Powered by Deep Web Technologies
Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

2

Status of the Broadband Heating Rate Profile (BBHRP) VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Status of the Broadband Heating Rate Profile (BBHRP) VAP Status of the Broadband Heating Rate Profile (BBHRP) VAP Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Delamere, Jennifer Atmospheric and Environmental Research, Inc. Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National Laboratory Long, Chuck Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Heck, Patrick University of Wisconsin Rutan, David Analytical Services & Materials, Inc.

3

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

4

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

5

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

6

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

7

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

SciTech Connect (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

8

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

9

The Broadband Heating Rate Profile (BBHRP) VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

brown-97.pdf Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and...

10

BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution BBHRP Assessment Using Ground and Satellite-based High Spectral Resolution Infrared Observations Revercomb, Henry University of Wisconsin-Madison DeSlover, Daniel University of Wisconsin Holz, Robert University of Wisconsin, CIMMS Knuteson, Robert University Of Wisconsin Li, Jun University of Wisconsin-Madison Moy, Leslie University of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Turner, David University of Wisconsin-Madison Category: Radiation The overall objective of this research is to support the ARM BBHRP measurement-model comparison effort that will couple heating rates based on ARM data more directly into SCM and GCM models. We are making use of high spectral resolution infrared satellite, aircraft, and ground based data for

11

BBHRP_poster_ARM08.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiative Flux Closure Under Cloudy Conditions from a "Shadow" Dataset Radiative Flux Closure Under Cloudy Conditions from a "Shadow" Dataset L. Oreopoulos 1 , E. Mlawer 2 , T. Shippert 3 , and J. Delamere 2 , 1. JCET- University of Maryland Baltimore County 2. Atmospheric and Environmental Research Inc. 3. Pacific Northwest National Laboratory To learn when and why we succeed or fail to achieve radiative flux closure (RFC) under cloudy conditions in BBHRP. Our goal Ice vs. mixed vs. liquid clouds How do we learn from such an approach? Specific tests If the RT models generally agree, but disagree with the observations for particular types of conditions, there is greater likelihood that there are flaws in the input. If on the other hand, for the same conditions the models give a wide range of answers, with some being close and some being far

12

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BBHRP: A Testbed for Cloud Retrieval Evaluation? Sally McFarlane CPWG Breakout Session; March 30, 2009 2 Introduction to BBHRP BroadBand Heating Rate Profile Project Concept...

13

Heating Rate Profiles in Galaxy Clusters  

E-Print Network [OSTI]

In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

2006-01-05T23:59:59.000Z

14

A critical evaluation of the use of the profile model in calculating mineral weathering rates  

Science Journals Connector (OSTI)

The PROFILE model is used extensively in the European Critical Loads programme as an aid to international negotiations on SO2 emission abatement. PROFILE calculates the rates of cation release by mineral weatheri...

Mark E. Hodson; Simon J. Langan; M. Jeff Wilson

1997-08-01T23:59:59.000Z

15

a critical evaluation of the use of the PROFILE model in calculating mineral weathering rates  

Science Journals Connector (OSTI)

The PROFILE model is used extensively in the European Critical Loads programme as an aid to international negotiations on SO2 emission abatement. PROFILE calculates the rates of cation release by mineral weatheri...

MARK E. HODSON; SIMON J. LANGAN; M. JEFF WILSON

1997-08-01T23:59:59.000Z

16

Characteristic Count Rate Profiles for a Rotating Modulator Gamma-Ray Imager  

E-Print Network [OSTI]

Rotating modulation is a technique for indirect imaging in the hard x-ray and soft gamma-ray energy bands, which may offer an advantage over coded aperture imaging at high energies. A rotating modulator (RM) consists of a single mask of co-planar parallel slats typically spaced equidistance apart, suspended above an array of circular non-imaging detectors. The mask rotates, temporally modulating the transmitted image of the object scene. The measured count rate profiles of each detector are folded modulo the mask rotational period, and the object scene is reconstructed using pre-determined characteristic modulation profiles. The use of Monte Carlo simulation to derive the characteristic count rate profiles is accurate but computationally expensive; an analytic approach is preferred for its speed of computation. We present both the standard and a new advanced characteristic formula describing the modulation pattern of the RM; the latter is a more robust description of the instrument response developed as part ...

Budden, Brent S; Case, Gary L; Cherry, Michael L

2011-01-01T23:59:59.000Z

17

Recent Developments on the Broadband Heating Rate Profile Value-Added Product  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recent Developments on the Recent Developments on the Broadband Heating Rate Profile Value-Added Product E. J. Mlawer, J. S. Delamere, and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York T. R. Shippert and C. N. Long Pacific Northwest National Laboratory Richland, Washington R. G. Ellingson Florida State University Tallahassee, Florida M. H. Zhang State University of New York - Stony Brook Albany, New York R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia R. T. Cederwall and S. C. Xie Los Alamos National Laboratory Los Alamos, New Mexico J. A. Ogren National Oceanic and Atmospheric Administration

18

Gas temperature profiles at different flow rates and heating rates suffice to estimate kinetic parameters for fluidised bed combustion  

SciTech Connect (OSTI)

Experimental work on estimation kinetic parameters for combustion was conducted in a bench-scale fluidised bed (FB: 105x200mm). Combustion medium was obtained by using an electrical heater immersed into the bed. The ratio of heating rate (kJ/s) to molar flow rate of air (mol/s) regulated by a rheostat so that the heat of combustion (kJ/mol) can be synthetically obtained by an electrical power supply for relevant O{sub 2}-feedstock concentration (C{sub 0}). O{sub 2}-restriction ratio ({beta}) was defined by the ratio of O{sub 2}-feedstock concentration to O{sub 2}-air concentration (C{sub O{sub 2}-AIR}) at prevailing heating rates. Compressed air at further atmospheric pressure ({approx_equal}102.7kPa) entered the bed that was alumina particles (250{mu}m). Experiments were carried out at different gas flow rates and heating rates. FB was operated with a single charge of (1300g) particles for obtaining the T/T{sub 0} curves, and than C/C{sub 0} curves. The mathematical relationships between temperature (T) and conversion ratio (X) were expressed by combining total energy balance and mass balance in FB. Observed surface reaction rate constants (k{sub S}) was obtained from the combined balances and proposed model was also tested for these kinetic parameters (frequency factor: k{sub 0}, activation energy: E{sub A}, and reaction order: n) obtained from air temperature measurements. It was found that the model curves allow a good description of the experimental data. Thus, reaction rate for combustion was sufficiently expressed. (author)

Suyadal, Y. [Faculty of Engineering, Department of Chemical Engineering, Ankara University, 06100-Tandogan, Ankara (Turkey)

2006-07-15T23:59:59.000Z

19

ARM - Publications: Science Team Meeting Documents: The Status of the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Status of the Broadband Heating Rate Profile (BBHRP) Project The Status of the Broadband Heating Rate Profile (BBHRP) Project Mlawer, Eli Atmospheric & Environmental Research, Inc. Miller, Mark Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National Laboratory Turner, David Pacific Northwest National Laboratory Xie, Shaocheng Lawrence Livermore National Laboratory Johnson, Karen Brookhaven National Laboratory Clough, Shepard Atmospheric and Environmental Research Zhang, Minghua State University of New York at Stony Brook Long, Chuck Pacific Northwest National Laboratory Delamere, Jennifer Atmospheric and Environmental Research, Inc. Troyan, David Brookhaven National Laboratory Bartholomew, Mary Jane Brookhaven National Laboratory Flynn, Connor Pacific Northwest National Laboratory

20

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lori Borg, David Turner, Robert Holz, David Tobin, Bob Knuteson, Lori Borg, David Turner, Robert Holz, David Tobin, Bob Knuteson, Leslie Moy, Daniel DeSlover, Ed Eloranta, Hank Revercomb (PI) University of Wisconsin - Madison Space Science and Engineering Center 18th ARM STM, Norfolk, VA 10 - 14 March 2008 21 October 2005 panorama Assessing the Vertical Structure of Radiative Heating Using Radar & Lidar for Cirrus Cloud Events at SGP UW-Madison SSEC Team David Turner Bob Holz David Tobin Bob Knuteson Leslie Moy Dan DeSlover Ed Eloranta Hank Revercomb History Extension of previous work, which assessed ARM Broad Band Heating Rate Profiles (BBHRP) under clear-sky conditions. BBHRP collaboration of all working groups which produces vertical profiles of fluxes and heating rates to drive climate models. BBHRP primarily radar (MMCR) based logic for cloud properties.

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Profiling Retail Web Site Functionalities and Conversion Rates: A Cluster Analysis  

Science Journals Connector (OSTI)

A Web site's conversion rate (the proportion of visitors who complete a desired action) is an important competitive metric. Web retailers invest significant effort in managing functionalities that can attract and convert visitors. Retailers' decisions ... Keywords: Cluster Analysis, Conversion Rates, E-Commerce, Web Performance Metrics, Web Retailing, Web Site Functionalities

Anteneh Ayanso; Reena Yoogalingam

2009-09-01T23:59:59.000Z

22

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

23

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

24

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

25

Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod  

SciTech Connect (OSTI)

The dispersion relation of guided electromagnetic waves propagating in an elliptical metallic waveguide with a dielectric rod driven by relativistic elliptical electron beam (REEB) is investigated. The electric field profiles and the growth rates of the waves are numerically calculated by using Mathieu functions. The effects of relative permittivity constant of dielectric rod, accelerating voltage, and current density of REEB on the growth rate are presented.

Jazi, B.; Rahmani, Z.; Abdoli-Arani, A. [Faculty of Physics, Department of Laser and Photonics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Faculty of Physics, Department of Condense Matter, University of Kashan, Kashan (Iran, Islamic Republic of)

2012-10-15T23:59:59.000Z

26

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect (OSTI)

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

27

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Three-Dimensional Radiative Transfer Computations to Complement the ARM Three-Dimensional Radiative Transfer Computations to Complement the ARM Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP) OHirok, W.(a), Gautier, C.(a), and Miller, M.A.(b), University of California, Santa Barbara (a), Brookhaven National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A core programmatic goal of ARM is to understand how cloud variability is associated with radiative flux variability. A major effort among the ARM working groups is now underway to produce the Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP). The heating rate profiles are derived from Rapid Radiative Transfer Models (RRTMs) that use best estimates of cloud characteristics, gaseous profiles, aerosols and surface

28

ARM - Publications: Science Team Meeting Documents: MICROBASE, A Continuous  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MICROBASE, A Continuous Baseline Microphysical Retrieval: Status and Future MICROBASE, A Continuous Baseline Microphysical Retrieval: Status and Future Plans Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Michael, Paul Brookhaven National Laboratory Mace, Gerald University of Utah The MICROBASE_PI and MICROBASE_PA value-added products (VAPs) are integral components of the Broadband Heating Rate Profile (BBHRP) project of the Atmospheric Radiation Measurement (ARM) Program. The goal of the BBHRP project is to determine atmospheric heating and cooling rate profiles in the column above the active sensors at each ARM Climate Research Facility (ACRF) sites and within a larger volume around each site, representative of a global climate model grid cell. To produce the heating rate profiles,

29

1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Broadband Heating Rate Product Flux Profiles Compared Broadband Heating Rate Product Flux Profiles Compared to Clouds and the Earth's Radiant Energy System Radiation Transfer Data Product D. Rutan and F. Rose Analytical Services and Materials Inc. Hampton, Virginia T. Charlock National Aeronautics and Space Administration-Langley Research Center Hampton, Virginia E. Mlawer Atmospheric and Environmental Research, Inc. Lexington, Massachusetts T. Shippert Pacific Northwest National Laboratory Richland, Washington S. Kato Hampton University Hampton, Virginia Introduction The Atmospheric Radiation Measurement (ARM) Program's Broadband Heating Rate Product (BBHRP) is designed to be a standard for validation of radiative heating rates computed by global climate models, cloud resolving models, etc. Inputs for the local scale BBHRP calculations are based on

30

Aerosol Best Estimate Value-Added Product  

SciTech Connect (OSTI)

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

31

Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows  

Science Journals Connector (OSTI)

...manner predicted by the stream power law, despite the observation...their profiles are well fit by power-law plots of drainage area...S. Department of Energy, Bonneville Power Administration, Report DOE/BP-02246-5...

Jonathan D. Stock; David R. Montgomery; Brian D. Collins; William E. Dietrich; Leonard Sklar

32

Measuring mass-loss rates and constraining shock physics using X-ray line profiles of O stars from the Chandra archive  

Science Journals Connector (OSTI)

......Measuring mass-loss rates and constraining shock physics using X-ray line...sight lines that pass through the densest...wind mass-loss rate, we tabulated...low mass-loss rates: (1) the line...missing some crucial physics; (2) processes......

David H. Cohen; Emma E. Wollman; Maurice A. Leutenegger; Jon O. Sundqvist; Alex W. Fullerton; Janos Zsargó; Stanley P. Owocki

2014-01-01T23:59:59.000Z

33

Effect of the plasma production rate on the implosion dynamics of cylindrical wire/fiber arrays with a profiled linear mass  

SciTech Connect (OSTI)

Results are presented from experimental studies on the implosion of arrays made of wires and metalized fibers under the action of current pulses with an amplitude of up to 3.5 MA at the Angara-5-1 facility. The effect of the parameters of an additional linear mass of bismuth and gold deposited on the wires/fibers is investigated. It is examined how the material of the wires/fibers and the metal coating deposited on them affect the penetration of the plasma with the frozen-in magnetic field into a cylindrical array. Information on the plasma production rate for different metals is obtained by analyzing optical streak images of imploding arrays. The plasma production rate m-dot{sub m} for cylindrical arrays made of the kapron fibers coated with bismuth is determined. For the initial array radius of R{sub 0} = 1 cm and discharge current of I = 1 MA, the plasma production rate is found to be m-dot{sub m} approx. 0.095 ± 0.015 ?g/(cm{sup 2} ns)

Aleksandrov, V. V.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Gritsuk, A. N.; Frolov, I. N.; Grabovski, E. V.; Laukhin, Ya. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)] [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

2013-10-15T23:59:59.000Z

34

Research Highlights Sorted by Research Area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Area Research Area Radiation Processes | Cloud Distributions/Characterizations | Surface Properties | General Circulation and Single Column Models/Parameterizations | Aerosol Properties | Atmospheric Thermodynamics and Vertical Structures | Clouds with Low Optical [Water] Depths (CLOWD) | Vertical Velocity | Broadband Heating Rate Profile (BBHRP) | Cloud-Aerosol-Precipitation Interactions | Cloud Processes | Aerosol Processes Radiation Processes Alexandrov, M. D. Optical Depth Measurements by Shadowband Radiometers and Their Uncertainties ARM Berg, L. Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP ARM Bergmann, D. The Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing ASR Bhattacharya, A. Burning on the Prairies ARM

35

People Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

36

Mentee Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

37

Mentor Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

38

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

39

Temperature profile detector  

DOE Patents [OSTI]

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

40

Recovered File 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Broadband Heating Rate Profile Broadband Heating Rate Profile (BBHRP) Project Howard Barker Meteorological Service of Canada Matthew Shupe, Robert Pincus NOAA - CIRES Jim Liljegren Argonne National Laboratory Joe Michalsky NOAA ARL Mandy Khaiyer, David Rutan, Rich Ferrare, Dave Doelling, Pat Minnis NASA - LaRC Robert Ellingson Florida State University Ric Cederwall, Shaocheng Xie, John Yio, Steve Klein Lawrence Livermore National Laboratory Dave Turner, Patrick Heck University of Wisconsin-Madison Tim Shippert, Chuck Long, Connor Flynn, Chitra Sivaraman Battelle PNNL Minghua Zhang SUNY - Stony Brook Mark Miller, Karen Johnson, David Troyan, Mike Jensen Brookhaven National Laboratory Eli Mlawer, Jennifer Delamere, Tony Clough, Mike Iacono Atmospheric and Environmental Research, Inc. Objectives of the Broadband Heating Rate Profile VAP

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

42

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

43

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

44

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

45

Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility C. Sivaraman, D. D. Turner, and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington Objective Profiles of aerosol optical properties are needed for radiative closure exercises such as the broadband heating rate profile (BBHRP) project (Mlawer et al. 2002) and the Shortwave Quality Measurement Experiment (QME). Retrieving cloud microphysical properties using radiation measurements in the shortwave, such as the spectral retrieval technique described in Daniel et al. (2002), also require the optical properties of the aerosols so that they can be accounted for in the retrieval process. The objective of the aerosol best estimate (ABE) value-added procedure (VAP) is to provide profiles of

46

User_TalentProfile  

Broader source: Energy.gov (indexed) [DOE]

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

47

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

48

Rates - WAPA-137 Rate Order  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

49

Rate schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

50

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Properties and Heating Cloud Properties and Heating Rates in Tropical Cloud Systems Jennifer Comstock and Sally McFarlane Pacific Northwest National Laboratory Alain Protat Centre for Australian Weather and Climate Research Motivation Cloud properties retrievals Cloud process understanding Cloud Radiative forcing and heating rates Model evaluation on many scales (LES, CRM, SCM...) Quantified uncertainties are needed... 2 Retrieval Algorithm Evaluation within CPWG Past intercomparisons CLOWD - Clouds with Low Optical Water Depths (Turner et al. 2007) Ice Clouds - (Comstock et al. 2007) One retrieval does not fit all Present algorithm evaluation BBHRP Ice Cloud Retrievals at SGP - Microbase (Dunn, Jensen, Mace, Marchand) Arctic mixed phase clouds - BBHRP (Shupe, Turner) CLOWD - BBHRP Pt. Reyes AMF deployment

51

LANSCE | News & Media | Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

52

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

53

Management's Discussion & Analysis Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

54

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

55

ARM STM Plenary: CS Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 ARM Science Team Meeting 2008 Warren Wiscombe ARM Chief Scientist Brookhaven National Lab Mar 2008 ARM Plenary 2 ARM Chief Scientist Team ARM Chief Scientist Team Ric Cederwall Andy Vogelmann Sharon Zuhoski Yangang Liu Pavlos Kollias Mar 2008 ARM Plenary 3 Submit your... Submit your... science highlights (www.arm.gov) poster PDFs (esp if you win CS Design Award) feedback in text boxes on ARM web pages Also... vote for People's Choice Poster talk to our Thu morning speakers Mar 2008 ARM Plenary 4 Mar 2008 ARM Plenary 5 Existing Existing * CLOWD (Clouds with Low Optical Depth) * BBHRP (BroadBand Heating Rate Profile) * Radar Focus Groups Focus Groups New New * Vertical Velocity for Climate Modelers * Longwave/Microwave * Surface Fluxes Mar 2008 ARM Plenary 6 ARM ARM ' ' s s two fundamental science questions

56

ARM - Evaluation Product - Radiatively Important Parameters Best Estimate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsRadiatively Important Parameters Best ProductsRadiatively Important Parameters Best Estimate (RIPBE) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radiatively Important Parameters Best Estimate (RIPBE) 2002.03.01 - 2007.06.30 Site(s) SGP General Description The Radiatively Important Parameters Best Estimate (RIPBE) VAP combines multiple input datastreams, each with their own temporal and vertical resolution, to create a complete set of radiatively important parameters on a uniform vertical and temporal grid with quality control and source information for use as input to a radiative transfer model. One of the main drivers for RIPBE was to create input files for the BroadBand Heating Rate Profiles (BBHRP) VAP, but we also envision use of RIPBE files for user-run

57

Child and Family Poverty Saskatchewan Profile 2008  

E-Print Network [OSTI]

Child and Family Poverty Saskatchewan Profile 2008 Summary 19.9% of Saskatchewan's children under Saskatchewan's child poverty rate is the second· highest in the country, following only British Columbia.1% in Canada and 21.7% in Saskatchewan (Chart 1). Seventeen years later, in 2006, the national child poverty

Argerami, Martin

58

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

59

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

60

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

62

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

63

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

64

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

65

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

66

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

67

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

68

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

69

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

70

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

71

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

72

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

73

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

74

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

75

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

76

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

77

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

78

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

79

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

80

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

82

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

83

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

84

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

85

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

86

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

87

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

88

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

89

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

90

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

91

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

92

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

93

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

94

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

95

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

96

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

97

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

98

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

99

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

100

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

102

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

103

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

104

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

105

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

106

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

107

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

108

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

109

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

110

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

111

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

112

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

113

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

114

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

115

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

116

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

117

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

118

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

119

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

120

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

122

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

123

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

124

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

125

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

126

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

127

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

128

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

129

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

130

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

131

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

132

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

133

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

134

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

135

Profiling for Performance  

Science Journals Connector (OSTI)

Performance and profiling are critical words in our everyday conversations in the office where I work, in our engagements with clients, and in our teaching. Both words apply equally well to all aspec...

Ron Crisco

2011-01-01T23:59:59.000Z

136

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

137

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

138

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

139

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

140

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

142

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

143

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

144

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

145

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

146

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

147

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

148

Rating Element  

Broader source: Energy.gov (indexed) [DOE]

Score Score Maturity Value Score Maturity Value Score A1 Cost Estimate H 7.5 1 7.5 0.0 0.0 A2 Cost Risk/Contingency Analysis P 3.0 1 3.0 0.0 0.0 A3 Funding Requirements/Profile H 7.5 1 7.5 0.0 0.0 A4 Independent Cost Estimate/Schedule Review P 3.0 N/A 0.0 0.0 0.0 A5 Life Cycle Cost P 3.0 1 3.0 0.0 0.0 A6 Forecast of Cost at Completion P 3.0 N/A 0.0 0.0 0.0 A7 Cost Estimate for Next Phase Work Scope P 3.0 5 15.0 0.0 0.0 Subtotal Cost 36.0 0.0 0.0 B1 Project Schedule H 7.5 1 7.5 0.0 0.0 B2 Major Milestones P 3.0 1 3.0 0.0 0.0 B3 Resource Loading P 3.0 1 3.0 0.0 0.0 B4 Critical Path Management H 7.5 1 7.5 0.0 0.0 B5 Schedule Risk/Contingency Analysis P 3.0 1 3.0 0.0 0.0 B6 Forecast of Schedule Completion P 3.0 N/A 0.0 0.0 0.0 B7 Schedule for Next Phase Work Scope P 3.0 5 15.0 0.0 0.0 Subtotal Schedule 39.0 0.0 0.0 C1 Systems Engineering H 3.1 3 9.2 0.0 0.0 C2 Alternatives Analysis H

149

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

Performance Profiles of Major Energy Producers 2009 Performance Profiles of Major Energy Producers 2009 vii Major Findings This edition of Performance Profiles reviews financial and operating data for the calendar year 2009 and discusses important trends and emerging issues relevant to U.S. energy company operations. Major U.S.-based oil and natural gas producers and petroleum refiners submit the data in this report annually on Form EIA-28, the Financial Reporting System (FRS). FRS companies' net income declined to the lowest level since 2002.  Net income fell 66 percent (in constant 2009 dollars) to $30 billion in 2009 from $88 billion in 2008. Substantial reductions in oil and natural gas prices in 2009 slowed revenue growth. FRS companies cut operating costs but by less than the decline in revenue, resulting in a 69-percent drop in operating income.

150

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

151

Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product  

SciTech Connect (OSTI)

The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be attainable, thus affecting public policy decisions with great impact to public life.

Dr. Lazaros Oreopoulos and Dr. Peter M. Norris

2010-03-14T23:59:59.000Z

152

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

153

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

154

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

155

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

156

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

157

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

158

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

159

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

160

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

162

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

163

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

164

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

165

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

166

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

167

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

168

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

169

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

170

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

171

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

172

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

173

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

174

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

175

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

176

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

177

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

178

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

179

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

180

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

182

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

183

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

184

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

185

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

186

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

187

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

188

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

189

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

190

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

191

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

192

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

193

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

194

Rates & Repayment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

195

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

196

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

06) 06) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2006 December 2007 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Performance Profiles of Major Energy Producers 2006 is prepared by the Energy Information Administration, Office of Energy Markets and End Use, Energy Markets and Contingency Information Division, Financial

197

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

198

Chemical profiles of switchgrass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

199

Slide 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CLOWD BBHRP Retrieval Algorithm Intercomparison Jennifer Comstock David Turner Andy Vogelmann Chaomei Lo Tim Shippert Sally McFarlane Eli Mlawer Objectives 1. Use BBHRP framework...

200

NOTES ON NEUTRON DEPTH PROFILING  

E-Print Network [OSTI]

NOTES ON NEUTRON DEPTH PROFILING by J.K. Shultis Department of Mechanical and Nuclear Engineering College of Engineering Kansas State University Manhattan, Kansas 66506 Dec. 2003 #12;Notes on Neutron Depth Profiling J. Kenneth Shultis December 2003 1 Introduction The purpose of neutron depth profiling

Shultis, J. Kenneth

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation ...

Henley, D B; Pittard, J M

2003-01-01T23:59:59.000Z

202

Project Cost Profile Spreadsheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template (Combined...

203

Texas Crop Profile: Potatoes  

E-Print Network [OSTI]

175 pounds of nitrogen, 80 pounds of phosphorus, and 80 pounds of potassium. Potassium is generally not needed in the High Plains, although many growers apply it. Texas Crop Profile P O T A T O E S E-19 3-00 Prepared by Kent D. Hall, Rodney L. Holloway..., following drag-off or after potato plants have fully emerged. Controls weeds by disrupting growth process during germination. Does not control established weeds. State Contacts Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

204

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

205

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

206

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas profile Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

207

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

208

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

209

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee profile Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

210

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

211

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

212

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

213

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

214

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

215

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

216

Solar Models and NACRE thermonuclear reaction rates  

E-Print Network [OSTI]

Using the most recent updated physics, calibrated solar models have been computed with the new thermonuclear reaction rates of NACRE, the recently available European compilation. Comparisons with models computed with the reaction rates of Caughlan & Fowler (\\cite{cf88}) and of Adelberger et al. (\\cite{a98}) are made for global structure, expected neutrinos fluxes, chemical composition and sound speed profiles, helioseismological properties of p-modes and g-modes.

P. Morel; B. Pichon; J. Provost; G. Berthomieu

1999-07-27T23:59:59.000Z

217

Approximate Stokes Drift Profiles in Deep Water  

Science Journals Connector (OSTI)

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the ...

Űyvind Breivik; Peter A. E. M. Janssen; Jean-Raymond Bidlot

2014-09-01T23:59:59.000Z

218

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_001b.htm06/07/2004 13:02:41 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_001d.htm06/07/2004 13:02:52 #12;5 Year

219

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_0029.htm06/07/2004 13:01:23 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_002d.htm06/07/2004 13:01:34 #12;5 Year

220

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0067.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_006b.htm06/07/2004 13:04:46 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0079.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_007b.htm06/07/2004 13:05:59 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

222

Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles  

DOE Patents [OSTI]

A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

2005-12-26T23:59:59.000Z

223

Scholarship Search Profile Personal Information  

E-Print Network [OSTI]

Scholarship Search Profile Personal Information Name: ____________________________________ Address) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Work Experience: List most recent job first Employer/Company Name _______________________________________________________________ Reference: Name and telephone _____________________________________________ Employer/Company Name

Mather, Patrick T.

224

Evaluate Greenhouse Gas Emissions Profile  

Broader source: Energy.gov [DOE]

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

225

Chlorite Dissolution Rates  

SciTech Connect (OSTI)

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

2013-07-01T23:59:59.000Z

226

Chlorite Dissolution Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

227

Power Rate Cases (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

228

Using Same-Hospital Readmission Rates to Estimate All-Hospital Readmission Rates  

Science Journals Connector (OSTI)

Background Since October of 2012, Medicare's Hospital Readmissions Reduction Program has fined 2,200 hospitals a total of $500 million. Although the program penalizes readmission to any hospital, many institutions can only track readmissions to their own hospitals. We sought to determine the extent to which same-hospital readmission rates can be used to estimate all-hospital readmission rates after major surgery. Study Design We evaluated 3,940 hospitals treating 741,656 Medicare fee-for-service beneficiaries undergoing CABG, hip fracture repair, or colectomy between 2006 and 2008. We used hierarchical logistic regression to calculate risk- and reliability-adjusted rates of 30-day readmission to the same hospital and to any hospital. We next evaluated the correlation between same-hospital and all-hospital rates. To analyze the impact on hospital profiling, we compared rankings based on same-hospital rates with those based on all-hospital rates. Results The mean risk- and reliability-adjusted all-hospital readmission rate was 13.2% (SD 1.5%) and mean same-hospital readmission rate was 8.4% (SD 1.1%). Depending on the operation, between 57% (colectomy) and 63% (CABG) of hospitals were reclassified when profiling was based on same-hospital readmission rates instead of on all-hospital readmission rates. This was particularly pronounced in the middle 3 quintiles, where 66% to 73% of hospitals were reclassified. Conclusions In evaluating hospital profiling under Medicare's Hospital Readmissions Reduction Program, same-hospital rates provide unstable estimates of all-hospital readmission rates. To better anticipate penalties, hospitals require novel approaches for accurately tracking the totality of their postoperative readmissions.

Andrew A. Gonzalez; Terry Shih; Justin B. Dimick; Amir A. Ghaferi

2014-01-01T23:59:59.000Z

229

Determination of vertical profiles of aerosol extinction, single scatter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determination of vertical profiles of aerosol extinction, single scatter Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period March 2004 - February 2005. The Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide continuous estimates of vertical profiles of aerosol extinction, single-scatter albedo, and asymmetry parameter above the Northern Slopes of Alaska (NSA) facility. In the interest of temporal continuity, we have developed an algorithm that

230

Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks  

SciTech Connect (OSTI)

The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Robert J. Goldston

2009-08-20T23:59:59.000Z

231

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_004b.htm06/07/2004 12:57:08 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_004c.htm06 http://www.fin.mmu.ac.uk/f18_004d.htm06/07/2004 12:57:19 #12;5 Year Financial Profile - Charts - zoom 5

232

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_008b.htm06/07/2004 12:51:21 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_008c.htm06 http://www.fin.mmu.ac.uk/f18_008d.htm06/07/2004 12:51:31 #12;5 Year Financial Profile - Charts - zoom 5

233

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

Charts Income Back http://www.fin.mmu.ac.uk/f18_010b.htm06/07/2004 10:57:23 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_010c.htm06 http://www.fin.mmu.ac.uk/f18_010d.htm06/07/2004 12:40:15 #12;5 Year Financial Profile - Charts - zoom 5

234

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network [OSTI]

. Income Expenditure Assets Liabilities Income Breakdown Expenditure Breakdown http://www.fin.mmu.ac.uk/f18 Charts Income Back http://www.fin.mmu.ac.uk/f18_005b.htm06/07/2004 13:00:29 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_005c.htm06

235

Simultaneous Retreival of Surface Wind Speed and Rain Rate using Radar and Radiometer Measurements  

E-Print Network [OSTI]

to simultaneously retrieve the vertical profile of precipitation and the near-surface wind speed. ResultsSimultaneous Retreival of Surface Wind Speed and Rain Rate using Radar and Radiometer Measurements simultaneously estimates the over ocean near-surface wind speed and rain rate profile using data from a 10.7 GHz

Ruf, Christopher

236

SPEAK UP, EPPING! COMMUNITY PROFILE  

E-Print Network [OSTI]

SPEAK UP, EPPING! COMMUNITY PROFILE REPORT Epping, New Hampshire April 14, 2007 #12;TABLE ............................................................................................. 21 6. Community Services, Facilities and Utilities........................................................................................................................... 38 1. Natural Resources & Environment 2. Communication 3. Infrastructure & Public Safety 4

New Hampshire, University of

237

Profile of Alec J. Jeffreys  

Science Journals Connector (OSTI)

Profile of Alec J. Jeffreys 10.1073/pnas.0603953103 Nick Zagorski As one of the great contributors to modern genetics...the forensic sciences. That achievement alone is worthy of merit, contributing to Jeffreys' receiving three high distinctions...

Nick Zagorski

2006-01-01T23:59:59.000Z

238

Neuropsychological Profile of Stuttering Children  

Science Journals Connector (OSTI)

The purpose of this study was to analyze the cognitive profile of stuttering children. A sample of 290 children was ... classified as stutterers. In general, performance in stuttering children was similar to the ...

Alfredo Ardila; Mónica Rosselli…

2000-06-01T23:59:59.000Z

239

Energy Consumption Profile for Energy  

E-Print Network [OSTI]

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

240

Vibration of Tethered Microstructure Profilers  

Science Journals Connector (OSTI)

Although loosely tethered turbulence profilers have many advantages, they are prone to resonant vibrations at frequencies in the dissipation range when they are falling rapidly or when the tether is strummed. Using the Advanced Microstructure ...

Jack B. Miller; M. C. Gregg; Vernon W. Miller; Gordon L. Welsh

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

JOBAID-ACCESSING AND MODIFYING TALENT PROFILE  

Broader source: Energy.gov [DOE]

The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile...

242

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_\\infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_\\infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.

D. B. Henley; I. R. Stevens; J. M. Pittard

2003-06-23T23:59:59.000Z

243

Development of a low-profile portable concrete barrier  

E-Print Network [OSTI]

A low-profile portable concrete barrier (PCB) has been developed for use in low-speed (approximately 45 mph [73 km/h] or less) work zones. The purpose of the low-profile barrier is to shield the work zone and redirect errant vehicles while.... SEQUENTIAL PHOTOGRAPHS OF CRASH TESTS APPENDIX D. ACCELEROMETER TRACES AND PLOTS OF ROLL, PITCH AND YAW RATES APPENDIX E. TEST VEHICLE PROPERTIES VITA Page 6 8 8 10 10 13 13 17 18 19 20 24 29 29 41 50 52 53 63 68 73 82 85 LIST...

Guidry, Todd Randall

2012-06-07T23:59:59.000Z

244

rates | OpenEI  

Open Energy Info (EERE)

rates rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

245

Historical Interest Rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current and Historical Interest Rates Current and Historical Interest Rates The table lists interest rates, from the project's inception through the present, for all projects with repayment supervised by the CRSP MC. The latest available interest rate is used for all future interest rate calculations. The Amistad-Falcon, Collbran, Provo River, and Rio Grande Projects are all assigned the average daily "Yield Rate" calculated by the U.S. Treasury, on an annual basis, for Treasury bonds having terms of 15 years or more remaining to maturity. The calculated yield rate is rounded to the nearest one-eighth of one percent. The yield rate is based upon the bond's interest rate, as well as its market value. The Colorado River Storage Project and its participating projects, Dolores and Seedskadee, are assigned the average daily "Coupon Rate," annualized for the same U.S. Treasury bonds used in "Yield Rate" calculations. The coupon rate is the interest rate that the bond carries upon its face.

246

Phenotype MicroArray Profiling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MicroArray MicroArray Profiling of Zymomonas mobilis ZM4 Barry Bochner & Vanessa Gomez & Michael Ziman & Shihui Yang & Steven D. Brown Received: 22 May 2009 / Accepted: 26 October 2009 # The Author(s) 2009. This article is published with open access at Springerlink.com Abstract In this study, we developed a Phenotype MicroArray(tm) (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format.

247

Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

248

Cost Analysis Rate Settin  

E-Print Network [OSTI]

Cost Analysis and Rate Settin for Animal Research Facilities #12;#12;Cost Analysis and Rate ... .. . ...................... . . . ................................. . .... 7 Chapter 2 Preparation for Cost Analysis ......................................................... 9 Chapter 3 Assignment of Costs to Animal Research Facility Cost Centers

Baker, Chris I.

249

gprof Profiling Tools | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tuning MPI on BG/Q Tuning and Analysis Utilities (TAU) HPCToolkit HPCTW mpiP gprof Profiling Tools Darshan PAPI BG/Q Performance Counters BGPM Openspeedshop Scalasca BG/Q DGEMM Performance Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] gprof Profiling Tools Contents Introduction Profiling on the Blue Gene Enabling Profiling Collecting Profile Information Profiling Threaded Applications Using gprof Routine Level Flat Profile Line Level Flat Profile Call Graph Analysis Routine Execution Count List Annotated Source Listing Issues in Interpreting Profile Data Profiling Concepts Programs in Memory

250

Recovery Act Funds at Work: Smart Grid Investment Grant Profiles |  

Broader source: Energy.gov (indexed) [DOE]

Funds at Work: Smart Grid Investment Grant Profiles Funds at Work: Smart Grid Investment Grant Profiles Recovery Act Funds at Work: Smart Grid Investment Grant Profiles DOE is working with regional and local utilities and co-ops across the nation to improve the reliability of the grid and helping communities recover faster when disruptions occur. Case studies are available from several grant recipients describing how Smart Grid Investment Grants are making an impact. Additional information is available on SmartGrid.gov, including impact metrics, tracking data, and specifics on all projects. Case Study - Oklahoma Gas and Electric - Using Time-Based Rate Program to Reduce Peak Demand - April 2013 Case Study - Idaho Power Company - Smart Grid Savings and Grid Integration of Renewables - April 2013 Case Study - Powder River Energy Corp - Providing Grid Flexibility in WY

251

ARM Poster 2007.ai  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40 60 80 100120 Number Density (L -1 ) 3 4 5 6 7 8 9 Altitude (km) Further Development of Multi-Instrument Multi-Parameter Cloud Retrievals Richard Austin, Norm Wood, and Graeme Stephens Colorado State University, Fort Collins, Colorado *BUGSRAD computations also use BBHRP data sets and radiosonde profiles 1. The Problem Acknowledgements The work described here was supported by the Office of Science (BER), U. S. Dept. of Energy, Grant DE-FG02-05ER63961. We also thank Qilong Min and the BBHRP VAP team for providing data used in our analyses. References *Austin, R. T., and G. L. Stephens, 2001: J. Geophys. Res., 106, 28233-28242. *Benedetti, A., G. L. Stephens, and J. M. Haynes, 2003: J. Geophys. Res., 108, 4335, doi:10.1029/2002JD002693. *Min, Q.-L., M. Duan, and R. Marchand, 2003: J. Geophys. Res., 108,

252

Central Appalachia: Coal industry profile  

SciTech Connect (OSTI)

Central Appalachia, the most complex and diverse coal-producing region in the United States, is also the principal source of very low sulfur coal in the East. This report provides detailed profiles of companies and facilities responsible for about 90% of the area's production, conveying a unique view of the aggregate industry as well as its many parts.

McMahan, R.L.; Kendall, L.K. (Resource Data International, Inc., Boulder, CO (USA))

1991-05-01T23:59:59.000Z

253

Microfluidics and Nanoscale Research Profile  

E-Print Network [OSTI]

Microfluidics and Nanoscale Science Research Profile Our research group is engaged in a broad range of activities in the general area of microfluidics and nanoscale science. At a primary level, our interest that when compared to macroscale tech- nology, microfluidic systems engender a number of distinct advantages

254

Turfgrass Disease Profiles Brown Patch  

E-Print Network [OSTI]

Turfgrass Disease Profiles Brown Patch Richard Latin, Professor of Plant Pathology Brown patch to algae and moss infestation. Even mild brown patch outbreaks can spoil the appearance of golf greens and perennial ryegrass) also may sustain damage from brown patch infection. Disease Characteristics and Symptom

255

MODELING OF CHANGING ELECTRODE PROFILES  

SciTech Connect (OSTI)

A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

Prentice, Geoffrey Allen

1980-12-01T23:59:59.000Z

256

About the Ratings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2008 Ratings Changes 2008 Ratings Changes EPA's "New" Fuel Economy Ratings Video about EPA's New Fuel Economy Ratings Windows Media Video (6.8 MB) Quicktime Video (7.8 MB) Text Version EPA changed the way it estimates fuel economy starting with the 2008 model year. This "new" way of estimating fuel economy supplements the previous method by incorporating the effects of Faster speeds and acceleration Air conditioner use Colder outside temperatures What else do I need to know about the "new" ratings? The tests lower MPG estimates for most vehicles. View old/new MPG ratings for a specific vehicle The actual mileage you get will still vary based on your driving habits, traffic conditions, and other factors. All MPG estimates in Find-a-Car have been converted to the new

257

Effective Rate Period  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiscal Year 2014 Fiscal Year 2014 Effective Rate Period As of Beginning of the FY 10/01/2013 - 09/30/2014 Mid-Year Changes (if applicable) 10/01/2013 - 09/30/2014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement $73,441,557 CV-F13 Base Resource Revenue Requirement $69,585,875 First Preference Revenue Requirement $3,855,682

258

Definition: Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

Profiling Configurations Profiling Configurations Jump to: navigation, search Dictionary.png Electrical Profiling Configurations Electrical profiling is a DC resistivity survey which aims to trace lateral variations in the apparent resistivity structure of the subsurface. Traditionally, electrical profiling provides qualitative information of relative apparent resistivity values in order to detect anomalous geological features.[1] Also Known As Electrical mapping References ↑ http://www.amazon.com/Principles-Electric-Borehole-Geophysics-Geochemistry/dp/0444529942 Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Electrical_Profiling_Configurations&oldid=596184" Category: Definitions

259

LCC Guidance Rates  

Broader source: Energy.gov [DOE]

Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

260

Draft Tiered Rate Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

year's weather and other specific factors are removed from the loads of irrigated agriculture. ( ) "Irrigation Rate Mitigation" means the form of a discount by BPA to...

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Heart Rate Artifact Suppression.  

E-Print Network [OSTI]

??Motion artifact strongly corrupts heart rate measurements in current pulse oximetry systems. In many, almost any motion will greatly diminish the system’s ability to extract… (more)

Dickson, Christopher

2012-01-01T23:59:59.000Z

262

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

263

IPM Profiling Tool at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IPM IPM IPM Description and Overview IPM is a portable profiling infrastructure which provide a high level report on the execution of a parallel job. IPM reports hardware counters data, MPI function timings, and memory usage. It provides a low overhead means to generate scaling studies or performance data for ERCAP submissions. When you run a job using the IPM module you will get a performance summary (see below) to stdout as well as a web accessible summary of all your IPM jobs. The two main objectives of IPM are ease-of-use and scalability in performance analysis. Usage % module load ipm On HPC architectures that support shared libraries that's all you need to do. Once the module is loaded you can run as you normally and get a performance profile once the job has successfully completed. You do not

264

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... ACS MEMBER RATES "Situations Wanted" advertisements will be classified by the chemical held designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

2000-02-21T23:59:59.000Z

265

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... ACS MEMBER RATES "Situations Wanted" advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

1997-03-24T23:59:59.000Z

266

Profile-based adaptive anomaly detection for network security.  

SciTech Connect (OSTI)

As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress, rather than after the fact). We also build a prototype anomaly detection tool that demonstrates how the techniques might be integrated into an operational intrusion detection framework.

Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann

2005-11-01T23:59:59.000Z

267

Benchmarking optimization software with performance profiles  

E-Print Network [OSTI]

Abstract: We propose performance profiles -- probability distribution functions for a performance metric -- as a tool for benchmarking and comparing optimization ...

Elizabeth Dolan

268

2007-2009 Power Rate Adjustments (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

269

OpenEI - rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

270

Water Rate Escalations  

Broader source: Energy.gov [DOE]

Federal agencies need accurate water cost escalation rates to perform life cycle cost analyses for water efficiency projects to meet Executive Order 13514 and Energy Independence and Security Act...

271

Before a Rate Case  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is made up of two processes. The first part of the IBR is the Integrated Program Review (IPR), which will address proposed program costs prior to their inclusion in a rate case,...

272

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted "advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202. ...

2002-04-15T23:59:59.000Z

273

Tiered Rate Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rate Period limit. This 23 exception is limited for the duration of this TRM to the first ten requesting utilities that 24 BP-12-A-03 Section 4 Page 46 meet the size threshold and...

274

Stocking Rate Decisions  

E-Print Network [OSTI]

to predict potential forage shortfalls, determine the im- pact of the decision on finances and other ranch re- sources, and make any necessary adjustments before the forage resource is harmed or financial problems occur. Through adequate planning and periodic... rates with limited knowledge of future forage and market conditions. But they can use past records, experience and range surveys to make realistic projections of forage and market conditions (Figure 3). Then, the planned stock- ing rate should...

White, Larry D.; McGinty, Allan

1999-02-15T23:59:59.000Z

275

On Thermonuclear Reaction Rates  

E-Print Network [OSTI]

Nuclear reactions govern major aspects of the chemical evolution od galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the case of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are also discussed.

H. J. Haubold; A. M. Mathai

1996-12-02T23:59:59.000Z

276

Cat Heart Rate Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cat Heart Rate Monitoring Cat Heart Rate Monitoring Name: Shakti Status: student Grade: 9-12 Location: TX Country: USA Date: Summer 2010 Question: What is the best way to find a cat's heart rate using a stethoscope? Because I have tried to hear their heart beat but their purring is all I can hear. If I shouldn't use a stethoscope, then what should I use? Replies: Hi Shakti! If you want to use a stethoscope, the trick is to get your cat to stop purring. Two good ways that I have found to help stop the purring 1. Cover their nose (generally cats don't like this and will stop purring) or 2. Put on the tap to drip or lightly stream water (also, they generally don't like this and will stop purring). Alternatively, you can get their heart rate from feeling their pulse. A good place to try to feel a pulse is right where the leg attaches to the abdomen - in an area called the inguinal region. Now granted there are some heart conditions that will cause an animals pulse and their heart rates don't match up, and it's hard to feel if you have a fat cat, but it's a good place to try if you are really trying to get a heart rate in a healthy kitty!

277

EQPT: Ecological Quality Profiling Tool  

SciTech Connect (OSTI)

EQPT uses"Habitat Value Units" to assess the ecological quality of selected areas. A Habitat Value Unit is equal to one unit area of pristine or desired habitat. The proximity of waste reduces the value of the habitat. The GIS uses a proximity-based iterative algorithm to aggregate similarly classified waste sites. A variable size buffering algorithm is then used to approximate the effects of the waste on the environmental quality of the surrounding areas. The user designated areas are analyzed, and the resulting quality profiles are presented quantitatively in tabular summaries and graphically as grids on vector base maps.

Tzemos, Spyridon (BATTELLE (PACIFIC NW LAB)); Sackschewsky, Michael R. (BATTELLE (PACIFIC NW LAB)); Bilyard, Gordon R. (BATTELLE (PACIFIC NW LAB))

2002-08-21T23:59:59.000Z

278

Texas Crop Profile: Sweet Potatoes  

E-Print Network [OSTI]

is between 120 to 135 days. Texas Crop Profile S W E E T P O T A T O E S E-22 3-00 Prepared by Rodney L. Holloway, Kent D. Hall and Dudley T. Smith 1 In collaboration with James V. Robinson, George Philley and Marvin Baker 2 1 Extension Specialist, Extension... Command will not. Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843-2488 979-845-3849 rholloway@tamu.edu Kent D. Hall Extension Associate 2488 TAMU College Station, Texas 77843-2488 979-845-3849 kd-hall@tamu.edu Dudley Smith...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

279

October 2001 - September 2006 Wholesale Power Rates (rates/previous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2001 - September 2006 The 2002 Wholesale Power Rate Schedules (base rates) for the FY 2002-2006 rate period were originally established in May 2000 during the WP-02 Rate...

280

Charged-species profiles in electronegative radio-frequency plasmas  

Science Journals Connector (OSTI)

The negative ion density profile in a low pressure oxygen rf plasma has been measured by a photodetachment technique. At an rf power of 10 W and a neutral pressure of 10 mTorr, a parabolic negative ion density profile is obtained with a peak density of 8Ś1015 m-3 and a maximum ratio of negative ion to electron densities n-/ne?18. Under these conditions, the most abundant positive ion, determined by ion mass spectrometry, is O2+ with O+ being less than 10% of the positive ion density. The most abundant negative ion is O- with O2- and O3- being less than 20% of the total negative charge density. The maximum in the density profile of negative ions shifts closer to the powered rf electrode as the pressure is increased in the asymmetric system. Comparison of the results to theory indicates that the asymmetry follows from an enhancement of the ionization rate near the powered electrode sheath. The parabolic profile is also obtained in CCl2F2 at low pressure. Simulations and measurements show a rapid drop in ion density near the sheath that may be related to the recently discussed ‘‘stratification’’ phenomenon in electronegative plasmas.

D. Vender; W. W. Stoffels; E. Stoffels; G. M. W. Kroesen; F. J. de Hoog

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PWR AXIAL BURNUP PROFILE ANALYSIS  

SciTech Connect (OSTI)

The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

J.M. Acaglione

2003-09-17T23:59:59.000Z

282

Upper Great Plains Rates information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rates and Repayment Services Rates and Repayment Services Rates 2010 Firm Power Rate (effective January 1, 2010) Rate Adjustments 2010 Firm Power Rate Adjustment 2009 Firm Power Rate Adjustment IS Rate Adjustments Rate Adjustment Process Rate Orders Signed, December 23, 2009 (16kb pdf) Announcements Firm Electric Service Customer Letter - Preliminary Review of Drought Adder Component, June 27, 2013 (74kb pdf) Customer Letter - Final Notice of Drought Adder Component, October 2, 2013 (68kb pdf) Integrated System (IS) Rates 2014 IS Rates Customer Information Meeting Presentation, October 15, 2013 (611kb pdf) Customer Letter - Notification of 2014 Rates, September 13, 2013 (160kb pdf) 2014 Transmission and Ancillary Services Rate Calculation and 2012 Rate True-up Calculation (4.9mb pdf) 2013 IS Rates

283

BCP Annual Rate Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 BCP Annual Rate Process 2013 BCP Annual Rate Process Informal Process Rate Activity Schedule (doc) Informal Customer Meeting Thursday March 6, 2013 at 10:30 A.M. Conf Rms 3&4 Informal Customer Meeting Presentation (Pdf) PRS Executive Summary (Mar 07, 2013) (Pdf) FY2014 Final Ten Year Operating Plan PRS Executive Summary (PDF) FORM for Foreign Visits (doc) Formal Process Initial Federal Register Notice (pdf) Public Information Forum March 27,2013 at 10:30 A.M. Conf Rms3&4 Customer Meeting Presentation PIF Presentation (PPT) Presentation Details (pdf) Reclamation Fund Status Report PIF PRS Executive Summary (pdf) PIF Transcripts (PDF) Visitor Center Cost Analysis Questions - Responses Public Comment Forum April 10, 2013 at 10:30 A.M. Conf Rms3&4 PCF Transcripts Customer Letters

284

Multiple System Rate Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DSW Multiple System Transmission Rate Process DSW Multiple System Transmission Rate Process Federal Register Notice Withdrawing Rate Proposal (PDF) Formal Process Extension Federal Register Notice (PDF) Customer Savings Under Various MSTR (XLS) Public Information Forum March 29, 2005 Customer Meeting Overview (Power Point) Customer Meeting Overview (PDF) Customer Meeting Transcript (PDF) Public Comment Forum April 6, 2005 Customer Meeting Transcript (PDF) Response Letter 5-17-05 (PDF) Customer Letters Tonopah ID-5/25/05 (PDF) APS-5/26/05 (PDF) SRP-5/27/05 (PDF) RSLynch-6/1/05 (PDF) KRSaline-6/1/05 (PDF) Formal Process Federal Register Notice (Word) Federal Register Notice (PDF) Brochure (Word) Appendices to Brochure: A B C D E1 E2 F1 F2 GH Public Information Forum July 14, 2004 Customer Meeting Overview (Power Point)

285

Obsidian Hydration Rates  

Science Journals Connector (OSTI)

...OBSIDIAN HYDRATION RATE FOR KLAMATH BASIN OF CALIFORNIA AND OREGON...as the material is excreted, falls through the air, and dries...Friedman. Table 1 presents two new groups of hydra-tion readings for...the true age is believed to fall (3). The Snaketown age is...

Clement W. Meighan

1970-10-02T23:59:59.000Z

286

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted" advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

2002-03-04T23:59:59.000Z

287

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted" advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

1999-10-25T23:59:59.000Z

288

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted"advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

2002-12-23T23:59:59.000Z

289

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted" advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19067-1612. ...

1997-04-07T23:59:59.000Z

290

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted" advertisements wilt be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

2003-09-15T23:59:59.000Z

291

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted"advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

2002-03-25T23:59:59.000Z

292

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted" advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

1999-08-16T23:59:59.000Z

293

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted" advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

2000-06-12T23:59:59.000Z

294

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted"advertisements wilt be classified by the chemical field designated by the members, if not designated, placement will be determined by the first word of the text submitted. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Road, Suite 202, Wayne, PA 19087-1612. ...

2002-05-27T23:59:59.000Z

295

Advertising Rate Information  

Science Journals Connector (OSTI)

Advertising Rate Information ... "Situations Wanted" advertisements will be classified by the chemical field designated by the members. ... State ACS membership status and mail advertisements to: Chemical & Engineering News, Classified Advertising, 676 East Swedesford Koad, Suite 202, Wayne, PA 19087-1612. ...

1998-04-20T23:59:59.000Z

296

ARM - Campaign Instrument - s-band-profiler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentss-band-profiler govInstrumentss-band-profiler Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA S-band (2835 Mhz) Profiler (S-BAND-PROFILER) Instrument Categories Cloud Properties, Atmospheric Profiling Campaigns CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers [ Download Data ] Southern Great Plains, 2011.04.22 - 2011.06.06 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific, 2006.01.21 - 2006.02.13 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available

297

Profile of David M. Karl  

Science Journals Connector (OSTI)

...from burning fossil fuels is making the ocean more...love,” he says. Florida, Not Fish After the...had developed at Florida State University...Coastal Ecosystem Rates (RACER) and Palmer Long-Term...ATP, the common energy currency of life...improved the assay at Florida State University and...

Bijal P. Trivedi

2012-01-01T23:59:59.000Z

298

Profile of George M. Church  

Science Journals Connector (OSTI)

...US Department of Energy in the winter of 1984...estimate mutation rates in populations exposed...production of alternative fuel. In October 2011...water into renewable fuel. “Both companies...New Mexico, and Florida. Alkanes, unlike...diesel for cars, jet fuel, etcetera...

Prashant Nair

2012-01-01T23:59:59.000Z

299

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

300

Project Profile: Forecasting and Influencing Technological Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasting and Influencing Technological Progress in Solar Energy Project Profile: Forecasting and Influencing Technological Progress in Solar Energy Logos of the University of...

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Project Profile: Regenerative Carbonate-Based Thermochemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System...

302

Project Profile: Concentrated Solar Thermoelectric Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of...

303

Plant Energy Profiler | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Profiler Pumping System Assessment Tool Process Heating Assessment and Survey Tool Steam System Modeler Advanced Manufacturing Home Key Activities Research &...

304

TAU Portable Performance Profiling Tools Sameer Shende  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory, Los Alamos National Laboratory sameer@cs.uoregon.edu Tuning and Analysis Utilities http:www.acl.lanl.govtau TAU Profiling Team Members (In alphabetical order) Peter...

305

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

306

Plant Tumor Growth Rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

307

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% 4,100 4,400 4,700 5,000 5,300 5,600 5,900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Distillate Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: 2.5% Aug '12 to Aug '13: -1.3% YTD '12 to YTD '13: 1.5% 300 400 500 600 700 800 900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Residual Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: -0.8%

308

Adjusted Growth Rates* Jan.  

U.S. Energy Information Administration (EIA) Indexed Site

Adjusted Adjusted Growth Rates* Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -7.4% Jan '99 to Jan '00: -0.1% YTD '99 to YTD '00: -0.1% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -16.8% Jan '99 to Jan '00: -3.2% YTD '99 to YTD '00: -3.2% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -9.3% Jan '99 to Jan '00: +3.5% YTD '99 to YTD '00: +3.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul

309

Rate Adjustments and Public Involvement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rate Adjustments and Public Involvement Documents Rate Adjustments and Public Involvement Documents CRSP Transmission 9/16/2013 WAPA-161 FRN, CRSP transmission and ancillary services rates extension Letter announcing two-year extension to CRSP transmission and ancillary services rates Letter announcing revised CRSP transmission rates for FY 2014 Accompanying calculation table for FY 2014 CRSP transmission rate letter Letter announcing revised CRSP transmission rates for FY 2013 Letter announcing revised CRSP transmission rates for FY 2012 Letter announcing revised CRSP transmission rates for FY 2011 Letter announcing revised CRSP transmission rates for FY 2010 SLCA/IP 9/16/2013 WAPA-161 FRN, SLCA/IP firm power rate extension Letter announcing two-year extension to SLCA/IP firm power rate SLCA/IP Tentative Rate Adjustment Schedule

310

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

June '99 to July '99: -5.4% June '99 to July '99: -5.4% July '98 to July '99: +3.3% YTD '98 to YTD '99: +6.3% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: -0.5% July '98 to July '99: -0.4% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +0.5% July '98 to July '99: +1.0% YTD '98 to YTD '99: -0.3% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +1.5% July '98 to July '99: +10.2% YTD '98 to YTD '99: +7.2%

311

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Nov '99 to Dec '99: +5.3% Nov '99 to Dec '99: +5.3% Dec '98 to Dec '99: +8.7% YTD '98 to YTD '99: +5.0% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +6.0% Dec '98 to Dec '99: +4.5% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +2.4% Dec '98 to Dec '99: +3.0% YTD '98 to YTD '99: +0.9% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +32.3% Dec '98 to Dec '99: +2.0% YTD '98 to YTD '99: +5.5%

312

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

July '99 to Aug. '99: +4.7% July '99 to Aug. '99: +4.7% Aug. '98 to Aug. '99: +1.3% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -1.9% Aug. '98 to Aug. '99: -0.4% YTD '98 to YTD '99: +0.9% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -0.1% Aug. '98 to Aug. '99: -1.4% YTD '98 to YTD '99: -0.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: +22.3% Aug. '98 to Aug. '99: +21.1%

313

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Aug '99 to Sep '99: +4.9% Aug '99 to Sep '99: +4.9% Sep '98 to Sep '99: +4.7% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.4% Sep '98 to Sep '99: +0.4% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.1% Sep '98 to Sep '99: +4.6% YTD '98 to YTD '99: 0.0% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: +7.3% Sep '98 to Sep '99: +8.4% YTD '98 to YTD '99: +8.3%

314

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Oct '99 to Nov '99: +0.1% Oct '99 to Nov '99: +0.1% Nov '98 to Nov '99: +5.5% YTD '98 to YTD '99: +4.5% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: -0.7% Nov '98 to Nov '99: +1.7% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +2.5% Nov '98 to Nov '99: +6.0% YTD '98 to YTD '99: +0.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +9.7% Nov '98 to Nov '99: +2.2% YTD '98 to YTD '99: +6.2%

315

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Sep '99 to Oct '99: +3.9% Sep '99 to Oct '99: +3.9% Oct '98 to Oct '99: +2.3% YTD '98 to YTD '99: +4.4% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -0.2% Oct '98 to Oct '99: -0.9% YTD '98 to YTD '99: +1.0% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -1.9% Oct '98 to Oct '99: -0.7% YTD '98 to YTD '99: +0.4% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -2.1% Oct '98 to Oct '99: -6.4% YTD '98 to YTD '99: +6.6%

316

Transportation Rates For Fishery Products  

E-Print Network [OSTI]

express (Railway Express Agency), and motor carriers. Air transporta- tion and water transportation 2 Rail-freight rates 2 Rail-express rates 3 Motor-carrier rates 3 Protective-service charges 4 used in sample 7 2. Rail-express rate index: Routes used in sample 7 3. Motor-carrier rate index

317

Parent and Teacher Report: Comparing Results from the Sensory Profile and the Sensory Profile School Companion  

E-Print Network [OSTI]

OBJECTIVE. This study investigated the similarities and differences between parent and teacher report on the Sensory Profile and the Sensory Profile School Companion (School Companion). METHOD. Using data gathered during ...

Clark, Jessica Saiter

2008-08-13T23:59:59.000Z

318

October 1996 - September 2001 Wholesale Power Rates (rates/previous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

319

A framework for nonparametric profile monitoring  

Science Journals Connector (OSTI)

Control charts have been widely used for monitoring the functional relationship between a response variable and some explanatory variable(s) (called profile) in various industrial applications. In this article, we propose an easy-to-implement framework ... Keywords: B-spline, Block bootstrap, Confidence band, Curve depth, Nonparametric profile monitoring

Shih-Chung Chuang; Ying-Chao Hung; Wen-Chi Tsai; Su-Fen Yang

2013-01-01T23:59:59.000Z

320

Research profiling for `standardization and innovation'  

Science Journals Connector (OSTI)

This paper addresses the profiling of research papers on `standardization and innovation'--exploring major topics and arguments in this field. Drawing on 528 papers retrieved from the database, Web of Science, we employed trend, factor, and clustering ... Keywords: Bibliometrics, Clustering analysis, Innovation, Publication analysis, Research profiling, Standardization, Taxonomy

Dong Geun Choi; Heesang Lee; Tae-Kyung Sung

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH  

E-Print Network [OSTI]

can be advanced--among patients, health care providers, and the community at large. This workA PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH DIAGNOSES, 2000-2010 #12; #12; i A Profile of Kentucky Medicaid Mental Health Diagnoses, 20002010 BY Michael T. Childress

Hayes, Jane E.

322

Tier 2 Vintage Rate Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Tier 2 Rate Alternatives Tier 2 Rate Alternatives Load Growth Rate BPA commits to meet Load Following customers' load growth placed on BPA for the term of the commitment period...

323

TOF Profile function used at POWGEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TOF Profile function used at POWGEN: TOF Profile function used at POWGEN: Powgen uses a TOF profile function which is a variation on the standard profile function originally derived by VonDreele, Jorgensen and Windsor (VonDreele RB, Jorgensen JD and Windsor CG, "Rietveld Refinement with Spallation Neutron Powder Diffraction Data", J. Appl. Cryst. 15, 581 (1982). This function is implemented in GSAS (profile function 3, 4 & 5) and Fullprof NPROF 9 and is most applicable to diffractometers viewing ambient polyethylene or water moderators. The POWGEN diffractometer, however, views a poisoned cryogenic H 2 (liquid) moderator. The variation in peak shape and peak position with TOF (or d-spacing d) is calculated using a more complex function related to thermal and epithermal components of the neutron spectrum that was

324

Quantification of the relationship between pulmonary ventilation rate and vapor contaminant concentration in exposure profiles  

E-Print Network [OSTI]

The Human Factor's Laboratory located on the garage level of the Zachry Engineering Center was used as the exposure chamber facility. It has an approximate volume of 107, 000 liters. Through the use of an elaborate environmental monitoring... The Human Factor's Laboratory located on the garage level of the Zachry Engineering Center was used as the exposure chamber facility. It has an approximate volume of 107, 000 liters. Through the use of an elaborate environmental monitoring...

Horbal, Terrence Myron

2012-06-07T23:59:59.000Z

325

Plasma Adiabatic Lapse Rate  

Science Journals Connector (OSTI)

The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient ??? and difference in average ionization states Z2-Z1. Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.

Peter Amendt; Claudio Bellei; Scott Wilks

2012-08-16T23:59:59.000Z

326

ICARUS 78, 1--13 (1989) Magnetospheric Ion Bombardment Profiles of Satellites  

E-Print Network [OSTI]

ICARUS 78, 1--13 (1989) Magnetospheric Ion Bombardment Profiles of Satellites: Europa and Dione M. K. POSPIESZALSKA AND R. E. JOHNSON Department of Nuclear Engineering and Engineering Physics The spatial dependence across a satellite surface of the ion bombardment/implantation rate is calculated

Johnson, Robert E.

327

Rate types for stream programs  

Science Journals Connector (OSTI)

We introduce RATE TYPES, a novel type system to reason about and optimize data-intensive programs. Built around stream languages, RATE TYPES performs static quantitative reasoning about stream rates -- the frequency of data items in a stream being ... Keywords: data processing rates, data throughput, performance reasoning, stream programming, type systems

Thomas W. Bartenstein, Yu David Liu

2014-10-01T23:59:59.000Z

328

Performance Profiles of Major Energy Producers 1993  

Gasoline and Diesel Fuel Update (EIA)

3) 3) Distribution Category UC-950 Performance Profiles of Major Energy Producers 1993 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 Energy Information Administration/ Performance Profiles of Major Energy Producers 1993 ii This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Performance Profiles of Major Energy Producers 1993 iii The Financial Reporting System, 1977-1993 diskette is available from the Energy Information Administration.

329

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

330

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

331

Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

Electrical Profiling Configurations Electrical Profiling Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Profiling Configurations Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Direct-Current Resistivity Survey Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

332

An intelligent approach to non-constant feed rate determination for high-performance 2D CNC milling  

Science Journals Connector (OSTI)

Optimal machining parameters (spindle speed, feed rate, and depth of cut) are crucial to high-performance CNC pocketing and profiling, which is concerned with shorter machining time, higher surface quality, and longer tool life. However, the feed rates are often conservatively fixed, obviously un-optimised, for different geometries of a curved profile. In this work, an intelligent approach to determining non-constant feed rates is proposed. First, the geometric features of this profile are identified, and the corresponding effective radial depths of cut are calculated. Second, based on a database of these machining parameters, a fuzzy rule-based system is established to predict various cutting forces along this profile. Then the feed rates are adjusted so that the cutting forces always remain high and chatter is still prevented. Thus the high-performance machining can be realised by using this approach, which can also be readily implemented in production process planning to benefit the manufacturing industry.

Zezhong C. Chen; Zhibin Miao

2006-01-01T23:59:59.000Z

333

Subsurface imaging with reverse vertical seismic profiles  

E-Print Network [OSTI]

This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

Krasovec, Mary L. (Mary Lee), 1972-

2001-01-01T23:59:59.000Z

334

load profile | OpenEI Community  

Open Energy Info (EERE)

data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: applicationzip icon System Advisor Model Tool for Downloading Load Data...

335

Longitudinal profile of channels cut by springs  

E-Print Network [OSTI]

We propose a simple theory for the longitudinal profile of channels incised by groundwater flow. The aquifer surrounding the stream is represented in two dimensions through Darcy's law and the Dupuit approximation. The ...

Devauchelle, O.

336

Automatic program timing profiles with FTN4  

SciTech Connect (OSTI)

Design of a scheme for producing execution timing profiles of FORTRAN programs automatically is proposed with a recommendation to implement it as an option to the compiler. An experimental implementation on the LBL 7600 is also described. 1 figure.

Friedman, R.

1980-09-01T23:59:59.000Z

337

Definition: Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Profiling Profiling Jump to: navigation, search Dictionary.png Vertical Seismic Profiling Vertical Seismic Profile (VSP) is a technique of seismic measurements used for high resolution seismic imaging. It can also be used for correlation with surface seismic data providing velocity information and information for processing such as deconvolution parameters. The defining characteristic of a VSP is that the detectors are in a borehole.[1][2][3] View on Wikipedia Wikipedia Definition Also Known As Advanced Borehole Seismology (ABS), Related Terms Seismic Techniques, High Resolution Imaging and Monitoring References ↑ Bob Hardage VSP Principles ↑ High resolution 3D seismic imaging using 3C data from large downhole seismic arrays Paulsson et al. (2004) ↑ Mueller Soroka Paulsson (2010)

338

electric rates | OpenEI  

Open Energy Info (EERE)

electric rates electric rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

339

Rate Schedules | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rate Schedules Rate Schedules Rate Schedules One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are updated annually. They demonstrate the adequacy of the rates for each system. Rates are considered to be adequate when revenues are sufficient to repay all costs associated with power production and transmission costs, which include the amortization of the Federal investment allocated to power. Latest Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012

340

2007-2009 Power Rates Quarterly Updates (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

WP-07 Power Rate Case (rates/ratecases)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rate Cases Financial Choices (2003-06) Power Function Review (PFR) Firstgov 2007 Wholesale Power (WP-07) Rate Case Related Links: Power Function Review (PFR) On July 17, 2006,...

342

Analysis Methodology for Industrial Load Profiles  

E-Print Network [OSTI]

ANALYSIS METHODOLOGY FOR INDUSTRIAL LOAD PROFILES Thomas W. Reddoch Executive Vice President Eleclrolek Concepts, Inc. Knoxvillc, Tennessee ABSTRACT A methodology is provided for evaluating the impact of various demand-side management... (OSM) options on industrial customers. The basic approach uses customer metered load profile data as a basis for the customer load shape. OSM technologies are represented as load shapes and are used as a basis for altering the customers existing...

Reddoch, T. W.

343

Maine Geological Survey Borehole Temperature Profiles  

SciTech Connect (OSTI)

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

Marvinney, Robert

2013-11-06T23:59:59.000Z

344

National Utility Rate Database: Preprint  

SciTech Connect (OSTI)

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

345

Rating the NRF's rating system Michael I. Cherry  

E-Print Network [OSTI]

the NRF's raison d'ĂȘtre--thetrainingofhigh-qualityresearch manpower. The progress of the rating systemRating the NRF's rating system Michael I. Cherry a* and Mark J. Gibbons b T HE LATEST REVIEW OF THE NATIONAL Research Foundation (NRF), chaired by Wieland Gevers, and released surreptitiously

Wagner, Stephan

346

ITP Petroleum Refining: Energy and Environmental Profile of the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry...

347

ITP Petroleum Refining: Profile of the Petroleum Refining Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in...

348

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...  

Open Energy Info (EERE)

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Vertical Seismic Profiling Activity Date...

349

SCHOOL OF MEDICINE TELECOMMUNICATIONS RATE  

E-Print Network [OSTI]

SCHOOL OF MEDICINE TELECOMMUNICATIONS RATE BACKGROUND The University recently the desktop phone service costs back to individual units/departments by creating a telecommunications rate in the Other Expenses category of the budget as a "Telecommunications Charge". NOTE- direct charging

Straight, Aaron

350

2007 Wholesale Power Rate Schedules : 2007 General Rate Schedule Provisions.  

SciTech Connect (OSTI)

This schedule is available for the contract purchase of Firm Power to be used within the Pacific Northwest (PNW). Priority Firm (PF) Power may be purchased by public bodies, cooperatives, and Federal agencies for resale to ultimate consumers, for direct consumption, and for Construction, Test and Start-Up, and Station Service. Rates in this schedule are in effect beginning October 1, 2006, and apply to purchases under requirements Firm Power sales contracts for a three-year period. The Slice Product is only available for public bodies and cooperatives who have signed Slice contracts for the FY 2002-2011 period. Utilities participating in the Residential Exchange Program (REP) under Section 5(c) of the Northwest Power Act may purchase Priority Firm Power pursuant to the Residential Exchange Program. Rates under contracts that contain charges that escalate based on BPA's Priority Firm Power rates shall be based on the three-year rates listed in this rate schedule in addition to applicable transmission charges. This rate schedule supersedes the PF-02 rate schedule, which went into effect October 1, 2001. Sales under the PF-07 rate schedule are subject to BPA's 2007 General Rate Schedule Provisions (2007 GRSPs). Products available under this rate schedule are defined in the 2007 GRSPs. For sales under this rate schedule, bills shall be rendered and payments due pursuant to BPA's 2007 GRSPs and billing process.

United States. Bonneville Power Administration.

2006-11-01T23:59:59.000Z

351

Commercial Building Asset Rating Program  

Broader source: Energy.gov [DOE]

Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

352

Dynamic user profiles for web personalisation  

Science Journals Connector (OSTI)

Abstract Web personalisation systems are used to enhance the user experience by providing tailor-made services based on the user’s interests and preferences which are typically stored in user profiles. For such systems to remain effective, the profiles need to be able to adapt and reflect the users’ changing behaviour. In this paper, we introduce a set of methods designed to capture and track user interests and maintain dynamic user profiles within a personalisation system. User interests are represented as ontological concepts which are constructed by mapping web pages visited by a user to a reference ontology and are subsequently used to learn short-term and long-term interests. A multi-agent system facilitates and coordinates the capture, storage, management and adaptation of user interests. We propose a search system that utilises our dynamic user profile to provide a personalised search experience. We present a series of experiments that show how our system can effectively model a dynamic user profile and is capable of learning and adapting to different user browsing behaviours.

Ahmad Hawalah; Maria Fasli

2015-01-01T23:59:59.000Z

353

/sup 10/Be profiles in lunar surface rock 68815  

SciTech Connect (OSTI)

Cosmic ray produced /sup 10/Be (t/sub 1/2/ = 1.6 x 10/sup 6/ years) activities have been measured in fourteen carefully ground samples of lunar surface rock 68815. The /sup 10/Be profiles from 0 to 4 mm are nearly flat for all three surface angles measured and show a very slight increase with depth from the surface to a depth of 1.5 cm. These depth profiles are in contrast to the SCR (solar cosmic ray) produced /sup 26/Al and /sup 53/Mn profiles measured from these same samples. There is no sign of SCR produced /sup 10/Be in this rock. The discrepancy between the data and the Reedy-Arnold theoretical calculation (about 2 dpm /sup 10/Be/kg at the surface) can be explained in two ways: (1) the low energy proton induced cross sections for /sup 10/Be production from oxygen are really lower than those used in the calculations or, (2) compared to the reported fits for /sup 26/Al and /sup 53/Mn, the solar proton spectral shape is actually softer (exponential rigidity parameter Ro less than 100 MV), the omnidirectional flux above 10 MeV is higher (more than 70 protons/cm/sup 2/ s), and the erosion rate is higher (greater than 1.3 mm/My). /sup 10/Be, as a high energy product, is a very useful nuclide for helping to obtain the SCR spectral shape in the past. 23 refs., 3 figs., 1 tab.

Nishiizumi, K.; Imamura, M.; Kohl, C.P.; Nagai, H.; Kobayashi, K.; Yoshida, K.; Yamashita, H.; Reedy, R.C.; Honda, M.; Arnold, J.R.

1987-01-01T23:59:59.000Z

354

Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate  

E-Print Network [OSTI]

We study the average asymptotic growth rate of cells in randomly fluctuating environments. Using a game-theoretic perspective, we show that any response strategy has an asymptotic growth rate, which is the sum of: (i) the maximal growth rate at the worst possible distribution of environments, (ii) relative information between the actual distribution of environments to the worst one, and (iii) information utilization rate which is the information rate of the sensory devices minus the "information dissipation rate", the amount of information not utilized by the cell for growth. In non-stationary environments, the optimal strategy is the time average of the instantaneous optimal strategy and the optimal switching times are evenly spaced in the statistical (Fisher) metric.

Pugatch, Rami; Tlusty, Tsvi

2013-01-01T23:59:59.000Z

355

The Inverted Block Rate:The Inverted Block Rate: An Alternative to Flat Rate BillingAn Alternative to Flat Rate Billing  

E-Print Network [OSTI]

The Inverted Block Rate:The Inverted Block Rate: An Alternative to Flat Rate BillingAn Alternative;Inverted Block RateInverted Block Rate 22 IntroductionIntroduction ·· Modern societies rely on electrical collectionMetering and Rate Models facilitate collection #12;Inverted Block RateInverted Block Rate 33 Rate

Hughes, Larry

356

Debugging & Profiling | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Debugging & Profiling Debugging & Profiling Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgq_stack gdb Coreprocessor TotalView on BG/Q Systems Performance Tools & APIs Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Debugging & Profiling Initial setups Core file settings - this page contains some environment variables that allow you to control code file creation and contents. Using VNC with a Debugger - when displaying an X11 client (e.g. Totalview) remotely over the network, interactive response is typically slow. Using the VNC server can often help you improve the situation.

357

DOE Solar Decathlon: News Blog » Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profiles Profiles Below you will find Solar Decathlon news from the Profiles archive, sorted by date. Instrumentation for Dummies Sunday, September 29, 2013 By Alexis Powers If your head spins at the thought of 105 sensors collecting 12 data points every 15 minutes for all 19 houses competing in the U.S. Department of Energy Solar Decathlon 2013, you might want to pay a visit to Miss Barbara. This bodiless mannequin acts as the student liaison for the instrumentation team. Perhaps the steadiest head on the competition site, Miss Barbara helps student decathletes locate the instrumentation trailer when questions arise about measured contests. Photo of a mannequin's head looking out of a construction trailer's window. The unwavering gaze of Miss Barbara serves as a beacon for decathletes who

358

Beam profile effects on NPB performance  

SciTech Connect (OSTI)

A comparison of neutral particle beam (NPB) brightness for various neutral beam profiles indicates that the widely used assumption of a Gaussian profile may be misleading for collisional neutralizers. An analysis of available experimental evidence shows that lower peaks and higher tails, compared to a Gaussian beam profile, are observed out of collisional neutralizers, which implies that peak brightness is over estimated, and for a given NPB platform-to-target range, the beam current (power), dwell time or some combination of such engagement parameters would have to be altered to maintain a fixed dose on the target. Based on the present analysis, this factor is nominally about 2.4 but may actually be as low as 1.8 or as high as 8. This is an important consideration in estimating NPB constellation performance in SDI engagement contexts.

Leclaire, R.J. Jr.; Bunker, W.J.

1988-03-01T23:59:59.000Z

359

Natural gas annual 1993 supplement: Company profiles  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

Not Available

1995-02-01T23:59:59.000Z

360

Commercial Building Profiles | OpenEI  

Open Energy Info (EERE)

Building Profiles Building Profiles Dataset Summary Description This dataset includes simulation results from a national-scale study of the commercial buildings sector. Electric load profiles contain the hour-by-hour demand for electricity for each building. Summary tables describe individual buildings and their overall annual energy performance. The study developed detailed EnergyPlus models for 4,820 different samples in 2003 CBECS. Simulation output is available for all and organized by CBECS's identification number in public use datasets. Three modeling scenarios are available: existing stock (with 2003 historical weather), stock as if rebuilt new (with typical weather), and the stock if rebuilt using maximum efficiency technology (with typical weather). The following reports describe how the dataset was developed:

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

October 2003 - March 2004 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 - March 2004 (CRAC 5 period) "Monthly Adjusted" Wholesale Power Rates Effective October 2003 - March 2004 (CRAC 5 period) (PDF, 4 pages, 15 kb, corrected December 18, 2003,...

362

April - September 2004 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 (CRAC 6 period) "Monthly Adjusted" Wholesale Power Rates Effective April 1 - September 30, 2004 (CRAC 6 period) (PDF, 4 pages, 14 kb, originally posted January 12, 2004;...

363

April - September 2005 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April - September 2005 (CRAC 8 period) "Monthly Adjusted" Wholesale Power Rates Effective April - September 2005 (CRAC 8 period) (PDF, 3 pages, 108 kb, posted December 17, 2004)...

364

October 2005 - March 2006 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2005 - March 2006 (CRAC 9 period) "Monthly Adjusted" Wholesale Power Rates Effective October 2005 - March 2006 (CRAC 9 period) (PDF, 4 pages, 116 kb, originally posted...

365

Sector Profiles of Significant Large CHP Markets, March 2004  

Broader source: Energy.gov [DOE]

Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

366

In situ feldspar dissolution rates in an aquifer  

Science Journals Connector (OSTI)

In situ silicate dissolution rates within the saturated Navajo sandstone, at Black Mesa, Arizona were determined from elemental fluxes in the aquifer. The mass transfer between groundwater and mineral matrix along flow paths was calculated from inverse mass balance modeling. The reaction time is bound by 14C-based travel time. BET surface areas were measured with N2 gas adsorption. Dissolution rates for K-feldspar and plagioclase are 10?19 and 10?16 mol (feldspar) m?2 s?1, respectively, which are ?105 times slower than laboratory experiment-derived rates under similar pH and temperature but at far from equilibrium conditions. The rates obtained in this study are consistent with the slower field rates found in numerous watershed and soil profile studies. However, these rates are from saturated aquifers, overcoming some concerns on estimated rates from unsaturated systems. The Navajo sandstone is a quartz-sandstone with a relatively simple and well-studied hydrogeology, groundwater geochemistry, and lithology, a large number of groundwater analyses and 14C groundwater ages, groundwater residence times up to ?37 ky, groundwater pH from ?8 to 10, and temperature from ?15 to 35°C.

Chen Zhu

2005-01-01T23:59:59.000Z

367

Compton profiles of LiF  

Science Journals Connector (OSTI)

?-ray Compton profiles of LiF with the scattering vector along the , , and axes are reported. Both the absolute profiles and their anisotropy are derived from a tight-binding model and compared with experiments. The overall agreement between theory and experiment is found to be satisfactory for all three directions. Recent calculations of Euwema et al. are compared with the present work and found to predict incorrect anisotropies, particularly at small momentum transfers. It is also shown that momentum distributions can be orders of magnitude more sensitive to anisotropy in the electron distributions than x-ray structure factors, at least in materials where overlap of the wave functions is small.

K. -F. Berggren; F. Martino; P. Eisenberger; W. A. Reed

1976-03-15T23:59:59.000Z

368

Process for forming retrograde profiles in silicon  

DOE Patents [OSTI]

A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, K.H.; Sigmon, T.W.

1996-10-15T23:59:59.000Z

369

Process for forming retrograde profiles in silicon  

DOE Patents [OSTI]

A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

1996-01-01T23:59:59.000Z

370

Study of microvoids in high-rate a-Si:H using positron annihilation  

SciTech Connect (OSTI)

In this paper, the authors have carried out the positron annihilation measurement on high-rate and low-rate a-Si:H thin films deposited by PECVD. By means of the slow positron beam Doppler-broadening technique, the depth profiles of microvoids in a-Si:H have been determined. They have also studied the vacancy-type defect in the surface region in high-rate grown a-Si:H, making comparison between high-rate and low-rate a-Si:H. By plotting S and W parameters in the (S, W) plane, they have shown that the vacancies in all of the high-rate and low-rate deposited intrinsic samples, and in differently doped low-rate samples are of the same nature.

Zou, X.; Webb, D.P.; Lin, S.H.; Lam, Y.W.; Chan, Y.C.; Hu, Y.F.; Beling, C.D.; Fung, S.

1997-07-01T23:59:59.000Z

371

LEED for Homes Rating System affordablemarket rate multi-family  

E-Print Network [OSTI]

LEED for Homes Rating System affordablemarket rate multi-family #12;The top 25% of new homes based% REGULATIONS lawbreakers DEGREE OF GREEN MARKET SHIFT typical building practices market leaders innovators the negative impact of buildings on their occupants and on the environment. LEED for Homes categories

Zaferatos, Nicholas C.

372

The Coal Transportation Rate Database  

Gasoline and Diesel Fuel Update (EIA)

Coal Transportation Rate Database (CTRDB) adds new data for 2000 and 2001. The Federal Energy Regulatory Commission's (FERC) Form 580 "interrogatories" are the primary source for...

373

BPA revises oversupply rate proposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oversupply-rate-proposal Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

374

Viscosity profile of the lower mantle  

Science Journals Connector (OSTI)

......October 1985 research-article Articles Viscosity profile of the lower mantle Kirk Ellsworth...determine the variation of effective viscosity across the lower mantle from models of...consistent with recent estimates of mantle viscosity from post-glacial rebound and true......

Kirk Ellsworth; Gerald Schubert; Charles G. Sammis

1985-10-01T23:59:59.000Z

375

Route profile analysis system and method  

DOE Patents [OSTI]

A system for recording terrain profile information is disclosed. The system accurately senses incremental distances traveled by a vehicle along with vehicle inclination, recording both with elapsed time. The incremental distances can subsequently be differentiated with respect to time to obtain acceleration. The computer acceleration can then be used to correct the sensed inclination.

Mullenhoff, D.J.; Wilson, S.W.

1982-07-29T23:59:59.000Z

376

MATLAB Functions for Profiled Estimation of  

E-Print Network [OSTI]

MATLAB Functions for Profiled Estimation of Differential Equations Giles Hooker June 23, 2010: . . . . . . . . . . . . . . . . . . . 5 2 Example: FitzHugh-Nagumo Equations 5 3 MATLAB Objects Needed for the Estimation. 6 3.1 Cell is designed to accompany a Matlab software package that esti- mates the parameters in differential equation

Keinan, Alon

377

Performance Profiles of Major Energy Producers  

Reports and Publications (EIA)

The information and analyses in Performance Profiles of Major Energy Producers is intended to provide a critical review, and promote an understanding, of the possible motivations and apparent consequences of investment decisions made by some of the largest corporations in the energy industry.

2011-01-01T23:59:59.000Z

378

utility functions scaling profiles utility-fair  

E-Print Network [OSTI]

bandwidth utility functions scaling profiles utility-fair I. INTRODUCTION The emerging MPEG-4 video. This can result in a significant increase in the utilization of network capacity [1]. These techniques. Bandwidth utility functions [9] can be used to characterize an application's capability to adapt over

Chang, Shih-Fu

379

An Economic Profile of the Biosciences Industry  

E-Print Network [OSTI]

An Economic Profile of the Biosciences Industry in West Virginia1 February 2008 By Anthony C. Gregory & Tom S. Witt Bureau of Business and Economic Research College of Business and Economics West are the responsibility of the authors. Mr. Gregory is a graduate research assistant, Bureau of Business and Economic

Mohaghegh, Shahab

380

Triangular-profile single-mode fiber  

Science Journals Connector (OSTI)

A low-loss triangular-profile single-mode fiber is reported. The fiber loss at 1.3–1.55-?m wavelengths is below 0.4 dB/km, and its zero-chromatic-dispersion wavelength is 1.402 ?m.

Saifi, M A; Cohen, L G; Stone, J; Jang, S J

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RECYCLING RATE STUDY Prepared by  

E-Print Network [OSTI]

NATIONAL RECYCLING RATE STUDY Prepared by: Smith, Bucklin and Associates, Inc. Market Research and Statistics Division Chicago, Illinois July 2003 PRINTED ON RECYCLED PAPER #12;BCI RECYCLING RATE STUDY TABLE ....................................................................................................1 II. METHODOLOGY A. Total Pounds of Lead Recycled from Batteries

Laughlin, Robert B.

382

Commercial Building Asset Rating Program  

Broader source: Energy.gov (indexed) [DOE]

1 eere.energy.gov 1 eere.energy.gov Commercial Building Asset Rating Program August 23, 2011 12 p.m. ET, 9 a.m. PT Presenter: Cody Taylor PRE-DECISIONAL Information included in this document is for discussion purposes and does not constitute the final program design. FOR INFORMATION ONLY 2 eere.energy.gov Outline * Goals * Scope & schedule * Guiding principles * Program design issues - Metrics - Rating method - Rating scale - Opportunities for efficiency improvement - Quality assurance Please submit clarifying questions during today's webinar via the Q&A function of Live Meeting. 3 eere.energy.gov National Building Rating Program Goals * Facilitate cost-effective investment in energy efficiency and reduce energy use in the commercial building sector * Establish a national standard for voluntary commercial building asset rating

383

Innovative Rates Program. Final report  

SciTech Connect (OSTI)

Title II of the Energy Conservation and Production Act (ECPA) as amended by the Public Utility Regulatory Policies Act (PURPA) provided financial assistance to state utility regulatory commissions, nonregulated electric utilities, and the Tennessee Valley Authority through the Innovative Rates Program. The financial assistance was to be used to plan or carry out electric utility regulatory rate reform initiatives relating to innovative rate structures that encourage conservation of energy, electric utility efficiency and reduced costs, and equitable rates to consumers. The Federal and local objectives of the project are described. Activities planned and accomplishments are summarized for the following: project management, data collection, utility bill evaluation, billing enclosure/mailing evaluation, media program evaluation, display evaluation, rate study sessions evaluation, speakers bureau evaluation, and individual customer contacts. A timetable/milestone chart and financial information are included. (MHR)

Not Available

1982-06-21T23:59:59.000Z

384

Cloud Properties and Radiative Heating Rates for TWP  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

385

Cloud Properties and Radiative Heating Rates for TWP  

SciTech Connect (OSTI)

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

2013-11-07T23:59:59.000Z

386

Chemical Depth Profiling from Neutron Reflectometry  

SciTech Connect (OSTI)

The material profile of a thin film can be analyzed by placing the film on a substrate and by sending a neutron beam onto it at various angles of incidence. Technically, the scattering length density of the film needs to be determined as a function of depth. A reflectometer is used to measure the amount of reflection (reflectivity) as a function of the angle of incidence. Mathematically, this is equivalent to sending the neutron beam onto the film at every energy but at a fixed angle of incidence. The film profile needs to be recovered from the measured reflectivity data. Unfortunately, the unique recovery is impossible, and many distinct unrelated profiles may correspond to the same reflectivity data. In our DOE/EPSCoR sponsored research, we have developed an analytical method to uniquely recover the profile of a thin film from the measured reflectivity data. We have shown that by taking reflectivity measurements with two different substrates, one can uniquely determine the film profile. Previously, it was known that one could uniquely recover the profile by taking reflectivity measurements with three different substrates, and our findings indicate that the same goal can be accomplished by using fewer measurements. At Mississippi State University we started an informal weekly seminar (called ''the reflectometry meeting'') at to attract various undergraduate and graduate students into the field. There were about 3 undergraduate students, 6 graduate students, and 2 faculty members attending these seminars. The PI has collaborated with Dr. Norm Berk at National Institute of Standards and Technology (NIST) on various aspects of neutron reflectometry, from which various interesting problems of theoretical and practical importance have arisen. One of these problems is closely related to the important mathematical problem known as analytic extrapolation. Under appropriate conditions (known to hold in neutron reflectometry), the reflection data taken in a finite interval of neutron energies uniquely determines the data at all energies. Even though the uniqueness is assured mathematically, there are currently no available methods for analytic extrapolation. Currently, we are working on this problem as it arises in neutron reflectometry and looking for mathematical and numerical methods to extrapolate reflection data to higher and lower neutron energies. A solution to this problem is expected to have a big impact not only in neutron reflectometry, but in many areas of physics and engineering. The PI has collaborated with Prof. Paul Sacks of Iowa State University, Prof. Daniil Sarkissian of Mississippi State University, and Prof. Levon Babadzanjanz of St. Petersburg State University, Russia on mathematical and numerical aspects of neutron reflectometry. These researchers jointly worked with the PI towards the preparation of numerical routines to extract the film profile from the reflection data. We have prepared a Mathematica interface running Fortran 95 algorithms to produce reflection data from a given profile. These Fortran 95 algorithms have been prepared by updating and modifying Prof. Sacks' Fortran 77 routine and by updating Dr. Gian Felcher's (of Argonne National Laboratory) Fortran 77 routine. We are also preparing similar algorithms written in Mathematica so that they can be used without needing Fortran. We are also working towards preparing algorithms in Fortran 95 and in Mathematica to produce the film profile from the given sets of reflectivity data.

Tuncay Aktosun

2006-03-21T23:59:59.000Z

387

October 2004 - March 2005 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 - March 2005 (CRAC 7 period) "Monthly Adjusted" Wholesale Power Rates Effective October 2004 - March 2005 (CRAC 7 period) (PDF, 3 pages, 13 kb, originally posted at 11 a.m. on...

388

April - September 2002 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 (CRAC 2 period) "Monthly Adjusted" Wholesale Power Rates Effective April - September 2002 (CRAC 2 period) (PDF, 9 kb, posted April 1, 2002) Note: The PDF document above provides...

389

October 2002 - March 2003 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 - March 2003 (CRAC 3 period) "Monthly Adjusted" Wholesale Power Rates Effective October 2002 - March 2003 (CRAC 3 period) (PDF, 14 kb, posted October 1, 2002) Note: The PDF...

390

April - September 2003 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 (CRAC 4 period) "Monthly Adjusted" Wholesale Power Rates Effective April - September 2003 (CRAC 4 period) (PDF, 3 pages, 74 kb, updated April 8, 2003) Note: The PDF document...

391

October 2001 - March 2002 Power Rates (rates/previous)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 - March 2002 (CRAC 1 period) "Monthly Adjusted" Wholesale Power Rates Effective October 2001 - March 2002 (CRAC 1 period) (PDF, 6 kb, updated October 3, 2001, posted October 4,...

392

Solids flow rate measurement in dense slurries  

SciTech Connect (OSTI)

Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

Porges, K.G.; Doss, E.D.

1993-09-01T23:59:59.000Z

393

Positron annihilation rates in materials  

Science Journals Connector (OSTI)

The study of positron annihilation rate is one subject of a relatively new method of material structure analysis â?? positron annihilation spectroscopy. Polyethylene Terephthalate (PET) films have been studied by positron annihilation rate measurement. The correlation between annihilation rates and the PET film thickness was established. Similar studies were carried out for aluminium foils and water. The results give information on the probability of positron annihilation per unit of time and per unit of material thickness that is described by an explicit function of the energy transfer model.

Tran Dai Nghiep; Khuong Thanh Tuan; Ngo Danh Du

2007-01-01T23:59:59.000Z

394

Journal of Environmental Management 86 (2008) 1426 Combination of multispectral remote sensing, variable rate technology  

E-Print Network [OSTI]

Journal of Environmental Management 86 (2008) 14­26 Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management Qian Dua , Ni-Bin Changb causing pollution in surface water in Texas (Texas Environmental Profiles, 2005). As the Safe Drinking

Du, Jenny (Qian)

395

OG&E Uses Time-Based Rate Program to Reduce Peak Demand  

Office of Environmental Management (EM)

46.0kWh 6 Critical Peak Event 46.0kWh 46.0kWh 7 (included in the above) Demand Response to Time-Based Rates The figure below shows 24-hour load profiles for the average...

396

Balance Engineering - Eli Lilly Teaming Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial SPP / Partner Teaming Profile Industrial SPP / Partner Teaming Profile UService/Product Provider Balance Engineering Inc. 3711 East Carmel Drive Carmel, IN 46033 Business: Consulting Engineering Jack F. Staley President Phone: 317-844-3178 Email: HTUjack@balanceeng.comUT U I ndustrial Partner Eli Lilly and Company Lilly Corporate Center Indianapolis, IN 46285 Business: Pharmaceuticals David S. Drzewiecki Group Leader, Energy & Utilities Phone: 317-433-0336 Email: HTUDrzewiecki_David_S@Lilly.comUT Balance Engineering identifies $3 million in energy savings at Lilly facility Project Scope Balance Engineering conducted a facility energy assessment of the Eli Lilly Clinton Laboratories, a large multi-building pharmaceutical campus. The goals of the assessment were to determine the major uses of

397

DOE Solar Decathlon: News Blog » Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

'Profiles' 'Profiles' Instrumentation for Dummies Sunday, September 29, 2013 By Alexis Powers If your head spins at the thought of 105 sensors collecting 12 data points every 15 minutes for all 19 houses competing in the U.S. Department of Energy Solar Decathlon 2013, you might want to pay a visit to Miss Barbara. This bodiless mannequin acts as the student liaison for the instrumentation team. Perhaps the steadiest head on the competition site, Miss Barbara helps student decathletes locate the instrumentation trailer when questions arise about measured contests. Photo of a mannequin's head looking out of a construction trailer's window. The unwavering gaze of Miss Barbara serves as a beacon for decathletes who are searching for answers related to monitored performance-and baked

398

Experiment Profile: MINERvA NAME:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Profile: MINERvA Profile: MINERvA NAME: Main Injector Experiment for v-A, or MINERvA ORIGIN OF THE NAME: The Main Injector is the name of the link in the Fermilab accelerator chain that takes protons and accelerates them before "injecting" them in a beamline to hit a target. Nuclear physics uses the term "v-A" as shorthand for atomic number studies. WHAT WILL MINERvA TELL US ABOUT THE WORLD? * MINERvA opens a new window for seeing how matter evolved from simple particles to more complex composites of particles, which eventually created everything you see. * Data from MINERvA provides crucial first steps so that current and future neutrino experiments can answer the following questions: * Were neutrinos key to the evolution of the galaxy by allowing

399

Industrial SSP Partner Teaming Profile SWEPCO Intertape  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial SPP / Partner Teaming Profile Industrial SPP / Partner Teaming Profile Industrial Partner Intertape Polymer Group 1101 Eagle Springs Rd. Danville, VA 24540 Business: Specialized Polyolefin Plastic/Paper Products Mike Jones Manager of Engineering Phone: 434-797-8359 Email: mbjones@itape.com Service/Product Provider Southwestern Petroleum Corporation 534 N. Main St Fort Worth, TX 76164 Business: High Performance Lubricants Paul J. Dickerson Senior Vice President & COO Phone: 817-348-7275 Email: pjd@swepcousa.com Southwestern Petroleum Corporation (SWEPCO) captures "low-hanging fruit" with superior lubricants for Intertape Polymer Project Scope SWEPCO analyzed four problematic gear boxes at the Intertape Polymer Group facility in Danville, VA, which over-heated and tripped the circuit due to high amperage overload. SWEPCO implemented

400

Performance Profiles of Major Energy Producers 1995  

Gasoline and Diesel Fuel Update (EIA)

5) 5) Distribution Category UC-950 Performance Profiles of Major Energy Producers 1995 January 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Performance Profiles of Major Energy Producers 1995 ii To download the Financial Reporting System 1977-1995 data files, access the Energy Information Center's FTP site, at ftp: //ftp.eia.doe.gov or access the Energy Information Administration's Home Page at http://www.eia.doe.gov.

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Performance Profiles of Major Energy Producers 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Performance Profiles of Major Energy Producers 1996 January 1998 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Performance Profiles of Major Energy Producers 1996 ii The Financial Reporting System 1977-1996 data files can be downloaded from the Energy Information

402

Performance Profiles of Major Energy Producers 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Performance Profiles of Major Energy Producers 1997 January 1999 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Performance Profiles of Major Energy Producers 1997 ii The Financial Reporting System 1977-1997 data files can be downloaded from the Energy Information Administration's

403

Vertical profiles of halocarbons in the stratosphere  

SciTech Connect (OSTI)

Stratospheric air samples collected between 10 and 35 km altitude by means of a cryogenic sampler were analyzed by gaschromatography. Thus vertical profiles of source gases for halogen radicals were derived, such as CCl4, CCl3F, CCl2F2, CClF3, CF4, C2F3Cl3, C2F4Cl2, C2F5Cl, C2F6, CH3Cl, CH3CCl3, CHF2Cl, CH3Br, CBrF3, and CBrCl2F. Systematic discrepancies between measured and modelled halocarbon profiles point to deficiencies of present one- and two-dimensional models. Measurements of fully halogenated hydrocarbons provide a tool for systematically studying these deficiencies and thus improving the models. 40 references.

Fabian, P.; Borchers, R.

1984-01-01T23:59:59.000Z

404

DOE Guidance-Category Rating  

Broader source: Energy.gov (indexed) [DOE]

2010 2010 MEMORANDUM FOR HUMAN RESOURCES DIRECTORS FROM: SARA"iJ. Boku1, DIRECToR OF HUMAN C~TAL MANAGEMENT SUBJECT: GUIDANCE MEMORANDUM #10 CATEGORY RATING The purpose of this memorandum is to establish the Department of Energy's (DOE's) policy for the use of Category Rating. Authorities: Public Law 107-296; Title 5 USC 3319; 5 CFR, Part 337, Subpart C., Presidential Memorandum of May 11, 2010 This guidance is established in accordance with 5 USC 3319, which authorizes Federal Agencies to use alternative rating proced.ures in assessing applicants for employment using category rating and selection procedures, and to ensure consistency in complying with federal regulations contained in the Code of Federal Regulations (CFR), Office of Personnel Management (OPM) and the Department of

405

ARM - Measurement - Radiative heating rate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

406

OpenEI - electric rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

407

High repetition rate fiber lasers  

E-Print Network [OSTI]

This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...

Chen, Jian, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

408

Project Definition Rating Index (PDRI)  

Broader source: Energy.gov [DOE]

The Office of Environmental Management (EM) Project Definition Rating Index (EM-PDRI) is a modification of a commercially developed planning tool that has been tested by an EM team specifically for...

409

Compton profiles of Ne, Ar, and Kr  

Science Journals Connector (OSTI)

Compton profiles of Ne, Ar, and Kr are calculated from ground-state energies and wave functions with full correlation contributions included. The latter is carried out by regarding atoms as inhomogeneous interacting electron-gas systems using the Kohn-Sham self-consistent scheme in the local-density approximation. The calculated values are brought closer to the experimental values from Hartree-Fock results. There are numerical problems for large atoms.

B. Y. Tong and L. Lam

1978-08-01T23:59:59.000Z

410

Electric Rate Alternatives to Cogeneration  

E-Print Network [OSTI]

"ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...

Sandberg, K. R. Jr.

411

Surface skeleton generation based on 360-degree profile scan  

E-Print Network [OSTI]

A rapid prototyping method is invented, which works on a specific data structure produced by an optical metrology technique: 360-degree surface profile scanning. A computer algorithm takes an object profile data, restructure ...

Chen, Lujie

412

Building America Top Innovations 2013 Profile - Zero Energy-Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Many Building America...

413

STAMP: statistical analysis of taxonomic and functional profiles  

Science Journals Connector (OSTI)

......White et al., 2009) are provided for comparing profiles organized into two groups. STAMP implements the ANOVA and Kruskal-Wallis H-test for comparing three or more groups of profiles. Statistically significant features can be further examined......

Donovan H. Parks; Gene W. Tyson; Philip Hugenholtz; Robert G. Beiko

2014-11-01T23:59:59.000Z

414

Turbulence Patch Identification in Potential Density or Temperature Profiles  

Science Journals Connector (OSTI)

The Thorpe analysis is a recognized method used to identify and characterize turbulent regions within stably stratified fluids. By comparing an observed profile of potential temperature or potential density to a reference profile obtained by ...

Richard Wilson; Hubert Luce; Francis Dalaudier; Jacques Lefrère

2010-06-01T23:59:59.000Z

415

Activity-based protein profiling of secreted cellulolytic enzyme...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30 Activity-based protein profiling of secreted cellulolytic...

416

Enhanced reaction rates in NDP analysis with neutron scattering  

SciTech Connect (OSTI)

Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

Downing, R. Gregory, E-mail: gregory.downing@nist.gov [National Institute of Standards and Technology, Chemical Sciences Division, Gaithersburg, Maryland 20899 (United States)

2014-04-15T23:59:59.000Z

417

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

418

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

SciTech Connect (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

419

Thermohaline convection with nonlinear salt profiles N. J. Balmfortha)  

E-Print Network [OSTI]

of tem- perature and salinity; the background temperature gradient is constant, while the salt profile tangent profile is presented. It is shown that nonlinearity in the background salinity profile leads of temperature and salinity. Hence we need to jus- tify our study of the stability of this background

Julien, Keith

420

.Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding  

E-Print Network [OSTI]

l .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding ) · T. DEBROY, J process parameters such as the voltage profiles, heat generation patterns and temperature profiles with equivalent slag, electrode and other geometrical variable; Calcu- 0 lations show that the heat generation

Eagar, Thomas W.

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California  

SciTech Connect (OSTI)

In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.

Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

2009-02-25T23:59:59.000Z

422

A forensic STR profiling system for the Eurasian badger: A framework for developing profiling systems for wildlife species  

E-Print Network [OSTI]

A forensic STR profiling system for the Eurasian badger: A framework for developing profiling short tandem repeat (STR) profiling systems for forensic identification is complicated in animal species and a lack of developed STR markers can make adhering to human forensic guidelines difficult. Furthermore

Thorpe, Roger Stephen

423

The Effects of Thermonuclear Reaction Rate Variations on Nova Nucleosynthesis: A Sensitivity Study  

E-Print Network [OSTI]

We investigate the effects of thermonuclear reaction rate uncertainties on nova nucleosynthesis. One-zone nucleosynthesis calculations have been performed by adopting temperature-density-time profiles of the hottest hydrogen-burning zone (i.e., the region in which most of the nucleosynthesis takes place). We obtain our profiles from 7 different, recently published, hydrodynamic nova simulations covering peak temperatures in the range from Tpeak=0.145-0.418 GK. For each of these profiles, we individually varied the rates of 175 reactions within their associated errors and analyzed the resulting abundance changes of 142 isotopes in the mass range below A=40. In total, we performed 7350 nuclear reaction network calculations. We use the most recent thermonuclear reaction rate evaluations for the mass ranges A=1-20 and A=20-40. For the theoretical astrophysicist, our results indicate the extent to which nova nucleosynthesis calculations depend on presently uncertain nuclear physics input, while for the experimental nuclear physicist our results represent at least a qualitative guide for future measurements at stable and radioactive ion beam facilities. We find that present reaction rate estimates are reliable for predictions of Li, Be, C and N abundances in nova nucleosynthesis. However, rate uncertainties of several reactions have to be reduced significantly in order to predict more reliable O, F, Ne, Na, Mg, Al, Si, S, Cl and Ar abundances. Results are presented in tabular form for each adopted nova simulation.

Christian Iliadis; Art Champagne; Jordi Jose; Sumner Starrfield; Paul Tupper

2002-06-03T23:59:59.000Z

424

Characterization of X-ray generator beam profiles.  

SciTech Connect (OSTI)

T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

2013-07-01T23:59:59.000Z

425

The density profiles of hot galactic halo gas  

E-Print Network [OSTI]

Extended gas haloes around galaxies are a ubiquitous prediction of galaxy formation scenarios. However, the density profiles of this hot halo gas is virtually unknown, although various profiles have been suggested on theoretical grounds. In order to quantitatively address the gas profile, we compare galaxies from direct cosmological simulations with analytical solutions of the underlying gas equations. We find remarkable agreement between simulations and theoretical predictions. We present an expression for this gas profile with a non-trivial dependence on the total mass profile. This expression is useful when setting up equilibrium galaxy models for numerical experiments.

Steen H. Hansen; Jesper Sommer-Larsen

2006-06-13T23:59:59.000Z

426

Performance Profiles of Major Energy Producers 2001  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2001 January 2003 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This report was prepared in the Office of Energy Markets and End Use of the Energy Information Administration

427

Performance profiles of major energy producers 1989  

SciTech Connect (OSTI)

Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

Not Available

1991-01-23T23:59:59.000Z

428

Characteristics of profiles of gamma-ray burst pulses associated with the Doppler effect of fireballs  

E-Print Network [OSTI]

In this paper, we derive in a much detail the formula of count rates, in terms of the integral of time, of gamma-ray bursts in the framework of fireballs, where the Doppler effect of the expanding fireball surface is the key factor to be concerned. Effects arising from the limit of the time delay due to the limited regions of the emitting areas in the fireball surface and other factors are investigated. Our analysis shows that the formula of the count rate of fireballs can be expressed as a function of $\\tau $ which is the observation time scale relative to the dynamical time scale of the fireball. The profile of light curves of fireballs depends only on the relative time scale, entirely independent of the real time scale and the real size of the objects. It displays in detail how a cutoff tail, or a turn over, feature (called a cutoff tail problem) in the decay phase of a light curve can be formed. This feature is a consequence of a hot spot in the fireball surface, moving towards the observer, and was observed in a few cases previously. By performing fits to the count rate light curves of six sample sources, we show how to obtain some physical parameters from the observed profile of the count rate of GRBs. In addition, the analysis reveals that the Doppler effect of fireballs could lead to a power law relationship between the $FWHM$ of pulses and energy, which were observed previously by many authors.

Yi-Ping Qin; Zhi-Bin Zhang; Fu-Wen Zhang; Xiao-Hong Cui

2004-08-31T23:59:59.000Z

429

Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate | Open Energy  

Open Energy Info (EERE)

Rate" Rate" Showing 13 pages using this property. 4 4b524791-bef2-49b1-850b-458730755203 + 5 +, 6 +, 3 +, ... 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 7 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 8 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 6 + E E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + Retrieved from "http://en.openei.org/w/index.php?title=Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate&oldid=53975

430

Category:Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Profiling Techniques page? For detailed information on Electromagnetic Profiling Techniques, click here. Category:Electromagnetic Profiling Techniques Add.png Add a new Electromagnetic Profiling Techniques Technique Pages in category "Electromagnetic Profiling Techniques" This category contains only the following page. F Frequency-Domain Electromagnetic Survey Retrieved from "http://en.openei.org/w/index.php?title=Category:Electromagnetic_Profiling_Techniques&oldid=689835"

431

Advertising Rates from May 2012  

E-Print Network [OSTI]

Advertising Rates from May 2012 Abitrich INSIDE: NEW LIFTOUT Isausedluxurycar worththerisk? Page8 May 5, 2012 #12;1 MODULE WIDE DRIVE TABLOID ADVERTISING SIZES VALID FROM MAY 2012 2 MODULES WIDE 8 3pm Thursday Display Phoned Bookings and AdOnline Noon Thursday Noon Thursday Display Advertising

Peters, Richard

432

1993 Wholesale Power and Transmission Rate Schedules.  

SciTech Connect (OSTI)

Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

US Bonneville Power Administration

1993-10-01T23:59:59.000Z

433

Calculation of the Non-Inductive Current Profile in High-Performance NSTX Plasmas  

SciTech Connect (OSTI)

The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX [M. Ono, et al., Nuclear Fusion 40, 557 (2000)]; these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-?, or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven, and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfven eigenmode avalanches or coupled m/n=1/1+2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast ion diffusivity of ~0.5-1 m2/sec is found in “MHD-free” discharges, based on the neutron emission, time rate of change of the neutron signal when a neutral beam is stepped, and reconstructed on-axis current density.

Gerhardt, S P; Gates, D; Kaye, S; Menard, J; Bell, M G; Bell, R E; Le Blanc, B P; Kugel, H; Sabbagh, S A

2011-02-09T23:59:59.000Z

434

A new expression for the transition rate of an accelerated particle detector  

E-Print Network [OSTI]

We analyse the instantaneous transition rate of an accelerated Unruh-DeWitt particle detector whose coupling to a quantum field on Minkowski space is regularised by a finite spatial profile. We show, under mild technical assumptions, that the zero size limit of the detector response is well defined, independent of the choice of the profile function, and given by a manifestly finite integral formula that no longer involves epsilon-regulators or limits. Applications to specific trajectories are discussed, recovering in particular the thermal result for uniform acceleration. Extensions of the model to de Sitter space are also considered.

J. Louko; A. Satz

2006-11-22T23:59:59.000Z

435

State Nuclear Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear Reports Nuclear Reports State Nuclear Profiles Data for 2010 | Release Date: April 26, 2012 | Next Release: April 2014 | full report Archived State Nuclear Profiles Choose a Year: Select a Year 2009 Go State Net summer capacity (megawatts) Rank Net generation (thousand megawatthours) Rank Alabama 5,043 5 37,941 7 Arizona 3,937 12 31,200 11 Arkansas 1,835 19 15,023 19 California 4,390 8 32,201 10 Connecticut 2,103 18 16,750 17 Florida 3,924 13 23,936 15 Georgia 4,061 10 33,512 8 Illinois 11,441 1 96,190 1 Iowa 601 31 4,451 31 Kansas 1,160 27 9,556 26 Louisiana 2,142 16 18,639 16 Maryland 1,705 20 13,994 20 Massachusetts 685 29 5,918 29 Michigan 3,947 11 29,625 12 Minnesota 1,594 21 13,478 21 Mississippi 1,251 23 9,643 25

436

Test profiles for stationary energy storage applications  

SciTech Connect (OSTI)

Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

1998-09-01T23:59:59.000Z

437

Fast scanning heterodyne receiver for the measurement of the time evolution of the electron temperature profile on TFTR  

SciTech Connect (OSTI)

Two fast scanning heterodyne receivers, swept between 75 to 110 GHz and 110 to 170 GHz in 2 msec every 4 msec, were developed to measure the electron cyclotron emission on the horizontal midplane of the Tokamak Fusion Test Reactor (TFTR) plasma. An absolute, in situ calibration technique enables the determination of the profile of the plasma electron temperature from the cyclotron emission intensity. The 4 msec repetition rate of the receiver allowed the resolution of sawtooth fluctuations of temperature, whose period was 10 to 100 msec, in profiles with central temperatures of 1 to 2.5 keV.

Taylor, G.; Efthimion, P.; McCarthy, M.; Arunasalam, V.; Bitzer, R.; Bryer, J.; Cutler, R.; Fredd, E.; Goldman, M.A.; Kaufman, D.

1984-06-01T23:59:59.000Z

438

2007 Wholesale Power Rate Case Initial Proposal : Direct Testimony  

SciTech Connect (OSTI)

The purpose of this testimony is to provide the context and background to the financial and risk policy objectives for BPA's WP-07 Initial Proposal. The testimony contains eight sections. The first is this introduction. Section 2 provides background regarding BPA's Subscription Strategy and the Subscription contracts to which the WP-07 rates will apply. Section 3 describes the financial policy objectives considered when establishing the WP-07 rates. Section 4 describes BPA's risk profile, the risk mitigation tools used in prior rate periods, those proposed here, and additional tools under consideration for the FY 2007-2009 rate period. Section 5 describes financial policy directives and decisions that have shaped the WP-07 Initial Proposal. Section 6 describes the uncertainties of the current litigation regarding the National Marine Fisheries Service (NMFS) Federal Columbia River Power System (FCRPS) Biological Opinion and how it is addressed in this proposal. Section 7 briefly discusses the risk mitigation package in the WP-07 Initial Proposal. Finally, Section 8 describes some liquidity tools that may be incorporated into final studies if circumstances allow.

United States. Bonneville Power Administration.

2005-11-01T23:59:59.000Z

439

EMPIRICAL MODELS FOR DARK MATTER HALOS. II. INNER PROFILE SLOPES, DYNAMICAL PROFILES, AND /3  

E-Print Network [OSTI]

simulated dark matter halos better than a Navarro- Frenk-WhiteYlike model with an equal number of parameters]) density profiles of simulated dark matter halos (Navarro et al. 2004). Intriguingly, this function was shown to provide a better fit than thethree-parameter Navarro-Frenk-White (NFW)Ylike model

Terzi, BalÂ?a

440

Federal Energy Management Program: Water Rate Escalations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rate Rate Escalations to someone by E-mail Share Federal Energy Management Program: Water Rate Escalations on Facebook Tweet about Federal Energy Management Program: Water Rate Escalations on Twitter Bookmark Federal Energy Management Program: Water Rate Escalations on Google Bookmark Federal Energy Management Program: Water Rate Escalations on Delicious Rank Federal Energy Management Program: Water Rate Escalations on Digg Find More places to share Federal Energy Management Program: Water Rate Escalations on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements Best Management Practices Analysis and Evaluation Water Rate Escalations Evaluation Service Contracts Case Studies Resources

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

conference rates Summer 2014 Policy Statement  

E-Print Network [OSTI]

conference rates Summer 2014 Policy Statement University Catering and Conferences is an auxiliary and organizations holding education- ally related meetings and events on campus. conference rateS (all rates are per occupies, including lounge. Conference staff available for assistance 24 hours per day. Room-only rates

Oregon, University of

442

conference rates Summer 2013 Policy Statement  

E-Print Network [OSTI]

conference rates Summer 2013 Policy Statement University Catering and Conferences is an auxiliary and organizations holding education- ally related meetings and events on campus. conference rateS (all rates are per occupies, including lounge. Conference staff available for assistance 24 hours per day. Room-only rates

Oregon, University of

443

Interviewer's ratings of personality: can these ratings predict job performance?  

E-Print Network [OSTI]

; Goldberg, 1993a; Guastello, 1993; McCrae k Costa, 1985; McCrae & John, 1992) has been about the validity of the five-factor model as a measure of personality; in other words, does the model truly capture all traits of personality? The five-factor model...; Goldberg, 1981; McCrae & Costa, 1987; McCrae & John, 1992; Peabody & Goldberg, 1989). Tupes and Christal (1958, 1992) were the first to look at peer ratings of personality in a variety of samples. Although these samples varied in length and kind...

Archuleta, Kathryn Diane

2012-06-07T23:59:59.000Z

444

Building Technologies Program - Funding Profile by Subprogram  

Broader source: Energy.gov (indexed) [DOE]

Efficiency and Renewable Energy/ Efficiency and Renewable Energy/ Building Technologies FY 2013 Congressional Budget Building Technologies Program Funding Profile by Subprogram Non-Comparable Structure (Dollars in Thousands) FY 2011 Current a FY 2012 Enacted FY 2013 Request Building Technologies Program Commercial Buildings Integration 37,308 31,913 61,079 Emerging Technologies 75,694 84,694 108,344 Equipment and Buildings Standards 35,000 58,302 98,250 Residential Buildings Integration 37,308 31,282 35,872 Technology Validation and Market Introduction 22,000 8,500 0 SBIR/STTR 0 4,513 6,455 Total, Building Technologies Program 207,310 219,204 310,000 Comparable Structure (Dollars in Thousands) FY 2011 Current a FY 2012 Enacted FY 2013 Request Building Technologies Program

445

Performance Profiles of Major Energy Producers 1994  

Gasoline and Diesel Fuel Update (EIA)

4) 4) Distribution Category UC-950 Performance Profiles of Major Energy Producers 1994 January 1996 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This report was prepared in the Office of Energy Markets and End Use of the Energy Information Administration, U.S. Department of Energy, under the general direction of W. Calvin Kilgore. The project was directed by Mark E. Rodekohr, Director of the Energy Markets and Contingency Information Division (202) 586-1441, and Mary E. Northup, Chief of

446

Performance profiles of major energy producers 1993  

SciTech Connect (OSTI)

Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

NONE

1995-01-01T23:59:59.000Z

447

Electron profile stiffness and critical gradient studies  

SciTech Connect (OSTI)

Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90095-7099 (United States); Holland, C. [University of California-San Diego, La Jolla, California 92093-0417 (United States); McKee, G. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-08-15T23:59:59.000Z

448

US EIA Country Energy Profiles | Open Energy Information  

Open Energy Info (EERE)

US EIA Country Energy Profiles US EIA Country Energy Profiles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: US EIA Country Energy Profiles Agency/Company /Organization: United States Department of Energy Partner: United States Energy Information Agency Sector: Energy Topics: GHG inventory, Background analysis Website: tonto.eia.doe.gov/country/index.cfm Equivalent URI: cleanenergysolutions.org/content/country-energy-profiles-website Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. References: US EIA Country Energy Profiles[1] This reegle website provides comprehensive energy profiles for all countries with information from reliable sources such as UN or the World

449

Leadership in Energy and Environmental Design (LEED) Project Profiles |  

Open Energy Info (EERE)

Leadership in Energy and Environmental Design (LEED) Project Profiles Leadership in Energy and Environmental Design (LEED) Project Profiles Jump to: navigation, search Tool Summary Name: Leadership in Energy and Environmental Design (LEED) Project Profiles Agency/Company /Organization: U.S. Green Building Council Sector: Energy Focus Area: Buildings Phase: Create a Vision, Evaluate Options, Develop Goals Resource Type: Case studies/examples User Interface: Website Website: www.usgbc.org/DisplayPage.aspx?CMSPageID=1721 Cost: Free The LEED Project Profile (page) is repository of LEED certified projects which provides profiles for specific projects, including strategies which were included in the project. This page can be used to generate ideas for various building types through a community. Overview The LEED Project Profile (page) is repository of LEED certified projects

450

Category:Electrical Profiling Configurations | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electrical Profiling Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electrical Profiling Configurations page? For detailed information on Electrical Profiling Configurations as exploration techniques, click here. Category:Electrical Profiling Configurations Add.png Add a new Electrical Profiling Configurations Technique Pages in category "Electrical Profiling Configurations" The following 3 pages are in this category, out of 3 total. D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse)

451

P-D Project Rate Adjustment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parker-Davis Project Rate Adjustment Data Parker-Davis Project Rate Adjustment Data FY2014 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design Preliminary PRS Final Documents Notification of Rates Final CAS Final Rate Design Final PRS FY2013 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design Preliminary PRS Supplemental Information Final Documents Notification of Rates Final CAS Final Rate Design Final PRS FY2012 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design Preliminary PRS Customer Requested Scenario Final Documents Notification of Rates Final CAS Final Rate Design Final PRS FY2011 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design

452

Project Profile: Improved Large Aperture Collector Manufacturing  

Broader source: Energy.gov [DOE]

Abengoa Solar, under the Solar Manufacturing Technology (SolarMat) program, will be investigating the use of an automotive-style high-rate fabrication and automated assembly techniques to achieve a substantial reduction in the deployment cost of their new SpaceTube advanced large aperture parabolic trough collector.

453

Project Profile: Low-Cost, Lightweight Solar Concentrators |...  

Broader source: Energy.gov (indexed) [DOE]

Cost, Lightweight Solar Concentrators Project Profile: Low-Cost, Lightweight Solar Concentrators JPL logo The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot...

454

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

455

Project Profile: Innovative Phase Change Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

456

Project Profile: Influence of Novel Behavioral Strategies in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Influence of Novel Behavioral Strategies in Promoting the Diffusion of Solar Energy Project Profile: Influence of Novel Behavioral Strategies in Promoting the Diffusion of Solar...

457

Remote Sensing of Cirrus Particle Size Vertical Profile Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inhomogeneity in terms of ice crystal sizes and shapes. The vertical variation of ice crystal size can alter the radiative heatingcooling profiles in cirrus cloudy...

458

Evaluate Greenhouse Gas Emissions Profile Using Renewable Energy in Buildings  

Broader source: Energy.gov [DOE]

After assessing the potential for agency size changes, a Federal agency should evaluate its greenhouse gas (GHG) emissions profile using renewable energy in buildings.

459

Characterizing Ion Profiles in Dynamic Junction Light-Emitting...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advantage in applications such as light-emitting devices, transistors, and electrochromic devices, among others. Evidence suggests that the profiles of ions and...

460

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Improved Humidity Profiling by Combining Passive and Active Remote...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resolution of atmospheric humidity profiles. We show preliminary results and discuss advantages and limitations related to this technique. Basic Principles The role of ground-based...

462

Project Profile: Baseload CSP Generation Integrated with Sulfur...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Related Links FAQs Contact Us Offices You are here Home Concentrating Solar Power Project Profile: Baseload CSP Generation Integrated with Sulfur-Based...

463

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

464

2014 Race to Zero Student Design Competition: Auburn University Profile  

Broader source: Energy.gov [DOE]

2014 Race to Zero Student Design Competition: Auburn University Profile, as posted on the U.S. Department of Energy website.

465

Coke profile and effect on methane/ethylene conversion process.  

E-Print Network [OSTI]

??The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to… (more)

Al-Solami, Bandar

2012-01-01T23:59:59.000Z

466

Design and Implementation of an Ion Beam Profiling System.  

E-Print Network [OSTI]

?? The work describes the development of a reliable device for profiling anion beam in the intensity cross section. A sensor head consisting of a… (more)

Stude, Joan

2009-01-01T23:59:59.000Z

467

Project Profile: Novel Molten Salts Thermal Energy Storage for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power...

468

Project Profile: Development and Performance Evaluation of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Project Profile: Development and Performance Evaluation of...

469

LIMITATIONS ON MEASURING A TRANSVERSE PROFILE OF ULTRA- DENSE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LIMITATIONS ON MEASURING A TRANSVERSE PROFILE OF ULTRA- DENSE ELECTRON BEAMS WITH SCINTILLATORS A. Murokh * , J. Rosenzweig, University of California, Los Angeles, CA 90095-1547,...

470

Relativistic formulation for the Doppler-broadened line profile  

SciTech Connect (OSTI)

Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih [Department of Physics, Soochow University, Shih-Lin, Taipei, Taiwan (China); Department of Physics, National Central University, Chung-Li, Taiwan (China)

2010-07-15T23:59:59.000Z

471

Project Profile: Deep Eutectic Salt Formulations Suitable as...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics...

472

Survey Employees to Evaluate Greenhouse Gas Emissions Profile for Commuting  

Broader source: Energy.gov [DOE]

For evaluating a greenhouse gas (GHG) profile for employee commuting, data on behavior and attitudes are best collected through an agency-wide survey.

473

Project Profile: Next-Generation Parabolic Trough Collectors...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trough Collectors and Components for CSP Applications Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications Abengoa logo Abengoa...

474

BPA Power Rates (pbl/main)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recover the costs of generating power and associated expenses. Beginning with the 2010 BPA Rate Case, Power Services and Transmission Services plan to conduct rate cases every...

475

Wholesale Power Rate Schedules | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Rate Schedules » Wholesale Power Rate Schedules Services » Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012 Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina October 1, 2012 Duke-2-E Wholesale Power Rate Schedule Area: Central System: Georgia-Alabama-South Carolina October 1, 2012 Duke-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina October 1, 2012 Duke-4-E Wholesale Power Rate Schedule Area: Duke Self-Schedulers System: Georgia-Alabama-South Carolina October 1, 2012 MISS-1-N Wholesale Power Rate Schedule Area: South Mississippi Electric Power Association

476

Wholesale Power Rate Schedules | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Rate Schedules » Wholesale Power Rate Schedules Services » Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012 Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina October 1, 2012 Duke-2-E Wholesale Power Rate Schedule Area: Central System: Georgia-Alabama-South Carolina October 1, 2012 Duke-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina October 1, 2012 Duke-4-E Wholesale Power Rate Schedule Area: Duke Self-Schedulers System: Georgia-Alabama-South Carolina October 1, 2012 MISS-1-N Wholesale Power Rate Schedule Area: South Mississippi Electric Power Association

477

utility rate | OpenEI Community  

Open Energy Info (EERE)

utility rate utility rate Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 June, 2012 - 09:30 Increasing ask query limit developer utility rate An NREL user who is trying to use the utility rate service was having an issue. He writes "I noticed that any rates past 10,000 are not accessible via json. For example, this query only returns two entries:

478

Project Profile: National Solar Thermal Test Facility  

Broader source: Energy.gov [DOE]

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

479

CRSP Transmission Sales Rate History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updated: 12/20/2013 Updated: 12/20/2013 CRSP Transmission Sales Rate History Rate Schedule Effective Dates Nonfirm (Mills/kWh) Firm ($/kW-yr.) Firm ($/kW-mo.) None Through 3/83 1.000 $ 6.60 $0.55 SP-FT1 4/83 - 6/86 N.A. $10.27 $0.86 SP-NFT1 4/83 - 6/86 2.000 N.A. SP-FT2 7/86 - 6/89 N.A. $15.94 $1.33 SP-NFT2 7/86 - 7/89 3.100 N.A. SP-FT3 7/89 - 9/92 N.A. $21.72 $1.81 SP-NFT3 8/89 - 3/98 Mutually Agreed N.A. SP-FT4 10/92 - 3/98 N.A. $22.68 $1.89 SP-NFT4 4/98 - 3/03 Mutually Agreed N.A. SP-PTP5 4/98 - 3/99 N.A. $26.70 $2.23 4/99 - 3/00 N.A. $26.19 $2.18 4/00 - 3/01 N.A. $26.14 $2.18 4/01 - 3/02 N.A. $25.63 $2.14 4/02 - 9/02 N.A. $21.33 $1.78 SP-NFT5 10/02 - 9/07 Mutually Agreed N.A. 10/07-9/08 Mutually Agreed N.A. SP-PTP6 10/02 - 9/03 N.A. $24.72 $2.06

480

Combined Retrieval, Microphysical Retrievals and Heating Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

Feng, Zhe

Note: This page contains sample records for the topic "rate profile bbhrp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

7, 29612989, 2007 Predicting arene rate  

E-Print Network [OSTI]

software or computing power. Measured gas-phase rate coefficients for the reaction of aromatic hydrocarbons

Boyer, Edmond

482

conference rates Summer 2012 Policy Statement  

E-Print Network [OSTI]

conference rates Summer 2012 Policy Statement University Catering and Conferences is an auxiliary holding educationally related meetings and events on campus. conference rateS (all rates are per person lounge. Barnhart Hall service includes private bathrooms/showers. Conference staff available

Oregon, University of

483

CP-Violating Profile of the Electroweak Bubble Wall  

Science Journals Connector (OSTI)

......November 1995 research-article Articles CP-Violating Profile of the Electroweak Bubble...electroweak baryogenesis, the profile of the CP violating bubble wall, created at the first-order...solutions. Two of them smoothly connect the CP-violating broken phase and the symmetric......

Koichi Funakubo; Akira Kakuto; Shoichiro Otsuki; Kazunori Takenaga; Fumihiko Toyoda

1995-11-01T23:59:59.000Z

484

Security-oriented Data Grids for Microarray Expression Profiles  

E-Print Network [OSTI]

Security-oriented Data Grids for Microarray Expression Profiles Richard SINNOTT a,1 Christopher and comparison of microarray experiment results. Keywords. Microarray Expression Profiles, Grid security shedding light and understanding for ex- ample on biological processes. The BBSRC funded Grid enabled

Glasgow, University of

485

Identifying trait clusters by linkage profiles: application in genetical genomics  

Science Journals Connector (OSTI)

......point, s.p., mapping or CIM), and reject when , are derived...the LOD score profiles with CIM, and then using those new profiles...processes, as determined by Gene Ontology (GO) annotations (see Supplementary...experimental results with Gene Ontology (GO) annotations show that......

Joshua N. Sampson; Steven G. Self

2008-04-01T23:59:59.000Z

486

Continuous Seismic Reflexion Profiles in the Red Sea  

Science Journals Connector (OSTI)

...October 1970 research-article Continuous Seismic Reflexion Profiles in the Red Sea J. D. Phillips D. A. Ross Twenty continuous seismic reflexion profiles have been made across...in the deeper axial trough. A strong seismic reflector is observed at depths up to...

1970-01-01T23:59:59.000Z

487

Doppler Radar Wind Profiles Iwan Holleman (holleman@knmi.nl)  

E-Print Network [OSTI]

is required before it can be presented to users or assimilated into numerical weather prediction (NWP) models Institute (KNMI), The Netherlands ABSTRACT Doppler weather radars can be employed to determine wind profiles profiles has been performed at KNMI. The verification results indicate that weather radars can provide high

Stoffelen, Ad

488

Domain boundary prediction based on profile domain linker propensity index  

Science Journals Connector (OSTI)

Successful prediction of protein domain boundaries provides valuable information not only for the computational structure prediction of multi-domain proteins but also for the experimental structure determination. In this work, a novel index at the profile ... Keywords: Domain, Domain linker, Profile

Qiwen Dong; Xiaolong Wang; Lei Lin; Zhiming Xu

2006-04-01T23:59:59.000Z

489

Lithium intercalated graphite : experimental Compton profile for stage one  

E-Print Network [OSTI]

L-301 Lithium intercalated graphite : experimental Compton profile for stage one G. Loupias, J différence des profils Compton est compatible avec un transfert total de l'électron de conduction du lithium électronique due à l'insertion. Abstract. 2014 Electron momentum distribution of the first stage lithium

Paris-Sud XI, Université de

490

Analyis of Path Profiling Information Generated with Performance Monitoring Hardware  

E-Print Network [OSTI]

is to exploit hardware Performance Monitoring Units (PMUs) present in modern microprocessors. The Itanium-2 PMU can be correlated into full paths. As sta- tistically hot paths are most likely to occur in PMU sam techniques carry a high overhead, a PMU-based path profiler represents an ef- fective lightweight profiling

Colorado at Boulder, University of

491

Using Dublin Core application profiles to manage diverse metadata developments  

Science Journals Connector (OSTI)

This paper discusses the use of Dublin Core application profiles at the British Library as part of a resource discovery strategy. It shows how they can be used to control the proliferation of metadata formats in digitisation activity and provide interoperability ... Keywords: British library, Dublin Core application profiles, SRU, Z39.50, gateway, interoperability, metadata formats, resource discovery strategy

Robina Clayphan; Bill Oldroyd

2005-09-01T23:59:59.000Z

492

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN* AND DAVID S. NOLAN  

E-Print Network [OSTI]

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN independent of both the maximum wind speed and the radius of maximum winds (RMW). This can be seen winds change with height. Above 2-km height, vertical profiles of Vmaxnorm are nearly independent

Nolan, David S.

493

Method and apparatus for measuring irradiated fuel profiles  

DOE Patents [OSTI]

A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

Lee, David M. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

494

2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study.  

SciTech Connect (OSTI)

The Federal Columbia River Power System (FCRPS), operated on behalf of the ratepayers of the PNW by BPA and other Federal agencies, faces many uncertainties during the FY 2007-2009 rate period. Among these uncertainties, the largest revolve around hydro conditions, market prices and river operations for fish recovery. In order to provide a high probability of making its U.S. Treasury payments, BPA performs a Risk Analysis as part of its rate-making process. In this Risk Analysis, BPA identifies key risks, models their relationships, and then analyzes their impacts on net revenues (total revenues less expenses). BPA subsequently evaluates in the ToolKit Model the Treasury Payment Probability (TPP) resulting from the rates, risks, and risk mitigation measures described here and in the Wholesale Power Rate Development Study (WPRDS). If the TPP falls short of BPA's standard, additional risk mitigation revenues, such as PNRR and CRAC revenues are incorporated in the modeling in ToolKit until the TPP standard is met. Increased wholesale market price volatility and six years of drought have significantly changed the profile of risk and uncertainty facing BPA and its stakeholders. These present new challenges for BPA in its effort to keep its power rates as low as possible while fully meeting its obligations to the U.S. Treasury. As a result, the risk BPA faces in not receiving the level of secondary revenues that have been credited to power rates before receiving those funds is greater. In addition to market price volatility, BPA also faces uncertainty around the financial impacts of operations for fish programs in FY 2006 and in the FY 2007-2009 rate period. A new Biological Opinion or possible court-ordered change to river operations in FY 2006 through FY 2009 may reduce BPA's net revenues included Initial Proposal. Finally, the FY 2007-2009 risk analysis includes new operational risks as well as a more comprehensive analysis of non-operating risks. Both the operational and non-operational risks will be described in Section 2.0 of this study. Given these risks, if rates are designed using BPA's traditional approach of only adding Planned Net Revenues for Risk (PNRR), power rates would need to recover a much larger ''risk premium'' to meet BPA's TPP standard. As an alternative to high fixed risk premiums, BPA is proposing a risk mitigation package that combines PNRR with a variable rate mechanism similar to the cost recovery adjustment mechanisms used in the FY 2002-2006 rate period. The proposed risk mitigation package is less expensive on a forecasted basis because the rates can be adjusted on an annual basis to respond to uncertain financial outcomes. BPA is also proposing a Dividend Distribution Clause (DDC) to refund reserves in excess of $800M to customers in the event net revenues in the next rate period exceed current financial forecasts.

United States. Bonneville Power Administration.

2005-11-01T23:59:59.000Z

495

Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open Energy  

Open Energy Info (EERE)

Rate" Rate" Showing 25 pages using this property. (previous 25) (next 25) 0 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.227 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.227 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.227 + 019be14c-4635-4529-af90-799cbf5d7865 + 0.0335 + 019be14c-4635-4529-af90-799cbf5d7865 + 0.0335 + 02b061e1-f065-421e-9ebc-76aef4734486 + 0.079 + 02b061e1-f065-421e-9ebc-76aef4734486 + 0.079 + 02fc76fd-35ff-44c3-bc85-1fb1918f125b + 0.0978 + 02fc76fd-35ff-44c3-bc85-1fb1918f125b + 0.0978 + 0402cc99-ab16-40cc-83e7-2c5910a825a1 + 0.061 + 0402cc99-ab16-40cc-83e7-2c5910a825a1 + 0.061 + 041466a9-81ca-4fce-90e3-e718159347a9 + 0.0587 +, 0.044 + 041466a9-81ca-4fce-90e3-e718159347a9 + 0.044 + 041466a9-81ca-4fce-90e3-e718159347a9 + 0.0587 + 047086c9-976d-4a05-90d5-b67afaf60851 + 0.0583 +

496

Wholesale Power Rate Schedules | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Schedules Schedules Wholesale Power Rate Schedules October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU October 1, 2011 CK-1-H Wholesale Power Rate Schedule Area: KU Area System: CU October 1, 2011 CEK-1-H Wholesale Power Rate Schedule Area: East Kentucky System: CU October 1, 2011 CC-1-I Wholesale Power Rate Schedule Area: CP&L Area, Western Division System: CU September 20, 2011 JW-1-J Wholesale Power Rate Schedule Area: Woodruff Preference Customer System: Jim Woodruff September 20, 2011 JW-2-F Wholesale Power Rate Schedule Area: Florida Power Corporation System: Jim Woodruff November 17, 2010 AP-1-B Wholesale Power Rate Schedule Area: American Electric Power

497

1996 Wholesale Power and Transmission Rate Schedules.  

SciTech Connect (OSTI)

Bonneville Power Administration`s (BPA) 1996 Wholesale Power Rate Schedules, 1996 Ancillary Products and Services Rate Schedule, 1996 Transmission Rate Schedules, and General Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1996. These rate schedules and provisions were approved by the Federal Energy Regulatory Commission (FERC), United States Department of Energy, in September 1996 (Docket Nos EF96-2011-000 and EF96f-2021-000). These rate schedules and General Rate Schedule Provisions were approved on a final basis by the FERC July 30, 1997, in Dept. of Energy--Bonneville Power Administration, Docket Nos. EF96-2011-000 and EF96-2021-000. Except as noted elsewhere, these 1996 rate schedules and provisions supersede BPA`s Wholesale Power Rate Schedules and General Rate Schedule Provisions, and Transmission Rate Schedules and General Transmission Rate Schedule Provisions, effective October 1, 1995. These rate schedules and general rate schedule provisions include all errata.

United States. Bonneville Power Administration.

1996-10-01T23:59:59.000Z

498

Graphic profile In the event of problems of interpretation or differences between the Swedish and  

E-Print Network [OSTI]

profile? 1.1 Brand strategy 2 Basic concepts 2.1 The graphic profile ­ elements and rules 2.2 Name 2 and image. Our graphic profile and logotype comprise important parts of our communication. Background We. The graphic profile Our graphic profile is based on extensive work on our identity and image and helps us give

Johannesson, Henrik

499

Water Energy Load Profiling (WELP) Tool | Open Energy Information  

Open Energy Info (EERE)

Water Energy Load Profiling (WELP) Tool Water Energy Load Profiling (WELP) Tool Jump to: navigation, search Tool Summary Name: Water Energy Load Profiling (WELP) Tool Agency/Company /Organization: California Public Utilities Commission (CPUC) Sector: Energy, Water Focus Area: Energy Efficiency, - Embodied Energy, Water Conservation Phase: Determine Baseline, "Evaluate Effectiveness and Revise" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. Topics: GHG inventory, Policies/deployment programs, Resource assessment, Background analysis

500

Physician Cost Profiling — Reliability and Risk of Misclassification  

Science Journals Connector (OSTI)

...and reliability the proportion of variability in a measure that is due to real differences in performance. The use of episode-grouping tools is accepted as a valid means of constructing clinically homogeneous cost groups. With respect to cost profiling, validity indicates whether the method of assigning... Some insurance companies are offering patients incentives to choose lower-cost physicians. This study shows that the current methods used to generate physicians' cost profiles do not have high reliability and that the systems using these cost profiles to identify lower-cost physicians will incorrectly classify many physicians.

Adams J.L.Mehrotra A.Thomas J.W.McGlynn E.A.

2010-03-18T23:59:59.000Z