [OSTI]

    Wenwei Liu; Shuiqing Li; Adrian Baule; Hernán A. Makse

    2014-10-08T23:59:59.000Z

    We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter ($Ad$) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for $Ad>1$. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes correlations between bulk and contact spheres. Our theoretical and numerical results predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a maximal loose packing point at the coordination number $Z=2$ and packing fraction $\\phi=1/2^{3}$. Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing, which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  8. Thermal vacancies in close-packing solids

    E-Print Network [OSTI]

    Mostafa Mortazavifar; Martin Oettel

    2013-11-20T23:59:59.000Z

    Based on Stillinger's version of cell cluster theory, we derive an expression for the equilibrium concentration of thermal monovacancies in solids which allows for a transparent interpretation of the vacancy volume and the energetic/entropic part in the corresponding Gibbs energy of vacancy formation $\\Delta G_{\\rm v}$. For the close--packing crystals of the hard sphere and Lennard--Jones model systems very good agreement with simulation data is found. Application to metals through the embedded--atom method (EAM) reveals a strong sensitivity of the variation of $\\Delta G_{\\rm v}$ with temperature to details of the EAM potential. Our truncation of the cell cluster series allows for an approximate, but direct measurement of crystal free energies and vacancy concentration in colloidal model systems using laser tweezers.

  9. Models for Metal Hydride Particle Shape, Packing, and Heat Transfer

    E-Print Network [OSTI]

    Kyle C. Smith; Timothy S. Fisher

    2012-05-04T23:59:59.000Z

    A multiphysics modeling approach for heat conduction in metal hydride powders is presented, including particle shape distribution, size distribution, granular packing structure, and effective thermal conductivity. A statistical geometric model is presented that replicates features of particle size and shape distributions observed experimentally that result from cyclic hydride decreptitation. The quasi-static dense packing of a sample set of these particles is simulated via energy-based structural optimization methods. These particles jam (i.e., solidify) at a density (solid volume fraction) of 0.665+/-0.015 - higher than prior experimental estimates. Effective thermal conductivity of the jammed system is simulated and found to follow the behavior predicted by granular effective medium theory. Finally, a theory is presented that links the properties of bi-porous cohesive powders to the present systems based on recent experimental observations of jammed packings of fine powder. This theory produces quantitative experimental agreement with metal hydride powders of various compositions.

  10. Commercial Building Asset Rating Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadbandof the

  11. A national program for energy-efficient mortgages and home energy rating systems: A blueprint for action

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This Review Draft reports findings and recommendations of the National Collaborative on Home Energy Rating Systems and Mortgage Incentives for Energy Efficiency. The US Department of Energy, in cooperation with the US Department of Housing and Urban Development, formed this National Collaborative as a National Energy Strategy initiative. Participating in the Collaborative were representatives of the primary and secondary mortgage markets, builder and remodeler organizations, real estate and appraiser associations, the home energy rating system industry, utility associations, consumer and public interest groups, state and local government interest groups, and environmental organizations. The Collaborative's purpose was to develop a voluntary national program encouraging energy efficiency in homes through mortgage incentives linked to home energy ratings.

  12. Duke-1-E Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4Dimitri Kusnezov -Purpose(FY)TheAWhat

  13. Duke-2-E Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4Dimitri Kusnezov -Purpose(FY)TheAWhatCentral

  14. JW-1-J Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 | 12/1/2014 |Is5:It'sA P21-J

  15. JW-2-F Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 | 12/1/2014 |Is5:It'sA P21-J2-F

  16. Pump-1-A Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de San Ildefonso Pueblo1-A

  17. Pump-2 Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de San Ildefonso Pueblo1-A2

  18. SOCO-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental Assignment |SHEPHERDSEnergyDepartment of1-E

  19. SOCO-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental Assignment |SHEPHERDSEnergyDepartment

  20. SOCO-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental Assignment |SHEPHERDSEnergyDepartment3-E

  1. SOCO-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental Assignment |SHEPHERDSEnergyDepartment3-E4-E

  2. DOE Commercial Building Energy Asset Rating Program Focus Groups with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project forDepartment ofCurriculum

  3. Commercial Buildings Asset Rating Program RFI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial Building

  4. Santee-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy Summary of Reported1-E

  5. Santee-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy Summary of Reported1-E2-E

  6. Santee-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy Summary of

  7. Santee-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment ofEnergy Summary of4-E Wholesale

  8. MISS-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr. ErnestMID-CAREER RETIREMENTMISS-1-N Wholesale

  9. Energy Performance Ratings for Windows, Doors, and Skylights | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.ofTrack 1shouldJuneContracting Energyof

  10. ARCS - Access Rate Control System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^APPLIANCE STANDARDS HowARCS

  11. New Rating System for Enhancing Window Energy Performance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof EnergyBulbs | Department ofofWinsofPerspective

  12. Excitation energies and transition rates in the 3d2 states of Ca-like ions

    E-Print Network [OSTI]

    Johnson, Walter R.

    Excitation energies and transition rates in the 3d2 states of Ca-like ions U. I. Safronova,1 W. R October 2000; published 14 February 2001 Energies, transition probabilities, and lifetimes are calculated matrix elements. The resulting transition energies and lifetimes are compared with experimental values

  13. The evaporation rate, free energy, and entropy of amorphous water Robin J. Speedy

    E-Print Network [OSTI]

    The evaporation rate, free energy, and entropy of amorphous water at 150 K Robin J. Speedy can be interpreted as giving a measure of their free energy difference, i a G 150 K 1100 100 J of amorphous water (a) and ice (i) near 150 K and suppose that their ratio gives a measure of their free energy

  14. Simulating Vibrational Energy Flow in Proteins: Relaxation Rate and Mechanism for Heme Cooling in Cytochrome c

    E-Print Network [OSTI]

    Straub, John E.

    Simulating Vibrational Energy Flow in Proteins: Relaxation Rate and Mechanism for Heme Cooling dynamics simulation. The kinetic energy relaxation was found to be a biphasic exponential decay process in the heme protein myoglobin. Computer simulation of vibrational energy relaxation in heme proteins began

  15. A Rate-Energy-Distortion Analysis for Compressed-Sensing-Enabled Wireless Video Streaming on

    E-Print Network [OSTI]

    Melodia, Tommaso

    A Rate-Energy-Distortion Analysis for Compressed-Sensing-Enabled Wireless Video Streaming. The objective of this paper is to conduct an experiment- driven analysis of the energy links for low-complexity multimedia sensing devices with a limited budget of available energy per video

  16. Thermal and Microcanonical Rates of Unimolecular Reactions from an Energy Diffusion Theory Approach

    E-Print Network [OSTI]

    Miller, William H.

    Thermal and Microcanonical Rates of Unimolecular Reactions from an Energy Diffusion Theory Approach; In Final Form: September 13, 1999 We present an energy diffusion theory approach for computing thermal compared to the thermal energy. The weak-collision limit has been extensively studied.1-9 However

  17. Self-energy O(alpha^2) correction to the positronium decay rate

    E-Print Network [OSTI]

    R. N. Faustov; A. P. Martynenko

    2000-02-26T23:59:59.000Z

    Self-energy corrections of order O(alpha^2) to the parapositronium and orthopositronium decay rates are calculated. Numerical values of the corresponding coefficients are B_p=-3.74, B_o=2.02.

  18. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean

    E-Print Network [OSTI]

    Nikurashin, Maxim

    A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(1–10) km scales obtained ...

  19. An efficient approach to the numerical solution of rate-independent problems with nonconvex energies

    E-Print Network [OSTI]

    Bartels, Soeren

    An efficient approach to the numerical solution of rate-independent problems with nonconvex energies S¨oren Bartelsa & Martin Kruz´ikb a Institut f¨ur Numerische Simulation, Rheinische Friedrich to the numerical treatment of non(quasi)convex rate-independent evolutionary problems. The main idea is to replace

  20. Cooperativity, Smooth Energy Landscapes and the Origins of Topology-dependent Protein Folding Rates

    E-Print Network [OSTI]

    Levine, Alex J.

    folding of simple proteins. We demonstrate that tra- ditional Go¯ polymers lack the extreme cooperativityCooperativity, Smooth Energy Landscapes and the Origins of Topology-dependent Protein Folding Rates Barbara Santa Barbara, CA 93106-9510 USA The relative folding rates of simple, single-domain proteins

  1. Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor

    E-Print Network [OSTI]

    Lu?trek, Mitja

    Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor Bozidara, we tested a combination of thigh inertial sensor with hart rate monitor, usually worn by athletes and availability and ease of development. Average smart phone has a rather powerful processing unit. It comes

  2. A High-Performance PHEV Battery Pack

    Broader source: Energy.gov (indexed) [DOE]

    piece cost by enabling lower cost automation, shipping, etc. Lower investment (tooling) by commonizing repeating parts Thermal Management Pack Thermal Challenges ...

  3. A method for dense packing discovery

    E-Print Network [OSTI]

    Yoav Kallus; Veit Elser; Simon Gravel

    2010-08-04T23:59:59.000Z

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \\textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \\textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density $\\phi=128/219\\approx0.5845$ and with a similar structure to the densest known tetrahedron packing.

  4. Home energy rating system building energy simulation test (HERS BESTEST). Volume 2, Tier 1 and Tier 2 tests reference results

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, Subtitle A, Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that Facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. The HERS BESTEST work is divided into two volumes. Volume 1 contains the test case specifications and is a user's manual for anyone wishing to test a computer program. Volume 2 contains the reference results and suggestions for accrediting agencies on how to use and interpret the results.

  5. An Analysis of Statewide Adoption Rates of Building Energy Code by Local Jurisdictions

    SciTech Connect (OSTI)

    Cort, Katherine A.; Butner, Ryan S.

    2012-12-31T23:59:59.000Z

    The purpose of this study is to generally inform the U.S. Department of Energy’s Building Energy Codes Program of the local, effective energy code adoption rate for a sample set of 21 states, some which have adopted statewide codes and some that have not. Information related to the residential energy code adoption process and status at the local jurisdiction was examined for each of the states. Energy code status information was gathered for approximately 2,800 jurisdictions, which effectively covered approximately 80 percent of the new residential building construction in the 21 states included in the study.

  6. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    SciTech Connect (OSTI)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12T23:59:59.000Z

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.

  7. Using Energy-Efficient Overlays to Reduce Packet Error Rates in Wireless Ad-Hoc Networks

    E-Print Network [OSTI]

    Khan, Bilal

    the problem of how to balance Western Michigan University, MI. John Jay College of Criminal Justice, City1 Using Energy-Efficient Overlays to Reduce Packet Error Rates in Wireless Ad-Hoc Networks A. Al-Fuqaha G. Ben Brahim M. Guizani B. Khan Abstract-- In this paper we present new energy-efficient tech

  8. Energy condition affects fermentation rate of Streptococcus bovis without changing fermentation pattern

    E-Print Network [OSTI]

    Boyer, Edmond

    fermentation patterns are unclear. Streptococcus bovis is a major ruminal bacteria, produces acetate, lactateEnergy condition affects fermentation rate of Streptococcus bovis without changing fermentation and ethanol from glucose. Only the production of acetate generates ATP. In cases of energy short age, S. bovis

  9. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses

    E-Print Network [OSTI]

    Kobtsev, Sergei M.

    to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124­3128 (2008). 5Ultra-low repetition rate mode-locked fiber laser with high-energy pulses Sergey Kobtsev* , Sergey Kukarin, Yurii Fedotov Laser Systems Laboratory, Novosibirsk State University,Pirigova 2, Novosibirsk

  10. Particle Shape Effects on the Stress Response of Granular Packings

    E-Print Network [OSTI]

    Athanasios G. Athanassiadis; Marc Z. Miskin; Paul Kaplan; Nicholas Rodenberg; Seung Hwan Lee; Jason Merritt; Eric Brown; John Amend; Hod Lipson; Heinrich M. Jaeger

    2013-10-15T23:59:59.000Z

    We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex, non-convex geometries such as hexapods with various arm lengths, dolos, and tetrahedral frames. All particles were 3D-printed in hard resin. Well-defined initial packing states were established through preconditioning by cyclic loading under given confinement pressure. Starting from such initial states, stress-strain relationships for axial compression were obtained at four different confining pressures for each particle type. While confining pressure has the largest overall effect on the mechanical response, we find that particle shape controls the details of the stress-strain curves and can be used to tune packing stiffness and yielding. By correlating the experimentally measured values for the effective Young's modulus under compression, yield stress and energy loss during cyclic loading, we identify trends among the various shapes that allow for designing a packing's aggregate behavior.

  11. The local energy production rates of GRB photons and of UHECRs

    E-Print Network [OSTI]

    Eli Waxman

    2010-10-26T23:59:59.000Z

    In a recent analysis it was found that the local (z=0) rate at which gamma-ray bursts (GRBs) produce energy in 1 MeV photons, Q_GRB(z=0), is 300 times lower than the local energy production rate in ultra-high energy cosmic-rays. This may appear to be in contradiction with earlier results, according to which Q_GRB(z=0) is similar to the local energy production rate in >10^{19} eV cosmic-rays, Q_{10EeV}(z=0). This short (1 page) note identifies the origin of the apparent discrepancy and shows that Q_GRB(z=0) \\sim Q_{10EeV}(z=0) holds.

  12. Application pack for funding commencing in 2012

    E-Print Network [OSTI]

    Kheifets, Anatoli

    Application pack for funding commencing in 2012 GROUP OF EIGHT AUSTRALIA­GERMANY JOINT RESEARCH COOPERATION SCHEME #12;PAGE 2 OF 9GROUP OF EIGHT AUSTRALIA­GERMANY JOINT RESEARCH COOPERATION SCHEME © GROUP OF EIGHT Application pack for funding commencing in 2012 ABOUT THE GROUP OF EIGHT AUSTRALIA­GERMANY JOINT

  13. Softening of Granular Packings with Dynamic Forcing

    E-Print Network [OSTI]

    C. J. Olson Reichhardt; L. M. Lopatina; X. Jia; P. A. Johnson

    2014-06-17T23:59:59.000Z

    We perform numerical simulations of a two-dimensional bidisperse granular packing subjected to both a static confining pressure and a sinusoidal dynamic forcing applied by a wall on one edge of the packing. We measure the response experienced by a wall on the opposite edge of the packing and obtain the resonant frequency of the packing as the static or dynamic pressures are varied. Under increasing static pressure, the resonant frequency increases, indicating a velocity increase of elastic waves propagating through the packing. In contrast, when the dynamic amplitude is increased for fixed static pressure, the resonant frequency decreases, indicating a decrease in the wave velocity. This occurs both for compressional and for shear dynamic forcing, and is in agreement with experimental results. We find that the average contact number $Z_c$ at the resonant frequency decreases with increasing dynamic amplitude, indicating that the elastic softening of the packing is associated with a reduced number of grain-grain contacts through which the elastic waves can travel. We image the excitations created in the packing and show that there are localized disturbances or soft spots that become more prevalent with increasing dynamic amplitude. Our results are in agreement with experiments on glass bead packings and earth materials such as sandstone and granite, and may be relevant to the decrease in elastic wave velocities that has been observed to occur near fault zones after strong earthquakes, in surficial sediments during strong ground motion, and in structures during earthquake excitation.

  14. Automated packing systems: Review of industrial implementations.

    E-Print Network [OSTI]

    Whelan, Paul F.

    Automated packing systems: Review of industrial implementations. Paul F. Whelan School in these applications. An outline of one such industrial application, the automated placement of shape templates Mathematics University of Wales Cardiff, Wales. ABSTRACT The problems involved in the automated packing

  15. Packing of elastic wires in flexible shells

    E-Print Network [OSTI]

    Vetter, Roman; Herrmann, Hans J

    2015-01-01T23:59:59.000Z

    The packing problem of long thin filaments that are injected into confined spaces is of fundamental interest for physicists, biologists and materials engineers alike. How linear threads pack and coil is well known only for the ideal case of rigid containers, however. Here, we force long elastic rods into flexible spatial confinement borne by an elastic shell to examine under which conditions recently acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns. At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross section, while at high friction, it packs into a highly disordered, self-similar structure. These two morphologies are shown to be separated by a continuous phase transition.

  16. Packing of elastic wires in flexible shells

    E-Print Network [OSTI]

    Roman Vetter; Falk K. Wittel; Hans J. Herrmann

    2015-04-03T23:59:59.000Z

    The packing problem of long thin filaments that are injected into confined spaces is of fundamental interest for physicists, biologists and materials engineers alike. How linear threads pack and coil is well known only for the ideal case of rigid containers, however. Here, we force long elastic rods into flexible spatial confinement borne by an elastic shell to examine under which conditions recently acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns. At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross section, while at high friction, it packs into a highly disordered, self-similar structure. These two morphologies are shown to be separated by a continuous phase transition.

  17. Neutrino and antineutrino energy loss rates in massive stars due to isotopes of titanium

    E-Print Network [OSTI]

    Jameel-Un Nabi

    2011-08-04T23:59:59.000Z

    Weak interaction rates on titanium isotopes are important during the late phases of evolution of massive stars. A search was made for key titanium isotopes from available literature and a microscopic calculation of weak rates of these nuclei were performed using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. Earlier the author presented the stellar electron capture rates on titanium isotopes. In this paper I present the neutrino and antineutrino energy loss rates due to capture and decay rates on isotopes of titanium in stellar environment. Accurate estimate of neutrino energy loss rates are needed for the study of the late stages of the stellar evolution, in particular for cooling of neutron stars and white dwarfs. The results are also compared against previous calculations. At high stellar temperatures the calculated neutrino and antineutrino energy loss rates are bigger by more than two orders of magnitude as compared to the large scale shell model results and favor stellar cores with lower entropies. This study can prove useful for core-collapse simulators.

  18. The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function

    E-Print Network [OSTI]

    The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function

  19. Alba Field cased-hole horizontal gravel pack: A team approach to design

    SciTech Connect (OSTI)

    Alexander, K. [Chevron U.K. Ltd., London (United Kingdom); Winton, S. [Baker Hughes INTEQ, Aberdeen (United Kingdom); Price-Smith, C. [Dowell Schlumberger, Aberdeen (United Kingdom)

    1996-03-01T23:59:59.000Z

    A 700-ft cased-hole horizontal well was gravel packed and completed in the Alba Field, central North Sea. The completion incorporated a number of new technologies adopted for a horizontal cased-hole completion, including both equipment and fluids. The zone was completed in two stages using a horizontal stack-pack approach. Perforation packing was optimized by performing a staged acid prepack with the guns in the hole using a low-density synthetic gravel substitute in a shear thinning carrier fluid. This was a world-first achievement at a cased-hole gravel pack using the stack-pack approach in a horizontal well. A solids-free fluid-loss control material was evaluated and chosen for the high-permeability Alba sands (3 darcies). Extensive lab testing was performed to ensure minimal damage from various fluids. A 30-ft physical model was used to optimize annular pack efficiency. A gravel placement computer simulation was used to design pump rate, sand concentration, and gel loading to optimize annular and perforation-pack efficiency.

  20. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    NONE

    1995-11-17T23:59:59.000Z

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  1. Home energy rating system building energy simulation test (HERS BESTEST): Volume 1, Tier 1 and Tier 2 tests user's manual

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1995-11-01T23:59:59.000Z

    The Home Energy Rating System (HERS) Building Energy Simulation Test (BESTEST) is a method for evaluating the credibility of software used by HERS to model energy use in buildings. The method provides the technical foundation for ''certification of the technical accuracy of building energy analysis tools used to determine energy efficiency ratings,'' as called for in the Energy Policy Act of 1992 (Title I, subtitle A,l Section 102, Title II, Part 6, Section 271). Certification is accomplished with a uniform set of test cases that facilitate the comparison of a software tool with several of the best public-domain, state-of-the-art building energy simulation programs available in the United States. This set of test cases represents the Tier 1 and Tier 2 Tests for Certification of Rating Tools as described in DOE 10 CFR Part 437 and the HERS Council Guidelines for Uniformity (HERS Council). A third Tier of tests not included in this document is also planned.

  2. Overview of existing residential energy-efficiency rating systems and measuring tools

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Garrett-Price, B.A.; Williams, T.A.

    1982-10-01T23:59:59.000Z

    Three categories of rating systems/tools were identified: prescriptive, calculational, and performance. Prescriptive systems include rating systems that assign points to various conservation features. Most systems that have been implemented to date have been prescriptive systems. The vast majority of these are investor-owned utility programs affiliated with the National Energy Watch program of the Edison Electric Institute. The calculational category includes computational tools that can be used to estimate energy consumption. This estimate could then be transformed, probably by indexing, into a rating. The available computational tools range from very simple to complex tools requiring use of a main-frame computer. Performance systems refer to residential energy-efficiency ratings that are based on past fuel consumption of a home. There are few of these systems. For each identified system/tool, the name, address, and telephone number of the developer is included. In addition, relevant publications discussing the system/tool are cited. The extent of field validation/verification of individual systems and tools is discussed. In general, there has been little validation/verification done. A bibliography of literature relevant to the use and implementation of a home energy rating system is also included.

  3. A method for dense packing discovery

    E-Print Network [OSTI]

    Kallus, Yoav; Gravel, Simon

    2010-01-01T23:59:59.000Z

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and ...

  4. Electrochemical Studies of Packed Iron Powder Electrodes: Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Packed Iron Powder Electrodes: Effects of Common Constituents of Natural Waters on Corrosion Electrochemical Studies of Packed Iron Powder Electrodes: Effects of Common...

  5. EV Everywhere Batteries Workshop - Pack Design and Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    Pack Design and Optimization Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Breakout session presentation for the...

  6. Energy Policy Act transportation rate study: Availability of data and studies

    SciTech Connect (OSTI)

    Not Available

    1993-10-13T23:59:59.000Z

    Pursuant to Section 1340(c) of the Energy Policy Act of 1992 (EPACT), this report presents the Secretary of Energy`s review of data collected by the Federal Government on rates for rail and pipeline transportation of domestic coal, oil, and gas for the years 1988 through 1997, and proposals to develop an adequate data base for each of the fuels, based on the data availability review. This report also presents the Energy Information Administration`s findings regarding the extent to which any Federal agency is studying the impacts of the Clean Air Act Amendments of 1990 (CAAA90) and other Federal policies on the transportation rates and distribution patterns of domestic coal, oil, and gas.

  7. DEM simulation of experimental dense granular packing

    SciTech Connect (OSTI)

    Hanifpour, Maryam; Allaei, Mehdi Vaez [Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Francois, Nicolas; Saadatfar, Mohammad [Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra (Australia)

    2013-06-18T23:59:59.000Z

    In this study we present numerical analysis performed on the experimental results of sphere packings of mono-sized hard sphere whose packing fraction spans across a wide range of 0.59<{Phi}<0.72. Using X-ray Computed Tomography (XCT), we have full access to the 3D structure of the granular packings. Numerical analysis performed on thr data provides the first experimental proofs of how densification affects local order parameters. Furthermore by combining Discrete Element Method (DEM) and the experimental results from XCT, we investigate how the intergranular forces change with the onset of crystallization.

  8. L4 Certificate Leadership and Management Candidate Pack 2012-13[1].docx Level 4 Certificate in

    E-Print Network [OSTI]

    Mumby, Peter J.

    for establishing, maintaining and improving systems (eg quality, marketing, sales, energy, health and safety, etcL4 Certificate Leadership and Management Candidate Pack 2012-13[1].docx Page 1 Level 4 Certificate in Leadership and Management Candidate and Assessment Pack 2012/13 Clive Betts Centre Co-ordinator #12;L4

  9. EPA ENERGY STAR Webcast: ENERGY STAR and Green Building Rating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    During this session, attendees will learn how to use EPA tools and resources to help meet requirements for green building rating systems such as the U.S. Green Building Council’s Leadership in...

  10. Energy production rates in fluid mixtures of inelastic rough hard spheres

    E-Print Network [OSTI]

    Andrés Santos; Gilberto M. Kremer; Vicente Garzó

    2010-07-16T23:59:59.000Z

    The aim of this work is to explore the combined effect of polydispersity and roughness on the partial energy production rates and on the total cooling rate of a granular fluid mixture. We consider a mixture of inelastic rough hard spheres of different number densities, masses, diameters, moments of inertia, and mutual coefficients of normal and tangential restitution. Starting from the first equation of the BBGKY hierarchy, the collisional energy production rates associated with the translational and rotational temperatures ($T_i^\\text{tr}$ and $T_i^\\text{rot}$) are expressed in terms of two-body average values. Next, those average values are estimated by assuming a velocity distribution function based on maximum-entropy arguments, allowing us to express the energy production rates and the total cooling rate in terms of the partial temperatures and the parameters of the mixture. Finally, the results are applied to the homogeneous cooling state of a binary mixture and the influence of inelasticity and roughness on the temperature ratios $T_1^\\text{tr}/T_1^\\text{rot}$, $T_2^\\text{tr}/T_1^\\text{tr}$, and $T_2^\\text{rot}/T_1^\\text{rot}$ is analyzed.

  11. Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    Analysis Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a , Inês L considerably. To quantify the influence of factors that drive consumer choices for light bulbs, we conducted incandescent bulbs. About half of the total lighting service (in terms of lumens) was provided by incandes

  12. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  13. PACKING ELLIPSOIDS WITH OVERLAP? 1. Introduction. Shape ...

    E-Print Network [OSTI]

    2013-02-07T23:59:59.000Z

    Feb 7, 2013 ... problem of finding the densest sphere packing is still open. .... (c) Some measure of volumes of the pairwise overlaps Ei ? Ej, i, j = 1, 2,...,N,.

  14. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08T23:59:59.000Z

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  15. PACKING DIMENSIONS, TRANSVERSAL MAPPINGS AND GEODESIC FLOWS

    E-Print Network [OSTI]

    Jyväskylä, University of

    result for the packing dimension, dimp, of projected measures. They showed that if µ is a finite Borel measure on Rn , then (1.1) dimp PV µ = dimm µ for almost all V G(n, m), where dimm µ is a packing is the same for almost all projections, but it may happen that dimm µ dimp µ. The above results are "almost

  16. THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL

    E-Print Network [OSTI]

    Berk, J.V.

    2013-01-01T23:59:59.000Z

    ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIOENERGY~EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIOenergy conservation opportunities i.n ten elementary schools. 1 Fairmoor Elementary School in Columbus • Ohio

  17. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    SciTech Connect (OSTI)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01T23:59:59.000Z

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  18. Dense periodic packings of tetrahedra with small repeating units

    E-Print Network [OSTI]

    Yoav Kallus; Veit Elser; Simon Gravel

    2010-03-19T23:59:59.000Z

    We present a one-parameter family of periodic packings of regular tetrahedra, with the packing fraction $100/117\\approx0.8547$, that are simple in the sense that they are transitive and their repeating units involve only four tetrahedra. The construction of the packings was inspired from results of a numerical search that yielded a similar packing. We present an analytic construction of the packings and a description of their properties. We also present a transitive packing with a repeating unit of two tetrahedra and a packing fraction $\\frac{139+40\\sqrt{10}}{369}\\approx0.7194$.

  19. Free energy of cluster formation and a new scaling relation for the nucleation rate

    SciTech Connect (OSTI)

    Tanaka, Kyoko K.; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Diemand, Jürg; Angélil, Raymond [Institute for Computational Science, University of Zürich, 8057 Zürich (Switzerland)] [Institute for Computational Science, University of Zürich, 8057 Zürich (Switzerland)

    2014-05-21T23:59:59.000Z

    Recent very large molecular dynamics simulations of homogeneous nucleation with (1 ? 8) ×?10{sup 9} Lennard-Jones atoms [J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139, 074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide range of cluster sizes. This is now possible because such large simulations allow for very precise measurements of the cluster size distribution in the steady state nucleation regime. The peaks of the free energy curves give critical cluster sizes, which agree well with independent estimates based on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling relation for nucleation rates: ln?J{sup ?}/? is scaled by ln?S/?, where the supersaturation ratio is S, ? is the dimensionless surface energy, and J{sup ?} is a dimensionless nucleation rate. This relation can be derived using the free energy of cluster formation at equilibrium which corresponds to the surface energy required to form the vapor-liquid interface. At low temperatures (below the triple point), we find that the surface energy divided by that of the classical nucleation theory does not depend on temperature, which leads to the scaling relation and implies a constant, positive Tolman length equal to half of the mean inter-particle separation in the liquid phase.

  20. Power-law friction in closely-packed granular materials

    E-Print Network [OSTI]

    Takahiro Hatano

    2007-05-08T23:59:59.000Z

    In order to understand the nature of friction in closely-packed granular materials, a discrete element simulation on granular layers subjected to isobaric plain shear is performed. It is found that the friction coefficient increases as the power of the shear rate, the exponent of which does not depend on the material constants. Using a nondimensional parameter that is known as the inertial number, the power-law can be cast in a generalized form so that the friction coefficients at different confining pressures collapse on the same curve. We show that the volume fraction also obeys a power-law.

  1. Property:OpenEI/UtilityRate/EnergyWeekdaySchedule | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResults JumpProperty Edit

  2. Property:OpenEI/UtilityRate/EnergyWeekendSchedule | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResults JumpProperty

  3. Guidelines for Energy Cost Savings Resulting from Tracking and Monitoring Electrical nad Natural Gas Usage, Cost, and Rates

    E-Print Network [OSTI]

    McClure, J. D.; Estes, M. C.; Estes, J. M.

    1989-01-01T23:59:59.000Z

    This paper discusses how improved energy information in schools and hospitals from tracking and monitoring electrical and natural gas usage, cost, and optional rate structures, can reduce energy costs. Recommendations, methods, and guidelines...

  4. Guidelines for Energy Cost Savings Resulting from Tracking and Monitoring Electrical nad Natural Gas Usage, Cost, and Rates 

    E-Print Network [OSTI]

    McClure, J. D.; Estes, M. C.; Estes, J. M.

    1989-01-01T23:59:59.000Z

    This paper discusses how improved energy information in schools and hospitals from tracking and monitoring electrical and natural gas usage, cost, and optional rate structures, can reduce energy costs. Recommendations, ...

  5. Methodology for Calculating Cooling and Heating Energy-Imput-Ratio (EIR) From the Rated Seasonal Performance Efficiency (SEER or HSPF) 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.

    2013-01-01T23:59:59.000Z

    This report provides the recommendations to calculate cooling and heating energy-input-ratio (EIR) for DOE-2 simulations excluding indoor fan energy, from the rated cooling and heating seasonal performance efficiency (i.e., ...

  6. Evaluation procedure for building energy performance prediction tools: Accuracy and Home Energy Rating Systems---Issues and recommendations

    SciTech Connect (OSTI)

    Not Available

    1985-06-01T23:59:59.000Z

    This three section report explores the accuracy issues which affect Home Energy Rating Systems (HERS), briefly defined as procedures which rate the energy efficiency of single-family houses. The first section of this report reviews the problems of determining accuracy in HERS, concluding that acceptable accuracy varies with the audience and is greatly dependent upon the specific application. Section two examines the previous approaches to the determination of accuracy/validity of HERS which have predominantly relied upon primary and secondary testing methods. The final section investigates several different approaches to certify the accuracy of HERS, with the conclusion that field tests similar to those carried out in a Massachusetts HERS program be used to verify accuracy. 54 refs.

  7. High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood

    E-Print Network [OSTI]

    Salz, M; Czesla, S; Schmitt, J H M M

    2015-01-01T23:59:59.000Z

    Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy...

  8. A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure

    E-Print Network [OSTI]

    Yin, Lu; Cui, Jing-Lei; Li, Yun-He; Zhang, Xin

    2015-01-01T23:59:59.000Z

    We investigate the interacting dark energy models by using the diagnostics of statefinder hierarchy and growth rate of structure. We wish to explore the deviations from $\\Lambda$CDM and to differentiate possible degeneracies in the interacting dark energy models with the geometrical and structure growth diagnostics. We consider two interacting forms for the models, i.e., $Q_1=\\beta H\\rho_c$ and $Q_2=\\beta H\\rho_{de}$, with $\\beta$ being the dimensionless coupling parameter. Our focus is the I$\\Lambda$CDM model that is a one-parameter extension to $\\Lambda$CDM by considering a direct coupling between the vacuum energy ($\\Lambda$) and cold dark matter (CDM), with the only additional parameter $\\beta$. But we begin with a more general case by considering the I$w$CDM model in which dark energy has a constant $w$ (equation-of-state parameter). For calculating the growth rate of structure, we employ the "parametrized post-Friedmann" theoretical framework for interacting dark energy to numerically obtain the $\\epsil...

  9. Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump to:Information

  10. Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate Jump

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate JumpInformation 1

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate JumpInformation

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth2 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation Rate

  14. Property:OpenEI/UtilityRate/FixedDemandChargeMonth3 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation RateInformation

  15. Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    for biomass energy R&D, with clearly demarcated support for both pre-commercial research devoted to innovation for renewable energy and energy efficiency, and has declined for fossil fuel and nuclear technology. The 20051 Measuring the Social Rate of Return to R&D in the Energy Industry: A Study of the OECD Countries

  16. Energy-Efficient Power and Rate Control with QoS Constraints: A Game-Theoretic Approach

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Energy-Efficient Power and Rate Control with QoS Constraints: A Game-Theoretic Approach Farhad-theoretic model is proposed to study the cross-layer problem of joint power and rate control with quality by the network. Joint power and rate control with QoS constraints have been studied extensively for multiple

  17. Home energy rating system business plan feasibility study in Washington state

    SciTech Connect (OSTI)

    Lineham, T.

    1995-03-01T23:59:59.000Z

    In the Fall of 1993, the Washington State Energy Office funded the Washington Home Energy Rating System project to investigate the benefits of a Washington state HERS. WSEO established a HERS and EEM Advisory Group. Composed of mortgage lenders/brokers, realtors, builders, utility staff, remodelers, and other state agency representatives, the Advisory Group met for the first time on November 17, 1993. The Advisory Group established several subcommittees to identify issues and options. During its March 1994 meeting, the Advisory Group formed a consensus directing WSEO to develop a HERS business plan for consideration. The Advisory Group also established a business plan subcommittee to help draft the plan. Under the guidance of the business plan subcommittee, WSEO conducted research on how customers value energy efficiency in the housing market. This plan represents WSEO`s effort to comply with the Advisory Group`s request. Why is a HERS Business Plan necessary? Strictly speaking this plan is more of a feasibility plan than a business plan since it is designed to help determine the feasibility of a new business venture: a statewide home energy rating system. To make this determination decision makers or possible investors require strategic information about the proposed enterprise. Ideally, the plan should anticipate the significant questions parties may want to know. Among other things, this document should establish decision points for action.

  18. The 23Na(?,p) 26Mg reaction rate at astrophysically relevant energies

    E-Print Network [OSTI]

    A. M. Howard; M. Munch; H. O. U. Fynbo; O. S. Kirsebom; K. L. Laursen; C. Aa. Diget; N. J. Hubbard

    2015-06-23T23:59:59.000Z

    The production of 26 Al in massive stars is sensitive to the 23 Na(a,p) 26 Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of 40. We present here differential cross sections for the 23 Na(a,p) 26 Mg reaction measured in the energy range E c.m. = 1.7 - 2.5 MeV. Concurrent measurements of Rutherford scattering provide absolute normalisations which are independent of variations in target properties. Angular distributions were measured for both p 0 and p 1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates of a factor of 40, impacting on the 26 Al yield from massive stars by more than a factor of three.

  19. NREL Simulations Provide New Insight on Polymer-Based Energy Storage Materials (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    Atomistic simulations correlate molecular packing and electron transport in polymer-based energy storage materials.

  20. Packing frustration in dense confined fluids

    E-Print Network [OSTI]

    Kim Nygård; Sten Sarman; Roland Kjellander

    2014-09-04T23:59:59.000Z

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile - each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  1. Effects of Spatial Variations in Packing Fraction on Reactor Physics Parameters in Pebble-Bed Reactors

    SciTech Connect (OSTI)

    William K. Terry; A. M. Ougouag; Farzad Rahnema; Michael Scott McKinley

    2003-04-01T23:59:59.000Z

    The well-known spatial variation of packing fraction near the outer boundary of a pebble-bed reactor core is cited. The ramifications of this variation are explored with the MCNP computer code. It is found that the variation has negligible effects on the global reactor physics parameters extracted from the MCNP calculations for use in analysis by diffusion-theory codes, but for local reaction rates the effects of the variation are naturally important. Included is some preliminary work in using first-order perturbation theory for estimating the effect of the spatial variation of packing fraction on the core eigenvalue and the fision density distribution.

  2. Excitation energies and transition rates in magnesiumlike ions U. I. Safronova, W. R. Johnson, and H. G. Berry

    E-Print Network [OSTI]

    Johnson, Walter R.

    Excitation energies and transition rates in magnesiumlike ions U. I. Safronova, W. R. Johnson October 1999; published 7 April 2000 Excitation energies, transition probabilities, and lifetimes length-form and velocity-form amplitudes. The resulting transition energies and lifetimes are compared

  3. Exclusive Measurements of b -> s gamma Transition Rate and Photon Energy Spectrum

    E-Print Network [OSTI]

    The BABAR Collaboration

    2012-08-30T23:59:59.000Z

    We use 429 fb$^{-1}$ of $e^+e^-$ collision data collected at the $\\Upsilon(4S)$ resonance with the BABAR detector to measure the radiative transition rate of $b\\rightarrow s\\gamma$ with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be $\\mathcal{B}(\\bar B \\rightarrow X_{s}\\gamma)=(3.29\\pm 0.19\\pm 0.48)\\times 10^{-4}$ where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, $m_{b}$ and $\\mu_{\\pi}^{2}$, in the kinetic and shape function models.

  4. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect (OSTI)

    Aggarwal, Sunny, E-mail: sunny.du87@gmail.com; Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15T23:59:59.000Z

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  5. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    E-Print Network [OSTI]

    Aggarwal, Kanti M

    2013-01-01T23:59:59.000Z

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The {\\sc grasp} (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac Atomic R-matrix Code ({\\sc darc}) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10$^{8}$ K. Comparisons are made with similar data obtained using the Flexible Atomic Code ({\\sc fac}) to highlight the importance of resonances, included in calcul...

  6. Resin-coated sand slurry pack gas deliverabilities: Field and laboratory results

    SciTech Connect (OSTI)

    Wilson, B.; Nelson, C.; Stadleman, J.

    1983-10-01T23:59:59.000Z

    Although through-tubing resin-coated sand slurry packs (RCSSP's) are significantly less expensive than conventional gravel packs, they have not been widely used as a sand control completion technique. This low usage is mainly due to two inherent problems. The first is the high risk of localized pack failure in the perforation tunnels when the RCSSP casing plug is milled out. The second problem is the difficulty associated with predicting flow rates (and therefore economics) of RCSSP completed wells, especially if the casing plug is not milled out. This paper presents a modified velocity coefficient correlation for gas turbulence, an innovative RCSSP completion configuration with an associated simulation technique, and supporting field results that demonstrate an expanded application for RCSSP's in the area of gas well through-tubing plugbacks where, until recently, their general application was thought to be uneconomical.

  7. Random packing of hyperspheres and Marsaglia's Parking Lot Test

    E-Print Network [OSTI]

    Whitlock, Paula

    Random packing of hyperspheres and Marsaglia's Parking Lot Test Stefan C. Agapie and Paula A York 10021 September 30, 2009 Abstract Many studies of randomly packed hyperspheres in multiple box until some randomly loosely packed density is achieved. Then either a compression algorithm

  8. An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 Nanotube Arrays

    E-Print Network [OSTI]

    Wang, Zhong L.

    An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO2 harvest and storage processes. This power pack incorporates a series-wound dye- sensitized solar cell, nanostructures have been widely used in energy harvesting devices, such as dye-sensitized solar cells (DSSCs

  9. Exploring a new interaction between dark matter and dark energy using the growth rate of structure

    E-Print Network [OSTI]

    Richarte, Martín G

    2015-01-01T23:59:59.000Z

    We present a phenomenological interaction with a scale factor power law form which leads to the appearance of two kinds of perturbed terms, a scale factor spatial variation along with perturbed Hubble expansion rate. We study both the background and the perturbation evolution within the parametrized post-Friedmann scheme, obtaining that the exchange of energy-momentum can flow from dark energy to dark matter in order to keep dark energy and dark matter densities well defined at all times. We combine several measures of the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation measurements, redshift-space distortion data, JLA sample of supernovae, and Hubble constant for constraining the coupling constant and the exponent provided both parametrized the interaction itself. The joint analysis of ${\\rm Planck+WMAP9+BAO}$ ${\\rm +RSD+JLA+HST}$ data seems to favor large coupling constant, $\\xi_c = 0.34403427_{- 0.18907353}^{+ 0.14430125}$ at 1 $\\sigma$ level, and prefers a power law interactio...

  10. Confined polymer nematics: order and packing in a nematic drop

    E-Print Network [OSTI]

    Daniel Svenšek; Gregor Veble; Rudolf Podgornik

    2010-05-04T23:59:59.000Z

    We investigate the tight packing of nematic polymers inside a confining hard sphere. We model the polymer {\\sl via} the continuum Frank elastic free energy augmented by a simple density dependent part as well as by taking proper care of the connectivity of the polymer chains when compared with simple nematics. The free energy {\\sl ansatz} is capable of describing an orientational ordering transition within the sample between an isotropic polymer solution and a polymer nematic phase. We solve the Euler-Lagrange equations numerically with the appropriate boundary conditions for the director and density field and investigate the orientation and density profile within a sphere. Two important parameters of the solution are the exact locations of the beginning and the end of the polymer chain. Pending on their spatial distribution and the actual size of the hard sphere enclosure we can get a plethora of various configurations of the chain exhibiting different defect geometry.

  11. Rates of exponential decay in systems of discrete energy levels by Stieltjes imaging

    SciTech Connect (OSTI)

    Craigie, Jacob; Hammad, Ali; Cooper, Bridgette; Averbukh, Vitali, E-mail: v.averbukh@imperial.ac.uk [Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2014-07-07T23:59:59.000Z

    An isolated bound state coupled to a continuum shows an exponential decay of its survival probability. Rates of the exponential decay occurring due to the bound-continuum coupling can be recovered from discretized continuum (L{sup 2}) calculations using a computational technique known as Stieltjes-Chebyshev moment theory or Stieltjes imaging. At the same time, some genuinely discrete level systems, e.g., Bixon-Jortner model, also show an exponential (or approximately exponential) decay of the initially populated level before the onset of quantum revivals. Here, we demonstrate numerically that Stieltjes imaging can be used for calculation of the rates of the exponential decay in such discrete level systems. We apply the Stieltjes imaging technique to the approximately exponential decay of inner-valence vacancies in trans-butadiene in order to show that the breakdown of the molecular orbital picture of ionization in the inner valence region can be physically interpreted as an energy-forbidden Coster-Kronig transition.

  12. 4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ RADAR

    E-Print Network [OSTI]

    Hogan, Robin

    Terrestre et Plan´etaire, V´elizy, France University of Reading, Reading, United Kingdom 1. INTRODUCTION. The variance 1 #12;v 2 of the mean wind is an indicator of the kinetic energy in turbulent scales4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ

  13. Cooking with Canned Tuna (packed in water)

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    E-75 12/08 Cooking with Canned Tuna (packed in water) Tuna is a nutritious source of protein, iron, and niacin. Because it is already cooked, it can be eaten right out of the can or used to make your favorite tuna dishes. A serving of tuna is 2...- by 13-inch baking dish. 4. Bake it at 350 degrees F for 30 to 35 minutes. Let it stand for about 10 minutes before serving. Note: You can also use 2 cups of cooked rice instead of macaroni. Quick Tuna Spread (makes 4 servings, ? cup each) Tuna...

  14. Delay Bounded Rate and Power Control in Energy Harvesting Wireless Networks

    E-Print Network [OSTI]

    Rajan, Dinesh

    in environmentally powered wireless networks with bursty packet arrivals. Varying the size of the energy storage unit such as solar energy, mechanical energy and thermal energy have started finding use in wireless sensor networks, followed by an energy storage unit. The energy harvested by the front end is stored in the storage unit

  15. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    SciTech Connect (OSTI)

    Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

    2011-01-26T23:59:59.000Z

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

  16. Scale-dependent Energy Transfer Rate as a Tracer for Star Formation in Cosmological N-Body Simulations

    E-Print Network [OSTI]

    M. Hoeft; J. P. Muecket; P. Heide

    2002-01-14T23:59:59.000Z

    We investigate the energy release due to the large-scale structure formation and the subsequent transfer of energy from larger to smaller scales. We calculate the power spectra for the large-scale velocity field and show that the coupling of modes results in a transfer of power predominately from larger to smaller scales. We use the concept of cumulative energy for calculating which energy amount is deposited into the small scales during the cosmological structure evolution. To estimate the contribution due to the gravitational interaction only we perform our investigations by means of dark matter simulations. The global mean of the energy transfer increases with redshift $\\sim (z+1)^{3}$; this can be traced back to the similar evolution of the merging rates of dark matter halos. The global mean energy transfer can be decomposed into its local contributions, which allows to determine the energy injection per mass into a local volume. The obtained energy injection rates are at least comparable with other energy sources driving the interstellar turbulence as, e.g. by the supernova kinetic feedback. On that basis we make the crude assumption that processes causing this energy transfer from large to small scales, e.g. the merging of halos, may contribute substantially to drive the ISM turbulence which may eventually result in star formation on much smaller scales. We propose that the ratio of the local energy injection rate to the energy already stored within small-scale motions is a rough measure for the probability of the local star formation efficiency applicable within cosmological large-scale n-body simulations.

  17. Novel Hybrid Monte Carlo/Deterministic Technique for Shutdown Dose Rate Analyses of Fusion Energy Systems

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M [ORNL] [ORNL; Peplow, Douglas E. [ORNL] [ORNL; Peterson, Joshua L [ORNL] [ORNL; Grove, Robert E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The rigorous 2-step (R2S) method uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the neutron transport calculation of the R2S method. The prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their use in the accurate full-scale neutronics analyses of fusion reactors. This paper describes a novel hybrid Monte Carlo/deterministic technique that uses the Consistent Adjoint Driven Importance Sampling (CADIS) methodology but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) method speeds up the Monte Carlo neutron calculation of the R2S method using an importance function that represents the importance of the neutrons to the final SDDR. Using a simplified example, preliminarily results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the increase over analog Monte Carlo is higher than 10,000.

  18. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  19. Methodology for Calculating Cooling and Heating Energy-Imput-Ratio (EIR) From the Rated Seasonal Performance Efficiency (SEER or HSPF)

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J. S.

    2013-01-01T23:59:59.000Z

    in the simulations. For a simulation input, a SEER or a HSPF rating needs to be converted to COP95 (i.e., Energy Efficiency Ratio (EER)/3.412) or COP47, respectively, which is the steady-state efficiency at certain test conditions specified in the ANSI.../AHRI Standard 210/240-2008 (AHRI 2008). Issue 2: Fan Energy Removal • The system efficiency ratings currently available (i.e., SEER, EER, or HSPF) are based on net cooling or heating capacity (i.e., total cooling capacity less supply fan heat for cooling...

  20. Packed bed carburization of tantalum and tantalum alloy

    SciTech Connect (OSTI)

    Lopez, Peter C. (Espanola, NM); Rodriguez, Patrick J. (Espanola, NM); Pereyra, Ramiro A. (Medanales, NM)

    1999-01-01T23:59:59.000Z

    Packed bed carburization of a tantalum or tantalum alloy object. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries.

  1. Packed bed carburization of tantalum and tantalum alloy

    DOE Patents [OSTI]

    Lopez, P.C.; Rodriguez, P.J.; Pereyra, R.A.

    1999-06-29T23:59:59.000Z

    Packed bed carburization of a tantalum or tantalum alloy object is disclosed. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries. 4 figs.

  2. Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector

    E-Print Network [OSTI]

    Nadkarni, Nikhil S. (Nikhil Sunil)

    2012-01-01T23:59:59.000Z

    Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

  3. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Lake, Joe E [ORNL

    2012-01-01T23:59:59.000Z

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  4. Sustainable energy for all. Technical report of task force 2 in support of doubling the global rate of energy efficiency improvement and doubling the share of renewable energy in the global energy mix by 2030

    SciTech Connect (OSTI)

    Nakicenovic, Nebojsa [International Institute for Applied Systems Analysis and Vienna University of Technology (Austria); Kammen, Daniel [Univ. of California, Berkeley, CA (United States); Jewell, Jessica [International Institute for Applied Systems Analysis (Austria)

    2012-04-15T23:59:59.000Z

    The UN Secretary General established the Sustainable Energy for All initiative in order to guide and support efforts to achieve universal access to modern energy, rapidly increase energy efficiency, and expand the use of renewable energies. Task forces were formed involving prominent energy leaders and experts from business, government, academia and civil society worldwide. The goal of the Task Forces is to inform the implementation of the initiative by identifying challenges and opportunities for achieving its objectives. This report contains the findings of Task Force Two which is dedicated energy efficiency and renewable energy objectives. The report shows that doubling the rate of energy efficiency improvements and doubling the share of energy from renewable sources by 2030 is challenging but feasible if sufficient actions are implemented. Strong and well-informed government policies as well as extensive private investment should focus on the high impact areas identified by the task force.

  5. Volatile Components from Packing Matrials, Rev. 2

    SciTech Connect (OSTI)

    Smith, R. A.

    2006-03-01T23:59:59.000Z

    An outgassing study was conducted on five packing materials, comprising two experiments. These materials comprised 277-4 borated concrete, Borobond4 concrete, polyethylene bags, silica-filled silicone rubber seals, and silicone foam padding. The purpose was measure the volume of gases which diffuse from packaging materials when sealed in containers. Two heating profiles were used to study the offgassing quantities in a set of accelerated aging tests. It was determined that the concretes contain a large quantity of water. The plastic materials hold much less moisture, with the silicone materials even consuming water, possibly due to the presence of silica filler. Polyethylene tends to degrade as the temperature is elevated and the foam stiffens.

  6. Accuracy of B(E2; 0+ -> 2+) transition rates from intermediate-energy Coulomb excitation experiments

    E-Print Network [OSTI]

    J. M. Cook; T. Glasmacher; A. Gade

    2005-12-19T23:59:59.000Z

    The method of intermediate-energy Coulomb excitation has been widely used to determine absolute B(E2; 0+ -> 2+) quadrupole excitation strengths in exotic nuclei with even numbers of protons and neutrons. Transition rates measured with intermediate-energy Coulomb excitation are compared to their respective adopted values and for the example of 26Mg to the B(E2; 0+ -> 2+) values obtained with a variety of standard methods. Intermediate-energy Coulomb excitation is found to have an accuracy comparable to those of long-established experimental techniques.

  7. CONCRETE OPTIMISATION WITH REGARD TO PACKING DENSITY AND RHEOLOGY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CONCRETE OPTIMISATION WITH REGARD TO PACKING DENSITY AND RHEOLOGY François de Larrard LCPC Centre/organizers): .............. Keywords: packing density, rheology, grading curve, optimisation, self-compacting concrete, roller-compacted concrete. Author contacts Authors E-Mail Fax Postal address LCPC Centre de Nantes François de Larrard

  8. Liquid Holdup Profiles in Structured Packing Determined via Neutron Radiography

    E-Print Network [OSTI]

    Eldridge, R. Bruce

    scans of an operating air-water contactor were performed at the NIST Center for Neutron Research (NCNR packings are widely employed in vapor-liquid contacting devices for distillation, absorption, and stripping. The high specific surface areas (ap), regular geometries, and high void fraction () of structured packing

  9. Packed bed reactor for photochemical .sup.196 Hg isotope separation

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

    1992-01-01T23:59:59.000Z

    Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.

  10. Anomalous enhancements of low-energy fusion rates in plasmas: the role of ion momentum distributions and inhomogeneous screening

    E-Print Network [OSTI]

    M. Coraddu; M. Lissia; P. Quarati

    2009-05-11T23:59:59.000Z

    Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-H\\"{u}ckel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical expectations.

  11. Evolving Design Rules for the Inverse Granular Packing Problem

    E-Print Network [OSTI]

    Marc Z. Miskin; Heinrich M. Jaeger

    2014-03-17T23:59:59.000Z

    If a collection of identical particles is poured into a container, different shapes will fill to different densities. But what is the shape that fills a container as close as possible to a pre-specified, desired density? We demonstrate a solution to this inverse-packing problem by framing it in the context of artificial evolution. By representing shapes as bonded spheres, we show how shapes may be mutated, simulated, and selected to produce particularly dense or loose packing aggregates, both with and without friction. Moreover, we show how motifs emerge linking these shapes together. The result is a set of design rules that function as an effective solution to the inverse packing problem for given packing procedures and boundary conditions. Finally, we show that these results are verified by experiments on 3D-printed prototypes used to make packings in the real world.

  12. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    SciTech Connect (OSTI)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12T23:59:59.000Z

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  13. Energy Efficiency of Fixed-Rate Wireless Transmissions under QoS Constraints

    E-Print Network [OSTI]

    Gursoy, Mustafa Cenk

    of channels, and studied the spectral efficiency­bit energy tradeoff in the wideband regime. While providing

  14. QUANTIFYING PAST, PRESENT AND FUTURE ENERGY EFFICIENCY UPTAKE RATES AND POTENTIAL

    E-Print Network [OSTI]

    Pieter Rossouw Dsc; Jonathan Lermit Phd; Barry James Msc(eng

    The importance of energy efficiency as a substitute for energy supply is being increasingly recognised. Its analysis, however, is difficult because of the diffuse nature of the decision making and implementation characteristics. This paper outlines the work of the Energy Efficiency Resource Assessment Project to estimate the technical potential, and to analyse the economic and behavioural factors that affect energy efficiency uptake. The computational framework is demonstrated by application to a practical case study of improving fluorescent lamp performance standards.

  15. An energy-efficient data transfer strategy with link rate control for Cloud , Dong Yuan1

    E-Print Network [OSTI]

    Yang, Yun

    energy consumption of data transfer in the Cloud have become a challenge. In this paper, we propose the energy consumption of data transfer in the Cloud has become a significant challenge. To address the above link bandwidth respectively to improve energy consumption while meeting the data transfer speed

  16. Neutrino and anti-neutrino energy loss rates due to iron isotopes suitable for core-collapse simulations

    E-Print Network [OSTI]

    Jameel-Un Nabi

    2014-08-19T23:59:59.000Z

    Accurate estimate of neutrino energy loss rates are needed for the study of the late stages of the stellar evolution, in particular for cooling of neutron stars and white dwarfs. The energy spectra of neutrinos and antineutrinos arriving at the Earth can also provide useful information on the primary neutrino fluxes as well as neutrino mixing scenario (it is to be noted that these supernova neutrinos are emitted after the supernova explosion which is a much later stage of stellar evolution than that considered in this paper). Recently an improved microscopic calculation of weak-interaction mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. Here I present for the first time the fine-grid calculation of the neutrino and anti-neutrino energy loss rates due to $^{54,55,56}$Fe in stellar matter. In the core of massive stars isotopes of iron, $^{54,55,56}$Fe, are considered to be key players in decreasing the electron-to-baryon ratio ($Y_{e}$) mainly via electron capture on these nuclide. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes. The calculated cooling rates are also compared with previous calculations.

  17. Variational bounds on the energy dissipation rate in body-forced shear flow

    E-Print Network [OSTI]

    Petrov, Nikola

    , the bulk (space and time averaged) dissipation rate per unit mass is proportional to the power required applied to many flows driven by boundary conditions, including shear flows and a variety of thermal

  18. Modeling of an adsorption unit packed with amidoxime fiber balls for the recovery of uranium from seawater

    SciTech Connect (OSTI)

    Morooka, S.; Kato, T.; Inada, M.; Kago, T.; Kusakabe, K. (Dept. of Applied Chemistry, Kyushu Univ., Fukuoka 812 (JP))

    1991-01-01T23:59:59.000Z

    Amidoxime fiber adsorbents are prepared by treating commercial poly(acrylonitrile) fibers with NH{sub 2}OH in methanol and then with an aqueous NaOH solution. The rate of adsorption of uranium from seawater is 0.1-0.3 (g of U/kg of dry fiber)/day. The fiber is placed in 2-cm-diameter spherical shells of plastic net, and these fibrous balls are packed in a column. Seawater is assumed to flow through the packed bed by the kinetic force of the ocean current. The permeation velocity of liquid in each ball is evaluated with a small electrode that detects the electrochemical limiting current. When the permeation velocity is slow, most uranyl ions are adsorbed only in the peripheral part of the ball. In this paper a model of the packed bed absorption unit is proposed and a numerical calculation gives optimum values of design parameters.

  19. Credit-Based Interest Rate Spread for Title XVII | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy CopyinEnergyCredit-Based

  20. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01T23:59:59.000Z

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  1. Impact of Continuous Commissioning® on the Energy Star® Rating of Hospitals and Office Buildings 

    E-Print Network [OSTI]

    Kulkarni, Aditya Arun

    2012-02-14T23:59:59.000Z

    by its initial ESR, while its location has no impact on improvement. The improvement in ESR is observed to be almost linearly proportional to the percentage of energy saved. For 10% - 20% reductions in energy use typical of the CC® process, the ESR...

  2. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    SciTech Connect (OSTI)

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)] [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-07-31T23:59:59.000Z

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  3. Shaken, not stirred: why gravel packs better than bricks

    E-Print Network [OSTI]

    Anita Mehta; J. M. Luck

    2003-11-21T23:59:59.000Z

    We explore the effect of shape -- jagged vs. regular -- in the jamming limit of very gently shaken packings. Our measure of shape $\\eps$ is the void space occupied by a disordered grain; we show that depending on its number-theoretic nature, two generic behaviours are obtained. Thus, regularly shaped grains (rational $\\eps$) have ground states of perfect packing, which are irretrievably lost under zero-temperature shaking; the reverse is the case for jagged grains (irrational $\\eps$), where the ground state is only optimally packed, but entirely retrievable. At low temperatures, we find intermittency at the surface, which has recently been seen experimentally.

  4. Optimal Blowup Rates for the Minimal Energy Null Control for the Structurally Damped Abstract Wave Equation

    E-Print Network [OSTI]

    , H is Hilbert. Therewith, we consider the structurally damped and controlled abstract model # v tt­like dynamics. For this model, we wish to consider the null controllability problem. This problem can be broadly for the norm of the ``minimal norm steering control'', as T # 0. In turn, it is known that the rate of blowup

  5. Optimal Blowup Rates for the Minimal Energy Null Control for the Structurally Damped Abstract Wave Equation

    E-Print Network [OSTI]

    , we consider the structurally damped and controlled abstract model vtt + °Av + °A vt = u on (0, T) [v) manifest parabolic-like dynamics. For this model, we wish to consider the null controllability problem for the norm of the "minimal norm steering control", as T 0. In turn, it is known that the rate of blowup

  6. Scaling of classical rate constants on scaled potential-energy surfaces Myung Soo Kim,a)

    E-Print Network [OSTI]

    Kim, Myung Soo

    or dynamical calculation of a rate constant is to use data from electronic structure calculation. Structure at moderately high levels of electronic structure calculation. © 2001 American Institute of Physics. DOI: 10 state theories and the methods based on classical or quantal dynamics calculation.4­7 When

  7. The Rate of Return to Research and Development in Energy* David Corderi

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    industry and in the electricity, natural gas and water supply industries for a number of OECD countries, on the scale of the Manhattan Project of the 1940s (Kammen & Nemet, 2005). Since the mid-1990s, however, both the optimal rate is the appropriability effect: in the absence of perfect price discrimination, the private

  8. SCE&G-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAofSCE&G-4-E Wholesale Power

  9. Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americasfor aApplicationDepartment of

  10. Fact #613: March 8, 2010 Vehicle Occupancy Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy ScoreEnergyFuel2008Department3:

  11. SCE&G-3-E Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartment ofNone System: Georgia-Alabama-South Carolina

  12. Jet energy scale setting with "photon+Jet" events at LHC energies. Event rates, Pt structure of jet

    E-Print Network [OSTI]

    D. V. Bandourin; V. F. Konoplianikov; N. B. Skachkov

    2000-12-15T23:59:59.000Z

    In this paper the study of "photon+Jet" events is continued, aimed at jet energy scale setting and hadron calorimeter calibration at LHC energies. The event number distribution over Pt and pseudorapidity eta in the barrel region of the photon is presented. The features of "photon+Jet" events in CMS detector |eta|<1.4 are exposed. Pt structure of the region in the eta-phi space inside and beyond jet is also shown.

  13. Impact of Continuous Commissioning® on the Energy Star® Rating of Hospitals and Office Buildings

    E-Print Network [OSTI]

    Kulkarni, Aditya Arun

    2012-02-14T23:59:59.000Z

    Re-commissioning, retro-commissioning, Continuous Commissioning® (CC®) are examples of successful systematic processes implemented in buildings to reduce overall building energy consumption, and improve efficiency of systems and their operations...

  14. 'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers 

    E-Print Network [OSTI]

    Greenwood, R. W.

    1981-01-01T23:59:59.000Z

    The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

  15. DEVELOPMENT OF A LOW-COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; T.E. Owen; D.L. George; A. Minachi; M.G. Nored; C.J. Schwartz

    2004-03-01T23:59:59.000Z

    In 1998, Southwest Research Institute{reg_sign} began a multi-year project co-funded by the Gas Research Institute (GRI) and the U.S. Department of Energy. The project goal is to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype retrofit natural gas energy flow meter in 2000-2001 included: (1) evaluation of the inferential gas energy analysis algorithm using supplemental gas databases and anticipated worst-case gas mixtures; (2) identification and feasibility review of potential sensing technologies for nitrogen diluent content; (3) experimental performance evaluation of infrared absorption sensors for carbon dioxide diluent content; and (4) procurement of a custom ultrasonic transducer and redesign of the ultrasonic pulse reflection correlation sensor for precision speed-of-sound measurements. A prototype energy meter module containing improved carbon dioxide and speed-of-sound sensors was constructed and tested in the GRI Metering Research Facility at SwRI. Performance of this module using transmission-quality natural gas and gas containing supplemental carbon dioxide up to 9 mol% resulted in gas energy determinations well within the inferential algorithm worst-case tolerance of {+-}2.4 Btu/scf (nitrogen diluent gas measured by gas chromatograph). A two-week field test was performed at a gas-fired power plant to evaluate the inferential algorithm and the data acquisition requirements needed to adapt the prototype energy meter module to practical field site conditions.

  16. Property:OpenEI/UtilityRate/FixedDemandChargeMonth7 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation

  17. Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics

    SciTech Connect (OSTI)

    Fisk, William; Black, Douglas; Brunner, Gregory

    2011-07-01T23:59:59.000Z

    This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

  18. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  19. Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing

    E-Print Network [OSTI]

    Masoero, Enrico

    Cement setting and cohesion are governed by the precipitation and growth of calcium-silicate-hydrate, through a complex evolution of microstructure. A colloidal model to describe nucleation, packing, and rigidity of ...

  20. Center for Academic Success Tech Prep Student Packing List

    E-Print Network [OSTI]

    Pele?, Slaven

    Center for Academic Success Tech Prep Student Packing List Personal items to bring or buy: shower items: · alcoholic beverages (if under 21 years of age) · candles (lighted), fireworks, weapons, incense

  1. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  2. Effective thermal conductivity of packed beds of spheres

    E-Print Network [OSTI]

    Duncan, Allen Buchanan

    1987-01-01T23:59:59.000Z

    EFFECTIVE THERMAL CONDUCTIVITY OF PACKED BEDS OF SPHERES A Thesis ALLEN BUCHANAN DUNCAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree ot MASTER OF SCIENCE August 1987... Major Subject: Mechanical Engineering EFFECTIVE THERMAL CONDUCTIVITY OF PACKED BEDS OF SPHERES A Thesis by ALLEN BUCHANAN DUNCAN Approved as to style and content by: G. P. Peterson (Chairman of Committee) G. D. Allen (Member) W. M. Moses...

  3. Performance characterization of a packed bed electro-filter

    E-Print Network [OSTI]

    Narayanan, Ajay

    1990-01-01T23:59:59.000Z

    PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by A JAY NARAYANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1990 Major Subject: Safety Engineering PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by AJAY NARAYANAN Approved as to style and content by: John P. Wagn (Ch ' of the Com ittee) Aydin Akgerman (Member) Ri ard B...

  4. Performance characterization of a packed bed electro-filter 

    E-Print Network [OSTI]

    Narayanan, Ajay

    1990-01-01T23:59:59.000Z

    PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by A JAY NARAYANAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1990 Major Subject: Safety Engineering PERFORMANCE CHARACTERIZATION OF A PACKED BED ELECTRO-FILTER A Thesis by AJAY NARAYANAN Approved as to style and content by: John P. Wagn (Ch ' of the Com ittee) Aydin Akgerman (Member) Ri ard B...

  5. Sum-Rate Optimal Power Policies for Energy Harvesting Transmitters in an Interference Channel

    E-Print Network [OSTI]

    Tutuncuoglu, Kaya

    2011-01-01T23:59:59.000Z

    This paper considers a two-user Gaussian interference channel with energy harvesting transmitters. Different than conventional battery powered wireless nodes, energy harvesting transmitters have to adapt transmission to availability of energy at a particular instant. In this setting, the optimal power allocation problem to maximize sum throughput within a given deadline is formulated. The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found. Examples for interference regions with known sum capacities are given with directional water-filling interpretations when possible. Next, stochastic data arrivals are addressed. Finally online and/or distributed near-optimal policies are proposed. Performance of the proposed algorithms are demonstrated through simulations.

  6. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01T23:59:59.000Z

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  7. CP&L-1-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTS ONPRGM NAMECOR

  8. CP&L-2-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTS ONPRGM NAMECORpursuant

  9. CP&L-3-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTS ONPRGM NAMECORpursuantto

  10. CP&L-4-B Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTS ONPRGM

  11. U.S. Department of Energy Project Definition Rating Index Guide - DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^6 Annual U.S. N

  12. Life Cycle Cost Discount Rates and Energy Price Projections | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment UnderEnergy Life

  13. Category:Utility Rate Impacts on PV Economics By Location | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as exploration techniques, clickpage?Information

  14. SCE&G-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetailEnergy RoleAnalyticalBusinesses1-E

  15. SCE&G-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetailEnergy RoleAnalyticalBusinesses1-E2-E

  16. SCE&G-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetailEnergy RoleAnalyticalBusinesses1-E2-E3-E

  17. SCE&G-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetailEnergy

  18. Alaska - AS 42.05.431 - Power of Commission to Fix Rates | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60Alameda County,90 - Response to Notice8221

  19. Property:OpenEI/UtilityRate/DemandChargeWeekdaySchedule | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResults Jump to:

  20. Property:OpenEI/UtilityRate/DemandWeekdaySchedule | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResults Jump

  1. Property:OpenEI/UtilityRate/EndDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResults JumpProperty Edit with

  2. Property:OpenEI/UtilityRate/SourceParent | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResults JumpPropertySourceParent

  3. Property:OpenEI/UtilityRate/StartDate | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResults

  4. DAVIS-BACON ACT WAGE RATES FOR ARRA-FUNDED ENERGY EFFICIENCY AND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada PowerD=22954 7DATE:

  5. DAVIS-BACON ACT WAGE RATES FOR ARRA-FUNDED STATE ENERGY PROGRAM (SEP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|EnergyCanada PowerD=22954

  6. Help:US Utility Rate Database API Tutorial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station - South

  7. Impact of Utility Rates on PV Economics - Digital Appendix | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, search Stage 3 LEDS

  8. Davis-Bacon Act Wage Rates for ARRA-Funded State Energy Program Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This work wasofFederalDepartment's6,ENERGY

  9. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to: navigation,

  10. Property:OpenEI/UtilityRate/DemandChargePeriod1FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to: navigation,Information

  11. Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to: navigation,Information

  12. Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to:

  13. Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to:DemandChargePeriod3 Jump to:

  14. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to:DemandChargePeriod3 Jump

  15. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump to:DemandChargePeriod3

  16. Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump Jump

  17. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5 Jump to:

  18. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5 Jump

  19. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5

  20. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump JumpDemandChargePeriod5Information

  1. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump

  2. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump

  3. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump

  4. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump

  5. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump

  6. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump

  7. Property:OpenEI/UtilityRate/DemandRatchetPercentage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations JumpInformation DemandRatchetPercentage

  8. Property:OpenEI/UtilityRate/DemandReactivePowerCharge | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, search This is a

  9. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, search This is

  10. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerCharge Jump to: navigation, search This

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth4 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformation

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth5 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformationInformation

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth6 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformation DemandReactivePowerChargeInformationInformationInformation

  14. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to: navigation, search

  15. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to: navigation,

  16. Property:OpenEI/UtilityRate/FixedMonthlyCharge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:

  17. Property:OpenEI/UtilityRate/FlatDemandMonth1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1 Jump

  18. Property:OpenEI/UtilityRate/FlatDemandMonth10 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1

  19. Property:OpenEI/UtilityRate/FlatDemandMonth11 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1This is

  20. Property:OpenEI/UtilityRate/FlatDemandMonth12 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump to:FlatDemandMonth1This

  1. Property:OpenEI/UtilityRate/FlatDemandMonth2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 Jump

  2. Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 JumpFlatDemandMonth3 Jump to:

  3. Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 JumpFlatDemandMonth3 Jump

  4. Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8 JumpFlatDemandMonth3

  5. Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8

  6. Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8FlatDemandMonth7 Jump to:

  7. Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8FlatDemandMonth7 Jump

  8. Property:OpenEI/UtilityRate/FlatDemandMonth9 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8FlatDemandMonth7

  9. Property:OpenEI/UtilityRate/UseNetMetering | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformation FixedDemandChargeMonth8FlatDemandMonth7UseNetMetering

  10. U.S. Department of Energy Project Definition Rating Index Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-07-22T23:59:59.000Z

    This Guide assists individuals and teams involved in conducting assessments of project definition (i.e., how well front-end planning has been conducted to define project scope) using a numerical project management tool developed by the Construction Industry Institute (CII), tailored for DOE use. Called the Project Definition Rating Index (PDRI), the PDRI is a simple but powerful tool that facilitates the measurement of the degree of scope definition for completeness for traditional construction projects, both nuclear and non-nuclear. No cancellations.

  11. Evaluation of energy release rates in unidirectional double cantilevered beam fracture toughness specimens

    E-Print Network [OSTI]

    Weatherby, Joe Randall

    1982-01-01T23:59:59.000Z

    release rate expression. at locat1ons in the plast1c zone. In the general case, there also exists a zone of failing material, with length u, at the crack tip in which stress cannot be represented by a relation such as (3). F1gure 4 shows the relative... to the Iower crack surface can be wr1tten as u L ~ u L u(x, y) = (u - u ) i + (v - v ) 3 Using matrix notation, Irwin's crack closure integral for a two dimen- sional problem can be written as: SS y, v Ql 54 5 S 4 2 x, u 1 2 Sl 03 (a) S3 y, V...

  12. EFFECTIVE EFFICIENCY AND PERFORMANCE RATIO AS ENERGY RATING SYSTEM FOR PV MODULES Marko Topic1

    E-Print Network [OSTI]

    Sites, James R.

    tilts and tracking schemes. Differences arise from different distribution of annual solar energy on the specific location, the tilt angle of the module or the tracking scheme. We have shown that PV modules with lower effective series resistance exhibit better performance at higher irradiation (e.g. in tracking

  13. EarlyOff: Using House Cooling Rates To Save Energy Microsoft Research, UK and

    E-Print Network [OSTI]

    Krumm, John

    @microsoft.com Abstract Home heating systems often have a significant ther- mal inertia, as homes stay warm after the heating is turned off for significant periods of time. We present the EarlyOff concept, whereby home, home heating con- sumes more energy than any other household end- use [1]. While many houses have

  14. EarlyOff: Using House Cooling Rates To Save Energy Microsoft Research, UK and

    E-Print Network [OSTI]

    Hazas, Mike

    the house warm while saving energy. We use a previously gathered data set of real-time heating, gas Keywords Heating, Control, Occupancy, Departure, Predictive 1 Introduction In many regions of the world for the PreHeat project [7]. The data set span

  15. NUMERICAL CALCULATIONS FOR THE ASYMPTOTIC, DIFFUSION DOMINATED MASS-TRANSFER COEFFICIENT IN PACKED BED REACTORS

    E-Print Network [OSTI]

    Fedkiw, Peter

    2011-01-01T23:59:59.000Z

    Calculations for the Asymptotic, Diffusion Dominated Mass-Transfer Coefficient in Packed Bed Reactors

  16. Report on the study of the tax and rate treatment of renewable energy projects

    SciTech Connect (OSTI)

    Hadley, S.W.; Hill, L.J.; Perlack, R.D.

    1993-12-01T23:59:59.000Z

    This study was conducted in response to the requirements of Section 1205 of the Energy Policy Act of 1992 (EPACT), which states: The Secretary (of Energy), in conjunction with State regulatory commissions, shall undertake a study to determine if conventional taxation and ratemaking procedures result in economic barriers to or incentives for renewable energy power plants compared to conventional power plants. The purpose of the study, therefore, is not to compare the cost-effectiveness of different types of renewable and conventional electric generating plants. Rather, it is to determine the relative impact of conventional ratemaking and taxation procedures on the selection of renewable power plants compared to conventional ones. To make this determination, we quantify the technical and financial parameters of renewable and conventional electric generating technologies, and hold them fixed throughout the study. Then, we vary taxation and ratemaking procedures to determine their effects on the financial criteria that investor-owned electric utilities (IOUs) and nonutility electricity generators (NUGs) use to make technology-adoption decisions. In the planning process of a typical utility, the opposite is usually the case. That is, utilities typically hold ratemaking and taxation procedures constant and look for the least-cost mix of resources, varying the values of engineering and financial parameters of generating plants in the process.

  17. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    SciTech Connect (OSTI)

    Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-06-09T23:59:59.000Z

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  18. Fort Devens: Cold Climate, Energy-Efficient, Market-Rate Townhomes

    SciTech Connect (OSTI)

    Zoeller, W.; Slattery, M.; Grab, J.

    2013-08-01T23:59:59.000Z

    In 2009, Mass Development issued an RFQ and subsequent RFP for teams to develop moderately priced high-efficiency homes on two sites within the Devens Regional Enterprise Zone. MassDevelopment, a Massachusetts agency that owns the Devens site (formerly Fort Devens Army Base, in Harvard, Massachusetts), set a goal of producing a replicable example of current and innovative sustainable building practices with a near-zero energy potential. Metric Development, as primary developer and construction manager, formed one of the successful teams that included CARB and Cambridge Seven Architects (C7A).

  19. Microsoft Word - Energy balancing rate settlement signals commitment to work on broader solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO 2Dances done atReduced SSRLENERGY0

  20. Sandia Energy - Sandia Researchers Score MRS "Outstanding" Rating Two

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabase on EngineA CoverBehavior of

  1. FITCH RATES ENERGY NORTHWEST (WA) ELECTRIC REV REF BONDS 'AA'; OUTLOOK STABLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,Ozone LayerFES1.Top panel:FITCH

  2. Kinetic Energy Decay Rates of Supersonic and Super-Alfvenic Turbulence in Star-Forming Clouds

    E-Print Network [OSTI]

    Mordecai-Mark Mac Low; Ralf S. Klessen; Andreas Burkert; Michael D. Smith

    1997-12-01T23:59:59.000Z

    We present numerical studies of compressible, decaying turbulence, with and without magnetic fields, with initial rms Alfven and Mach numbers ranging up to five, and apply the results to the question of the support of star-forming interstellar clouds of molecular gas. We find that, in 1D, magnetized turbulence actually decays faster than unmagnetized turbulence. In all the regimes that we have studied 3D turbulence-super-Alfvenic, supersonic, sub-Alfvenic, and subsonic-the kinetic energy decays as (t-t0)^(-x), with 0.85 < x < 1.2. We compared results from two entirely different algorithms in the unmagnetized case, and have performed extensive resolution studies in all cases, reaching resolutions of 256^3 zones or 350,000 particles. We conclude that the observed long lifetimes and supersonic motions in molecular clouds must be due to external driving, as undriven turbulence decays far too fast to explain the observations.

  3. Measurement of low-energy Na^+ -- Na total collision rate in an ion--neutral hybrid trap

    E-Print Network [OSTI]

    Goodman, D S; Kwolek, J M; Blümel, R; Narducci, F A; Smith, W W

    2014-01-01T23:59:59.000Z

    We present measurements of the total elastic and resonant charge-exchange ion-atom collision rate coefficient $k_\\mathrm{ia}$ of cold sodium (\\ce{Na}) with optically-dark low energy \\ce{Na+} ions in a hybrid ion-neutral trap. To determine $k_\\mathrm{ia}$, we measured the trap loading and loss from both a \\ce{Na} magneto-optical trap (MOT) and a linear radio frequency quadrupole Paul trap. We found the total rate coefficient to be $7.4 \\pm 1.9 \\times 10^{-8}$ cm$^3$/s for the type I \\ce{Na} MOT immersed within an $\\approx 140$ K ion cloud and $1.10 \\pm 0.25 \\times 10^{-7}$ cm$^3$/s for the type II \\ce{Na} MOT within an $\\approx 1070$ K ion cloud. Our measurements show excellent agreement with previously reported theoretical fully quantal \\textit{ab initio} calculations. In the process of determining the total rate coefficient, we demonstrate that a MOT can be used to probe an optically dark ion cloud's spatial distribution within a hybrid trap.

  4. Spherical codes, maximal local packing density, and the golden ratio

    E-Print Network [OSTI]

    A. B. Hopkins; F. H. Stillinger; S. Torquato

    2010-03-18T23:59:59.000Z

    The densest local packing (DLP) problem in d-dimensional Euclidean space Rd involves the placement of N nonoverlapping spheres of unit diameter near an additional fixed unit-diameter sphere such that the greatest distance from the center of the fixed sphere to the centers of any of the N surrounding spheres is minimized. Solutions to the DLP problem are relevant to the realizability of pair correlation functions for packings of nonoverlapping spheres and might prove useful in improving upon the best known upper bounds on the maximum packing fraction of sphere packings in dimensions greater than three. The optimal spherical code problem in Rd involves the placement of the centers of N nonoverlapping spheres of unit diameter onto the surface of a sphere of radius R such that R is minimized. It is proved that in any dimension, all solutions between unity and the golden ratio to the optimal spherical code problem for N spheres are also solutions to the corresponding DLP problem. It follows that for any packing of nonoverlapping spheres of unit diameter, a spherical region of radius less than or equal to the golden ratio centered on an arbitrary sphere center cannot enclose a number of sphere centers greater than one more than the number that can be placed on the region's surface.

  5. Hydrogen gettering packing material, and process for making same

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA); Thompson, Lisa M. (Knoxville, TN); Smith, Henry Michael (Overland Park, KS); Schicker, James R. (Lee's Summit, MO)

    2001-01-01T23:59:59.000Z

    A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

  6. Rates & Repayment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and...

  7. Manganese reduction/oxidation reaction on graphene composites as a reversible process for storing enormous energy at a fast rate

    E-Print Network [OSTI]

    Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Wei, Chunguang

    2014-01-01T23:59:59.000Z

    Oxygen reduction/evolution reaction (ORR/OER) is a basic process for fuel cells or metal air batteries. However, ORR/OER generally requires noble metal catalysts and suffers from low solubility (10-3 molar per liter) of O2, low kinetics rate (10-6 cm2/s) and low reversibility. We report a manganese reduction/oxidation reaction (MRR/MOR) on graphene/MnO2 composites, delivering a high capacity (4200 mAh/g), fast kinetics (0.0024 cm2/s, three orders higher than ORR/OER), high solubility (three orders than O2), and high reversibility (100%). We further use MRR/MOR to invent a rechargeable manganese ion battery (MIB), which delivers an energy density of 1200 Wh/Kg (several times of lithium ion battery), a fast charge ability (3 minutes), and a long cycle life (10,000 cycles). MRR/MOR renders a new class of energy conversion or storage systems with a very high energy density enabling electric vehicles run much more miles at one charge.

  8. Energy levels, oscillator strengths, and radiative rates for Si-like Zn XVII, Ga XVIII, Ge XIX, and As XX

    SciTech Connect (OSTI)

    Abou El-Maaref, A., E-mail: aahmh@hotmail.com [Physics Department, Faculty of Science, Al-Azhar University, Assuit (Egypt); Allam, S.H.; El-Sherbini, Th.M. [Laboratory of Lasers and New Materials, Physics Department, Faculty of Science, Cairo University, Giza (Egypt)] [Laboratory of Lasers and New Materials, Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2014-01-15T23:59:59.000Z

    The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p and 3s{sup 2}3p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated. -- Highlights: •We have calculated the fine-structure energy levels of Si-like Zn, Ga, Ge and As. •The calculations are performed using the configuration interaction method (CIV3). •We have calculated the oscillator strengths, line strengths and transition rates. •The wavelengths of the transitions are listed in this article. •We also have made comparisons between our data and other calculations.

  9. Thermal resistance gaps for solid breeder blankets using packed beds

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Tillack, M.S.; Abdou, M.A.

    1989-03-01T23:59:59.000Z

    The main design features of a new concept for solid breeder blanket thermal resistance gaps are described and analysis is shown for the blanket thermal characteristics. The effective thermal conductivity of a helium-beryllium packed bed configuration is studied, including the effect of a purge stream. Possible applications of this concept to ITER blanket designs are stressed.

  10. Hydrogen Bonding Increases Packing Density in the Protein Interior

    E-Print Network [OSTI]

    Hydrogen Bonding Increases Packing Density in the Protein Interior David Schell,1,2 Jerry Tsai,1 J System Health Science Center, College Station, Texas 77843-1114 ABSTRACT The contribution of hydrogen to the stability, but experimental studies show that bury- ing polar groups, especially those that are hydrogen

  11. PACKING DIMENSION RESULTS FOR ANISOTROPIC GAUSSIAN RANDOM FIELDS

    E-Print Network [OSTI]

    Xiao, Yimin

    and GrX [0, 1]N are determined by the lower index of . Namely, dimP X [0, 1]N = min d, N , a.s. (1.5) and dimP GrX [0, 1]N = min N , N + (1 - )d , a.s., (1.6) where dimP E denotes the packing dimension of E

  12. PACKING DIMENSION RESULTS FOR ANISOTROPIC GAUSSIAN RANDOM FIELDS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by the lower index of . Namely, dimP X [0, 1]N = min d, N , a.s. (1.5) and dimP GrX [0, 1]N = min N , N + (1 - )d , a.s., (1.6) where dimP E denotes the packing dimension o

  13. Geometry and Optimal Packing of Twisted Columns and Filaments

    E-Print Network [OSTI]

    Gregory M. Grason

    2015-01-30T23:59:59.000Z

    This review presents recent progress in understanding constraints and consequences of close-packing geometry of filamentous or columnar materials possessing non-trivial textures, focusing in particular on the common motifs of twisted and toroidal structures. The mathematical framework is presented that relates spacing between line-like, filamentous elements to their backbone orientations, highlighting the explicit connection between the inter-filament {\\it metric} properties and the geometry of non-Euclidean surfaces. The consequences of the hidden connection between packing in twisted filament bundles and packing on positively curved surfaces, like the Thomson problem, are demonstrated for the defect-riddled ground states of physical models of twisted filament bundles. The connection between the "ideal" geometry of {\\it fibrations} of curved three-dimensional space, including the Hopf fibration, and the non-Euclidean constraints of filament packing in twisted and toroidal bundles is presented, with a focus on the broader dependence of metric geometry on the simultaneous twisting and folded of multi-filament bundles.

  14. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  15. ROV PACK: INFORMATION AND GUIDELINES www.serpentproject.com

    E-Print Network [OSTI]

    National Oceanography Centre, Southampton

    are lucky enough to see Encourage best practice during offshore activities Map any impact footprint AND OBJECTIVES 5 TECHNIQUES 6 VIDEO SURVEY 6 NON DRILL-RIG OPERATIONS 7 PIPELINE AND IRM 7 DRILLING SUPPORT that is created when drilling offshore #12;ROV PACK: INFORMATION AND GUIDELINES www.serpentproject.com SERPENT

  16. Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

    E-Print Network [OSTI]

    Secondini, Marco; Fresi, Francesco; Meloni, Gianluca; Cavaliere, Fabio; Colavolpe, Giulio; Forestieri, Enrico; Potì, Luca; Sabella, Roberto; Prati, Giancarlo

    2014-01-01T23:59:59.000Z

    Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained modulation format and detector complexity. In this work, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a butterfly equalizer and four low-complexity parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by...

  17. Relativistic many-body Moller-Plesset perturbation theory calculations of the energy levels and transition rates in Na-like to P-like Xe ions

    SciTech Connect (OSTI)

    Vilkas, Marius J.; Ishikawa, Yasuyuki [Department of Chemistry, University of Puerto Rico, P.O. Box 23346, San Juan, PR 00931-3346 (Puerto Rico); Traebert, Elmar [Astronomisches Institut, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); High Temperature and Astrophysics Division, LLNL, P.O. Box 808, Livermore, CA 94550 (United States)], E-mail: traebert@astro.rub.de

    2008-09-15T23:59:59.000Z

    Relativistic multireference many-body perturbation theory calculations have been performed for Xe{sup 43+} to Xe{sup 39+} ions, resulting in energy levels, electric dipole transition rates, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, the frequency-dependent Breit correction, and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  18. Recovery of coal from preparation plant effluents using a packed column

    SciTech Connect (OSTI)

    Choudhry, V.; Khan, L.; Yang, D.; Banerjee, D.D.

    1993-12-31T23:59:59.000Z

    The feasibility of recovering coal from coal preparation plant waste (or effluent) streams at the pilot scale using the packed column flotation process is demonstrated. In Phase I of the project, a total of four effluent samples were tested at the bench scale with the objective of recovering low-ash, low-sulfur clean coal products that were, at a minimum, compatible with the quality of the clean coal produced by the preparation plants supplying the waste stream samples. Phase II of the project comprised demonstration of the technology at the pilot scale using a 4-in. I.D. {times} 20-ft tall column installed at the Applied Laboratory of the Illinois State Geological Survey. A large effluent sample was conducted, consisting of particle size distribution, proximate and complete analyses, and batch froth flotation testing. Ash, total and pyritic sulfur, and calorific value of the effluent sample were also determined. The effluent feed sample contained 50-55% ash and 2.2% total sulfur. Confirmatory tests were conducted at Michigan Technological University using a bench-scale packed column. A product containing 5.4% ash was obtained at 97.5% ash rejection and 71.8% combustible matter recovery. Changing the process operating parameters allowed the quality of the product to be controlled such that its ash content ranged between 6 and 10%, with combustible matter recoveries in the 71-77% range. Pilot testing was conducted using a test matrix designed to study the effects of primary variables (feed rate, percent solids, and reagent dosage) and operating variables (air rate, wash water, and pulp level) with the objective of optimizing the process performance. Feed rates of 20-108 lb/hour were tested, with very good performance being obtained at a feed rate of 32 lb/hour (374 lb/h/ft{sup 2}).

  19. Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles.

    E-Print Network [OSTI]

    Boyer, Edmond

    Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles Paris 13, 93017 Bobigny, France. The magnetic properties of densely packed magnetic nanoparticles (MNP) assemblies are investi- gated from Monte Carlo simulations. The case of iron oxide nanoparticles

  20. Modeling the lubrication of the piston ring pack in internal combustion engines using the deterministic method

    E-Print Network [OSTI]

    Chen, Haijie

    2011-01-01T23:59:59.000Z

    Piston ring packs are used in internal combustion engines to seal both the high pressure gas in the combustion chamber and the lubricant oil in the crank case. The interaction between the piston ring pack and the cylinder ...

  1. Piston ring pack design effects on production spark ignition engine oil consumption : a simulation analysis

    E-Print Network [OSTI]

    Senzer, Eric B

    2007-01-01T23:59:59.000Z

    One of the most significant contributors to an engine's total oil consumption is the piston ring-pack. As a result, optimization of the ring pack is becoming more important for engine manufacturers and lubricant suppliers. ...

  2. Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines

    E-Print Network [OSTI]

    Takata, Rosalind (Rosalind Kazuko), 1978-

    2006-01-01T23:59:59.000Z

    The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

  3. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CellPack Level Models for Automotive Li-Ion Batteries with Experimental Validation Development of CellPack Level Models for Automotive Li-Ion Batteries with Experimental...

  4. MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM

    E-Print Network [OSTI]

    Doughty, Christine

    2012-01-01T23:59:59.000Z

    experimental Thermal energy storage in confined aquifers. ©lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

  5. Fusion Engineering and Design 3940 (1998) 759764 Mechanical behavior and design database of packed beds for

    E-Print Network [OSTI]

    Abdou, Mohamed

    of packed beds for blanket designs Alice Y. Ying *, Zi Lu, Mohamed A. Abdou Mechanical and Aerospace

  6. New packing in absorption systems for trapping benzene from coke-oven gas

    SciTech Connect (OSTI)

    V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

  7. Home Energy Rating System Building Energy Simulation Test for Florida (Florida-HERS BESTEST): Tier 1 and Tier 2 Tests; Vol. 1 (User's Manual) and Vol. 2 (Reference Results)

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    1997-08-01T23:59:59.000Z

    In 1991, the U.S. Department of Energy, in cooperation with the Department of Housing and Urban Development (HUD), initiated a collaborative process to define a residential energy efficiency rating program linked with energy-efficient mortgage (EEM) financing. During this process, the collaborative, consisting of a broad-based group representing stakeholder organizations, identified the need for quality control procedures to evaluate and verify the energy prediction methods used by Home Energy Rating System (HERS) providers. Such procedures were needed so a variety of locally developed rating systems would have equal opportunity to qualify under the umbrella of a national HERS/EEM system by meeting minimum technical requirements (National Renewable Energy Laboratory).

  8. A Dimensionless Model for Predicting the Mass-Transfer Area of Structured Packing

    E-Print Network [OSTI]

    Eldridge, R. Bruce

    area Introduction Packing is commonly used in absorption and distillation columns to promote efficient structured packings was measured in a 0.427 m ID column via absorption of CO2 from air into 0.1 kmol/m3 Na structured packing area model is especially critical for the analysis and design of these processes. Wang et

  9. Neural Network Modeling of Structured Packing Height Equivalent to a Theoretical Plate

    E-Print Network [OSTI]

    Eldridge, R. Bruce

    -transfer ef- ficiency in structured packing. Column designers use the HETP to calculate the height of packing properties of the chemical system, and the operating conditions of the column. In a previous paper, Whaley et a detailed investigation of the parameters which impact the performance of structured packing in distillation

  10. Computer modeling approach for microsphere-packed bone scaffold Pallavi Lal, Wei Sun*

    E-Print Network [OSTI]

    Sun, Wei

    bone graft [5,6], for structural and human cellular assessment of scaffolds for bone repair [7 modeling approach for constructing a three-dimensional microsphere-packed bone graft structure is presented packing model to determine the number of microspheres packed in a synthesized bone graft. The pore size

  11. Development of a special nuclear materials monitoring sensor pack for Project Straight-Line

    SciTech Connect (OSTI)

    Daily, M.R.; Moreno, D.J.; Tolk, K.M.; Wilcoxen, J.L. [Sandia National Labs., Albuquerque, NM (United States); Oetken, R.E.; Collins, J.E.; Miller, R.; Olsen, R.W. [Sandia National Labs., Livermore, CA (United States); Sheets, L. [Allied-Signal, Kansas City, MO (United States). Kansas City Division

    1995-12-31T23:59:59.000Z

    With the end of the Cold War and the accelerated dismantlement of nuclear weapons, the nuclear material inventory of the United States is growing. In addition, the United States has offered these excess weapons-grade nuclear material assets for international inspections with the intent of encouraging reciprocal action by other nations. In support of this policy, Sandia National Laboratories has initiated a pilot effort (Project Straight-Line) to develop a flexible, site-independent system to continuously and remotely monitor stored nuclear material and integrate the collection, processing, and dissemination of information regarding this material to ensure that declared nuclear materials placed in storage remain in place, unaltered, and stable. As part of this effort, a +3.6V battery powered, modular sensor pack has been developed to monitor total radiation dose, radiation dose rate, and the temperature of each nuclear material container and to provide this information using a standardized sensor interface. This paper will discuss the development of the sensors, the engineering and production of the sensor pack units, and their installation and operation at sites in New Mexico, California, and the Pantex plant in Amarillo.

  12. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02T23:59:59.000Z

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  13. Close-packed array of light emitting devices

    SciTech Connect (OSTI)

    Ivanov, Ilia N.; Simpson, John T.

    2013-04-09T23:59:59.000Z

    A close-packed array of light emitting diodes includes a nonconductive substrate having a plurality of elongate channels extending therethrough from a first side to a second side, where each of the elongate channels in at least a portion of the substrate includes a conductive rod therein. The conductive rods have a density over the substrate of at least about 1,000 rods per square centimeter and include first conductive rods and second conductive rods. The close-packed array further includes a plurality of light emitting diodes on the first side of the substrate, where each light emitting diode is in physical contact with at least one first conductive rod and in electrical contact with at least one second conductive rod.

  14. Sand pack residual oil saturations as affected by extraction with various solvents

    E-Print Network [OSTI]

    Murray, Clarence

    1958-01-01T23:59:59.000Z

    of Water Flood Extraction Test (Sand Packs J, K, L, and N) 8. Results of Water Flood Extraction Test (Sand Pack M) TABLES I. Behavior of Oils Mixed with Various Solvents 18 II. Sand and Sand Pack Properties III. Fluid Properties IV. Results of Water... solvents which do not alter the rock-fluM properties. The present work was performed on sand, packs composed of pure ~ Oica sand to provide wetting properties simflar to natural cores and to provide packs with reproducible characteristics. Fluids studied...

  15. EXAMPLES ILLUSTRATING THE INSTABILITY OF PACKING DIMENSIONS OF SECTIONS

    E-Print Network [OSTI]

    .3) dimH E n ?m and 0 dimp, (for bounds: if E Rn and V 2 Gn;m, then (1:4) dimH(E \\Va) maxf0;dimH E ?(n?m)g and (1:5) dimp(E \\Va) maxf0;dimp E ?(n?m)g for Hn?m-almost all a 2 V ? (see F3, Lemma 5] and Mat3, Chapter 10]). For the packing

  16. PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION

    E-Print Network [OSTI]

    Khoshnevisan, Davar

    analytic set E RN and every integer 1 m N, (1.1) dimP (PV E) = DimmE for n,m-almost all V Gn,m, Date is the packing dimension dimP E. The principle aim of this note is to prove that (1.2) holds for all real numbers, 1985, Chapter 18). Xiao (1997) proved that for every analytic set E RN , (1.3) dimP X(E) = 1 H Dim

  17. Hollow Fibers as Structured Packing for Olefin/Paraffin Separation.

    SciTech Connect (OSTI)

    Yang, D. (Dali); Barbero, R. S. (Robert S.); Delvin, D. J. (David, J.); Carrera, Martin E.; Colling, Craig W.; Cussler, E. L.

    2005-01-01T23:59:59.000Z

    In this study, the hollow fibers replace conventional trays and/or structured packing. Using a column less than 40 cm long, an {approx} 8% enrichment of propylene from a 30% propane/70%propylene mixture was achieved. An HTU as low as 8.8 cm was obtained. Such a low HTU has not been previously reported for propane/propylene separations. The mass transfer time was less than one second.

  18. Rate Schedule CPP-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CPP-2 (Supersedes Schedule CPP-1) UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION CENTRAL VALLEY PROJECT SCHEDULE OF RATES FOR CUSTOM PRODUCT POWER Effective:...

  19. Effective Rate Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    charges or credits associated with the creation, termination, or modification to any tariff, contract, or rate schedule accepted or approved by the Federal Energy Regulatory...

  20. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...